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Abstract. A simple numerical solution procedure – namely
the method of lines combined with an off-the-shelf ordinary
differential equation (ODE) solver – was shown in previ-
ous work to provide efficient, mass-conservative solutions to
the pressure-head form of Richards’ equation. We implement
such a solution in our model openRE. We developed a novel
method to quantify the boundary fluxes that reduce water bal-
ance errors without negative impacts on model runtimes – the
solver flux output method (SFOM). We compare this solution
with alternatives, including the classic modified Picard itera-
tion method and the Hydrus 1D model. We reproduce a set of
benchmark solutions with all models. We find that Celia’s so-
lution has the best water balance, but it can incur significant
truncation errors in the simulated boundary fluxes, depending
on the time steps used. Our solution has comparable runtimes
to Hydrus and better water balance performance (though both
models have excellent water balance closure for all the prob-
lems we considered). Our solution can be implemented in an
interpreted language, such as MATLAB or Python, making
use of off-the-shelf ODE solvers. We evaluated alternative
SciPy ODE solvers that are available in Python and make
practical recommendations about the best way to implement
them for Richards’ equation. There are two advantages of our
approach: (i) the code is concise, making it ideal for teaching
purposes; and (ii) the method can be easily extended to repre-
sent alternative properties (e.g., novel ways to parameterize
the K(ψ) relationship) and processes (e.g., it is straightfor-
ward to couple heat or solute transport), making it ideal for
testing alternative hypotheses.

1 Introduction

Richards’ equation (RE) describes the movement of water in
variably saturated porous media. Almost any practical appli-
cation of RE requires a numerical solution; yet RE remains
challenging to solve reliably and accurately for a given set
of boundary conditions and soil hydraulic properties (Far-
thing and Ogden, 2017). RE has been extensively reviewed
(e.g., Vereecken et al., 2016; Farthing and Ogden, 2017, and
references therein). RE has practical limitations in repre-
senting the flow processes in real soils containing macrop-
ores, especially with modeling infiltration and rapid perco-
lation processes (Beven and Germann, 2013). The strength
of RE is its ability to represent matrix drainage and capil-
lary flows, which control evapotranspiration processes, and
its ability to be coupled to heat and solute transport models.
For this reason, RE remains a common approach to simulate
soil moisture in many terrestrial system models (e.g., vadose
zone models, ecohydrology models, and land-surface mod-
els; Vereecken et al., 2016; Clark et al., 2015, 2021).

Our objective in this paper is to (i) implement a simple and
practical approach to solve RE that is efficient, is mass con-
servative, and uses open-source software (written in Python)
that is readily available, including as a teaching tool; and
(ii) present an improved mass balance calculation procedure
for use with ordinary differential equation (ODE) solvers that
apply adaptive time-stepping (ATS) schemes. We investigate
how to maximize the efficiency and accuracy of ODE solvers
and provide guidance on the subtle challenges that arise in
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evaluating the boundary fluxes and the water balance. For
our purposes, we define the following five criteria for success
for an RE solver: (i) the solver should successfully repro-
duce benchmark solutions forψ(t,z) or θ(t,z); (ii) the solver
should be mass conservative, with errors that are negligible
based on the specific application; (iii) truncation errors in the
simulated boundary fluxes should be negligible for the given
time step; (iv) the solver should be computationally efficient;
and (v) all else being equal on criteria (i)–(iv), the simplest
code should be preferred. Simple code should be the most hu-
man readable/editable code, which means it should be clean,
concise, modular, and free from redundancies.

The remainder of this paper is organized as follows. In
Sect. 2, we describe a simple yet powerful approach to solve
RE numerically using ODE solvers that we implement and
test in the Python and MATLAB programming languages. In
Sect. 2, we also discuss the complexities of closing the wa-
ter balance in RE and present a novel solution that can be
applied with any ODE solver: openRE. In Sect. 3, we bench-
mark the performance of our proposed solution against ex-
isting numerical models and solutions, including Hydrus 1D,
and the solution method proposed by Celia at al. (1990). In
Sect. 4, we summarize our recommendations.

2 Solving Richards’ equation

RE is derived from the mass continuity equation applied
to a control volume of soil, 1x1y1z (L3), and for one-
dimensional vertical flow passing through the area 1x1y
(L2), we have

∂m

∂t
=−

∂(qρ)

∂z
, (1)

where m (ML−3) is the mass of water per control volume of
soil, ρ (ML−3) is the density of water, q (LT−1) is the flux of
water, and t (T) is time and z (L) is depth below some fixed
datum. Assuming that density is constant, we may write

∂θ

∂t
=−

∂q

∂z
, (2)

where θ (L3 L−3) is the volumetric water content, defined as
the volume of water per control volume of soil. The vertical
flux is given by Darcy’s law,

qz =−K(ψ)
dh
dz
=−K(ψ)

(
dψ
dz
− 1

)
, (3)

where h (L) and ψ (L) are the hydraulic head and matric po-
tential head, respectively, and K(ψ) (LT−1) is the hydraulic
conductivity. Combining Eqs. (2) and (3) we have

∂θ

∂t
=
∂

∂z

(
K(ψ)

(
∂ψ

∂z
− 1

))
, (4)

which is the mixed form of RE (Celia et al., 1990). If we let
C(ψ)= dθ/dψ (L−1), we can write

C(ψ)
∂ψ

∂t
=
∂

∂z

(
K(ψ)

(
∂ψ

∂z
− 1

))
, (5)

which is the ψ-based form of RE (Celia et al., 1990). We can
also express this as the θ form of RE, given by

∂θ

∂t
=
∂

∂z

(
K(θ)

C(θ)

∂θ

∂z
−K(θ)

)
, (6)

where the constitutive relationships C(θ) and K(θ) are ex-
pressed as functions of θ (Celia et al., 1990). Changes in stor-
age in Eqs. (4)–(6) are associated with the filling and drain-
ing of soil pores. Because dθ/dψ = 0 in saturated, or close to
saturated, soils, an elastic storage term is needed to solve RE
in these conditions. This term represents the compression of
the pore water and the expansion of the pore space as a func-
tion of increasing pore water pressure (though the latter is
orders of magnitude larger than the former). The ψ form of
RE with elastic storage is written(
SS
θ(ψ)

θs
+
∂θ

∂ψ

)
∂ψ

∂t
=
∂

∂z

(
K(ψ)

(
∂ψ

∂z
− 1

))
, (7)

where SS (L−1) is the specific storage coefficient and θs is the
saturated water content, equal to the porosity (Kavetski et al.,
2001). If SS is large, it may have a non-negligible impact on
the water balance, which needs to be accounted for (e.g., as in
Clark et al., 2021, Eq. 80). SS is often treated as a numerical
smoothing factor for RE when conditions are saturated or
close to saturation, and its impact on the water balance is
neglected (e.g., as in Tocci et al., 1997; Ireson et al., 2009).
For convenience, hereafter we define C(ψ)= SS

θ(ψ)
θs
+

∂θ
∂ψ

,
such that elastic storage can be ignored by setting SS = 0.

The ψ form or mixed form of RE with elastic storage in-
cluded can be shown to work for saturated conditions (Miller
et al., 1998) and so can be considered a general governing
equation for flow in soils, aquitards, and confined and un-
confined aquifers. Some numerical solutions to theψ form of
RE are reportedly subject to poor mass conservation (Milly,
1984, 1985; Celia et al., 1990; Farthing and Ogden, 2017;
Clark et al., 2021; Tubini and Rigon, 2022), though it has
been shown that mass balance errors can be effectively con-
trolled using ATS (Rathfelder and Abriola, 1994; Tocci et al.,
1997). We carefully assess the mass balance performance of
our model in this paper.

We consider a finite-difference numerical solution for the
ψ form of RE that applies the method of lines to reduce the
partial differential equation (PDE) in Eq. (7) to a system of
ODEs of the form

dψ
dt
= f (ψ, t,z), (8)

where ψ and z represent vectors containing discrete values
of ψ and z. A similar approach was taken by Tocci et al.
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(1997) and Farthing and Ogden (2017). There are various
methods that can be applied to integrate Eq. (8) with respect
to time – for our purposes, it is useful to consider three spe-
cific classes of methods.

– Fixed-step non-iterative methods (NIMs). These meth-
ods provide a solution for a fixed time interval and can
be either explicit or implicit. Explicit methods are sim-
ple but impractical because they require very small time
steps. Semi-implicit non-iterative methods take a single
iteration based on the linearization of the spatially dis-
cretized governing equations. These methods are more
stable than explicit methods but have limitations for
solving RE over a fixed time interval because they do
not iterate to improve the convergence of the problem,
which is problematic due to the non-linear dependence
ofK and C on ψ (Celia et al., 1990). Celia et al. (1990)
did not present results using a NIM, but their Eq. (4) can
be solved directly (a semi-implicit non-iterative method,
which we implemented and discuss in Sect. 3.1). We in-
clude NIM here because they may be instructive to new
researchers learning about these problems.

– Fixed-step iterative methods (FIMs). Iterative implicit
methods are very widely used (Celia et al., 1990; Rath-
felder and Abriola, 1994). The iterations allow the solu-
tion to find more representative values of K and C over
the time step. These methods can be applied to either the
ψ form or mixed form of RE. For the mixed form of RE,
the convergence criterion can be based directly on water
balance closure, as in Celia’s modified Picard iteration
method. For the ψ form of RE, the convergence crite-
rion is based on ψ values, and the solution is subject
to larger water balance errors (Celia et al., 1990; Rath-
felder and Abriola, 1994; Farthing and Ogden, 2017).

– Adaptive time-stepping (ATS) methods. An implicit or
explicit method is used to find ψ t+1t over some calcu-
lation time step; the truncation error in the solution is as-
sessed, for example, by comparing two different-order
solutions, as in Kavetski et al. (2001); and depending
on the size of the error, the time step is either reduced
to improve the accuracy or increased to improve the ef-
ficiency. The solution marches forward until reaching
what we term the reporting time step, where the state
variables are output. The advantage of this approach
is that the states and fluxes calculated at the interme-
diate calculation steps contain useful information that
can be exploited in the output, as we demonstrate in
this paper. Kavetski et al. (2001, 2002a, b) developed
ATS solvers designed specifically to solve the different
forms of RE, while other workers have applied read-
ily available “black-box” (Kavetski, et al., 2001) ODE
or DAE (differential algebraic equation) solvers to RE
(Tocci et al., 1997; Ireson et al., 2009; Ireson and But-
ler, 2013; Mathias et al., 2015; Clark et al., 2021). A

wide range of ODE solvers are available in many dif-
ferent programming languages. Solutions are simple to
implement and, as we show in this study, can outper-
form other methods in terms of accuracy and efficiency.

In this study, we implement each of the three possible
methods for solving RE in scripts that are available from Ire-
son (2022, https://github.com/amireson/openRE, last access:
24 January 2023). All of the models in this study were coded
in Python (version 3.8.11). We make use of the following li-
braries: NumPy (version 1.20.3); Matplotlib (version 3.4.2);
SciPy (version 1.7.1), which contains various ODE solvers,
described below; and Numba (version 0.53.1, Lam et al.,
2015), which is a just-in-time (JIT) compiler that is optional
but speeds up the model runs considerably. We organize and
run the models using makefiles (Jackson, 2016).

We also provide a MATLAB version of our recommended
solution (implemented in MATLAB R2017b installed on a
Mac). The MATLAB implementation will not be described
further, but compared with the optimal Python solution, the
MATLAB model is somewhat simpler and achieves an equiv-
alent performance in terms of simulated states and fluxes. We
do not recommend Python over MATLAB (or vice versa) –
both platforms work well, and the choice will come down
to numerous factors, including, e.g., the availability of, and
user familiarity with, either package or the need to use non-
proprietary software to satisfy open-science requirements.

2.1 Fixed-step non-iterative and iterative solutions

For the NIM and FIM methods, we have coded up the numer-
ical solutions from Celia et al. (1990). This provides a typical
NIM method (first-order backward Euler implicit solution,
Eq. 4 in Celia et al., 1990) and two alternative FIMs: Picard
iteration that solves the ψ form of RE and their improved
modified Picard iteration method (MPM) solution that solves
the mixed form of RE. Fully reproducible details of these
models were provided by Celia et al. (1990) and so will not
be repeated here. These models were implemented in Python,
and the code is provided at Ireson (2022, https://github.com/
amireson/openRE, last access: 24 January 2023). The NIM
model was coded up in 67 lines of code (note that blank lines
and comment lines are not counted in the number of lines
of code), with an additional 52 lines of code to configure the
problem (define the grid, hydraulic properties, etc.). The FIM
Picard iteration method was coded up in 79 lines of code and
required the same 52 lines of code to configure the problem.
The FIM modified Picard iteration was implemented using
the Numba just-in-time compiler (Sect. A5) and was coded
up in 90 lines of code, with an additional 59 lines of code to
configure the problem. All solutions make use of the Thomas
algorithm to solve the tridiagonal linear system arising from
the implicit method.
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2.2 Adaptive time-stepping solution

One major benefit of using a standard ODE solver to inte-
grate RE is that the code is concise and easy to read and un-
derstand. Our objective is to write a function that will eval-
uate the right-hand side of Eq. (8) and feed this to the ODE
solver. Within this function, the problem can be treated as
instantaneous in time so that we only need to consider the
spatial differences in our finite-difference solution scheme.
We will use a cell-centered grid (Bear and Cheng, 2010,
p. 533) in space; i.e., state variables are stored at nodes lo-
cated at the center of grid cells, while fluxes are defined at
the cell boundaries, as shown schematically in Fig. 1 (note
that this is equivalent to what is called a “staggered grid” in
fluid dynamics). For simplicity here, we consider a uniform
grid (constant 1z), but it is straightforward to adapt these
solutions to non-uniform grids. We introduce two spatial in-
dices (Fig. 1): i represents the nodal values, and j repre-
sents the cell boundaries, both of which have an initial value
of zero (because Python uses zero-based indexing). Hence,
j = i+ 1/2. We will start with the ψ form of RE, for which
the governing equation is given in the form

∂ψ

∂t

∣∣∣∣
i

=−
1

C(ψi)

∂q

∂z

∣∣∣∣
i

(9)

and

∂q

∂z

∣∣∣∣
i

=

q
i+ 1

2
− q

i− 1
2

1z
=
qj+1− qj

1z
. (10)

Here, the fluxes are given by

q
i+ 1

2
= qj+1 =−

K(ψi+1)+K(ψi)

2

×

(
ψi+1−ψi

1z
− 1

)
q
i− 1

2
= qj =−

K(ψi)+K(ψi−1)

2

×

(
ψi −ψi−1

1z
− 1

)
. (11)

In Eq. (11), we are using the arithmetic mean of K at the
nodal points to estimate K at the cell boundaries, but other
options are possible (see, e.g., Bear and Cheng, 2010, p. 535).
It is possible to combine Eqs. (9)–(11), but keeping them sep-
arate keeps the code modular and simple.

There are three commonly used boundary conditions for
this problem, namely

i. a specified flux, qT (LT−1) (type-II boundary) is of-
ten used at the upper boundary to represent infiltration,
where

qj=0 = qT; (12)

Figure 1. Schematic representation of the cell-centered finite-
difference grid, for a soil column of depth L, showing the zero-
based Python indices of the states (ψi ) and fluxes (qj ) on the left
and depths of the nodes on the right, assuming a regular grid. There
are N states and N +1 fluxes. The upper- and lower-boundary con-
ditions are qj=0 and qjN , respectively.

ii. a free-drainage boundary is often used at the lower
boundary, where

qj=N =K(ψi=N−1); (13)

iii. a fixed ψ (type-I) boundary maybe used at the upper
boundary, ψT (L), typically to indicate a ponding depth,
or at the lower boundary, ψB (L), typically to represent
a fixed water table, where

qj=0 = −
K(ψT)+K(ψi=0)

2

×

(
ψT−ψi=0

1z/2
− 1

)
qj=N = −

K(ψi=N−1)+K(ψB)

2

×

(
ψi=N−1−ψB

1z/2
− 1

)
. (14)

Box 1 provides Python-based pseudo-code that imple-
ments this solution (Eqs. 9–14) in a function for dψ/dt with
a type-II boundary at the upper boundary and a free-drainage
boundary at the lower boundary and contains just seven lines
of code. This function can be called by the ODE solver.
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Box 1. Python-based pseudo-code implementation of RE with a cell-centered finite-difference approach in a function to be called by an ODE
solver. Arrays are zero-indexed; q[0] and q[−1] refer to the first and last item in the q array, respectively, and K[1 :] and K[: −1] refer to a
slice of the array K from the second to the last node and from the first to the second-to-last node, respectively.

2.3 Mass balance closure

When RE is solved over some time interval, t = t0→ tM
(where tM − t0 typically corresponds to multiple years in
practical application) for a soil profile 0≤ z ≤ L, the cumu-
lative inflow minus outflow should equal the change in stor-
age in the profile over the same interval; i.e., εB (mm), the
bias error, defined in Eq. (15), should be zero.

εB =

tM∫
t=t0

(q(t,0)− q(t,zN ))dt

−

L∫
z=0

(θ(tM ,z)− θ(t0,z))dz (15)

The bias error can be treated as a mass balance perfor-
mance metric for the model, but this metric may underesti-
mate the true errors in the water balance that occur within the
time period simulated, which may cancel out over the entire

run. The metric used by Celia et al. (1990), Rathfelder and
Abriola (1994), and Tocci et al. (1997) has the same prob-
lem. A more rigorous mass balance performance metric is the
root mean squared error of the daily (or some other time in-
crement) cumulative net flux minus the change in storage, εR
(mm), where

εR =

√√√√√√√√√
M∑
j=1


tj+1∫
t=tj

(q(t,0)− q(t,zN ))dt

−

L∫
z=0

(θ(tj+1,z)− θ(tj ,z))dz


2

/M, (16)

where j is an index in time, and M is the number of time
steps considered. Reporting both metrics is informative – a
high εR with a low εB indicates that daily errors are occur-
ring but canceling one another out; a high εB with a low εR
indicates that small daily errors are systematic in one direc-
tion and hence accumulate to give a high bias.

The fluxes in the mass balance calculation depend on
the boundary conditions. For type-I (specified ψ) and free-
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drainage-type boundary conditions, the boundary flux de-
pends on the simulated ψ value at the node closest to the
boundary. Over a time increment tj to tj+1, ψ values will
change continuously and hence so will the boundary flux.
Due to the non-linearity of the K(ψ) relationship, the flux
will change in a non-linear manner. The cumulative flux over
the time increment, Qj→j+1 (mm), is given by

Qj→j+1 =

tj+1∫
t=tj

q(t)dt. (17)

Qj→j+1 is estimated from discrete values of q (which in
turn are approximated from discrete values of ψ , using ei-
ther a forward difference approximation, where Qj→j+1 ≈

qj1t ; a backward difference approximation (as in Celia
et al., 1990), where Qj→j+1 ≈ qj+11t ; or a central dif-
ference approximation (as in trapezoidal integration), where
Qj→j+1 ≈ (qj +qj+1)1t/2. These discrete approximations
for Qj→j+1 can be poor if the time step is large – or, more
precisely, if the changes in q over a time step are large and
non-linear.

This leads to an important limitation with Celia’s mixed
form solution to RE (and other equivalent iterative solutions).
This solution has excellent mass balance closure, but because
it uses a fixed-step iterative solution procedure with a back-
ward difference approximation for Qj→j+1, the simulated
boundary fluxes can be shown to be sensitive to the time step
(see Sect. 3.2). Hence, even though for larger 1t the water
balance is still perfectly closed, the actual terms within the
water balance have changed, so there is less inflow and less
change in storage.

ATS solvers can provide a practical solution to solving RE
with good mass balance performance and boundary fluxes
that do not depend on the user-specified time step. The basic
idea behind ATS solvers is that when there are large changes
in ψ in the model, small steps can be taken to capture the
shape of C(ψ) and Qj→j+1 and minimize the integration
errors over a time step. When the changes in ψ are small,
larger steps can be taken to maximize efficiency. We will
refer to these adaptive time steps as calculation steps. The
user specifies the time steps at which they wish the results to
be saved, which we will refer to as the reporting time steps.
In typical practical applications, the reporting step would be
the resolution of the driving data (e.g., hourly or daily). The
solver may take many calculation steps of varying lengths
between the reporting steps, saving the outcomes internally
each time that the error tolerance is satisfied and a successful
step is taken.

To accurately calculate the boundary fluxes, it is necessary
to use the ψ information from the calculation time steps be-
cause ψ may have evolved non-linearly over the reporting
time step. However, this is not trivial. Two possible ways to
do this (which are equivalent to one another) are to (i) enable
dense output from the ODE solver (if this feature is supported

by the ODE solver) or (ii) force the ODE solver to make the
reporting steps equal to the calculation steps. However, both
of these approaches are more computationally demanding in
terms of memory and runtime – a significant disadvantage.
We propose here a third method for calculating the boundary
fluxes that can be used with any ODE solver. At an instance
in time, the cumulative boundary flux, Q, is related to the
instantaneous flux, q, by

dQ
dt
= q. (18)

We can therefore use the ODE solver to integrate this ex-
pression and solve forQ. To do this, we add to the system of
ODEs defined by Eq. (8) two new ODE expressions that rep-
resent the cumulative boundary fluxes. The dependent vari-
able vector that is sent to the ODE solver now is F , defined

F =



QT :t0→t

ψ0
ψ1
...

ψN−2
ψN−1
QB:t0→t


, (19)

where QT :t0→t and QB:t0→t are the cumulative boundary
fluxes at the current time, t , since the start of the simula-
tion, t0. The ODE solver will integrate the equation

dF
dt
= f (F , t,z) (20)

to solve for F . The function that is called by the ODE solver
will evaluate the vector

dF
dt
=



dQT :t0→tj
dt

dψ0
dt

dψ1
dt
...

dψN−2
dt

dψN−1
dt

dQB:t0→tj
dt


=



qT

−
1

C(ψ0)
∂q
∂z

∣∣∣
0

−
1

C(ψ1)
∂q
∂z

∣∣∣
1

...

−
1

C(ψN−2)
∂q
∂z

∣∣∣
N−2

−
1

C(ψN−1)
∂q
∂z

∣∣∣
N−1

qB


. (21)

We note that each term in Eq. (21) is expressed at a single
instant in time, t , and subscripts 0,1, . . .,N−2,N−1 refer to
the indices of the finite-difference discretization points, and
we use zero-based indexing to be consistent with the Python
language and Fig. 1. After solving for F , the first and last
rows of F correspond to the cumulative boundary fluxes,
which at time t are QT :t0→t and QB:t0→t . The cumulative
fluxes over each time step are obtained from

QT :tj→tj+1 =QT :t0→tj+1 −QT :t0→tj

QB:tj→tj+1 =QB:t0→tj+1 −QB:t0→tj . (22)
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Solving systems of ODEs in this way is straightforward –
requiring the user to pack and unpack the dependent variable
vector. Python-based pseudo-code showing how this can be
implemented is given in Box 2. Note that here we multiply
the fluxes by 1000 within the solver (equivalent to converting
the fluxes from m d−1 to mmd−1), so that the magnitude of
the fluxes is comparable with the magnitude of the changes
in ψ (typically in m), which can improve the water balance
estimate. Any arbitrary scaling factor can be applied here, as
long as the output fluxes are re-scaled to the correct units. We
shall refer to this method for calculating the boundary fluxes
as the solver flux output method (SFOM).

2.4 Improving efficiency

Here, we provide details of two techniques that can be used
to improve the computational runtime of the model. These
methods have no impact on the accuracy of the solution, so
they are optional, but combined they can result in better than
a factor of 10 reduction in the runtime at the cost of only a
few additional lines of code. In Appendix A, we investigate
the impact of a range of different possible model decision-
s/assumptions on the accuracy, mass balance, efficiency, and
simplicity of the model.

2.4.1 Defining the Jacobian pattern

For the form of RE given by Eq. (9), the Jacobian matrix, J, is
an n×nmatrix, where the cell in each row, i, and column, j ,
is defined by the derivative

Ji,j =
d

dψj

(
dψ
dt

∣∣∣∣
i

)
=

d
dψj

(
−

1
C(ψi)

∂q

∂z

∣∣∣∣
i

)
. (23)

Each entry in Ji,j can be evaluated in a function that is
passed to the ODE solver (assuming that the particular ODE
solver being used has this functionality), in order to speed
up the solution process. For the spatial discretization scheme
described above, all the terms of the Jacobian are zero, ex-
cept for where j = i−1, j = i, and j = i+1 (ignoring when
i− 1< 1 and i+ 1> n, which would be zero terms anyway,
for any boundary condition). A simpler alternative to defin-
ing the full Jacobian matrix is to define the Jacobian pattern.
The Jacobian pattern is a matrix of ones and zeros that de-
fines the location of the structurally non-zero elements of the
Jacobian – that is, where the terms are not identically zero.
For the spatially discretized RE as given in Eq. (9), the Jaco-
bian pattern is a simple tridiagonal matrix, with ones on the
three main diagonals and zeros everywhere else. To imple-
ment this requires an ODE solver capable of using the Jaco-
bian pattern (also referred to as the Jacobian sparsity matrix).
The SciPy ODE solvers ode and solve_ivp have the ability to
define a banded Jacobian pattern: setting uband and lband
arguments to 1 tells the ODE solver that the Jacobian is a
tridiagonal matrix. The SciPy ODE solver solve_ivp can also
handle a general n×n Jacobian pattern, which is more adapt-
able for multi-dependent variable coupled problems (e.g.,

Goudarzi et al., 2016). The MATLAB ODE solvers can read
the Jacobian sparsity pattern matrix from the JPattern argu-
ment. We report on the relative performance/complexity of
each of these methods in Sect. A4.

2.4.2 Just-in-time compilation

In this paper, we are providing guidance for the use of inter-
preted programming languages (e.g., Python or MATLAB)
to solve RE. Interpreted languages have a number of advan-
tages over compiled languages (such as FORTRAN, C, and
C++), including that they are, at least in our opinion, easier
to learn, with excellent teaching resources widely and freely
available; they tend to have higher level abstractions, so that
the same task can be completed in fewer lines of code; and
they are cross platform and typically easier to install. Inter-
preted languages are not pre-compiled and are hence slower
to execute than compiled languages. A nice compromise be-
tween the simplicity of interpreted languages and efficiency
of compiled languages is to use a just-in-time compiler. In
Python, the Numba library is such a just-in-time compiler
(Lam et al., 2015). Numba compiles selected Python func-
tions once at the start of the runtime, and then all subse-
quent calls to the code run much faster. We find that using
Numba in conjunction with our preferred ODE solver solu-
tion described above, results in up to 10× faster code exe-
cution (see Sect. A5). The drawback to using Numba is that
some re-factoring of the code may be necessary to make a
script that previously ran without Numba work using Numba
– in particular, there are complications around how variables
are allocated into NumPy arrays. We include code in Ire-
son (2022, https://github.com/amireson/openRE, last access:
24 January 2023) that demonstrates how to successfully im-
plement Numba.

3 Benchmarking the model performance

In this section, we run our RE solver, openRE, on a num-
ber of benchmark problems, comparing the different solution
procedures and assessing the performance of all solutions
against the five success criteria identified in the introduc-
tion, namely (i) accuracy of θ(t,z) and ψ(t,z), (ii) mass bal-
ance performance, (iii) consistent boundary fluxes with 1t ,
(iv) computational efficiency (i.e., runtime), and (v) simplic-
ity of the code. For the purposes of comparing efficiency (iv),
all simulations were run on the same laptop computer, and
we report the runtimes as a measure of relative performance.
For the purposes of comparing simplicity of the code (v) we
use a very simple metric of lines of code, which is reported
above in Sect. 2.
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Box 2. Python-based pseudo-code implementation of an ODE solver solution. The ODE function returns the time derivative of the dependent
variable array, given in Eq. (21). Note that F [:,1 : −1] is a slice through the array F that takes all the items in the first (time) dimension and
the second to second-to-last items in the second dimension.

3.1 Published model benchmarks

3.1.1 Celia’s problem

Celia’s test case (Celia et al., 1990) is used to compare our
ATS solution with the different solutions schemes previously
proposed by Celia et al. (1990). The test problem uses a
40 cm deep vertical soil profile (zN = 40) with a uniform
1 cm space step (dz= 1), a 360 s duration (t0 = 0; tM = 360)
with a 1 s time step (1t = 1), and the following initial and
type-I boundary conditions:

ψ(t = t0,0≤ z ≤ zN )=−61.5cm

ψ(t0 ≤ t ≤ tM ,z= 0)=−20.7cm
ψ(t0 ≤ t ≤ tM ,z= zN )=−61.5cm. (24)

The soil hydraulic properties are given by

θ =
α(θs− θr)

α+ |ψ |β
+ θr

K =Ks
A

A+ |ψ |γ
, (25)

where the parameter values are α= 1.611× 106, θs= 0.287,
θr= 0.075, β ==3.96, Ks= 00944 cms−1, A= 1.175× 106,
and γ = 4.74. Celia et al. (1990) presented three solution
schemes: the “no-iteration scheme” uses the ψ form of RE
and solves the problem with a single backward implicit step
and no iteration (which we achieved using the Thomas algo-
rithm), the “Picard iteration scheme” also solves the ψ form
of RE but uses the Picard iteration method to improve the
solution, with errors in ψ used as a convergence criterion,
and finally the “modified Picard iteration method” (MPM)
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Figure 2. Reproduction of Celia’s model benchmark: the ψ breakthrough curve using a backward difference implicit Euler solution with
the no-iteration scheme, backward difference implicit Euler with Picard iteration, Celia’s modified Picard iteration method (MPM), and the
ODE solver with adaptive time stepping. The ODE solver produces consistent ψ(tz) results independently of the mass balance calculation
procedure. The time steps reported are calculation time steps for Celia’s solutions but are reporting time steps for the ODE solver, which uses
an adaptive time step for calculation steps.

uses the mixed-form of RE and uses errors in θ as a con-
vergence criterion. The MPM is mass conservative because
the iteration ensures that the cumulative change in fluxes (the
right-hand side of RE) balances the changes in storage (the
left-hand side of the mixed form of RE). Celia’s three solu-
tions were reproduced in Python scripts (https://github.com/
amireson/openRE, last access: 24 January 2023) and com-
pared with our ATS/SFOM solution. Results from all three
solutions are shown in Fig. 2. All methods are consistent for
very small time steps. The fixed-step method with no itera-
tion performs poorly, with delayed breakthrough of the wet-
ting front when the time step is large. The solution is im-
proved by using the Picard iteration, but there are still some
delays. The MPM has a much better performance but, as
with all implicit Euler time-stepping schemes, is still sub-
ject to some numerical dispersion for larger time steps (van
Genuchten and Gray, 1978). The ATS solution reproduces
the ψ breakthrough curve but with no dispersion and no dif-
ferences associated with the time step. We note that the time
steps for plotting the ATS solution only represent the re-
porting time step – the underlying calculation time steps are
likely much smaller (Sect. 2.2).

In Fig. 3, we show the cumulative inflow simulated by
each of these models for Celia’s benchmark problem, along
with the mass balance bias error, for different reporting time
steps. The fixed-step solution with no iteration and the Pi-
card iteration solution both have poor mass balance perfor-
mance unless the time step is very small – on this basis, we
do not consider these solutions further. We see that the MPM
method is perfectly mass conservative for any1t used in the
model, as we should expect. However, we can see that the
cumulative inflow is sensitive to 1t . Hence, even though for
larger1t the water balance is still perfectly closed, the actual
terms within the water balance have changed, so there is less
inflow and less change in storage. This is perhaps an under-

appreciated limitation of Celia’s MPM solution and solutions
to the mixed form of RE generally – which is that mass bal-
ance is a necessary but insufficient criterion for model perfor-
mance assessment, and truncation errors can still be present
in the fluxes even with perfect water balance closure.

In Fig. 3, we also show the water balance performance of
our ATS solution, using either reporting-time-step informa-
tion for the water balance calculation or using calculation-
time-step information (i.e., using the SFOM described in
Sect. 2.3). Using reporting-time-step information is the eas-
iest and most intuitive approach to take – you numerically
integrate (1) discrete θ values over depth to get storage and
(2) discrete q values during reporting time steps to get Q
(e.g., using trapezoidal integration). However, this approach
fails to capture non-linear changes in q over a reporting time
step and results in large water balance errors and errors in the
cumulative fluxes, as is clear in Fig. 3. Using the SFOM, we
see that the water balance is almost exactly closed, and the
boundary fluxes are independent of the reporting time step. It
is also important to note that the discrete ψ(tz) values simu-
lated by both ATS solution procedures here are identical (see
Fig. 2) – the only difference is how the boundary fluxes are
calculated.

3.1.2 Miller’s saturated infiltration pulse problem

Miller et al. (1998) investigated solutions to RE that
aimed to address numerical convergence problems associ-
ated with challenging boundary conditions, and they specif-
ically looked at the problem of infiltration from a ponded
upper boundary into a hydrostatic soil profile with a fixed
water table at the lower boundary. This is a good bench-
mark because it requires the model to deal with perched sat-
urated conditions over unsaturated conditions and involves
highly non-linear changes in properties over short distances
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Figure 3. Mass balance of Celia’s three models and our adaptive time-stepping model. Panel (a) shows a reproduction of Celia’s mass balance
calculation. Panel (b) shows the cumulative inflow that is simulated.

and time steps. The problem uses van Genuchten (1980) hy-
draulic properties, given by

Se = (1+ (αψ)n)−m, (26)
θ = θr+ (θs− θr)Se, (27)
dθ
dψ
=
−αm(θs− θr)

1−m
S

1/m
e (1− S1/m

e )m, (28)

K =KsS
1/2
e (1− (1− S1/m

e )m), (29)

where Se (–) is the effective saturation; α (L−1), n (–),
and m (–) are parameters that determine the shape of the
θ(ψ) curve; θr (–) and θs (–) are the residual and saturated
volumetric water contents; and Ks (LT−1) is the saturated
hydraulic conductivity. Miller’s problem uses the parameters
in Table 1 for three different soil types.

A hydrostatic initial condition is used, with a fixed wa-
ter table at depth of 10, 5, and 2 m below ground surface
for sand, loam, and clay loam, respectively. At the upper
boundary, 0.1 m of ponding is applied throughout the sim-
ulation runtime of 0.18, 2.25, and 1.0 d for sand, loam, and
clay loam, respectively. We simulated this problem with our
ATS solution and with Celia’s MPM model for comparison
purposes. Both models faced challenges with this problem.
For Celia’s MPM, we had to use a small time step to get the
solver to produce accurateψ(z) profiles (Fig. 4). For the ATS
solutions using the default ODE solver settings, the models

Table 1. Soil hydraulic properties used the Miller et al. (1998) prob-
lem.

Parameter Sand Loam Clay loam

θr 0.093 0.078 0.095
θs 0.301 0.430 0.410
α 5.470 3.600 1.900
n 4.264 1.560 1.310
Ks (md−1) 5.040 0.250 0.062
SS 10−6 10−6 10−6

failed to propagate the wetting front into the soil correctly. It
was necessary to increase the maximum number of calcula-
tion steps allowed per reporting time step (we increased this
from the default 500 to 10 000) so that very small time steps
could be taken (Table 2). It was also necessary (for loam and
clay loam) or beneficial (for sand) to reduce the solver error
tolerances – see values in Fig. 4 and Table 2. The results from
these simulations are shown in Fig. 4 and are consistent with
those reported in Fig. 1 of Miller et al. (1998), showing that
both models are able to successfully reproduce this bench-
mark. The runtimes and water balance for each solution are
tabulated in Table 2. Celia’s MPM has consistently better wa-
ter balance performance, though we think the water balance
errors in both models are acceptably low. The ATS solution
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Table 2. Runtime and water balance performance for the Celia MPM and ATS SFOM solutions, applied to the problem in Miller et al. (1998).
We also show here the solver settings. For the ATS solutions, we had to reduce the relative and absolute tolerances (atol/rtol) of the integrator
from the default settings and increase the maximum number of calculations steps allowed within a reporting step (nsteps). Note that time
steps (dt) in ATS solutions are reporting time steps.

Solution Soil Solver settings Runtime (s) MB bias (mm) MB RMSE (mm)

Celia MPM Sand dt = 0.001 d 4.4 −4.2× 10−6 4.5× 10−6

Loam dt = 0.001 d 31.7 −1.6× 10−3 5.3× 10−6

Clay loam dt = 0.001 d 32.6 −8.0× 10−2 2.5× 10−4

ATS SFOM Sand atol/rtol= 10−6 11.7 −1.5× 10−2 8.8× 10−4

nsteps= 10 000
dt = 0.01

Loam atol/rtol= 10−6 16.7 −8.8× 10−2 2.0× 10−3

nsteps= 10 000
dt = 0.01

Clay loam atol/rtol= 10−5 30.8 −3.2× 10−1 1.3× 10−3

nsteps= 10 000
dt = 0.001

Figure 4. Reproduction of the Miller infiltration pulse result, us-
ing Celia’s MPM model and our ATS SFOM solution. Both models
are satisfactorily consistent with the output reported by Miller et al.
(1998), in their Fig. 1.

is slower for sand, faster for loam, and about the same for
clay loam. We note that the runtimes and water balances of
the ATS solution are sensitive to the reporting time step 1t
and the solver settings nsteps, atol, and rtol – an improved
solution might be attainable by optimizing these settings. On
the other hand, for Celia’s MPM solution, we only needed to
optimize 1t .

3.1.3 Mathias’ solution for horizontal infiltration

Mathias and Sander (2021) developed a pseudospectral sim-
ilarity solution for horizontal infiltration (i.e., solving RE
without gravity) that is fast and accurate. This solution as-
sumes a semi-infinite horizontal soil column (0≤ x <∞)
with a uniform initial condition (ψ(t = 0)= ψ0) and a type-
I boundary condition on the left boundary (ψ(x = 0)= ψL).
The model was run for 100 min (0≤ t ≤ 100 min). The so-
lution can resolve very large gradients in saturation and ψ
at the boundary that propagate into the soil rapidly – and as
such this is another challenging problem for a numerical RE
model to reproduce. We solved this problem for three soil
types, namely, Hygiene sandstone, silt loam GE 3, and Beit
Netofa clay, with properties from van Genuchten (1980) as
listed in Table 3. SS was set to 0, consistent with Mathias’
solution. To configure our model for horizontal flow, it is
necessary to remove the gravity term from the flux calcu-
lations (i.e., Eq. 11). We solved this problem for a left-hand
boundary effective saturation of 0.99 and an initial saturation
of 0.01. The grid is configured such that the wetting pulse
does not reach the right-hand boundary over the simulation
runtime.

We solved this problem with our ATS solution, with
Celia’s MPM solution, and with the pseudospectral similarity
solution (Mathias and Sander, 2021, implemented in MAT-
LAB). The results in Fig. 5 show that both the ATS solution
and the Celia solution do an excellent job of reproducing this
solution for θ(tx) (where x, m, is horizontal distance). The
runtimes and water balance for each solution are tabulated in
Table 4. Here, we see that the ATS and Celia solutions have
the same performance in terms of the water balance and the
cumulative fluxes simulated. Runtimes vary between models:

https://doi.org/10.5194/gmd-16-659-2023 Geosci. Model Dev., 16, 659–677, 2023



670 A. M. Ireson et al.: A simple, efficient, mass-conservative approach to solving Richards’ equation

Figure 5. Comparison of our ATS solver flux output model for horizontal infiltration with the Mathias and Sander (2021) pseudospectral
similarity solution (denoted analytical in the legend).

Table 3. Soil hydraulic properties used the Miller et al. (1998) prob-
lem.

Parameter Sand Loam Clay loam

θr 0.153 0.131 0.
θs 0.250 0.396 0.446
α 0.0079 0.00423 0.00152
n 10.4 2.06 1.17
Ks (cmd−1) 108. 4.96 0.082
SS 0. 0. 0.
dt (min) 0.1 0.01 0.01
dx (cm) 0.25 0.05 0.0025

both are the same for sandstone, Celia’s solution is faster for
silt loam, and the ATS solution is faster for clay.

3.2 Comparison with Hydrus 1D

Hydrus 1D (Šimůnek et al., 2005, 2016) is a widely used
one-dimensional RE solver. The calculations within Hydrus
are undertaken using openly available FORTRAN source
code, and the software runs through a (closed-source) graph-
ical user interface on Microsoft Windows. The FORTRAN
code can be compiled using gfortran on the macOS operat-
ing system and run from the command line, which we did

here, so that the runtime comparisons with our model are
fair. Within Hydrus, the user interface provides somewhat
limited control over the error tolerances. We were unable to
modify any settings to improve the water balance, and so we
present here model runs that use the default iteration criteria
(maximum number of iterations= 100; water content toler-
ance= 0.001; pressure head tolerance= 10 mm; lower/upper
optimal iteration range= 0.7/1.3; lower/upper time step mul-
tiplication factor= 1.3/0.7; lower/upper limit of tension in-
terval= 10−6/103 cm).

We configured Hydrus 1D, our ATS solution, and our
implementation of Celia’s MPM solution for a simple nu-
merical experiment, where we simulate the infiltration of a
10-year time series of daily precipitation into a 1.5 m deep
soil column, with a free-drainage lower-boundary condi-
tion. The minimum, mean, and maximum annual precipi-
tation was 265, 484, and 680 mmyr−1, and the maximum
daily precipitation was 55 mmd−1. We used silt loam GE 3
soil hydraulic properties from van Genuchten (1980), where
θr= 0.131, θs= 0.396, α= 0.423 m−1, Ks= 0.0496 md−1,
and n= 2.06. We set SS= 10−6 m−1 and used a uniform
ψ initial condition of−3.59 m. The results of the simulations
with each model are given in Table 5, showing the runtime
and water balance performance; Fig. 6, showing the detailed
water balance performance; and Fig. 7, showing the simu-
lated storage and drainage.
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Table 4. Runtime and water balance performance for the Celia MPM and ATS SFOM solutions, applied to the problem described by Mathias
and Sander (2021).

Solution Soil Runtime (s) MB bias (mm) MB RMSE (mm) Cumulative infiltration (mm)

Celia MPM Sandstone 2.4 4.0× 10−3 6.5× 10−6 63.2
Silt loam 12.8 2.2× 10−2 3.8× 10−6 34.2
Clay 69.4 2.2× 10−3 4.1× 10−7 3.4

ATS SFOM Sandstone 2.3 −1.1× 10−3 4.8× 10−6 63.3
Silt loam 18.8 1.9× 10−2 3.9× 10−6 34.2
Clay 32.1 2.2× 10−3 3.9× 10−7 3.4

Table 5. Comparison of model runtimes and mass balance performance.

Model Runtime (s) MB bias (mm) MB RMSE (mm)

ATS solution, rtol= 10−6 1.71 −0.018 8.06× 10−5

ATS solution, rtol= 10−7 2.30 0.0003 6.92× 10−5

Celia MPM solution 3.2 0.0 2.3× 10−10

Hydrus 2.21 −0.0021 4.05× 10−3

In our ATS solution, we can trade off between water bal-
ance error and the runtime by modifying the rtol argument
for the ODE solver. We found that the default rtol of 10−6

had the fastest runtime, but the water balance performance,
whilst good enough for all practical purposes, was the worst
overall (Table 5, Fig. 6). Therefore, we reduced rtol to 10−7,
which improved the water balance performance but increased
the runtime. Even though the water balance errors reported
here are all very small, it is still interesting to look closely
at how these compare for the different models, as shown in
Fig. 6. The first thing to note is that the Celia MPM solu-
tion has water balance errors of essentially zero, which we
expect, because this solution enforces water balance closure.
Celia’s solution did have the longest runtime – approximately
40 % slower than the other solutions. In the ATS solutions,
on a daily basis, the water balance errors are much smaller
than in Hydrus. However, in Hydrus, the water balance er-
rors appear random, with a mean of zero, and hence when
looking at the cumulative errors in Hydrus, there is no sys-
tematic accumulation in the errors. In the ATS solutions, in
the lower-right panel of Fig. 6, we can see that the water
balance errors are strongly correlated to the infiltration flux
at the upper boundary – larger fluxes result in larger errors.
Hence, for the ATS solution with rtol= 10−6, we see that the
errors accumulate, and after 4 years, the cumulative errors in
the ATS solution exceed those in Hydrus. For the ATS solu-
tion with rtol= 10−7, the errors do not accumulate monoton-
ically, and the long-term cumulative errors tend to oscillate
about zero. The water balance performance of the ATS solu-
tion with rtol= 10−7 is therefore better than the performance
in Hydrus (Table 5, Fig. 6), while the runtimes of these mod-
els are essentially the same (Hydrus is slightly faster, with a
runtime of 2.21 vs. 2.30 s, Table 5).

Looking at the simulated storage and discharge in Fig. 7,
the two ATS solutions are visually indistinguishable and are
both broadly consistent with the Hydrus 1D model outputs.
The Celia MPM solution has non-negligible differences with
all other solutions. This is because the MPM solution applies
an iterative solution procedure to solve the model at a daily
time step, and the boundary fluxes are therefore subject to er-
rors, as discussed above. The solution scheme imposes mass
balance on the problem but does not track the truncation er-
rors in the fluxes. The avoidance of this issue represents a
significant advantage of adaptive time-stepping solutions.

4 Summary and recommendations

We developed a simple adaptive time-stepping scheme (ATS)
for RE using the interpreted language Python and making use
of the SciPy ODE solver ode. We also developed a new solver
flux output method (SFOM) whereby cumulative boundary
fluxes can be included within the dependent variable vec-
tor, allowing the determination of highly accurate integrated
fluxes over designated time periods. The SFOM is particu-
larly useful for providing reliable assessment of mass bal-
ance closure. In principle, SFOM can be implemented in any
ODE solver because it does not require any special output
(such as dense output) to be available. Our model was coded
up in Python and released with the name openRE (Ireson,
2022). Our model performed well against our five success
criteria: (i) we successfully reproduced benchmark solutions
for ψ(t,z) and θ(tz) from Celia et al. (1990), Miller et al.
(1998), and Mathias and Sander (2021); (ii) we report neg-
ligibly low mass balance errors; (iii) we simulate boundary
fluxes that are independent of the reporting time step (unlike
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Figure 6. Comparison of water balance performance from Hydrus 1D, the ATS solution, and our implementation of Celia’s MPM solution.
The water balance error is qT− qB−1S, and we show the balance for each time step (a) and cumulative balances since the start of the
simulation (b). In panels (c) and (d) the time step error is plotted against the infiltration rate.

Figure 7. Simulated storage (a) and drainage (b) using Hydrus 1D,
the ATS solution, and our implementation of Celia’s MPM solution.

Celia’s solution, as demonstrated in Fig. 7); (iv) we have low
runtimes (as good as Hydrus 1D); and (v) our code is very
simple, concise (92 lines of code for the solver plus 68 lines
of code for model configuration for the numerical experiment
in Sect. 3.2), and easily adaptable to new problems. Our so-
lution had the best balance of efficiency, accuracy, and sim-
plicity as compared to alternative established solution proce-
dures.

Appendix A: Navigating pitfalls in ODE solver solutions

There are several subtle decisions that must be made when
solving RE using a generic ODE solver. Here, we test a num-
ber of alternative model configurations and report the impact
of these decisions using the following metrics: for model ac-
curacy (criteria i), we report the RMSE of ψ at all grid points
in t and z between the current model run and a reference
model run; for the mass balance (criteria ii), we report both
the bias error (Eq. 15) and the more rigorous daily water bal-

Geosci. Model Dev., 16, 659–677, 2023 https://doi.org/10.5194/gmd-16-659-2023



A. M. Ireson et al.: A simple, efficient, mass-conservative approach to solving Richards’ equation 673

ance RMSE (Eq. 16); for the model efficiency (criteria iv),
we simply report the runtime, where all runs were undertaken
on the same laptop computer. For these numerical experi-
ments, we used the 10-year infiltration numerical experiment
described in Sect. 3.2.

The best model configuration, against which all other
model configurations are compared, was as follows: use
the SciPy ODE solver ode with the method BDF (back-
ward differentiation formula, Brown et al., 1989), use our
SFOM solution (Sect. 2.3/A2), use the analytical expres-
sion for C(ψ), use a banded Jacobian sparsity pattern ma-
trix (Sect. 2.4.1/A4), and use the Numba JIT compiler
(Sect. 2.4.2/A5). The water balance performance of this
model, showing the cumulative change in storage against cu-
mulative inflow (as infiltration at the surface) minus outflow
(as drainage at the base), is plotted in Fig. A1.

A1 Alternative SciPy ODE solvers

Here, we compare the alternative ODE solvers that were
available in SciPy at the time of writing, which includes
ode, odeint, and solve_ivp. These functions are alternative
wrappers to classic ODE solvers written in Fortran, of which
we consider here VODE with the method BDF (Brown
et al., 1989, available within ode and solve_ivp) and LSODA
(available with all three functions, Petzold, 1983). Note that
for all solutions reported here we used the banded Jacobian
sparsity pattern, with the exception of solve_ivp BDF, which
only allows for the full Jacobian sparsity pattern to be de-
fined and which we found slowed the solution down – hence
the results for the solve_ivp BDF model do not use any infor-
mation about the Jacobian matrix.

We see that solve_ivp underperforms in accuracy, water
balance, and efficiency. The odeint solver has the best perfor-
mance in terms of accuracy and water balance but is slower
by a non-negligible amount. The ode BDF method is the
most efficient but has slightly worse water balance perfor-
mance – however, the water balance performance of all meth-
ods is extremely good, and errors are negligible for practical
purposes. We therefore chose ode BDF as our preferred solu-
tion – but ode LSODA is also a good option. It is also possi-
ble to increase the error tolerances in the ODE solver, reduce
the maximum number of time steps, and increase the mini-
mum time step – all of which could result in a faster runtime
at the cost of lower accuracy/water balance closure.

A2 Alternative boundary flux calculation methods

As detailed in Sect. 2.3, there are alternative ways to calcu-
late the boundary fluxes for use in the water balance calcu-
lation. In Sect. 3.3, we developed a novel approach to calcu-
lating the boundary fluxes – the SFOM. In addition to this
method, we consider methods that calculate the boundary
fluxes based on the output model states at either reporting-
step or calculation-step information. We also consider using

forward, backward, or central difference approximations to
integrate the flux over a time step (Eq. 18). The results of
this analysis are provided in Table A2.

Model state variables are unaffected by the different
boundary flux calculation methods. The SFOM has the best
water balance performance, both in terms of bias and RMSE.
Using calculation-step-level information results in good wa-
ter balance closure, with the central difference approximation
giving the lowest errors. However, the efficiency of this is
poor, with runtimes increased by more than a factor of 3. This
is because many additional calculations need to be performed
outside the ODE solver for each calculation time step. By de-
fault, the ODE solver allows up to 500 calculation time steps
for every reporting time step – so this is very inefficient. Cal-
culating the boundary fluxes using reporting-time-step infor-
mation is very efficient and slightly faster than our method,
but the water balance errors are significantly larger. These
reporting-step errors will increase with an increased report-
ing time step, as is shown in Fig. 3. Overall then, the SFOM
provides the performance of using calculation-step informa-
tion without the loss of computational efficiency.

The key take-home point here is that the easiest and most
obvious approach to calculating the boundary fluxes is to use
reporting-step information. This is a bad idea – the mass bal-
ance errors are large, and if this is combined with other bad
decisions (such as using discrete approximations for C(ψ) as
discussed in the next section), the results can be catastrophic
(water balance errors > 100 mm).

A3 Alternative estimation methods for dθ/dψ

When we use a parametric expression for θ(ψ), such as the
van Genuchten equations (Eqs. 26–29), we can obtain an an-
alytical expression for dθ/dψ , as in Eq. (28), and this can
be used to calculate C(ψ) as implemented in RE in Eq. (5).
However, depending on the numerical solution procedure
that is adopted, this can lead to errors with mass conserva-
tion, and it is recommended by some researchers (Rathfelder
and Abriola, 1994; Clark et al., 2021) that a discrete approx-
imation is used for dθ/dψ , whereby

dθ
dψ
=
θn− θn−1

ψn−ψn−1
, (A1)

where here n is a time index. This approach could be seen
as equivalent to solving the mixed form of RE and can min-
imize water balance errors in the model that arise because
the changes in dθ/dψ over a time step are non-linear, as
shown by Celia et al., (1990). However, it is necessary to
apply this very carefully in the context of ATS methods. The
values of θn−1 and ψn−1 must be available from the previ-
ous calculation time step and not the previous reporting time
step. If reporting-time-step information is used, the model
will fail badly because as the calculation steps move forward
in time over a reporting step, C(ψ) is constantly referenced
back to the beginning of the reporting step. This is clearly
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Figure A1. Water balance performance plot for 10-year infiltration experiment, with the best model configuration, showing the cumulative
change in storage in the profile and the cumulative inflow minus outflow. The water balance bias was−0.018 mm, and the RMSE of the daily
water balance errors was 8.06× 10−5 mm.

Table A1. Model performance for the different ODE solvers/methods available in SciPy.

ODE solver Method Runtime (s) ψ RMSE (m) MB bias (mm) MB RMSE (mm)

ode BDF 1.71 0.000 −0.018 8.06× 10−5

ode LSODA 1.96 0.000 0.001 7.11× 10−5

odeint LSODA 2.69 0.000 0.000 7.04× 10−5

solve_ivp BDF 7.45 0.001 −0.594 3.33× 10−3

solve_ivp LSODA 2.44 0.000 0.059 6.12× 10−4

an erroneous approach, resulting in mass balance errors of
more than 100 mm for our problem. For the solver flux out-
put method of calculating the boundary fluxes, it is neces-
sary to output states at reporting steps, and therefore it is not
possible to use the discrete approximation for C(ψ). The re-
sults in Table A3 all use calculation-step information. A more
subtle issue is the order of the temporal integrator used by
the ODE solver, which can be specified by the user. Here,
we use either first-order or (variable) higher-order (as deter-
mined by the ODE solver) temporal integration methods. For
the solver flux output method, we use higher-order temporal
integration. The results are given in Table A3.

We see in Table 3 that the discrete C(ψ) approach works
quite well for first-order integration methods but is very slow.
When higher-order integration methods are used, the model
is faster, but the mass balance is chronically degraded. We
think that this happens because with higher-order methods
the model states evolve in a more complex manner (i.e., non-
linear manner) over a calculation time step, so the linear ap-
proximation in Eq. (A1) is not good. It is noteworthy that the
modeled ψ values were slightly modified using the discrete
high-order approach. For comparison purposes, we looked at
using analytical representations of C(ψ) with first-order and
higher-order methods, and this time the higher-order meth-
ods performed better. Overall, we recommend against using
discrete C(ψ) approximations, unless using a tailor-made
ODE solver (such as Kavetski et al., 2001, 2002a, b).

A4 Alternative approaches to defining the Jacobian

As described in Sect. 4.1, providing the ODE solver with in-
formation about the Jacobian matrix is reported to improve
the solution efficiency. Here we compare three approaches:
no information provided about the Jacobian, defining the Ja-
cobian pattern, and defining the full Jacobian matrix. For the
last case, this was complex to define for our method, and
therefore it was implemented for the high-order reporting-
step solution procedure described in Sect. 4.3.2. The results
are reported in Table A4.

We see that for both model configurations, defining the
banded Jacobian sparsity pattern matrix led to improvements
in performance of around 20 %. This is modest, but because it
is trivial to define the banded matrix, this is worthwhile. For
the reporting-step model, when we defined the full Jacobian
matrix, this led to a very slight improvement in performance
over the banded solution (1.58 s vs. 1.63 s). Defining the full
Jacobian is challenging and requires an additional function/-
function call in the code – we therefore recommend against
using the full Jacobian matrix and recommend instead defin-
ing the banded matrix.
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Table A2. Model performance using different calculation methods for the boundary fluxes.

Method Runtime (s) ψ RMSE (m) MB bias (mm) MB RMSE (mm)

SFOM 1.71 0.000 −0.018 8.06× 10−5

Reporting step central 1.66 0.000 0.119 2.64× 100

Reporting step forward 1.66 0.000 0.119 5.29× 100

Reporting step backward 1.66 0.000 0.119 5.92× 10−2

Calculation step central 5.24 0.000 0.046 1.13× 10−4

Calculation step forward 5.24 0.000 0.046 3.24× 10−3

Calculation step backward 5.24 0.000 0.046 3.14× 10−3

Table A3. Model performance using different approaches to calculate C(ψ).

Method Runtime (s) ψ RMSE (m) MB bias (mm) MB RMSE (mm)

Analytical C(ψ) solver flux output method 1.71 0.000 −0.018 8.06× 10−5

Analytical C(ψ) first order 36.25 0.000 −0.49 4.97× 10−4

Analytical C(ψ) high order 5.17 0.000 0.046 3.14× 10−3

Discrete C(ψ) first order 44.62 0.000 0.317 1.92× 10−7

Discrete C(ψ) high order 7.2 0.003 11.939 9.72× 10−3

Table A4. Model performance using different approaches to define the Jacobian matrix.

Method Runtime (s) ψ RMSE (m) MB bias (mm) MB RMSE (mm)

Solver flux output method Jacobian pattern 1.71 0 −0.018 8.06× 10−5

no Jacobian 2.17 0 −0.015 7.53× 10−5

Reporting-step flux calculation method no Jacobian 2.16 0 0.119 5.92× 10−2

Jacobian pattern 1.63 0 0.119 5.92× 10−2

full Jacobian 1.58 0 0.123 5.92× 10−2

Table A5. Model performance with and without Numba JIT compilation.

Configuration Runtime (s) ψ RMSE (m) MB bias (mm) MB RMSE (mm)

With Numba 1.71 0.00 −0.018 8.06× 10−5

Without Numba 26.07 0.00 −0.018 8.06× 10−5

A5 Running the model with and without Numba JIT
compilation

The best model configuration was also run with and without
the Numba JIT compiler, and the result is shown in Table A5.
It can be seen that Numba has no impact on the model out-
put (accuracy and mass balance are identical for each run) as
expected, but using Numba improves the runtime by a fac-
tor of ∼ 15. All other model runs reported in this paper use
Numba.

Code and data availability. All of the scripts developed in
this study are available from https://github.com/amireson/
openRE (last access: 24 January 2023), release v1.0.1,

https://doi.org/10.5281/zenodo.7497133 (Ireson, 2022). The
code is written in Python and MATLAB and run using makefiles,
which reproduce Figs. 2–7.
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