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The principal animal lineages (phyla) diverged in the Cambrian, but most
diversity at lower taxonomic ranks arose more gradually over the subsequent
500 Myr. Annelid worms seem to exemplify this pattern, based on molecular
analyses and the fossil record: Cambrian Burgess Shale-type deposits host a
single, early-diverging crown-group annelid alongside a morphologically
and taxonomically conservative stemgroup; the polychaete sub-classes diverge
in the Ordovician; and many orders and families are first documented in
Carboniferous Lagerstätten. Fifteen new fossils of the ‘phoronid’ Iotuba
(=Eophoronis) chengjiangensis from the early Cambrian Chengjiang Lagerstätte
challenge this picture. A chaetal cephalic cage surrounds a retractile head
with branchial plates, affiliating Iotuba with the derived polychaete families
‘Flabelligeridae’ and Acrocirridae. Unless this similarity represents profound
convergent evolution, this relationship would pull back the origin of the
nested crown groups of Cirratuliformia, Sedentaria and Pleistoannelida by
tens of millions of years—indicating a dramatic unseen origin of modern
annelid diversity in the heat of the Cambrian ‘explosion’.
1. Introduction
Annelids are a taxonomically and morphologically diverse animal phylum with
deep evolutionary origins [1]. As most annelid lineages lack the recalcitrant hard
parts necessary for preservation by conventional fossilization processes, the
patterns and timing of their diversification must be inferred from a sparse
fossil record [2]. The earliest unequivocal annelids occur in Burgess Shale-type
Cambrian Lagerstätten and predominantly belong to the stem group [3,4],
with a single representative of the crown group (Dannychaeta) from the early-
diverging magelonid lineage [5]. The available fossil record denotes an accumu-
lation of class-level diversity during the Ordovician Biodiversification Event
[3,6], with many orders and families represented in the Carboniferous [2]—an
overall trend that broadly alignswith the results ofmolecular analyses [7]. Never-
theless, the depauperate nature of the annelid fossil record means even a single
fossil find can prompt significant revisions of evolutionary history [5].

Burgess Shale-type fossils are particularly relevant to annelid origins: their
early-to-mid Cambrian age potentially illuminates the earliest stages of the
diversification of the group, and their unrivalled preservation of fine-scale
microstructural and anatomical detail allows the reconstruction of soft tissues
that would never otherwise be preserved [8,9]. This said, extreme compression
[10] and complicated preservational pathways [11] can complicate fossil
interpretation: Burgess Shale ‘annelids’ [9,12] have later been reassigned to
phyla as different as Onychophora [13], Priapulida [14] and Mollusca [15].
Here, we identify a likely mis-interpretation in the opposite direction: 15 new
specimens of the Chengjiang [16] fossil Iotuba chengjiangensis, originally inter-
preted as tentaculate stalked phoronids with U-shaped guts [17,18], instead
exhibit features of flabelligeroid annelids.
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Figure 1. Iotuba chengjiangensis. (a–c) ELI-S-001, complete specimen with recurved gut and head partly retracted; (b) normalized elemental abundance measured
by micro-X-ray fluorescence: blue channel, Al + K; green, Si + Zn + N; red, P + Fe; (d–f ) ELI-S-002A, anterior trunk with boudinaged gut; head preserved per-
pendicular to plane of splitting; blue channel in ( f ): normalized abundance of Al + K; green, Si; red, P + Fe + Cr + Cu; (g) ELI-S-007A, anterior end everted;
chancelloriid associated with posterior trunk; the iron-rich region anterior to the head is on a different surface and is not part of the Iotuba fossil; (h) ELI-S-
003B, chancelloriid associated with posterior trunk. High-resolution images at Figshare [32]. Scale bars: 10 mm except enlargements (c,e–f ), 2 mm. Abbreviations:
ch, chancelloriid; con, constriction between boudins; fa, fascicle of spines; fg, foregut; gr, transverse groove; hd, everted head; lt, lateral tube; mg, midgut.
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2. Results
Clade: Pleistoannelida Struck 2011 [19].
Subclass: Sedentaria Lamarck 1818 [20].
Suborder: Cirratuliformia Rouse & Pleijel 2003 [21].

Cirratuliformia has traditionally been included in the order
Terebellida, which is no longer held to be monophyletic [22].

New superfamily: Flabelligeroidea.
Type genus. Flabelligera de Saint-Joseph, 1894 [23].

In view of uncertainty as to whether ‘Flabelligeridae’ rep-
resents a sister clade to [24,25], or a grade embracing [26],
Acrocirridae, it is convenient to name the clade comprising
‘Flabelligeridae’ and Acrocirridae, which is consistently
recovered by phylogenetic analyses.

Iotuba Zhang et Smith gen. nov.
Type species. Iotuba chengjiangensis sp. nov., by monotypy.
Diagnosis. As for the type species, by monotypy.

Iotuba chengjiangensis Zhang et Smith gen. et sp. nov.

Remarks. The names Iotuba chengjiangensis Chen et Zhou 1997
[17], its misspelling Lotuba [27], and Eophoronis chengjiangensis
Chen 2004 [18, p. 216] are nomina nuda under article 13.1 of
the International Code of Zoological Nomenclature [28], as
they have never been accompanied by a formal diagnosis.
We thus formally establish Iotuba chengjiangensis gen. et sp.
nov. herein.

Holotype. Early Life Research Centre, Yunnan 53001 is desig-
nated as the holotype, following the intention of previous
researchers [17,18].

Additional material. Complete specimen: Early Life Institute
(ELI) S-001; anterior trunk (12 specimens): ELI S-002–008,
S-010, S-011, S-014–016; medial trunk (two specimens, each
questionably assigned to the species): ELI S-012, S-013;
posterior trunk (one specimen): ELI S-009.

Provenance. Yellowish-green to greyish-green mudstones in the
Jianshan, Ercaicun, Erjie and Sanjiezi sections of the middle-
upper Yu’anshan Formation, Eoredlichia trilobite Zone, Cam-
brian Series 2, Stage 3, near Haikou, Kunming, Yunnan.
Fossils were deposited in shallow waters with a freshwater,
potentially deltaic, influence [29,30], and are preserved in
the characteristic Chengjiang fashion [31] as weathered
carbonaceous films associated with superficial iron oxides.

Diagnosis. Worms with subcylindrical trunk and eversible
anterior region (head). Head slightly longer than wide
when fully everted, bearing irregularly distributed conical
papillae and two peripherally digitate horseshoe-shaped
structures. Anteriormost trunk with palisades and fascicles
of elongate spines. Trunk bearing transverse rows of small
(ca 200 µm) conical papillae. Straight digestive tract flanked
by pair of elongate tubes.

Description. Specimens range from 3.2 to 12.1 mm in width
(figure 1); the aspect ratio of the single complete specimen
(figure 1a–c) is 10.6. Individuals are often bent close to their
mid-trunk, by 5–170°.

A short head, flanked by elongate spines, can be with-
drawn into the anterior trunk (figures 1 and 2). It bears two
horseshoe-shaped structures, each bearing 60–100 filaments
that are 300–800 µm in length and occur at regular intervals
of 65–100 µm (figure 2). We interpret these paired structures
as branchiae; being distinct, they cannot be interpreted as a
single lophophore. The filaments may be straight (figure 2a,
b) or curved (figure 2g,i), indicating an originally flexible con-
stitution; their preservation in both two (figure 2d–k) and
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Figure 2. Iotuba chengjiangensis head. (a–c) ELI-S-007AB, branchiae rep-
resented in black in interpretative drawings; (b) backscatter scanning electron
micrograph showing relief and elevated iron content of branchial filaments;
(c) flipped image of counterpart corresponding to region boxed in (a) showing
palisade of spines; (d,e) ELI-S-010, head partly retracted, flanked by palisade and
at least four fascicles of spines, with distal branchiae; ( f,g) ELI-S-003B; head par-
tially retracted; branchiae visible beneath palisades; (h,i) ELI-S-011, head
partially retracted, showing branchiae and fascicles of spines; ( j,k) ELI-S-
004A, partially withdrawn head showing longitudinal (left arrow) and transverse
(right arrow) orientation of branchial filaments, which remain terminal even as
head is withdrawn. High-resolution images at Figshare [32]. Scale bars: (a,c–f,h,
j–k), 2 mm; (b,g,i), 200 µm. Abbreviations: be, basal element of palisade; br,
branchiae; fa, fascicle of spines; fg, foregut; pa, palisade of spines.
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three (figure 2b) dimensions is typical of chemically reactive
tissue in Burgess Shale-type deposits (e.g. euarthropod
digestive glands [33]; nectocaridid gills [34]).

The base of the head is flanked by spines. Two symmetri-
cally disposed palisades of ca 12 spines and a perpendicular
basal element (figure 1g,h; 2a,c–j), interpreted as ventral, are
complemented by a dorsal series of smaller spine fascicles
(figures 1a–c; 2a,d,e, h–j). The typical spine is gently curved,
with its convex surface directed centripetally, and measures
150 × 5 000 µm. Some spines are slightly bent at their distal
extremity (figure 2h); this deformation is consistent with an
originally non-mineralized composition. The fascicles and
arrays of spines are splayed centripetally when the head
is fully extended, but angle inwards as the head starts to
retract, forming a closed cage that can be withdrawn a
short distance into the body along with the body
(figures 1c,g,h; 2j,k; 3c,g,j; 4a,c).

Withdrawal of the head commences with its narrowing
(figures 1a–c,h; 2j–k; 3c, g). The consistent position of the bran-
chiae at the anteriormost limit of the head (figure 2) indicates
that the head is withdrawn by retraction without changing
its shape, as a hand may be withdrawn into a sleeve
(figure 4d ). This contrasts with involution, in which the
pharynx turns inside out through the mouth (figure 4e).

The surface of the head bears conical papillae with round
hollow bases that extend into a distal spine with a single
acute termination (figure 5a–f ). The irregular arrangement of
the papillae approximates but does not achieve close packing.

Externally, the trunk bears transverse rows of reinforced
trunk papillae (figure 5g–k), spaced at around 300–350 µm.
The preservation—and by implication constitution—of the
papillae is similar to that of the spine arrays. The conical
trunk papillae tend to be more robust than hooks on the
head, indicated by their greater relief and the infilling of
their internal cavity with iron minerals (originally pyrite;
figure 5l; [32]). Each papilla has an almost hemispherical
basal region that narrows distally into a pointed projection,
which may be straight or gently curved (figure 5h). Six trans-
verse grooves with a 1 mm spacing occur in the mid-trunk of
just a single specimen (figures 1g, 3d ), perhaps representing
an artefact of preservation.

The digestive tract comprises an often prominent foregut
preserved as a dark carbonaceous region that forms a funnel-
or bulb-shaped cavity, narrowing to a straight cylindrical
tube (figures 1c–h; 2a,d,f,j,k; 3). This opens into a broader,
mineral-filled axial hindgut that continues to the posterior
end of the trunk (figures 1b–f; 2j; 3a,b,d–k).

Two narrower tubes, occasionally exhibiting sausage-like
constrictions (i.e. boudinaged), run parallel to the gut, start-
ing and terminating around one body-width from each end
of the trunk (figures 1a–f; 3). The lateral tubes are filled
with coarse mineral grains that probably reflect diagenetic
replication of labile tissue (per [33]). The two tubes share a
common mode of preservation that is distinct from the diges-
tive tract, which is never boudinaged, typically broader
(figure 3a–f ), and sometimes a different colour (figure 1a–c)
or composition (figure 3d,h).

In three of the largest specimens, a chancelloriid is associ-
ated with the posterior trunk (figure 1g,h; [32]); the consistent
position of the chancelloriid components relative to the
trunks suggests that the superposition reflects ecology
rather than taphonomy.

Affinity. Our re-evaluation of Iotuba (figure 6a,b) finds no evi-
dence for a lophophore, stalk or U-shaped gut, the features on
which a phoronid interpretation was originally founded
[17,18]; as such, it is necessary to re-consider its affinity. Cor-
rect classification of Palaeozoic fossils is complicated by their
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Figure 3. Internal anatomy of Iotuba chengjiangensis. (a,b) ELI-S-006, midgut and lateral mineral-filled tubes; (c) ELI-S-004A, distinct preservation of foregut;
(d ) ELI-S-007A, lateral mineral-filled tubes parallel to midgut; (e,f ) ELI-S-009, posterior trunk, showing distal termination of lateral tubes; (g–i) ELI-S-005A;
(h) anterior termination of lateral tubes; (i) (counterpart, image flipped), coarse mineral grains in gut; ( j,k) ELI-S-008, folded specimen with bulb-shaped foregut.
High-resolution images at Figshare [32]. Scale bars: 10 mm except enlargements (b,d,f,h–i,k,n), 1 mm. Abbreviations: fg, foregut; lt, lateral tube; mg, midgut.
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antiquity: taxa in deep evolutionary positions can display
unexpected combinations of derived and ancestral character-
istics [38], and convergent evolution can lead to distantly
related taxa exhibiting superficially similar body organiz-
ations, which can be identified as independently derived
only by the comparison of specific constructional details [39].

A full appreciation of these concepts is essential to reaching
correct phylogenetic conclusions. For example, the Silurian
worm Acaenoplax [40] exhibits dorsal valves, a posterior respir-
atory cavity, and multiple gills. Though present in no extant
mollusc, this combination of characters is inherited from the
progenitor ofMollusca and thus secures a phylogenetic classifi-
cation within this clade [41]. Conversely, superficially
polychaete-like sclerites in Acaenoplax [42] can be recognized
as convergent—and thus no indicator of an annelid affinity—
by recognizing that their disposition is incompatible with the
parapodial distribution of true polychaete chaetae [43].

To confidently reinterpret Iotuba, then, convergent simi-
larities must be distinguished from authentic homologous
features. Importantly, the most striking features of Iotuba are
among the least phylogenetically instructive. A vermiform
body and a semi-regular armature of cuticular sclerites
characterizes cnidarian-grade organisms [44] (stem bilater-
ians?) as well as early representatives of many major
bilaterian clades—including ecdysozoans, aculiferan mol-
luscs [40], annelid worms [3], sipunculans [45] and
brachiozoans (brachiopods and relatives) [46]. Such a mor-
phology either characterized the ancestral bilaterian or
evolved multiple times independently; either way, it does
little to constrain the affinity of Iotuba. Likewise, an eversible
anterior trunk has arisen on at least five separate occasions
across Metazoa, including in gastrotrichs, acanthocephalans,
ecdysozoans, sipunculans and annelids. A compelling desig-
nation of Iotuba to one of these groups requires much more
basis than the shared presence of a feature that has evolved
so many times independently.
Doanyof theseproboscis-evertinggroupsexhibit thedetailed
constructional similarities necessary to substantiate an affinity
with Iotuba? Not gastrotrichs, which typically have differentiated
dorsal and ventral surfaces and a differentiated trunk, with
cataphract trunkarmature, andanunarmouredheadsurrounded
bysensorycilia,not spines.WithinEcdysozoa,Cambrian ‘archae-
opriapulids’ seem at first blush to offer a promising point of
comparison [47,48]. Outwith the derived clade Panarthropoda,
Cambrian ecdysozoans exhibit a conserved body plan. All bona
fide representatives exhibit a specific and distinctive anterior
organization that can be recognized on morphological grounds
[14,49]: the anterior trunk is differentiated into an eversible intro-
vert armouredwith radiallyarrangedrowsofhooksor spines; the
mouth is surrounded by a radially symmetric ring of spines; the
proximal region of the eversible pharynx is unarmoured; and
thedistalpharynx isarrayedwithoneormore regionsofquincun-
cially arranged teeth in which spines emerge as extensions of a
raised subtriangular arch housed on a polygonal basal pad or
spur [49].

Despite a superficial similarity, however, the anterior
region of Iotuba does not conform to any aspect of this pattern.
The anterior trunk is not eversible; it is not differentiated, either
morphologically or by its armature; the junction between its
trunk and eversible head is adorned not with the radial array
of elements that is retained even within Panarthropoda [50],
but with a bilateral arrangement of spines, including spines
in fascicles; the Iotuba head does not bear the unarmoured
region that characterizes the proximal ecdysozoan pharynx;
and the head papillae are neither arranged nor constructed in
the fashion of ecdysozoan pharyngeal teeth.

The absence of detailed anatomical correspondence
between ecdysozoans and any aspect of Iotuba militates
strongly against a close phylogenetic relationship. A position
within the ecdysozoan crown group would imply that the
anteriormorphology of Iotubawasmodified to a degree unpar-
alleled anywhere in Ecdysozoa, whereas the incorporation of
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Figure 4. Reconstruction of Iotuba. (a) Dorsal view; (b) anterior view; (c),
dorsal view, right-hand fascicles omitted to display retracted head; (d,e),
schematic of a hypothetical worm showing withdrawal of an eversible
head by: (d ), retraction, as in Iotuba; (e), involution, as in ecdysozoan
worms. Abbreviations: fa, fascicle of spines; fg, foregut; lt, lateral tube; pa,
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Figure 5. Epidermal ornament in Iotuba chengjiangensis. (a–f ) ELI-S-007A,
conical, anterior-directed papillae on head; outline of circular base prominent
in (b,c,e,f ); basal invagination visible in (c,d ); (g) ELI-S-002A, detailed outline
of trunk papillae; (h) reconstruction of original trunk papilla morphology, cor-
responding to boxed region in (g); (i), ELI-S-004A, outline of trunk papillae
preserved on lateral margin of trunk; ( j–k) ELI-S-011, impressions of papillae
on inner ( j ) and outer (k) surfaces of trunk; (l), ELI-S-005A, electron micro-
graph showing pyrite pseudomorphs in papilla cavities. High-resolution
images at Figshare [32]. Scale bars: 200 µm, except (a,b) (2 mm).
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‘branchiae’ into the pharynx is particularly difficult to reconcile
with an ecdysozoan body plan.

Sipunculans are perhaps more promising: certain living and
fossil sipunculans [45,51] exhibit conical trunk papillae, large,
paired, axis-parallel nephridia, and—in their perioral tentacles—
a potential equivalent to the (admittedly non-perioral) Iotuba
branchiae. Under this model, the Iotuba head would correspond
to the sipunculan introvert, whose hooks can resemble those of
the Iotuba trunk [52]. This comparison is inexact: the sipunculan
introvert is withdrawn by involution, rather than retraction; has
a much higher length :width ratio; and is differentiated, with
the tentacles occupying a distinct, unarmoured and articulated
region of the distal introvert, the cephalic collar, which has no
obvious equivalent in Iotuba. If these constructional differences
are overlooked, then Iotubamight conceivably be accommodated
in the sipunculan stem lineage at a point before the anusmigrated
to the anteriormost trunk or introvert, though the fascicles and
palisades of spines must be derived by some ad hoc pathway
from a presumed annelid ancestor.

Flabelligerid annelids (cage worms) (figure 6c–f) offer a
more compelling point of comparison. Theseworms are charac-
terized by a retractable, faintly papillate head, flanked or
encircled by a ‘cephalic cage’ made up of fascicles of elongate
spines (chaetae). The configuration of this cage ranges fromdis-
tinct fascicles of chaetae with clear vestiges of a segmental
arrangement (e.g. figure 6e), recalling the fascicles of chaetae
in Iotuba (though the nature of fossil preservation precludes
the identification or differentiation of individual segments) to
the single-layer, broadly radial palisades inFlabellidermaandFla-
belligera [36], which recall the Iotuba palisades. The flabelligerid
head exhibits horseshoe-shaped branchial plates with numer-
ous filamentous projections [36] (figure 6e,f). Flabelligerid
nephridia can form long, subcylindrical, axis-parallel structures
of a similar width to the intestine (figure 6d) that offer a likely
interpretation for the lateral tubes. To complete the picture, a
retractile anterior end, cylindrical body, prominent trunk papil-
lae (sometimes in transverse rows, albeit lacking sclerotization;
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Figure 6. Comparison of Iotuba with extant flabelligerids: (a,b) life recon-
struction of Iotuba; (c–f ) photographs of extant flabelligerids by Sergio
Salazar-Vallejo, reproduced with permission from the copyright holders (with-
held from open access agreement): (c) Semiodera tenera [35], with well-
displayed cephalic cages, heads partly or fully retracted; (d ) dissection of
Brada inhabilis [36], showing extensive nephridia; (e), Stylaroides monilifer
[37], everted head showing palps and branchial filaments; ( f ) Stylaroides hir-
sutus [37], pair of fully everted branchiae. (e,f ) Copyright © Unione Zoologica
Italiana, reprinted by permission of Taylor & Francis Ltd, http://www.tandfon-
line.com on behalf of Unione Zoologica Italiana. Scale bars: 2 mm.
Abbreviations: br, branchiae; cg, cephalic cage; fa, fascicle of spines; lt, lateral
tube (nephridia); mg, midgut; plp, palp.
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figure 6c,e) and a lack of prominent annulation (figure 6e)
characterize flabelligerids and many other cirratuliforms [36].

Flabelligerids, then, are the only animal group to exhibit
plausible homologues of each major organ system within
Iotuba. Of course, given the great age of the fossil, it is not
expected that these structures will be identical to representa-
tives of the crown group—just as the forelimbs of dinosaurs
(stem-group birds) are homologous to, but morphologically
different from, the wings of crown-group birds. In Cambrian
taxa, homologous features may not yet exhibit the full set of
properties that characterize their manifestation within the
crown group, which has been winnowed by extinction to rep-
resent a subset of the morphological diversity present early in
a clade’s history [53]. Indeed, Iotuba differs from most crown-
group flabelligerids in the robust cuticularization of its papil-
lae—though precedents for the independent sclerotization of
cuticle can be readily found in many metazoan groups (e.g.
[52,54–57]). The internal elements perpendicular to the base
of spine palisades do not have an exact parallel in flabelliger-
ids, though the internal rod-like skeletal chaetae (aciculae) of
other polychaetes offer a plausible analogue. Even if the stur-
diness of the cephalic cage and the precise arrangement of
branchial filaments is not replicated by any individual flabel-
ligerid species, the great diversity of arrangements within the
family [36] demonstrates the range of form that can evolve
from homologous structures.

Conversely, because Cambrian fossils tend to occupy
deep phylogenetic positions, they seldom possess all the fea-
tures of extant relatives [38]. The absence of a mucoid tunic,
found in most extant flabelligerids, doubtless reflects the
negligible fossilization potential of mucus. Despite being a
key element of the cirratuliform body plan [58], palps have
been lost in the extant flabelligerid Buskiella [59] and were
presumably lost independently in Iotuba. A secondary loss
of trunk chaetae in Iotuba would be surprising, but not with-
out precedent; the diminutive nature and even absence of
trunk chaetae in certain extant flabelligerids [25] arguably
suggests a diminished functional role and a reduced selective
pressure for their retention.

Taken together, we acknowledge that the case for an
annelid affinity requires Iotuba to exhibit a somewhat derived
morphology relative to the inferred ancestral state of flabelli-
gerids, and that the correspondence with structures in extant
annelids is imperfect. However, we consider it more parsimo-
nious to treat the features observed in Iotuba as potential
homologues of organs that occur in combination in a
known group than to treat each feature as an independent
innovation that is unique to Iotuba.

The alternative to a flabelligerid position is extreme conver-
gence from a potentially non-annelidan progenitor. Such a
proposal is difficult to falsify—yet we have been unable to con-
coct a compelling scenario. There is no obvious home for Iotuba
among the dorsoventrally differentiated cataphract metazoans
that populate the stem lineages of the lophotrochozoan phyla
[60–63]. Of the myriad worm-like taxa with similar overall
dimensions (e.g. [14,64,65]), perhaps the most relevant is
Acosmia maotiania [66], a Chengjiang fossil with lateral tubes
alongside its gut (see figs 1 and 3 of [66]). However, Iotuba
and Acosmia differ in almost every morphological detail.
Iotuba has an undifferentiated trunk; theAcosmia trunk is differ-
entiated into an introvert with posterior-directed spinose
elements; a regularly annulated mid-trunk with no discernible
sclerites; and a posterior region with plate-like sclerites. These
sclerites comprise a central boss and a circumferential groove,
making them more similar to palaeoscolecid plates [67] than
the spinose, basally indented papillae of Iotuba. Iotuba has an
eversible head;Acosmia lacks a head, and its pharynx is perma-
nently retracted. Iotuba has an unarmoured foregut; the
Acosmia pharynx contains sclerotized internal elements, remi-
niscent of the triradial, stylet-bearing pharynx of nematodes.
Acosmia lacks any parallel to the branchiae, or anterior spines
of Iotuba; Iotuba has no equivalent to the raised external ‘lip’
of Acosmia. Taken together, a close affiliation is undermined
by the different organization of the gut and trunk, and does
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not recast the numerous autapomorphies of each taxon in a
framework of homology by common descent.

In any case, Acosmia itself lacks a secure phylogenetic pla-
cement. Its interpretation as a total-group ecdysozoan [66]
rests on its terminal mouth and annulated vermiform
body—a non-specific suite of characters that also character-
izes, for example, many polychaetes. Acosmia is a rogue
taxon in ecdysozoan phylogenies: it may sit in the nematoid
crown group, the ecdysozoan stem, or elsewhere [68]. This
inconsistent phylogenetic position shows that Acosmia does
not fit neatly into the current understanding of ecdysozoan
evolution. The underwhelming and ambiguous evidence
for the affinity of Acosmia means that its potential affiliation
with Iotuba, even if substantiated, would do little to ground
either taxon in a phylogenetic framework.

An alternative test of convergent evolution can be provided
by phylogenetic analysis. To evaluate the case for homology
between the Iotuba and flabelligerid body plans, we incor-
porated Iotuba in a new phylogenetic dataset comprising
morphological and molecular data from cirratuliform annelids
(electronic supplementary material). Bayesian inference, maxi-
mum likelihood and inapplicable-corrected parsimony (under
equal and implied step weighting) all identified Iotuba as a
crown-group flabelligeroid, nested within a paraphyletic
Flabelligeridae as sister to Acrocirridae (figure 7). Characters
uniting Iotuba with Acrocirridae include the loss of a caruncle
and cephalic hood (though these are convergently re-gained
in certain acrocirrids). If Flabelligeridae is constrained to
be monophyletic, Iotuba plots as its sister taxon, remaining
within the Flabelligeroidea crown group. As such, whatever
the relationships between the cirriform families, interpreting
Iotuba as a total-group flabelligerid is parsimonious and is
consistent with morphological and molecular data.
3. Discussion
Annelid worms are rare in Chengjiang [69,70]. Ipoliknus [70]
bears ‘sclerites’ that resemble the robust, cuticularized
papillae of Iotuba, so conceivably also belongs to the papilla-
bearing subclade of Cirratuliformia [24]—though available
material is inadequate to substantiate this hypothesis. Detailed
comparison with the undescribed ‘New Taxon 1’ [32,66] or
Dakorhachis [65], whose segmented trunk and cage of terminal
spines are somewhat reminiscent of Iotuba, is precluded by the
limited preservation of available material.

Previously known annelids from the early Cambrian
belong either to the annelid stem group [2], or to the early-
diverging lineage Palaeoannelida [5]. As such, there has
been no evidence of a diversified annelid crown group until
the Ordovician, when machaeridian phyllodocids [71] and
eunicid jaw elements [72] document the divergence of the
pleistoannelid subclass Errantia, to which all known Ordovi-
cian–Devonian annelids belong [73], from its probable sister
clade Sedentaria [74], which includes the flabelligeroids.
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Membership of Flabelligeroidea would grant Iotuba a
derived position within Annelida, placing it within the
crown group of the nested clades Cirratuliformia, Sedentaria
and Pleistoannelida (figure 7). This would draw back the
scant fossil record of Sedentaria by 200 Myr, close to the
first fossil evidence of annelids [75].

Because Flabelligeroidea is deeply nested, each of its
parent clades necessarily diverged before it originated—
which would imply that the annelid crown group was
already highly diverse by Chengjiang time. The non-
preservation of this diversity represents a paradox [53],
but could be resolved if early annelids preferred environ-
ments that precluded exceptional preservation: stem-group
annelids, at least, display a preference for particular
environmental conditions [76,77].

From a wider perspective, the cryptic Cambrian roots of
annelid diversity point to an earlier radiation than previously
expected [2]: a flabelligeroid interpretation of Iotuba would
pull the divergence of the major pleistoannelid lineages
back into the contracted period of evolutionary innovation
that marked the opening of the Phanerozoic eon.
2014
4. Methods
As the combined analysis of morphological and molecular
data increases the concordance between reconstructed and inde-
pendently well-corroborated trees [78–80], we constructed a new
dataset of morphology +mitochondrial DNA for 60 extant
annelids and Iotuba.

Our morphological data comprise 82 discrete characters.
Some character formulations were sourced from previous mor-
phological datasets [24,25] and reformulated to follow best
practices for character construction [81–83]. Characters were
scored for each taxon based on the most recent available litera-
ture, resulting in the revision of many codings from previous
datasets. The morphological dataset was then reduced by safe
taxonomic reduction.

Mitochondrial DNA sequences for the 16S, 18S, 28S, cyto-
chrome b and cytochrome c oxidase I loci were obtained
by searching GenBank by locus and taxon, and using a BLAST
search [84], with sequences listed by [24,85–87] used to
seed searches.

Sequences were aligned using SATe 2.2.7 [88–91] following
an established protocol [92]: alignment was conducted using
MAFFT [93] with the Opal merger [94] and the FASTTREE tree
estimator [95], using the generalized time-reversible model [96]
with 20 gamma-distributed rate categories and the SATe-II-ML
settings, stopping 15 iterations after the last improvement to
alignment score. Raw and aligned sequences are available in
the electronic supplementary material.

Phylogenetic analysis was conducted using maximum likeli-
hood, Bayesian inference and maximum parsimony. Model and
partition selection for probabilistic analysis was conducted
using ‘MODELFINDER’ [97,98]; optimal partitioning and models
are listed in the electronic supplementary material. Maximum-
likelihood tree search was conducted in ‘IQ-TREE’ [99], allowing
each partition to have its own evolutionary rate over common
branch lengths [98]. Bayesian analysis was performed in MRBAYES

3.2.7a [100] using Bayesian mixed models, and the models
identified by MODELFINDER. Four runs of eight chains were run
for 5 million generations, sampling every 500 generations and
discarding the first 10% of samples as burn-in. Convergence
was indicated by potential scale reduction factor = 1.00 and an
estimated sample size of greater than 200 for each parameter.
Parsimony search was conducted using Fitch parsimony [101]
in ‘TNT’ [102] (supported by the Willi Hennig Society), and
with a correction for inapplicable morphological tokens [82] in
the ‘R’ package ‘TREESEARCH’ [103–105]. We employed the parsi-
mony ratchet [106] with implied weights [107], using concavity
constants of 3, 4.5, 7, 10.5, 16, 24, 36, 54 and ∞ (i.e. equal step
weights). Summary trees are presented with node support
values calculated after removing rogue taxa [108].

A subsample of the individual bifurcating trees reconstructed
by each approach was compared by mapping the clustering
information and quartet distances [109,110] between each
pair of trees into two dimensions using classical multi-
dimensional scaling [111], using the R packages ‘QUARTET’ and
‘TREEDIST’ [112,113]. Adequacy of projection was indicated by
trustworthiness and continuity metrics above 0.90 and minimal
deformation of the minimum spanning tree [114–117]. This
analysis indicated that all methods except uncorrected Fitch par-
simony converged onto a similar region of tree space. Full results
are provided in the electronic supplementary material.
Data accessibility. All data are available in the main text, or the electronic
supplementary material [118]. High-resolution images of specimens
accessioned at the Early Life Institute are available from Figshare:
https://doi.org/10.6084/m9.figshare.c.4204718 [32].
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