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A B S T R A C T   

Experimental techniques that probe the electronic structure of crystalline solids are vital for exploring novel 
condensed matter phenomena. In coherent Compton scattering the Compton signal due to interference of an 
incident and Bragg diffracted beam is measured. This gives the projected, non-diagonal electron momentum 
density of the solid, a quantity that is sensitive to both the amplitude and phase of the electron wavefunction. 
Here coherent electron Compton scattering is demonstrated using electron energy loss spectroscopy in the 
transmission electron microscope. The technique has several advantages over coherent X-ray Compton scat-
tering, such as a superior spatial resolution and the use of smaller specimens to generate Bragg beams of suf-
ficient intensity. The conditions for a directly interpretable coherent electron Compton signal are established. 
Results are presented for the projected, non-diagonal electron momentum density for silicon under 004 and 220 
Bragg beam set ups.   

1. Introduction 

Compton inelastic scattering measures the electron momentum 
density of a solid projected along the scattering vector direction, i.e. the 
so-called J(pz) function. The material electronic structure is analysed in 
reciprocal space, to provide information on any anisotropy in electron 
bonding, magnetism and phase transitions [1]. Photon-based Compton 
scattering using X-ray or γ-ray radiation are well established techniques, 
but its application to high energy electron beams and electron energy 
loss spectroscopy (EELS) has been rather limited [2–10]. This has largely 
been due to artefacts introduced by Bragg scattering in a crystalline 
specimen. Both the unscattered and Bragg diffracted beams can undergo 
Compton scattering, although there will be a difference in the scattering 
vector (magnitude and/or direction) for each beam. The mapping of J 
(pz) to the EELS spectrum is a function of the scattering vector magni-
tude, such that Compton profiles at larger scattering angles appear more 
broadened and are shifted to higher energy losses [10]. Furthermore, if 
the scattering vectors are not crystallographically equivalent the 
Compton profile shapes could be different due to anisotropy in J(pz), 
although this is a comparatively minor effect [1]. Since the overall 
Compton signal is a superposition of the contribution from all beams, the 
EELS measurement is not an accurate representation of J(pz) when the 
sample is strongly diffracting. However, a multislice-based method has 
recently been proposed for simulating electron Compton spectra, taking 

into account diffraction of the high energy electron beam both before 
and after the Compton scattering event [11]. Using multislice it is 
possible to invert the experimental measurement and extract an 
‘isotropic’ J(pz) that is averaged over the different scattering vectors. 
The isotropic J(pz) is largely free of the distortions due to diffraction. 

Although diffraction is generally undesirable there are special cases 
where it can provide useful information beyond a standard Compton 
measurement. The technique is called ‘coherent’ Compton scattering 
[12] and exploits the well-defined phase relationship between the 
elastically scattered electrons. Interference between the Bragg beams 
can therefore also contribute to the Compton signal. The mixed dynamic 
form factor (MDFF) quantifies the interference contribution to the in-
elastic scattering cross-section [13–14]. It has previously been used to 
calculate the core-loss EELS signal from focused electron beams [15], 
electron magnetic circular dichroism (EMCD) in magnetic materials 
[16], as well as mapping atomic orbitals [17]. In Compton scattering the 
J(pz) function and MDFF respectively sample the diagonal and 
non-diagonal terms of the electron density matrix in reciprocal space 
[12]. Non-diagonal terms depend on both the amplitude and phase of 
the electron wavefunction, and are therefore a more sensitive measure of 
the electronic structure. 

The MDFF in electron Compton scattering has previously been 
investigated by Schattschneider and co-workers [3-4,6-7]. Here we 
build on this earlier work to establish coherent electron Compton 
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scattering as a robust EELS technique. Compared to X-rays, high energy 
electrons provide several benefits for coherent Compton scattering 
measurements. The first is the higher spatial resolution of a transmission 
electron microscope, i.e. data can be acquired from specimen regions 
~100 nm in size or smaller. The second advantage is the strong Bragg 
diffraction, which renders the (crystalline) specimen an efficient beam 
splitter for the high energy electrons. Therefore, Bragg beams of suffi-
cient intensity can be obtained from much thinner crystals, a key 
requirement for materials that are hard to fabricate in single crystal 
form, as well as 2D materials that are intrinsically thin. In this paper, the 
MDFF cross-section for Compton scattering is derived theoretically, and 
the conditions for the MDFF to be directly interpretable are identified. 
Experimental data is presented for silicon, which has been extensively 
studied using electron Compton scattering [3-4,6-7,11], and is therefore 
an ideal test specimen. Two-beam diffraction conditions for the 004 and 
220 reflections are used to extract the projected, non-diagonal matrix 
elements of the electron momentum density. 

2. Methods 

2.1. Experimental 

Electron Compton measurements were carried out in a JEOL 2100F 
FEG TEM operating at 200 kV. The sample was a [110]-oriented silicon 
wafer that was thinned using argon ion-beam milling. A Gatan Tridiem 
EELS spectrometer was used for recording the Compton spectra in image 
mode. The specimen thickness, estimated from the thickness to EELS 

inelastic mean free path ratio, was ~70 nm. Two-beam centred dark 
field illumination, where either the 004 or 220 Bragg beam is strongly 
excited, is used for coherent Compton scattering. Diffraction of both the 
incoming and outgoing electron beams are important in Compton 
measurements, the latter being determined by the EELS aperture [11], 
which is positioned along the electron optic axis. The sample is therefore 
tilted away from the [110] zone axis along the relevant Kikuchi band to 
minimise diffraction of the outgoing beam. The tilt angles were 159 
mrad and 144 mrad for the 004 and 220 measurements respectively. The 
diffraction pattern for the former is shown in Fig. 1a. A logarithmic in-
tensity scale is used to bring out all features in the diffraction pattern; 
the linear intensity scale diffraction patterns can be found in the Sup-
plementary Material. 

Compton spectra were acquired under Bragg, as well as both positive 
and negative deviation parameter (sg) settings; example diffraction 
patterns are shown in Fig. 1b to 1d. The EELS aperture is at the sym-
metry orientation of the Kikuchi band (see annotation in Fig. 1b). The 
EELS collection semi-angle is limited by the 5.3 mrad objective aperture 
used for centred dark-field imaging. The Compton scattering vector 
magnitude for the 000 and Bragg beam are exactly equal for sg = 0, and 
approximately equal for the small deviation parameters used here. 
Furthermore, there is no anisotropy in J(pz) for the 000 beam and g =
004 or 220 reflections, due to the crystal symmetry of silicon [3]. The 
Compton scattering angle is 49 mrad and 46 mrad for the 004 and 220 
measurements respectively. 

Fig. 1. (a) Electron diffraction pattern for the 
silicon sample in the 004 symmetry orientation, 
tilted 159 mrad away from the [110] zone axis. 
The incident electron beam is parallel to the 
optic axis. Centred dark-field electron diffrac-
tion patterns for 004 Bragg, positive and nega-
tive deviation parameter are shown in (b), (c) 
and (d) respectively. The red circle in (b) in-
dicates the position and size of the EELS aper-
ture (the EELS spectrometer is along the optic 
axis). The two arrows represent Compton scat-
tering vectors for the 000 and 004 reflections. 
Diffraction pattern intensities are displayed on 
a logarithmic scale.   
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2.2. Multislice simulation 

Compton spectra were simulated using the double multislice method 
described in [11]. The principle of this method is illustrated schemati-
cally in Fig. 2a, which shows a Compton scattering event at the real 
space position P. Elastic propagation of the incident wavefunction Ψinc 
to the specimen depth d is performed using multislice for an inclined 
electron beam [18]. Each Bragg beam in the forward multislice 
diffraction pattern is a potential source of Compton scattering, which 
can take place in many directions (Fig. 2a). Following the Compton 
event, the high energy electron can undergo further elastic scattering on 
its way to the specimen exit surface. However, only the far-field exit 
wavefunction Ψexit in the direction of the EELS aperture is detected. 
Applying principle of reciprocity [19] the wavevector of Ψexit is 
reversed, and multislice propagated to the specimen depth where 
Compton scattering takes place. Fourier transforming this reverse mul-
tislice wavefunction reveals the Bragg diffraction vectors for elastic 
scattering of the outgoing high energy electron. Fig. 2b illustrates the 
process in reciprocal space. The Bragg beam g1 in the forward multislice 
diffraction pattern is a source of Compton scattering. g2 is a Bragg vector 
in the reverse multislice diffraction pattern; the high energy electron can 
be scattered along this vector while exiting the specimen, meaning that 
Compton scattering along the vector q will be detected by the EELS 
aperture (Fig. 2b). The measured Compton signal is proportional to [I 
(g1)I(g2)/q4], where I(g1), I(g2) are the intensities of the g1 and g2 Bragg 
beams in the forward and reverse multislice diffraction patterns at the 
specimen depth d for Compton scattering, and q is the magnitude of q 
[11]. A mathematical justification for this expression is given in Section 
3. The EELS Compton profile shape is governed by J(pz), the number of 
solid-state electrons with momentum component pz parallel to the 
scattering vector q. The energy loss ΔE(pz) corresponding to momentum 
pz is calculated using the following equations [10]: 

ΔE
(
pz
)
= ΔEp + δE

(
pz
)

(1a)  

ΔEp = 2sin2φ
2

(

2T +
T2

m0c2

)

(1b)  

δE
(
pz
)
= − pz

̅̅̅̅̅̅̅̅̅̅̅
2ΔEp

m0

√

(1c)  

where ΔEp is the energy loss for the Compton profile maximum and 
δE(pz) is the Doppler broadening term. φ is the Compton scattering 
angle, T is the incident electron kinetic energy and m0c2 is the electron 

rest mass energy. The EELS Compton signal at energy loss ΔE(pz) is 
proportional to J(pz)/

̅̅̅̅̅̅̅̅̅
ΔEp

√
. The normalisation constant (ΔEp)

− 1/2 sat-
isfies the sum rule for Compton scattering, i.e. the area under the 
Compton profile is fixed by the number of solid-state electrons under-
going Compton scattering. As an example, there are 12 electrons per 
silicon atom for Compton energy losses between the Si L and K-edges. 
The origin of the normalisation constant is clear from Eq. (1c), where 
there is a linear relationship between momentum pz and Compton pro-
file broadening. The EELS Compton spectrum I(E) is therefore [11]: 

I(E) =
∑

d,g1 ,g2 ,pz

I(g1)I(g2)

q4

[
J
(
pz
)

̅̅̅̅̅̅̅̅̅
ΔEp

√

]

δ
(
E − ΔE

(
pz
))

(2) 

The summation over d includes Compton scattering from all depths 
within the specimen. The delta function is equal to unity if the energy 
loss E = ΔE(pz) and zero otherwise. Eq. (2) is valid to within a propor-
tionality constant, which can be omitted, since we are not interested in 
absolute intensities. Note that Eq. (2) only includes the direct Compton 
scattering contributions from the transmitted and Bragg diffracted 
beams. In principle, it is possible to extend the general methodology to 
also include coherent Compton scattering (see Eq. 16 below), but this 
requires the projected non-diagonal terms in the electron momentum 
density matrix, which are generally unknown (in fact, some of the terms 
are experimentally measured in this work). 

The multislice supercell had lateral dimensions of 76.02 × 76.02 Å 
and was sampled using 1024 × 1024 pixels. Many of the simulation 
parameters were obtained directly from experiment, such as the incident 
electron beam energy (200 kV) and wavevector, specimen thickness (70 
nm) and orientation, as well as EELS collection angles. Strictly speaking, 
the finite sized EELS aperture will detect multiple wavevectors for the 
outgoing electron beams. Instead of simulating all of them via separate 
reverse multislice calculations, it is computationally more efficient to 
simulate only the wavevector corresponding to the centre of the EELS 
aperture and vary the Compton scattering vector q to cover all EELS 
collection angles. This approach assumes the reverse multislice calcu-
lation is weakly dependent on the exit electron wavevector and is 
therefore only valid for small EELS apertures. The EELS collection semi- 
angle in our measurements is only 5.3 mrad, and the simulation results 
agree well with experiment (see Fig. 3), which justifies the use of such an 
approximation. The supercell was divided into 1.92 Å thick slices along 
the electron optic axis direction. Kirkland’s [20] atom scattering factors 
were used to calculate the projected atom potential within a given slice. 
Frozen phonons were calculated within the Einstein approximation by 
applying a 0.078 Å rms displacement randomly to individual silicon 

Fig. 2. (a) Schematic of Compton scattering. 
The incident electron wavefunction Ψinc is 
Compton scattered at point P (depth d) within 
the sample in many directions. The outgoing 
electrons can undergo further elastic scattering, 
but only the electron wavefunction Ψexit in the 
direction of the EELS aperture is detected. (b) 
An illustration of the same process in reciprocal 
space. The g1 Bragg beam is Compton scattered 
at a given depth, followed by further elastic 
scattering of the outgoing beam by reciprocal 
vector g2. The EELS aperture detects the 
Compton scattering along q.   
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atoms. An experimentally measured J(pz) for silicon [11] was used to 
calculate the electron Compton spectrum according to Eq. (2). Compton 
spectra from 20 different frozen phonon configurations were summed to 
give a statistically significant result. 

3. Compton scattering and electron momentum density 

A second quantisation derivation of the dynamic form factor for 
Compton scattering is presented in Schattschneider et al. [21], while the 
MDFF is derived in Exner and Schattschneider [7]. In this section we 
discuss a slightly different derivation for the MDFF, which reveals some 
useful insights into coherent electron Compton scattering. Starting with 
the Fermi Golden rule, the double differential inelastic scattering 
cross-section (σ) is given by [22]: 

∂2σ
∂Ω∂E

∝
∑

f ,N
|〈b|V(r, rN)|a〉|2δ

(
E − Ef +Ei

)
(3)  

where Ω is the scattering solid angle and E is the energy loss. V(r, rN) is 
the interaction potential between the incident high energy electron 
(position vector r) and solid-state electrons (position vector rN for Nth 

electron) in the Born-Oppenheimer approximation. |a〉 = |ψ i〉|i〉 is the 
initial state of the system, where |ψ i〉 is the incident electron wave-
function before Compton scattering and |i〉 is the ground state of the 
solid, which has energy Ei. Similarly, |b〉 = |ψe〉|f〉 is the final state after 
Compton scattering, with |f〉 being the solid excited state (energy Ef ). 
The exit electron wavefunction |ψe〉 must be detected by the EELS 
spectrometer and is therefore determined by the principle of reciprocity 
[19]. The summation in Eq. (3) is over all excited states and solid-state 
electrons, while the delta function ensures energy conservation during 
inelastic scattering. 

It is convenient to express the electron wavefunctions as inverse 
Fourier transforms: 

|ψi

〉

=

∫

ϕi(ki)e2πiki ⋅rdki (4a)  

|ψe

〉

=

∫

ϕe(ke)e2πike ⋅rdke (4b)  

where ki and ke are reciprocal vectors and the ϕ’s represent Fourier 
coefficients. Using the relationship [22]: 
∫

V(r, rN)e2πi(ki − ke)⋅rdr∝
e− 2πiq⋅rN

q2 (5)  

where q = ke − ki is a scattering vector, the square matrix element in 
Eq. (3) becomes: 

|〈b|V(r, rN)|a〉|2∝
∫

ϕ∗
e(ke)ϕe(k

′

e)ϕ∗
i (k

′

i)ϕi(ki)

(qq
′

)
2 ×

〈
i
⃒
⃒e2πiq′ ⋅rN

⃒
⃒f
〉〈

f
⃒
⃒e− 2πiq⋅rN

⃒
⃒i
〉
dkidk′

idkedk′

e

(6)  

where an asterisk denotes the complex conjugate and q′

= k′

e − k′

i is a 
second scattering vector. Since E = ℏω (ℏ is Planck’s reduced constant 
and ω is angular frequency) the delta function in Eq. (3) can be 
expressed in the alternative form [22]: 

δ
(
E − Ef +Ei

)
=

1
2π

∫

ei(Ef − Ei)te− i(ℏω)tdt (7) 

Substituting Eqs. (6) and (7) in (3) gives: 

∂2σ
∂Ω∂E

∝
∑

f ,N

∫
ϕ∗

e(ke)ϕe(k
′

e)ϕ∗
i (k

′

i)ϕi(ki)

(qq
′

)
2 ×

〈
i
⃒
⃒e− iEi te2πiq′ ⋅rN eiEf t

⃒
⃒f
〉〈

f
⃒
⃒e− 2πiq⋅rN

⃒
⃒i
〉
e− i(ℏω)tdtdkidk′

idkedk′

e

(8) 

Using the equations e− iĤt |i〉 = e− iEi t |i〉 and eiĤt |f〉 = eiEf t |f〉, derived 
from Ĥ|i〉 = Ei|i〉 and Ĥ|f〉 = Ef |f〉 respectively, and the completeness 
relation 

∑

f
|f〉〈f | = Î, where Ĥ, Î are the Hamiltonian for the solid and 

identity operators respectively, Eq. (8) simplifies to: 

∂2σ
∂Ω∂E

∝
∫

ϕ∗
e(ke)ϕe(k

′

e)ϕ∗
i (k

′

i)ϕi(ki)

(qq
′

)
2 ×

[
∑

N

〈
i
⃒
⃒e− iĤ te2πiq′ ⋅rN eiĤ te− 2πiq⋅rN

⃒
⃒i
〉
]

e− i(ℏω)tdtdkidk′

idkedk′

e

(9) 

The Hamiltonian is Ĥ = Ĥo + Vo, where Ĥo is the kinetic energy 
operator and Vo is the electrostatic potential for the solid. In the impulse 
approximation it is assumed that the scattering time t is negligible, a 
condition that is satisfied for large momentum transfers and energy loss 
significantly higher than the binding energy of the solid-state electron 
undergoing inelastic scattering. The accuracy of the impulse approxi-
mation is discussed in [23]. Assuming second and higher order terms in 
time can be neglected results in the following approximation: 

eiĤ t ≈ eiĤ oteiVot (10) 

Eq. (10) can be substituted in the matrix element of Eq. (9) to give : 

〈
i
⃒
⃒e− iĤ te2πiq′ ⋅rN eiĤ te− 2πiq⋅rN

⃒
⃒i
〉
≈
〈
i
⃒
⃒e− iĤ o te− iVote2πiq′ ⋅rN eiĤ oteiVote− 2πiq⋅rN

⃒
⃒i
〉

≈
〈
i
⃒
⃒e− iĤ o t(1 − iVot)e2πiq′ ⋅rN eiĤ ot(1 + iVot)e− 2πiq⋅rN

⃒
⃒i
〉

≈
〈
i
⃒
⃒e− iĤ o te2πiq′ ⋅rN eiĤ ote− 2πiq⋅rN

⃒
⃒i
〉

.

(11)  

where second and higher order terms in time have again been ignored. 
Within the impulse approximation the potential is therefore absent from 
the scattering cross-section, implying that the solid-state electrons 
effectively behave as free particles. This is because the collision time is 
too short for neighbouring solid-state electrons and nuclei to re-arrange 
during inelastic scattering, which results in a constant potential over the 
relevant time scales. Compare this with core loss EELS edges, where the 
collision time can be long enough for core hole screening [24]. 

Following [7] the identity operator, expressed via a momentum basis 
set, is inserted multiple times in Eq. (11), i.e. : 
∑

N

〈
i
⃒
⃒e− iĤ o te2πiq′ ⋅rN eiĤ ote− 2πiq⋅rN

⃒
⃒i
〉

=
∑

p,p′
,p′′

〈i|p〉

〈

p

⃒
⃒
⃒
⃒
⃒
e− iĤ ot

(
∑

N
e2πiq′ ⋅rN

)⃒
⃒
⃒
⃒
⃒
p′

〉〈

p′

⃒
⃒
⃒
⃒
⃒
eiĤ ot

(
∑

N
e− 2πiq⋅rN

)⃒
⃒
⃒
⃒
⃒
p′′

〉

〈p′′|i〉

(12)  

where |p〉, |p′

〉 and |p′′〉 are dummy variables for the momentum basis set 
and 

∑

p
|p〉〈p| = Î etc. The matrix elements in Eq. (12) are evaluated as 

follows: 
〈

p
⃒
⃒
⃒
⃒e

− iĤ
o t

(
∑

N
e2πiq′ ⋅rN

)⃒
⃒
⃒
⃒
⃒
p′

〉

= 〈p|1 − iĤot + …|p′

+ q′

〉

= δ(p − p′

− q′

)

[

1 − i
h2(p′

+ q′

)
2

2m
t + ⋯

]

= δ(p − p′

− q′

)e− ih2(p′
+q′

)2 t/2m

(13)  

where we have made use of the orthogonality of eigenstates and the fact 

that for a free electron Ĥo|p
′

+ q′

〉 =
h2(p′

+q′
)
2

2m |p′

+ q′

〉. Eq. (12) is then : 
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∑

N

〈
i
⃒
⃒e− iĤ ote2πiq′ ⋅rN eiĤ ote− 2πiq⋅rN

⃒
⃒i
〉

=
∑

p,p′
,p′′

〈i|p〉〈p′′|i〉δ(p − p′

− q′

)δ(p′

− p′′ + q)e− ih2(p′
+q′

)
2 t/2meih2(p′′ − q)2 t/2m

(14) 

A necessary condition for the MDFF of a perfect crystal to be non- 
zero is that q′

− q = g, where g is a reciprocal lattice vector [14]. 
Therefore, Eq. (14) simplifies to:   

Substituting in Eq. (9) and evaluating the time integral gives: 

∂2σ
∂Ω∂E

∝
∫

ϕ∗
e(ke)ϕe(k

′

e)ϕ∗
i (k

′

i)ϕi(ki)

(qq
′

)
2 ×

[
∑

p′′

〈i|p′′ + g〉〈p′′|i〉δ
(

ℏω −
h2( q2 − g2 − 2p′′⋅q′)

2m

)]

dkidk′

idkedk′

e

(16) 

In the independent electron approximation, the electron wave-
function for the solid satisfies Bloch’s theorem [25]: 

ψ (jk)(x) =
∑

g
Ψ(j)

g (k)e2πi(k+g)⋅x (17)  

where ψ(jk) is the Bloch wavefunction for the jth-band at wavevector k. 
Ψ(j)

g (k) are the corresponding Bloch coefficients and x is the position 
vector of the independent electron. Evaluating the square bracket term 
in Eq. (16) using Bloch wavefunctions gives: 

∂2σ
∂Ω∂E

∝
∫

ϕ∗
e(ke)ϕe(k

′

e)ϕ∗
i (k

′

i)ϕi(ki)

(qq′

)
2 ×

(
∑

po , j′

[
Ψ(j′ )

g (po)
]∗

Ψ(j′ )
0 (po)

)

dkidk′

idkedk′

e

(18)  

where po is any vector p′′ that satisfies the delta function in Eq. (16) for a 
given energy loss ℏω. It is clear that all such po vectors must have a 
constant projection along q′ . The summation in Eq. (18) is the MDFF for 
Compton scattering. j′ are Bloch bands that have electron binding en-
ergies smaller than ℏω. More tightly bound Bloch bands cannot undergo 
Compton scattering due to energy conservation, and must therefore be 
excluded from the summation. First consider the special case of direct 
scattering, where ki = k′

i and ke = k′

e, so that q = q′ and g = 0. The 
summation pre-factor in Eq. (18) is then |ϕi(ki)|

2
|ϕe(ke)|

2
/q4; this is 

exactly the term used for calculating the direct scattering intensity in a 
multislice simulation [11]. The MDFF simplifies to the dynamic form 
factor, which has the form: 
∑

po , j′

⃒
⃒
⃒Ψ(j′ )

0 (po)

⃒
⃒
⃒

2
(19) 

The summand is proportional to the number of electrons occupying 
band j′ with wavevector po; see Eq. (17). Therefore, Eq. (19) is equiva-
lent to the projected electron momentum density J(pz). 

Next consider the MDFF where g ∕= 0. Since Bloch states are ortho-
normal the following property is valid at any given wavevector po [26]: 

∑

all j

[
Ψ(j)

g∕=0(po)
]∗

Ψ(j)
0 (po) = 0 (20)  

where j includes all Bloch bands, whether they be occupied or unoccu-
pied. The only difference between Eq. (20) and the MDFF is in the 
number of Bloch bands being summed. The Ψ(j)

g (po) coefficients will in 
general be larger for the more localised core electrons; the left hand side 
of Eq. (20) should therefore approach zero after only a few j bands, 

especially for large |g|. Hence if all electrons participate in Compton 
scattering the MDFF and coherent scattering cross-section is expected to 
be small. However, the energy loss in a typical EELS measurement rarely 
exceeds 1 keV, so that the high binding energy core electrons will not 
always contribute to electron Compton scattering. In such cases the 
MDFF cannot be approximated with Eq. (20), and coherent scattering 
can therefore be non-negligible. Nevertheless, coherent scattering will 
be weaker for low atomic number solids and large |g|, due to smaller 
Ψ(j)

g (po) coefficients. This is evident in the numerical results presented in 
[7] for L and M-shell electrons in silicon. In particular, the MDFF 
decreased monotonically with |g|; see Fig. 3 in reference [7]. 

4. Experimental results and discussion 

Fig. 3a shows the two-beam , g = 004 EELS Compton spectra ac-
quired under Bragg as well as positive (sg = 2.2 ± 0.1 × 10− 2 nm− 1) and 
negative (sg = -1.7 ± 0.1 × 10− 2 nm− 1) deviation parameter illumina-
tion conditions (the deviation parameters were calculated from the 
diffraction patterns [27]). The integrated intensity of the Si L-edge re-
gion (i.e. 115-175 eV) is normalised for a direct comparison. The relative 
intensity of the Compton profile increases from negative to positive 
deviation parameter, and the peak maximum shifts to higher energy 
losses. For example, the Compton peak maximum is at ~648 eV and 668 
eV for negative and positive deviation parameters respectively. Fig. 3b 
plots the difference between the normalised positive and negative de-
viation parameter spectra. The difference spectrum peaks at ~700 eV, 
and the integrated intensity is approximately half that of the background 
subtracted, Compton profile at negative deviation parameter. The 
Compton spectrum therefore changes significantly with deviation 
parameter. The changes are potentially due to direct and indirect scat-
tering contributions, the latter representing the coherent signal due to 
beam interference. 

First consider direct scattering. The diffraction patterns in Fig. 1 
confirm the illumination to be effectively two-beam, while there is very 
little Bragg diffraction of the electron beam exiting the specimen in the 
direction of the EELS spectrometer (Fig. 1a; see also Supplementary 
Material for a more detailed analysis of the diffraction patterns). The 
diffraction conditions can therefore be described as ‘2 beams in, 1 beam 
out’ [7]. Assuming a point EELS aperture, the Compton scattering vector 
magnitude q will then be larger for the 000 beam at positive deviation 
parameter compared to negative deviation parameter (see Fig. 1b for the 
scattering geometry). The trend is opposite for the Bragg beam, although 
it is reasonable to focus on the 000 beam, since it has the higher intensity 
(Fig. 1b-d) and should therefore produce a stronger Compton signal. The 
larger q at positive deviation parameter will shift the Compton peak to 
higher energy loss and decrease the signal due to the q− 4 term in the 
direct scattering cross-section (Eq. 2). However, since q is already large 
the fractional change in q due to deviation parameter is relatively small 

∑

N

〈
i
⃒
⃒e− iĤ o te2πiq′ ⋅rN eiĤ ote− 2πiq⋅rN

⃒
⃒i
〉
=
∑

p′′

〈i|p′′ + g〉〈p′′|i〉e− ih2(p′′+g)2 t/2meih2(p′′ − q)2 t/2m (15)   
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(<1%). Furthermore, the EELS spectrometer is not a point detector, but 
has a finite (i.e. 5.3 mrad) collection semi-angle, which produces a range 
of q values that is larger than the changes in deviation parameter. 
Therefore, the effect of q on direct scattering should be small. 

A second consideration is the role of deviation parameter on the 000 
and Bragg beam intensities. For an absorbing crystal under two-beam 
conditions the Bragg beam intensity is symmetrical with respect to de-
viation parameter, while the 000 beam intensity is higher for positive 
deviation parameter [26]. This is apparent in Fig. 4a, which is a 
convergent beam electron diffraction (CBED) pattern for silicon in the 
004 two-beam condition, acquired from a specimen region with thick-
ness similar to the Compton measurements (i.e. 70 nm). The 000 beam 
intensity at negative deviation parameter is smaller than the positive 
deviation parameter intensity by a factor of 0.86 (the deviation pa-
rameters are the same as the Compton measurements). Although 
non-negligible, the intensity asymmetry is still not large enough to 
quantitatively explain the observed increase in Compton signal with 
deviation parameter (Fig. 3a). 

To further quantify the role of scattering vector magnitude q and 
000/Bragg beam intensity on Compton spectra, multislice simulations 
were performed for the same conditions as experiment. The simulated 
Compton spectra at positive and negative deviation parameter, as well 
as Bragg, are superimposed in Fig. 3c. The simulations only model direct 
Compton scattering, and therefore do not include interference effects. 

There is nevertheless good agreement between experiment and simu-
lation at the Bragg orientation, where interference effects are minimal 
(see discussion below Eq. 26). For example, the Compton peak 
maximum is at ~663 eV and 653 eV for experiment and simulation 
respectively. However, changes in the experimentally measured 
Compton profile with deviation parameter are not reproduced by 
simulation. For example, with increasing deviation parameter the 
simulated Compton peak maximum shifts to higher energy loss, 
consistent with experiment, but the overall intensity decreases (cf. 
Fig. 3a). Furthermore, the simulated difference spectrum (Fig. 3d) has a 
very different shape to Fig. 3b, and the integrated (absolute) intensity is 
only 6% the intensity of the simulated Compton profile at negative de-
viation parameter, a significantly smaller fraction compared to 
experiment. 

The results suggest that changes in the Compton spectra with devi-
ation parameter are primarily due to coherent scattering from beam 
interference, rather than direct scattering. The difference spectrum is 
therefore a direct measure of the non-diagonal terms in the electron 
momentum density matrix. Assume a crystal in the ‘2 beams in, 1 beam 
out’ diffraction condition, so that ki and k′

i can take only two values, i.e. 
incident wavevector for the 000 and Bragg beam, while ke and k′

e are 
equal to the wavevector of the exit beam. The scattering cross-section 
(Eq. 16) therefore has only two indirect terms, i.e.: 

Fig. 3. (a) EELS Compton spectra acquired under 004 two-beam conditions with different deviation parameter (sg) values. The integrated intensity in the Si L-edge 
region (i.e. 115–175 eV) is normalised for a direct comparison. (b) Difference spectrum obtained by subtracting the sg negative from sg positive spectrum. (c) 
Multislice simulated Compton spectra for the same experimental conditions. Only direct scattering contributions are modelled. (d) Difference spectrum obtained from 
the multislice results. 
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|ϕe0|
2ϕ∗

igϕi0

(qq
′

)
2

[
∑

p′′

< i|p’’ + g >< p’’|i > δ
(

ℏω −
h2( q2 − g2 − 2p′′⋅q′)

2m

)]

+
|ϕe0|

2ϕ∗
i0ϕig

(qq
′

)
2

[
∑

p′′

< i|p’’ − g >< p’’|i > δ

(

ℏω −
h2( (q

′

)
2
− g2 − 2p′′⋅q

)

2m

)]

(21)  

where ϕi0, ϕig are the amplitudes of the 000 and Bragg beams for the 
incident illumination and ϕe0 is the amplitude of the exit beam. The 
amplitudes are evaluated at the Compton scattering depth. The q,q′

scattering vectors have been swapped between the two terms in Eq. (21), 
which results in a change in sign for the reciprocal vector g. Consider the 
special case where q and q′ are crystallographically equivalent vectors 
with equal magnitude, i.e. q = q′ . Examples include g = 004 and 220 
symmetric two-beam scattering in silicon [3]. The symmetry of the 
scattering vectors must mean that: 

∑

p′′

〈i|p′′ + g〉〈p′′|i〉δ
(

ℏω −
h2(q2 − g2 − 2p′′⋅q′

)

2m

)

=
∑

p′′

〈i|p′′ − g〉〈p′′|i〉δ

(

ℏω −
h2
(
(q′

)
2
− g2 − 2p′′⋅q

)

2m

)

(22) 

Therefore, the indirect scattering cross-section (Eq. 21) simplifies to: 

2|ϕe0|
2Re
(

ϕ∗
igϕi0

)

(qq′
)

2

[
∑

p′′

〈i|p′′ + g〉〈p′′|i〉δ
(

ℏω −
h2(q2 − g2 − 2p′′⋅q′

)

2m

)]

(23)  

where ‘Re’ denotes the real part of a complex number. The 000 and 
Bragg beam amplitudes at specimen depth z are given by [26]: 

ϕi0(z) =
∑2

m=1
ε(m)C(m)

0 exp
(
2πiγ(m)z

)
(24a)  

ϕig(z) =
∑2

m=1
ε(m)C(m)

g exp
(
2πiγ(m)z

)
(24b)  

where the C(m)
g terms are Bloch wave coefficients for the incident, high 

energy electron in the crystal (not to be confused with the Bloch 
wavefunction for solid-state electrons; Eq. 17). ε(m) and γ(m) are the 
excitation and change in longitudinal wavevector for the mth-Bloch 
state. Due to two-beam diffraction conditions there are only two Bloch 
states for the incident electron, labelled ‘1’ and ‘2’ respectively. For a 
non-absorbing crystal ε(m) = [C(m)

0 ]
∗
[26], and it is easy to show that (see 

Supplementary Material): 

Re
(

ϕ∗
igϕi0

)
=

=
2γ(1)ξg

[
1 +

(
2γ(1)ξg

)2
]2 +

2γ(2)ξg
[
1 +

(
2γ(2)ξg

)2
]2

+
2
(
γ(1) + γ(2)

)
ξgcos[2π(Δγ)z]

[
1 +

(
2γ(1)ξg

)2
][

1 +
(
2γ(2)ξg

)2
] (25)  

where Δγ = γ(1) − γ(2), and ξg is the extinction distance. Furthermore 
[26]: 

γ(1) =
w +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + w2

√

2ξg
; γ(2) =

w −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + w2

√

2ξg
(26)  

where w = sgξg is the dimensionless deviation parameter. At the Bragg 
orientation w = 0 and γ(1) = − γ(2), so that Re(ϕ∗

igϕi0) = 0. The Compton 
profile at Bragg is therefore free from interference effects, a result that 
has also been derived previously [4]. There will however be an inter-
ference contribution for non-zero values of w. Consider two Compton 
spectra acquired at equal and opposite values of w. Since for a 
non-absorbing crystal the 000 and Bragg beam intensities are symmet-
rical with respect to w, the direct terms will cancel one another in a 
difference spectrum. From Eqs. (25) to (26) however, the indirect terms 

Fig. 4. (a) CBED pattern for silicon in 004 two-beam diffraction conditions and corresponding rocking beam intensity curve. (b) Plot of the indirect scattering 
contribution Δ to the g = 004 coherent electron Compton signal as a function of specimen depth in silicon. The sample is assumed to be non-absorbing and |w| = 3.1. 
Δ is plotted on a scale where the incident electron beam intensity is normalised to unity. 
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will not completely cancel, so that the difference spectrum is propor-
tional to the projected, non-diagonal electron momentum density, i.e. 
the square bracket term in Eq. (23). 

The third term in Eq. (25) indicates that there is an oscillatory depth 
dependence to the indirect contribution. Fig. 4b plots the indirect 
contribution Δ in the g = 004 Compton difference spectrum as a func-
tion of specimen depth, assuming no absorption and |w| = 3.1 (the 
w-value is similar to the experimental deviation parameters in Fig. 3a). 
The indirect contribution is defined as Δ = [Re(ϕ∗

igϕi0)]w+ −

[Re(ϕ∗
igϕi0)]w− , where w+ and w− are the positive and negative dimen-

sionless deviation parameters respectively. There are large depth oscil-
lations in Δ between 0 and − 0.6 (here the incident electron beam 
intensity is normalised to unity). For a non-absorbing crystal it can be 
shown that Δ ≤ 0 for |w+| = |w− | (see Supplementary Material). 
Compton scattering can occur at any given depth and therefore the in-
direct contribution must be integrated over the specimen thickness. 
Since Δ is always of the same sign its integral can result in an appreciable 
non-zero value, and consequently a large difference spectrum (e.g. 
Fig. 3b). 

In our measurements the negative and positive deviation parameter 
had slightly different magnitudes, i.e. w = − 2.7 and w = 3.4 respec-
tively. There will then be a residual intensity in the 000 and Bragg beams 
while extracting the difference spectrum. Nevertheless, for a non- 
absorbing crystal it can be shown that the direct scattering contribu-
tions from the two beams are out of phase, and therefore cancel one 
another (see Supplementary Material). The only remaining contribution 
is the indirect term Δ, which has a less regular depth dependence pen-
dellösung, although the sign remains negative throughout (see Supple-
mentary Material). Fig. 4a indicates that the relative difference in 000 
beam intensity for positive and negative deviation parameter is 14%. 
Therefore, absorption cannot be entirely ruled out in our measurement, 
although interference is still the dominant contribution to the difference 
spectrum. 

The interference term in the difference spectrum is proportional to 
the projected, non-diagonal electron momentum density for the solid. 
From Eq. (23) the measured quantity is given by: 

θ
(
pz, g

)
=
∑

p
χ(p + g)∗χ(p)δ

(

ℏω −
h2
(
q2 − g2 − 2pzq

)

2m

)

(27)  

where χ(p) is the Fourier transform of the solid-state electron wave-
function at reciprocal vector p. pz is the component of p along the 
scattering vector q′ or q (since q and q′ are crystallographically equiv-
alent vectors of equal magnitude the exact choice of scattering vector is 
not important). Eq. (27) reduces to the projected electron momentum 
density J(pz) for g = 0. For a periodic crystal the auto-correlation term 

χ(p + g)∗χ(p) is expected to have maximum amplitude when p is a null 
vector. This suggests that θ(pz, g) has an extremum (i.e. maximum or 
minimum) at pz = 0 [12], which corresponds to an energy loss 
h2(q2 − g2)/2m in the difference spectrum. 

Fig. 5a shows θ(pz, g= 004) extracted from the difference spectrum 
in Fig. 3b using Eq. (27). The sign of θ(pz, g= 004) is made negative, 
since the difference spectrum also contains a pre-factor due to beam 
interference (Eq. 23), with negative Δ-values (Fig. 4b). pz is approxi-
mately parallel to the scattering vector [3, 4, 1], which was calculated 
using the method described in [3]. The minimum of θ(pz, g= 004) in 
Fig. 5a does not coincide with pz = 0. This is also a feature for Compton 
measurements of J(pz), and is because the measured EELS spectrum has 
an additional angular dependence due to Rutherford scattering [28]. 
This results in the (qq′

)
− 2 term in Eq. (23), which is a variable over the 

EELS aperture, and therefore distorts the Compton profile from its ideal 
shape. In Fig. 5b, θ(pz, g= 004) is replotted with the peak minimum at 
pz = 0. The graph is asymmetric with respect to pz, due to the non-zero 
reciprocal vector g. 

g = 220, two-beam EELS Compton spectra acquired under Bragg, 
positive (sg = 1.1 ± 0.1 × 10− 2 nm− 1) and negative (sg = -0.8 ± 0.1 ×
10− 2 nm− 1) deviation parameter are shown superimposed in Fig. 6a. 
The integrated intensity of the Si L-edge region, between 115 and 175 
eV, is normalised for a direct comparison. The relative intensity of the 
Compton signal increases from negative to positive deviation parameter, 
while the peak maximum shifts to lower energy losses. Exner and 
Schattschneider [7] however observed a higher Compton signal for 
negative deviation parameter, although the sense of the peak shift is the 
same. The reason for the discrepancy is not clear, but may be due to 
differences in the experimental conditions for the two measurements. In 
particular, the Compton scattering angle in reference [7] is much larger 
than the present work, as evidenced by a higher Compton peak 
maximum between 1200 and 1400 eV (see Fig. 8 in [7]). It should also 
be noted that the sense of the peak shift is opposite to the g = 004 results 
(Fig. 3a). 

Fig. 6b is the difference spectrum between the positive and negative 
deviation parameter Compton profiles. The integrated intensity is 
approximately a third of the background subtracted, negative deviation 
parameter Compton profile, indicating a large change in the Compton 
spectrum with deviation parameter. Fig. 6c plots the multislice simu-
lated Compton spectra for the different diffraction conditions. Recall 
that these simulations model only the direct scattering contributions. 
The simulations do not reproduce the experimental trends in peak shift 
or intensity, and the simulated difference spectrum (Fig. 6d) has a very 
different shape and relative intensity, i.e. the integrated (absolute) in-
tensity is only 4% the intensity of the simulated Compton profile at 
negative deviation parameter. This indicates that the experimental g =

Fig. 5. (a) θ(pz, g= 004) extracted from Fig. 3b, and including the negative sign of the beam interference term Δ. pz is approximately parallel to the [3, 4, 1]
scattering vector. (b) The same plot but with the scattering vector magnitude adjusted so that the minimum in θ(pz, g= 004) is at pz = 0. 
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220 difference spectrum is largely due to beam interference. 
θ(pz, g= 220 ) is shown in Fig. 7, after correcting for the negative sign of 
Δ. pz is approximately parallel to the scattering vector [1, 0, 5], and the 
scattering vector magnitude has been adjusted so that the peak mini-
mum is at pz = 0. The range of θ(pz,g = 220 ), i.e. pz ≈ ±1 atomic units, 
is much smaller than J(pz); see, for example, Fig. 3d in [11]. This is 
presumably because the auto-correlation term χ(p + g)∗χ(p) decays 
more rapidly with pz when g ∕= 0. 

5. Summary 

Compton EELS spectra are acquired for g = 004 and 220 two-beam 
conditions in silicon with both positive and negative deviation param-
eter. Multislice simulations confirm that direct Compton scattering of 
the 000 and Bragg beams has only a small contribution to the difference 
spectrum. Therefore, interference between the two beams, i.e. coherent 
Compton scattering, must be the dominant contribution. Dynamical 
electron diffraction theory is used to analyse the variation of the 
coherent Compton signal as a function of specimen depth. Despite the 
oscillation of 000 and Bragg beam amplitudes the coherent Compton 
scattering at each depth in a non-absorbing crystal will always add 
cumulatively. Therefore, the measured coherent Compton signal can be 
quite large for a specimen of reasonable thickness, consistent with our 
experimental results. The difference spectrum is used to extract θ(pz,g), 
the projected, non-diagonal electron momentum density for the solid. 
Experimental θ(pz, g) curves for silicon are asymmetrical and generally 

Fig. 6. (a) EELS Compton spectra acquired under 220 two-beam conditions with different deviation parameter (sg) values. The integrated intensity in the Si L-edge 
region (i.e. 115–175 eV) is normalised for a direct comparison. (b) Difference spectrum obtained by subtracting the sg negative from sg positive spectrum. (c) 
Multislice simulated Compton spectra for the same experimental conditions. Only direct scattering contributions are modelled. (d) Difference spectrum obtained from 
the multislice results. 

Fig. 7. θ(pz, g= 220 ) extracted from Fig. 6b, and including the negative sign of 
the beam interference term Δ. pz is approximately parallel to the [1, 0, 5]
scattering vector. The scattering vector magnitude is adjusted so that the 
minimum in θ(pz, g= 220 ) is at pz = 0. 
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narrower compared to the projected electron momentum density J(pz) 
obtained from a standard Compton measurement. These observations 
are consistent with the auto-correlation of the Fourier transformed 
electron wavefunction, i.e. χ(p + g)∗χ(p), from which θ(pz, g) is derived. 
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