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Abstract.  In industrial composites, drilling is one of the most common operations and complex 17 

processes during the final assembly, which can generate undesirable damage to the manufactured 18 

part. Data collection from a given composite’s fatigue life is often costly and time-consuming. To 19 

address this challenge, the current case study aims to adapt a hybrid machine learning to predict the 20 

fatigue life of the drilled Glass Fiber Reinforced Polymer composite laminates (with both 21 

unidirectional and woven lay-ups) under a limited and noisy data assumption. Composite specimens 22 

were drilled at various cutting speeds and feed rates. The size of the delamination around the hole 23 

was scanned by a microscopic camera. Cyclic three-point bending tests were conducted, and results 24 

indicated that the drilling-induced delamination size and the composite lay-up affect the specimens’ 25 

fatigue lives. The latter were predicted in two steps. In the first step, an offline deterministic model 26 

was established using the group method of data handling along with a singular value decomposition. 27 

Pareto multi-objective optimization was applied to prevent overfitting. In the second step, the Kalman 28 

filter was employed to update the polynomial of the deterministic model based on minimizing mean 29 

and variance of error between the actual and modeled data. Results showed an excellent learning 30 

reliability, with a correlation coefficient of 97.6% and 96.5% in predicting the fatigue life of 31 

unidirectional and woven composite laminates, respectively. A sensitivity analysis was performed 32 

and indicated that the fatigue life of the samples has been more affected by the drilling feed rate, 33 

compared to the cutting speed.  34 

Keywords: Artificial Intelligence, Machine Learning, Limited Data Modeling, Composite Materials, 35 

Complex Production Process, High-Cycle Fatigue Life. 36 
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Abbreviations  2 

GMDH Group Method of Data Handling 

SVD Singular Value Decomposition (SVD) 

GA Genetic Algorithm  

ANN Artificial Neural Network  

UKF Unscented Kalman Filter 

GFRP Glass Fiber Reinforced Polymer  

SVR Support Vector Regression  

MSC Monte Carlo Simulation 

DOE Design of Experiment  

Un Unidirectional  

Wn Woven  

GS Generalized Structure  

 3 

 4 

1. Introduction 5 

 6 

Composite materials have been key in design of lightweight structures over decades, and their 7 

industrial applications are still rapidly expanding  (Crawford, Sourki et al. 2021) [1]. Glass Fiber 8 

Reinforced Polymer (GFRP) composites, due to their key advantages of high specific stiffness, high 9 

specific strength, along with low cost and corrosion resistance, are widely selected in applications 10 

ranging from automobile to aerospace structures (Akbari Shah Khosravi, Gholizade et al. 2016) [2]. 11 

Drilling using a twist drill is one of the most common operations used for joining composite 12 

components  (H. Hocheng and C.C. Tsao 2003) [3]. This operation is often conducted in the last stage 13 

of production. Therefore, part rejection due to the low quality of the drilled hole can be much costly. 14 

In aerospace manufacturing sector, it was reported that approximately 60% of the composite 15 

components’ rejections occur at the drilling step, which accounts for a large portion of production 16 

energy waste (H. Hocheng 2012) [4]. Several damage modes, such as delamination, matrix cracking, 17 

fiber breakage and hole shrinkage, may occur during drilling composites (Hocheng and Tsao 2005) 18 

[5]. The drilling-induced delamination is the most major defect mode that adversely affects the fatigue 19 

life of the final part (Akbari Shahkhosravi, Yousefi et al. 2019) [6] and (Gholizade, Akbari Shah 20 

Khosravi et al. 2017) [7].  21 

The fatigue behavior of GFRP composites has been widely studied in the last few years (Loos, Yang  22 

et al. 2013) and (Jeannin, Gabrion et al. 2019). Open-hole composite laminates in a subsequent fatigue 23 

loading showed multiaxial stress around the hole (Harris 2003) . Several investigations approved that 24 
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the delamination cracks developed during the drilling operation can grow in low-stress fatigue loads   1 

(Tsao and Hocheng 2007) and (Nixon-Pearson and Hallett 2015). However, there has been no detailed 2 

investigation on drilling optimization to increase the fatigue life of the GFRP composite materials. 3 

Machine learning algorithms have been proven to be a promising tool for prediction and optimization 4 

purposes in various applications (Khayyam, Naebe et al. 2015) [18] and (Wanigasekara, Oromiehie 5 

et al. 2021) [19]. When using a limited training data-set, there is a concern about the reliability of the 6 

ensuing prediction model. However, limited training data-set is often inevitable in industrial 7 

applications due to the cost and time of trials (Nijssen 2006)  [17]. According to the central limit 8 

theorem (H. Khayyam, G. Golkarnarenji et al. 2018) [20], a sample size of less than 25-30 is 9 

considered a small or limited data-set. Machine learning provides different techniques for prediction 10 

and optimization purposes, which can be selected depending on the given problem’s scope, the nature 11 

of the data-set and desired outcomes (H. Khayyam, G. Golkarnarenji et al. 2018) [20]. 12 

For limited training data-sets, prediction modeling using e.g. Support Vector Regression (SVR) 13 

combined with a Genetic Algorithm (GA) indicated a sufficiently accurate approach (Golkarnarenji, 14 

Naebe et al. 2018) [21]. Khayyam et al. provided a novel hybrid machine learning algorithm for such 15 

modeling under limited data [22]. The model was robust against uncertainties by utilizing an 16 

Unscented Kalman Filter (UKF) approach, which was easier to approximate a probability 17 

distribution. The model showed accurate predictions for a collected data-set from a carbon fiber 18 

production line, and the capability of the model for applying to various industrial applications 19 

(Golkarnarenji, Naebe et al. 2019) [23]. The latter study specifically used a Taguchi design of 20 

experiments approach combined with two different machine learning techniques: Artificial Neural 21 

Network (ANN) and SVR. It was reported that the average error of both methods was less than 4.1% 22 

for predicting the Young’s modulus and the tensile strength of the carbon fibers. The SVR model was 23 

more accurate in terms of Young’s modulus, and the ANN model accuracy slightly surpassed the 24 

SVR model in terms of the fibers tensile strength prediction (Golkarnarenji, Naebe et al. 2019) [23]. 25 

1.1.Objective and organization of the work 26 

As reviewed above, drilling is the most common way to assemble GFRP composite components. 27 

However, the drilling-induced delamination/damage brings concerns regarding the fatigue life of 28 

assembled composite components. Therefore, the current case study aims to adapt machine learning 29 

algorithms to predict and optimize the fatigue life of drilled GFRP composites.  30 

The work was divided into two parts; experimental and modeling. The first part was associated with 31 

the design of experiments. GFRP composite specimens were produced with two different lay-ups 32 

(unidirectional and woven), and then holes were introduced to the samples though high-speed drilling. 33 

Samples were drilled under different feed rates and cutting speeds. Next, an optical analysis was 34 



 

4 
 

conducted to assess the induced delaminations around the drilled holes, and an adjusted delamination 1 

factor was computed for each sample. Finally, the drilled samples underwent static three-point 2 

bending tests, followed by cyclic fatigue test. In the second part of the study, the measured fatigue 3 

life of the components was modelled using a hybrid machine learning (combination of Group Method 4 

of Data Handling (GMDH) -type neural network and a UKF). The fatigue life predictions were based 5 

on the drilling parameters and the size of delamination around the hole. Finally, a sensitivity analysis 6 

was performed using the trained model, to assess which process parameter would affect the composite 7 

fatigue life more dominantly. 8 

 9 

Part I 10 

2. Design of experiment  11 

 12 

A modified Taguchi experimental design (Khayyam, Fakhrhoseini et al. 2017) was employed to 13 

ensure the optimal design of experiments. Namely, the drilling process parameters were under three 14 

levels: feed rates (f=50, 100, 150 mm/min) and cutting speeds (u=3,000, 6,000, 10,000 rpm). Each 15 

test was conducted three times, to increase the adequacy and validity of the subsequent prediction 16 

models.  17 

 18 
2.1 Materials 19 

 20 

The test materials were unidirectional (GF 12/200 DLN) and woven (VV 770) prepreg glass/epoxy 21 

with IMP503 resin. Fiber volume fraction in unidirectional and woven specimens was 20.16% and 22 

28.23%, respectively. The materials were vacuumed and cured by an autoclave under 125℃ and for 23 

one hour. The composite palates’ quality was checked by the ultrasonic C-scan method. Finally, by 24 

using a water jet machine, plates were cut with dimensions of 170×20 mm2, and the standard deviation 25 

of cut dimensions was less than %10. Specifications of the samples are presented in Error! 26 

Reference source not found.. More detailed material characteristics of the specimens were reported 27 

in the study (Akbari Shahkhosravi, Yousefi et al. 2019) [24]. 28 

 29 
Table 1. Specifications of the composite samples tested. 30 

Composite 

Specimen   
Moulding Process/  

Lay-up 

Thickness 

(mm) 
Figure 

Unidirectional 

(Un) 
[0]32 5 
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Woven  

(Wn) 
[0/90]8 5 

 

 1 

 2 

 3 

 4 

 5 

2.2. High–speed drilling process 6 

 7 

A FIDIA vertical machining center was used to drill the composite specimens. The maximum spindle 8 

speed and feed rate of the drilling machine were 24,000 rpm and 200 mm/min, respectively. The 9 

drilling process did not involve any cooling liquid; and to avoid extensive delamination, the 10 

specimens were drilled on an appropriate back-up plate. The procedure is illustrated in Error! 11 

Reference source not found.. The cutting tools were standard HSS twist drills with a 4 mm diameter 12 

and helix angle of 30 degree. The cutting tool was changed every five drillings to avoid wear effect. 13 

The specimens were drilled by various feed rates and cutting speeds, as outlined by a Design of 14 

Experiments (DOE) approach (see Table 3 and 4). The location of the hole was at the center of the 15 

specimens. 16 
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 1 
Fig. 1. The drilling procedure using a back-up plate. 2 

 3 
2.3. Optical analysis of the drilling-induced delamination  4 

 5 

Upon drilling, the delamination around each specimen hole was scanned by a microscopic camera, 6 

using an optical zoom up to 320X and a resolution of 96-300 dpi (Error! Reference source not 7 

found.). For evaluating the drilling-induced delamination size, a delamination factor, as proposed by 8 

(Davim, Rubio et al. 2007) [25], was computed. The latter study specifically proposed an adjusted 9 

delamination factor, Fda, that incorporates both crack size and the damaged area around the hole. The 10 

proposed adjusted delamination factor: 11 

Fda = α
Dmax

D0
+ β

Amax

A0
                                                                                                                       (1) 12 

D0 is the nominal diameter of the drill bit. Dmax is the maximum diameter of the damaged area, Ad is 13 

the damaged area and A0 and Amax are the areas associated with the nominal hole and maximum 14 

diameter, respectively. α and β are the model coefficients and can be computed as: 15 

β =
Ad

Amax−Amax
 and α = 1 − β                                                                                                                  (2) 16 
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 1 
Fig. 2. The delamination scanning procedure. (Dmax: maximum diameter of the damaged area; Ad: dam-aged area). 2 

 3 

2.4. Quasi-static loading 4 

 5 

Prior to the cyclic fatigue testing of drilled samples, three-point bending test with quasi-static loading 6 

conditions was conducted to find a suitable force range (magnitude) for the subsequent cyclic loading 7 

test. A servo-hydraulic Dartec 9600 universal testing machine with a load cell capacity of 50 kN was 8 

used for this aim. The loading crosshead speed was 1 mm/min, in a displacement control mode. A 9 

data acquisition system recorded the applied load and the associated displacement. Tests were 10 

conducted at 24 ̊c (room temperature). 11 

 12 

2.5. Cyclic loading 13 

 14 

Three-point bending cyclic experiments were conducted using Dartec universal testing machine and 15 

according to the ASTM D7615 (D7615M-11 2019) [26]. Tests were conducted in the load-control 16 

mode, with a loading frequency of 5 Hz. The cyclic loading parameters were proposed considering 17 

the static strength of the UD and woven specimens (Error! Reference source not found.). The test 18 

setup is presented in Error! Reference source not found.. 19 

 20 
Table 2. Identified cyclic loading parameters for the composite samples. 21 

Specimen 
Frequency 

(Hz) 

Pmax 

(N) 

Pmin 

(N) 

Unidirectional 5 750 400 

Woven 5 1,531 484 
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 1 
Fig. 3. Servo-hydraulic Dartec 9600 universal testing machine - Quasi-static and cyclic loading tests setup. 2 

 3 
3. Experimental results and discussion  4 

 5 

The results of the quasi-static tests are presented in Error! Reference source not found., for 6 

representative unidirectional and woven specimens. The maximum strength for the unidirectional and 7 

woven specimens was 1.083 kN and 1.9 kN, respectively. Error! Reference source not found. 8 

illustrates the cyclic loading results for representative unidirectional and woven specimens. The 9 

fatigue cycles before failure are reported in Error! Reference source not found. and Error! 10 

Reference source not found. for all unidirectional and woven specimens, respectively. The result 11 

reveal that increasing the cutting speed and decreasing the feed rate could increase the fatigue life of 12 

the tested composites. 13 

  14 
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 1 
Fig. 4. Load-displacement response of the quasi-static bending of unidirectional and woven (representative) specimens. 2 

 3 

 4 
  Fig. 5. Sample cyclic loading results for A: U1 (unidirectional, u=50 rpm, f= 3,000mm/min) and for B: W1 (woven,  5 

u=50 rpm, f= 3,000mm/min). 6 

 7 

 8 
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Table 3. Adjusted delamination factor and fatigue cycles for unidirectional specimens. 1 

Specimen 

f 

(mm/

min) 

u 

(rpm) 
Fda Cycles before failure 

 

  

U1 50 3,000 1.467 58,900 

U2 50 3,000 1.462 59,010 

U3 100 3,000 1.51 37,345 

U4 100 3,000 1.554 37,326 

U5 100 3,000 1.493 37,551 

U6 150 3,000 1.515 32,801 

U7 150 3,000 1.526 32,705 

U8 150 3,000 1.529 32,541 

U9 50 6,000 1.442 62,499 

U10 50 6,000 1.433 62,634 

U11 100 6,000 1.481 42,970 

U12 100 6,000 1.499 41,845 

U13 100 6,000 1.475 42,844 

U14 150 6,000 1.511 41,291 

U15 150 6,000 1.512 41,284 

U16 150 6,000 1.502 41,977 

U17 50 10,000 1.408 85,568 

U18 50 10,000 1.421 84,416 

U19 100 10,000 1.451 50,002 

U20 100 10,000 1.458 48,917 

U21 100 10,000 1.438 51,341 

U22 150 10,000 1.496 46,750 

U23 150 10,000 1.538 45,519 

U24 150 10,000 1.481 76,891 

U=Unidirectional, u=cutting speed, f=feed rate, Fda=adjusted delamination 

factor 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
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Table 4. Adjusted delamination factor and fatigue cycles for woven specimens. 1 

Specimen 

f 

(mm/

min) 

u 

(rpm) 
Fda Cycles before failure 

 

  

W1 50 3,000 1.378 23,878 

W 2 50 3,000 1.369 23,986 

W 3 100 3,000 1.469 17,176 

W 4 100 3,000 1.486 16,856 

W 5 100 3,000 1.444 17,852 

W 6 150 3,000 1.549 17,026 

W 7 150 3,000 1.578 16,982 

W 8 150 3,000 1.537 17,400 

W 9 50 6,000 1.296 1.00E+07 

W 10 50 6,000 1.225 1.00E+07 

W 11 100 6,000 1.351 48,621 

W 12 100 6,000 1.372 48,476 

W 13 100 6,000 1.345 48,958 

W 14 150 6,000 1.402 18,745 

W 15 150 6,000 1.388 19,847 

W 16 150 6,000 1.427 18,800 

W 17 50 10,000 1.252 1.00E+07 

W 18 50 10,000 1.235 1.00E+07 

W 19 100 10,000 1.297 1.00E+07 

W 20 100 10,000 1.304 1.00E+07 

W 21 100 10,000 1.296 1.00E+07 

W 22 150 10,000 1.368 46,696 

W 23 150 10,000 1.404 46,768 

W 24 150 10,000 1.358 49,753 

W=Woven, u=cutting speed, f=feed rate, Fda=adjusted delamination factor 

 2 

 3 

Part II  4 

4. Predictive modeling for the fatigue life data 5 

 6 

As shown in Fig.6, the fatigue life prediction (number of cycles before failure) can be realized either 7 

by using delamination factor, or directly the drilling (control) parameters themselves; here 8 

considering the simplicity for industrial applications, the latter approach was opted.  Accordingly, to 9 

predict the fatigue life of the tested composite specimens in Part I (Tables 3 and 4), a hybrid (two-10 

step) machine learning algorithm (Error! Reference source not found.) was proposed as follows. 11 

 12 

 13 
 14 

 15 
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 1 
Fig. 6. The interrelationship’s between fatigue life of sample with drilling parameters and the delamination factor.  2 

 3 

4.1 Step 1-Offline modeling based on limited data 4 

In this step, a polynomial model (GMDH-type NN) was trained to explain the relationship between 5 

the drilling parameters (inputs) and fatigue life (output). The GMDH- NN algorithm can be 6 

considered as a set of neurons of which several pairs in each layer are connected through a quadratic 7 

polynomial and produce new neurons in the next layer (Khayyam, Jamali et al. 2020). A GMDH 8 

model with multiple inputs and one output is a subset of components of the base function:   9 

  𝑌(𝑥𝑖, … . , 𝑥𝑛) = 𝑎0 + ∑ (𝑎𝑖𝑓𝑖)𝑚
𝑖=1                                                                                                (3) 10 

where fi are elementary functions dependent on different sets of inputs, ai are coefficients, and m is 11 

the number of the base function components. However, GMDH is usually based on polynomial 12 

reference function such as Kolmogorov-Gabor polynomial shown in Eq. (4). Different reference 13 

functions can be also adapted, e.g. harmonic and logistic (VukovicD.B, Romanyuk et al. 2022).  14 

𝑌(𝑥𝑖, … . , 𝑥𝑛) = 𝑎0 + ∑ (𝑎𝑖𝑥𝑖) + 𝑚
𝑖=1 ∑ ∑ 𝑎𝑖𝑗𝑥𝑖

𝑚
𝑗=1 𝑥𝑗 + ∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑖=1 𝑥𝑗 𝑥𝑘+⋯        (4)                                                             15 

 16 

For model learning, 60% of the dataset was used for training purposes and the rest for validation. The 17 

model topology and the polynomial coefficients of each neuron within the Generalized Structure (GS) 18 

of GMDH were defined using the multi-objective GA and Singular Value Decomposition SVD 19 

algorithms, in order to simultaneously minimize the training and prediction errors. Pareto optimum 20 

nondominated models were achieved through applying nondominated sorting GA (NSGA)-II. In GS-21 

GMDH, all neurons in a previous layer are often used to build a new neuron  (Jamali, Ghamati et al. 22 

2013) [27]; (Jamali, Nariman-Zadeh et al. 2009) [28]. The evolutionary process initiation began with 23 

a random generation of the first population of an alphabetical chromosome following crossover and 24 

mutation, and tournament selection  (Khayyam, Jamali et al. 2020) [29]. Tracking the training and 25 

prediction errors in the model could lead to an improvement of the entire population of symbolic 26 

strings.  27 
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 1 

 2 
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 3 
Fig. 7. Proposed two-step algorithm to create a robust fatigue life prediction model in the present study; the method is 4 

generic and may be applied to other processes. 5 

 6 

4.2 Step 2-Online updating for model robustness 7 

 8 

The second step of the hybrid model was an online update fed from the 1st step of the model (Error! 9 

Reference source not found.). The online procedure was specifically aimed to increase the 10 

robustness of the predictions. For this aim, the UKF was used to eliminate the uncertainties in the 11 

input-output data (Khayyam, Jamali et al. 2020) [22]; (Masoumnezhad, Jamali et al. 2015) [30]. 12 

Furthermore, a variation from nominal values of main data was considered, as a potential uncertainty 13 

source. For this purpose, N data table sets were built around the nominal values using the Monte 14 

Carlo Simulation (MCS) (Chiacchio, Aizpurua et al. 2020).  15 

 16 

5. Modeling results and discussion 17 

 18 

The above discussed GMDH-type NN, followed by the UKF application, was trained and employed 19 

to model the data-set of Error! Reference source not found.. An optimal structure of a GMDH-type 20 

NN with three hidden layers is shown in Error! Reference source not found.-A. Error! Reference 21 

source not found.-B shows a correlation coefficient of 97.6% between the actual values and the 22 

predicted ones. Similar to the previous section, the optimal structure of NN with three hidden layers, 23 
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was employed for the modeling of the data-set of Error! Reference source not found. (Error! 1 

Reference source not found.-C). Error! Reference source not found.-D shows a correlation 2 

coefficient of 99.1% between the actual values and the predicted ones, representing a reasonably 3 

accurate model. Finally, in order to achieve a simpler model, we attempted to reduce the number of 4 

hidden layers of the NN to 2, with results (Error! Reference source not found.-E and F) showing 5 

still a sufficient predictability of the model.  6 

 7 
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 8 
Fig. 8. A: Using GA (the sequence of genes creates an alphabetical chromosome) to optimize the structure of GMDH-9 

type NN for modeling the first data-set (unidirectional composite specimens). B: Comparison of experimental and 10 
modeled data based on the neural network shown in (A). C and E: Optimized structure of GMDH-type NN with 3-11 
(Hidden Layer) HL and 2-(Hidden Layer) HL, respectively, for modeling of the second data-set (woven composite 12 

specimens). D and F: Comparison of experimental and modeled data based on the neural network shown in C and E, 13 
respectively. 14 

 15 
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 1 

 2 

6. Sensitivity Analysis 3 

 4 

A sensitivity analysis was employed to investigate the dependence of the output (number of cycles to 5 

fail) on the drilling variables variations in woven specimens. For this purpose, using Eq.4 and Eq.5, 6 

the derivative of the output was calculated relative to each independent variable, while the other 7 

variable was kept constant. 8 

S1 =
∂cycles

∂u
|

f=constant
                                                                                                                              (5) 9 

 S2 =
∂cycles

∂f
|

u=constant
                                                                                                                                   (6) 10 

Error! Reference source not found.-A shows the output variation relative to f , while u was equal 11 

to 3000, 7000, or 10000. As can be seen, the graph trend is divided into three sections, increasing for 12 

small values of f, decreasing for medium values of f, and increasing again for large values of f. The 13 

output derivative with respect to f is negative in the wide range and positive in the narrow bound. For 14 

example, for the value f = 120, the output derivative is always negative, which means that the cycles 15 

required to fail at this level of f will be decreasing (for all values u).  16 

Error! Reference source not found.-B shows the output variation relative to the u, while f  was 17 

equal to 50, 100, or 150. The output derivative with respect to u is negative except for the end section 18 

of f=150. Overall, based on the range of variations in Error! Reference source not found., it can be 19 

concluded that the fatigue life of the samples has been sensitive much higher to the feed rate than to 20 

the cutting speed; and in both cases under a highly nonlinear regime. 21 

 22 

7. Concluding remarks 23 

 24 

Drilling is one of the most complex production processes in the assembly of composite parts, which 25 

if not optimized, can generate undesirable damages to the final structure. This study was aimed to use 26 

a robust, hybrid machine learning framework (namely GMDH)-type NN along with a UKF) to predict 27 

the fatigue life of open-hole unidirectional and woven GFRP laminates based on the associated 28 

drilling parameters; as well as quantifying the induced delamination around the drilled hole. The 29 

experimental results showed that the induced delamination is highly dependent on the drilling 30 

parameters themselves. The delamination area made a significant difference to the fatigue life of the 31 

specimens. The learning model, despite the embedded noise using the Monte Carlo Simulation, 32 

provided an accurate method (as high as 99.1%) in predicting the fatigue life of the samples, despite 33 

limited experimental data. In general, there are two main tasks in designing the GMDH-type NNs, 34 

namely the network structure/topology optimization and the weighting identification. Among 35 
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different approaches, here a multi-objective GA was used for the former task (while preventing 1 

overfitting), and the SVD was used for training the network parameters through a factorization of 2 

learning matrix. Using the UKF, the mean of the squared estimated error was minimized and the 3 

convergence rate was increased, despite the simulated noise in data. Potential extension of this area 4 

of research for industrial applications may include the consideration of the cutting tool wear (Feito et 5 

al., 2016), and possibly under a group multicriteria decision making (MCDM) environment (Osmond, 6 

et al, 2021). 7 

 8 

B

A

U=3000 rpm

U=6000 rpm

U=10000 rpm

 9 
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Fig. 9. Sensitivity of the output (number of cycles to fail) relative to A: the feed rate (f) input and B: the cutting speed, 1 
for woven composite samples. 2 

 3 
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