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Abstract: Optical coherence tomography (OCT) represents a non-invasive, high-resolution cross-
sectional imaging modality. Macular edema is the swelling of the macular region. Segmentation
of fluid or cyst regions in OCT images is essential, to provide useful information for clinicians and
prevent visual impairment. However, manual segmentation of fluid regions is a time-consuming and
subjective procedure. Traditional and off-the-shelf deep learning methods fail to extract the exact
location of the boundaries under complicated conditions, such as with high noise levels and blurred
edges. Therefore, developing a tailored automatic image segmentation method that exhibits good
numerical and visual performance is essential for clinical application. The dual-tree complex wavelet
transform (DTCWT) can extract rich information from different orientations of image boundaries
and extract details that improve OCT fluid semantic segmentation results in difficult conditions. This
paper presents a comparative study of using DTCWT subbands in the segmentation of fluids. To the
best of our knowledge, no previous studies have focused on the various combinations of wavelet
transforms and the role of each subband in OCT cyst segmentation. In this paper, we propose a
semantic segmentation composite architecture based on a novel U-net and information from DTCWT
subbands. We compare different combination schemes, to take advantage of hidden information in
the subbands, and demonstrate the performance of the methods under original and noise-added
conditions. Dice score, Jaccard index, and qualitative results are used to assess the performance of
the subbands. The combination of subbands yielded high Dice and Jaccard values, outperforming
the other methods, especially in the presence of a high level of noise.

Keywords: optical coherence tomography (OCT); segmentation; fluid accumulation; deep learning;
subband; dual-tree complex wavelet transform (DTCWT)

1. Introduction

Diabetes is one of the fastest-growing chronic diseases, affecting more than 422 million
people, especially in low- and middle-income countries [1]. Diabetic macular edema (DME)
is the leading cause of blindness in the middle-aged population [2], and age-related macular
degeneration (AMD), which mainly affects the elderly [3] and is an untreatable progressive
condition, yields fluid leakage [4], macular cysts [5], and swelling in the central part of
the retina. Optical coherence tomography (OCT) is well known in the diagnosis of DME
and AMD [4,6].
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OCT is a non-invasive imaging modality that extracts high-resolution cross-sectional
and volumetric images from biological tissue. This modality has been widely utilized in
diagnosing different retinal pathologies [7,8].

A macular cyst (fluid) refers to a sac-like pocket of membranous tissue [9] (Figure 1)
and is one of the leading causes of blindness in developed countries [10]. Depending on the
location of the cyst, three sub-categories are introduced: intra-retinal fluid (IRF), sub-retinal
fluid (SRF), and pigment epithelial detachment (PED) [10]. Determining each sub-class is
crucial and discussed clinically [9,10]. Due to the complex structure of the fluid, medical
professionals sometimes are unable to accurately locate the site of lesions. Therefore, this
leads to missed diagnoses and misdiagnoses and can lead to blindness [11].
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Semantic segmentation is a classical method for partitioning an image into regions
and assigning a class label to each pixel. Manual OCT image segmentation is often time-
consuming and depends on level of expertise [12]. However, automated fluid segmentation
from OCT images is a challenging task, due to the particular characteristics of the OCT
image and the diverse shapes and locations of the fluids [13,14]. Different approaches
have been suggested to tackle this problem. Traditional machine learning methods such
as support vector machine (SVM), decision tree [15], and deep learning [13,16] methods
have been explored. Deep learning approaches were recently discussed, focusing on input
characteristics and using time and frequency transformation [17,18].

Traditional techniques, however, need specific parameters to be defined and manual
feature extraction based on expertise. Consequently, the outcomes of these techniques are
unsatisfactory. Additionally, there are two distinct areas where deep learning techniques
might be enhanced, by including either a new architecture with results close to each other
or better network inputs. In addition, the fluid size is often too small in comparison to the
background, due to the high noise and artifacts in OCT images; the background region is
complex; and the fluid size is too small relative to the background region [19]. We need a
robust method that works perfectly for OCT image segmentation. Therefore, we present
dual-tree complex wavelet input transform for cyst segmentation in OCT mages, based on
a deep learning framework to resolve these problems and improve results [11,20].

1.1. Network Architecture Overview

In recent years, deep learning-based approaches, especially convolutional neural net-
works (CNN) [21,22], have become dominant and achieved outstanding results in different
machine vision tasks, such as segmentation, object detection, and classification [23].

One of the first deep learning methods for semantic segmentation based on CNN was
fully convolutional networks (FCNs) [24]. Unet [24], Attention Unet [25], and Deeplabv3+ [26]
are some examples of cutting-edge deep learning architectures for image segmentation.
FCN with a U-shaped model structure has become the gold standard in medical image
segmentation. The U-net architecture uses symmetric encoder and decoder paths with skip
connections to capture the context in the image and to enable precise localization using
transposed convolutions [24].
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In recent years, many deep learning techniques have been used to segment retinal
layers and lesions. The OPTIMA dataset [27] was utilized in several scenarios to generalize
the model, by retraining it. Furthermore, the RETOUCH challenge dataset has been used in
a variety of settings. Liu, D. et al. [28] used a fully convolutional network for OCT semantic
segmentation on the OPTIMA dataset. As a result, as proven by ReLayNet [29], excellent
segmentation of retinal layers improved the precision of segmentation of the OCT fluid.
The UCF group [30] suggested a deep CNN ResNet-based pixel categorization architecture.
The RMIT group [31] employed a modified U-net model, in conjunction with an adversarial
network. Similarly, Lee et al. [32] used the U-net model on a large dataset and obtained
excellent results in OCT image segmentation.

Gopinath et al. [33] applied a CNN-based architecture to segment cystoid macular
edemas, which included a post-processing phase that used clustering to refine previously
detected cystoid areas. Xiaoming Liu et al. [34] presented a novel loss function and attention
U-net for tiny cysts.

However, the deep learning-based solutions described above have certain drawbacks.
Some of them have to train several networks to identify and segment fluids, which increases
the training complexity. Furthermore, most approaches do not take into account the
independent and tiny fluid area in macular edema imaging, and the edges are not extracted
correctly in the results. Weak robustness to noise is another problem of these methods.

Certain approaches are applied in this paper that have not previously been evalu-
ated in OCT fluid segmentation. Moreover, in this paper, state-of-the-art architectures
are compared to each other. Although CNN-based methods have some drawbacks, in-
cluding the intrinsic locality of convolution operation, these approaches have excellent
representation ability. We applied different and other gold-standard study methods to
select the best model, as a base for testing different subbands. The variants of U-net [24],
such as Attention Unet [25], Unet+++ [35], R2 Unet [36], Trans-Unet [37], Swin Unet [38],
and [28,32,34] were implemented to obtain the best performance for analyzing the effect of
different input transform combinations. To address these issues, we used DTCWT’s various
subband combinations.

1.2. Input Image Transformations Overview

For better use of image features, we applied the selected model in the transform
domain and proposed using different DTCWT combinations to improve the performance
of the semantic segmentation method for clean and noisy OCT images.

This study focused on the various combinations of DTCWT and the roles of each
subband’s combination in OCT cyst semantic segmentation. In this article, for different
types of input subband model (i.e., concatenation, undecimation, separation, etc.), the
effects of different inputs were examined in terms of multiple performance metrics, such
as the Jaccard index and Dice scores. As far as we know, to date, no study has compared
these different transformation inputs in OCT images. Thus, we present a comprehensive
comparison study on applying different DTCWT subbands, to find the best input model in
cyst segmentation for noisy and regular conditions.

In recent decades, the wavelet transform has become an effective time-frequency
analysis tool that decomposes a signal at different timescales using a family of basic
functions [39]. DTCWT subbands better preserve edges in the image, while having a
low computational complexity compared with other X-lets, and have been utilized in
several promising applications [40]. Generally, wavelet transforms allow an improved
time-frequency analysis of data and have been successfully applied to deep learning
segmentation tasks [39]. X-lets are implemented in two techniques in the deep learning
framework: (1) First, they are used in the network architecture; for example, wavelet layers
were applied instead of the pooling layer. (2) Sparse wavelet representations of the image
are directly used as the input of the network.

Changing the network structure with the wavelet transform has been used to try to
remedy pooling problems. Conventional downsampling methods such as max-pooling
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and average pooling usually ignore the classic Nyquist sampling theorem [41]. Anti-
aliased CNNs [42] integrate the wavelet transform with the deep networks, increasing the
segmentation accuracy. Hongya Lu et al. used DTCWT-based CNN to segment human
thyroid applications. They tried to apply DTCWT in CNN layers, instead of the max-
pooling layer [40]. Similarly, Qiufu Li et al. proposed a modified U-net model accompanied
by a wavelet layer named Wavenet [41]. Andréde Souza Brito et al. combined max-pooling
and wavelet pooling for better performance results [43]. This team suggested a new multi-
pooling strategy mixing wavelet and traditional pooling. Alijamaat et al. tried to fuse
wavelet pooling and Unet to obtain a better performance in semantic segmentation to
extract different directions in brain MRI images [44,45]. Guiyi Yang et al. applied wavelet
transform in the Attention Unet for concrete crack segmentation [46].

In most of these studies, subbands were implemented in the network structure. How-
ever, some works tried to apply subbands as the input image. Yi Zhang et al. utilized a
marine raft segmentation network based on Attention U-net [47]. This team tried to use
contourlet subbands as the input. Haixia B utilized 3D discrete wavelet transform as the
input image for polarimetric SAR images [48].

Regarding the importance of the automated OCT fluid segmentation in previous works,
utilizing subband combinations as input to improve the performance of deep learning
methods in normal and noisy conditions can be very useful. In addition, analyzing various
subband combinations types in a deep learning framework is very beneficial. Accordingly,
this paper presents a DTCWT subband combination based on a deep learning framework,
to perform OCT fluid segmentation and improve accuracy.

In this article, we try to go beyond the state-of-the-art in various ways:

• To determine the best semantic segmentation structure for fluid regions and fluid seg-
mentation, we implemented different U-net architectures and other state-of-the-art archi-
tectures, to find the best structure to utilize semantic segmentation in OCT images.

• DTCWT subbands were used to extract some critical features in the image. In this way,
various subbands and different subband features could be merged to achieve a more
accurate segmentation performance in regular and noisy cases. The classical subbands
with different layers as input images were also described and tested as input images.

The rest of the paper is organized as follows. In Section 2, the proposed method is
described. Section 3 presents the experimental results and a discussion. Finally, in Section 4,
we conclude this work.

2. Materials and Method

Different mixtures of DTCWT subbands were utilized to analyze each combination’s
effect and improve the performance in the deep learning framework, with the best input
image combination selection for fluid segmentation.

Various deep learning architectures with different subband inputs and conditions were
evaluated in this research. These architectures were coded in the Python programming
language, and the deep learning models were trained and tested on a machine with 64 GB
of RAM, two parallel GEFORCE GTX 1080 Ti GPUs, and an i7 core 7th generation CPU.
Cuda version 10 and cuDNN version 7.5 were utilized on PCs. In this section, we first
introduce the dataset. We present the different input image combinations, and in the last
section, the theoretical basics of the proposed deep neural network method are discussed.

2.1. Dataset

Two disparate datasets were applied to analyze the effect of different DTCWT sub-
band combinations. The first dataset contained 194 B-scans (fluid and normal) from the
cirrus or Heidelberg OCT device. This dataset had previously been collected by our
team [49]. To improve our performance, we needed to expand our dataset. The Retinal
OCT Fluid Challenge (OPTIMA) [27] was combined with our dataset. This dataset contains
356 Cirrus OCT B-cans images with different resolutions, including both normal and fluid
images. We resized all images and ground truth masks from the different datasets to
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512 × 51 resolutions. Data are available using this link https://github.com/rezadarooei/
OCT_fluid_dataset (accessed on 1 December 2022).

Data augmentation techniques such as rotation, shift, and crop were used to enrich
our dataset and assess the agreement and repeatability of the proposed method network.
The datasets were randomly divided into training and test sets.

The robustness to noise is an essential factor for the evaluation of each method. We
incorporated multiple degrees of noise, since Heidelberg images have a low noise power.
Different levels of white noise were added to the database images, creating a new database,
including 70% of images selected to be noisy and 30% as the original version. This experiment
aimed at investigating the influence of noise in subbands. In addition, this dataset was split
randomly into 80% and 20% for training and testing. An example of the proposed OCT
dataset with a true mask for the normal and noisy cases is shown in Figure 1.

2.2. Input Image Transformations

Time-frequency transforms were implemented in digital signal and image processing
applications. The main advantage of time-frequency transforms is that their subbands
contain rich information.

In this paper, we focused on comparing the different combinations of DTCWT in a
deep learning framework. The DTCWT transform applies directional features and extracts
various features that highlight objects in an image.

In one dimension, the DTCWT employs two real discrete wavelet transformers: one
for the real part, and one for the complex part of the transform. The two real wavelet filter
banks use different sets of special low-pass and high-pass filters, so the overall transform
approximates an analytic transform. The 2D DTCWT requires four separable discrete
wavelet transforms in parallel and achieves a series of directional filters using a clever
combination of low-pass and high-pass filters in the x- and y-directions [50]. We employed
six directional band-pass subbands.

2.3. Input Image Transformations
2.3.1. Subband Architectures

The subband-based OCT image segmentation system can be seen as a combination of
multiple different subband architecture associated with a better output module. Figure 2
illustrates the different subband combinations for OCT image segmentation that will be
discussed in this section.

Two different types of subband combination were considered in these architectures:
context-based combinations, and edge-based combinations.

2.3.2. Context-Based Combination

Image subbands are employed as input data in this type of image subbands combina-
tion. This strategy uses a variety of strategies, including:

• concatenation or serialization;
• undecimation;
• separation.

The input image for the serial or concatenation mode of DTCWT consists of eight
channels of different subbands that are put alongside each other.

Undecimated DTCWT coefficients contain two different image channels with subbands
placed next to each other, with the main image size. The input image of the undecimated
DTCWT has two-channel images with a modified mask.

Another input shape is channel separation, which is applied to investigate the impact
of each of the eight subbands on OCT input images. All images are similar to the input
image size, and those are one-channel images.

https://github.com/rezadarooei/OCT_fluid_dataset
https://github.com/rezadarooei/OCT_fluid_dataset
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2.3.3. Edge-Based Combination

Unlike the context-based combination, the Edge-based combination highlights the
edges, to adapt the network for semantic segmentation tasks. This approach reconstructs
subband images using a soft thresholding method [50,51], to reduce noise. Soft thresholding
only applies to high-pass and band-pass subbands. This reconstruction approach takes into
account the following new sorts of input images:

• Combination 1 is a seven-channel input including reconstruction of all subbands as
channel 1 and channels 2 to 7, including subtraction of the first channel with the
reconstruction of low-frequency subbands and each high-frequency subband;

• Combination 2 is a six-channel input that comes from the reconstruction of low-
frequency subbands and each high-frequency subband;

• Combination 3 is a two-channel input consisting of the reconstruction of all subbands
in channel 1 and all high-frequency subbands in channel 2.

An edge-based method architecture is shown on the right side of Figure 2. This
architecture is also useful for noisy conditions, because it preserves edges. In this method,
wavelet transform decomposes data as averaging filters, with others that produce details.
If the details are small, they can be eliminated without significantly impacting the data set’s
key aspects. Thresholding is the process of setting all high-frequency subband coefficients
to less than a certain threshold to zero. These coefficients are employed in an inverse
wavelet transformation. We used DTCWT as a wavelet transform and implemented it in
the different subbands.

2.4. Deep Learning Architecture Methods

Unet is an architecture developed for biomedical image segmentation [52]. Different
variants of Unet and other architectures networks have been proposed to improve the
performance of classic methods. To discover the optimal baseline models, multiple Unet
algorithms and other cutting-edge networks were used on the proposed dataset of this
study. We compared Unet, Unet+++, R2 Unet, Trans-Unet, and Swin Unet, and another
three methods with optimal hyperparameters, and found that Trans-Unet produced the
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best results among the many methods; due to that, in this section, we will only cover the
Trans-Unet method. Figure 3 shows the structure proposed Trans-UNet network.
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2.4.1. Transformers

Transformers are novel structures that have been applied in various fields, such as
natural language processing (NLP) [53], image segmentation [37], and image classification.
This method tries to solve a problem through sequence-to-sequence tasks. This architecture
solely depends on the self-attention mechanism. Trans-Unet is a deep learning segmentation
algorithm that combines both transforms and Unet. The first part of the Trans-Unet is
similar to the Conventional Unet. It extracts high-level features using convolutional layers,
and it decodes in the last part; but using Trans-Unet, it applies a self-attention mechanism
in the encoder part. In a Trans-Unet image with a size of H ×W × C, H ×W is the spatial
resolution of the image and C is the number of input channels; and this input is divided
into embedding sequences [37].

2.4.2. Encoder

The proposed network is comprised of an encoder and decoders, as illustrated in
Figure 3. Basic convolutional filter layers are implemented in the encoder section, followed
by the ReLU activation map. Each input image is tokenized into x ∈ R H×W×D×C flattened
non-overlapping patches. The number of patches is calculated with the size of the patch
(P× P), with the length and sequence as input of the transformer.

L =
H ×W

P2 , (1)

To use the transformer layer to extract hidden features, vectorized image patches need
to reshape it into a latent D-dimensional embedding space. This process is done using
trainable linear projection. Patch spatial information is necessary for segmentation tasks
that are encoded using position-embedding data. A trainable positional embedding layer
is added to encode the patch spatial information. This layer holds the spatial information,
which the transformer encoder layer has to model perfectly.
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Equation (2) shows the initial value of the encoder, in which E is the patch embedding
projection, EPOSITION is the position embedding, and xi

p is the ith vectorized patch.

z0 =
[

x1
pE; x2

pE x1
pE ; . . . ; xN

p E
]
+ EPOSITION , (2)

Each transformer encoder layer in Trans-Unet consists of the multihead self-attention
(MSA) blocks and multi-layer perceptron (MLP) blocks. Equations (3) and (4) show how
the MSA and MLP blocks are calculated for L layers.

z′l = Multihead Sel f Attention(LN(zl−1)) + zl−1 = MSA(LN(zl−1)) + zl−1 (3)

zl = Multilayer Perceptron(LN(zl−1)) = z′l−1MLP (LN(zl−1)) + z′l−1 (4)

In these equations, LN (·) denotes the layer normalization operator. A residual
connection is used to bypass each block, to build an identity map, and a layer normalization
operator is placed in front of each block. The encoded image is finally obtained after
iterative calculations of (3) and (4).

2.4.3. Decoder

As shown in Figure 3, the decoder tries to receive the abstract representation, which is
similar to the Unet expanding part. The CNN decoder absorbs the transformer encoder’s
feature maps and restores them to their original size. The decoder block starts with
upsampling. An easy technique for segmentation is to simply upsample the encoded

feature representation zl ∈ R
H×W

p2 ×D
to full resolution, before predicting the dense output.

The feature maps from the preceding layer are then concatenated using conventional
convolution procedures. Up to this stage, it is similar to the Unet decoder. Here, to recover
the spatial order, the size of the encoded feature should first be reshaped from H×W

p2 to
H
p ×

W
p . Then, 1 × 1 convolution is applied to obtain a full-resolution image. The resulting

tensor from the last layer is concatenated with the extracted transformer feature maps to
enrich features. A one-dimensional predicted mask results from fusing the last layer result
in the last stage.

2.4.4. Loss Function

OCT images are unbalanced, which means the fluid ratio is much higher than the
non-fluid part in the gold standard mask [54]. One of the most difficult aspects of the OCT
fluid segmentation process is dealing with imbalanced data. One of the options to handle
imbalanced data is using the Dice score coefficient (DSC) as a loss function. Tversky loss is
offered as a replacement for the Dice coefficient, which equally considers false negatives
(FNs) and false positives (FPs) [55].

The Tversky index (TI) is an asymmetric similarity measure that combines the Dice
coefficient, and it is calculated as below:

TI =
TP

TP + αFN + βFP
, (5)

The TI has two additional parameters, α, β, where α + β = 1. In the case of α = β = 0.5,
it is reduced to the Dice coefficient.
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2.4.5. Metrics
Dice Coefficient

The Dice coefficient or f1-score represents the basic similarity between images’ pre-
dicted masks and grand truth masks. It calculates the overlap between the A and B images,
one as a predicted image and the other as a true mask. The formula is defined as follows:

dice =
2|A ∩ B|
|A|+ |B| , (6)

Jaccard Index

The Jaccard similarity index is similar to the Dice coefficient. It compares members
for two sets and calculates the similarities between sample sets. A and B are similar to the
Dice definition. One of them is the predicted image, and the other one is the true mask It is
defined as in the below formula:

J(A, B) =
|A ∩ B|
|A ∪ B| , (7)

3. Results

The proposed methods for fluid segmentation were combined with different subband
architectures to segment all pixels in each B-scan into IRF, SRF, PED, and tissue. In the
first step, different Unet model techniques and other cutting-edge methods were applied
for OCT semantic segmentation, to select the Unet base model for subband comparisons.
Various subbands with different input channels and types were investigated in this study.
Dice coefficients and the Jaccard metrics for semantic segmentation tasks were employed
as assessment metrics. Furthermore, we analyzed the visualization results of the different
subbands. For a fair comparison, we implemented a fixed 150 epochs for Unet selection
and subband compressions, and this number was selected based on the available results.

A brief description of each approach’s results is given below:

• Different types of cutting-edge semantic segmentation network, such as Unet, Atten-
tion Unet, Unet+++, R2 Unet, Trans-Unet, and Swin Unet with best-fit parameters,
and three other completely different models for this application were implemented;

• The DTCWT extracted subbands with various architectures were applied to analyze
the best subband combinations;

• Each subband was tested separately, to find the best results among all subband images.

We also investigated subbands in a noisy environment using different subband for-
mations with denoised reconstruction, to perform fluid area segmentation in the noisy
condition and to assess the efficacy of the suggested approaches, which will be discussed
later in the experiment section.

3.1. Unet Selection

For the localization of fluid in DME and AMD patients, we examined the perfor-
mance of multiple state-of-the-art Unets for fluid segmentation techniques. In addition to
networks, three alternative network models with superior performance were employed
for comparison [28,32,34]. First, we undertook a quantitative study of the segmentation
findings on images from two datasets (OPTIMA and our dataset). The segmentation results
are given in Figure 4. We adopted the K-fold cross-validation (K = 5) procedure, in which
we employed four sets (4400 images with an augmentation process) of five images as the
training set and one set (1100 images) as the test set.
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Figure 4. The Dice, Jaccard, and loss curves were used to compare the different models. All of the
models performed well in the metrics comparison. The best Dice and Jaccard results were obtained
by Trans-Unet models, with 90.7 and 82.1 validation, while Swin Unet produced the worst results.

The quantitative results of the segmentation after applying hyperparameter optimiza-
tion of the proposed networks on images from nine networks are shown in Figure 5. While
Table 1 illustrates the results of different models using Jaccard and Dice outcomes.
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Figure 5. Comparison of segmentation results of the different Unet experiments on the B-Scan.
(a) the original image. (b) True Mask. (c) Simple Unet. (d) Attention Unet. (e) Trans-Unet. (f) R2 Unet.
(g) Unet+++. (h) Swin Unet. (i–k) Different state of the arts network structures [28,32,34]. Segmenta-
tions contain a white boundary that compares the extracted result with the true mask.
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Table 1. Five-fold cross-validation score of all Unet models after applying hyperparameter optimization.

Unet Dice (Validation) Jaccard (Validation)
Simple Unet 88.83 (79.41) 76.25 (62.28)
Attention Unet 89.40 (81.59) 73.20 (61.24)
Trans-Unet 90.73 (82.59) 82.08 (72.78)
R2-Unet 89.39 (81.31) 81.34 (70.54)
Unet+++ 82.05 (70.91) 62.94 (31.55)
Swin Unet 84.83 (73.21) 64.73 (43.18)
Liu et al. [28] 76.72 (72.54) 59.32 (38.82)
Lee et al. [32] 73.37 (73.84) 55.62 (35.55)
Liu et al. [34] 88.14 (82.09) 81.47 (70.64)

The first and second columns in Figure 4 show the Dice and Jaccard outcomes of
the various networks. The loss function results are in the third column. As seen in the
diagram, the trans-Unet technique had the best performance compared to the other Unets
and cutting-edge networks. The Trans-Unet with the parameters in Table 2 had a superior
validation outcome to the other networks with the same filter sizes.

Table 2. Trans-Unet network parameters.

Parameter Value
Filter number 5
Transformer blocks 2
Convolutional layers per downsampling level 2
Convolutional layers (after concatenation) per upsampling level 2
Attention heads 2
MLP nodes per vision transformer 384
Embedding dimensions 96

Figure 5 shows the qualitative results of the networks with fluid, the ground-truth
annotations (second column), and the segmentation results of each network in further
cells. As seen in the figure, the Trans-Unet approach had the best performance for both
closed and large fluid areas. Due to these results, we chose Trans-Unet with the optimum
parameters for the basic network for analyzing the subband inputs.

3.2. Input Image Transformations

As previously stated, this study considered two distinct subband combinations:
context-based, and edge-based. In the concatenating wavelet, subbands of images are
combinations that put images alongside each other. This structure examines the influence
of subbands when they are concatenated with each other. In DTCWT, all subbands are
employed in this type of combination.

Channel separation results are another type of context-based solution to the fluid
segmentation problem. The task of separating an image into its different subband contents
is beneficial for analyzing the effect of each subband. We chose the best separation results
between the various subband combinations. In Figure 6, a boxplot of the sensitivity and
false positive ratio (FPR) of each subband is shown, using this formula:

Sen (%) =
TP
P
× 100, FPR (%) =

FP
N
× 100, (8)

where TP is similar to Equation (5) (true positive), and FP is (false positive) is the number of
pixels that are correctly and incorrectly predicted as tumor pixels in the image, respectively.
In addition, P is the number of actual tumor pixels in the image, and N is the total
number of non-tumor pixels. The L1 and L2 subbands performed better than the other
subbands. We chose the L1 subband because it had a high sensitivity and less FPR than the
other methods.
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Undecimated wavelet transform combination methods demonstrate the importance of
subbands in a single image and are also a novel formation that can be applied and fused.
In an undecimated combination, we need different loss functions because of the changing
masks. Therefore, our problem has slightly changed. Previously, we had unbalanced tasks.
Our problem has changed to a more balanced condition, by changing the masks. Thus, the
loss function was changed, to collect the best results for this type. The focal Tversky loss
function with the following formula was applied for this reason [56]:

FTL = (1− TI)γ, (9)

In Figure 7, the first column is the Dice results, the second column is the Jaccard results,
and the third column is the loss function results, based on a fixed 150 epochs. Figure 8
shows the concatenation, and the best separation subband produced a better result than a
simple image. In these results, we examined different methods alongside each other. These
results were context-based and had a good performance when comparing simple images.
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the edge-based method combinations.

Another type of method compared in this figure is the edge-based technique. We tried
to highlight edges in three novel ways with edge-based techniques.

There are a variety of denoising approaches that can be employed in the reconstruction
of OCT images. For noise reduction in OCT images, a soft threshold-based denoising
methodology is used [56]. The extracted combination subbands for DTCWT that were
explained in the material and method section are as follows:

• two-channel;
• six-channel;
• seven-channel.

A comparison of edge-based techniques with simple and context-based images is
given in Figure 7. As can be seen, the edge-based methods outperformed the others,
particularly in terms of their quicker convergence. The convergence speed and outcomes of
the two-channel edge-based approach were satisfactory. The rationale for the improved
performance of the edge-based approaches over the simple images is that edge-based
combination edges are highlighted, allowing the network to execute semantic segmentation
more easily.

Table 3 displays the quantitative results for Dice and Jaccard for the various com-
binations. The excellent impact of the DTCWT subbands in comparison to the simple
image is exhibited in this table. These combinations allowed improvement of the semantic
segmentation outcomes. Edge-based combinations had better results than context-based
ones. The six-channel edge-based combination had better results than the others. The
quantitative results of the different methods are demonstrated in Figure 8, illustrating
the excellent effect of the subbands used in DTCWT. The qualitative results proved that
subbands could extract better boundaries for a sample image. The sensitivity and FPR
were calculated for each subband. According to Table 3 and Figure 8, the two-channel and
six-channel edge-based techniques had a better performance than the others.



Photonics 2023, 10, 11 14 of 20

Table 3. Comparison of the different individual DTCWT subbands in the proposed dataset.

Method Combination Dice (Validation) Jaccard (Validation)
Simple image 91.86 (83.11) 85.51 (72.11)
Concatenation 92.71 (84.90) 86.47 (74.15)
Undecimated 83.06 (69.25) 75.21 (61.23)Context-based

Best Separation (L1) 92.05 (84.79) 86.06 (73.88)

Edge-based

two-channel DTCWT 94.52 (84.23) 89.64 (73.67)
six-channel DTCWT 94.79 (85.65) 90.13 (75.17)
seven-channel
DTCWT 91.45 (79.47) 84.37 (66.44)

The results for varying numbers of input transforms are shown in Figure 9. This figure
allows a numeric analysis based on the qualitative results. As can be seen, edge-based six-
and two-channel techniques had a high sensitivity and lower amount of FPR.
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3.3. Results of Noise Adding

Although our dataset contained Heidelberg images with a low noise level, some of the
OCT modalities contain a high noise level, and our method needed to be tested on noisy
conditions. Therefore, we added Gaussian noise and denoised images and subbands to
evaluate the subbands’ behavior in a noisy environment.

Gaussian noise with different standard deviations was added to the image in the
pixel domain, to create a new dataset with which to test the robustness of the proposed
method. A variety of denoising approaches can be employed in OCT images. For noise
reduction in OCT images, we used the soft thresholding denoising methodology in the
DTCWT domain [57]. Two standard deviations of 80 and 160 were added to images
in the noisy condition, to test the robustness of using the different inputs. The main
goal of this experiment was to evaluate the OCT fluid segmentation results in the noise-
added conditions; in this regard, we implemented edge-based combinations. Edge-based
approaches attempt to emphasize edges and perform well in noisy environments.

Figures 10 and 11 show the Dice and Jaccard of the train and validation results. This
experiment was similar to the other parts we compared with Dice, Jaccard, and loss graphs.
The edge-based methods had a significant result, especially in the validation index. In
addition, as can be deduced from Figures 10 and 11, the six-channel results had a better
performance in both noise-added conditions.
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Figure 11. Effect of added noised on the segmentation Dice and Jaccard, high level of noise (σ = 160).
The results were obtained using edge-based methods.

Table 4 reports the values of the different methods: the subband combination results
were similar and they performed significantly better than a simple image. The six-channel
and two-channel results were comparable and exceeded the others.

Table 4. Summarized performance with different levels of noise added after denoising and reconstruction.

Noise Method Dice (Validation) Jaccard (Validation)
Simple image 89.17 (68.56) 81.19 (52.83)
Two-channel DTCWT 90.72 (73.30) 83.09 (58.49)
Six-channel DTCWT 91.01 (76.93) 83.53 (62.42)80

Seven-channel DTCWT 90.41 (70.61) 82.47 (60.36)

160

Simple image 88.25 (62.25) 78.88 (46.63)
Two-channel DTCWT 88.96 (65.03) 80.20 (50.59)
Six-channel DTCWT 89.12 (67.05) 80.28 (51.24)
Seven-channel DTCWT 88.24 (65.54) 70.06 (49.55)
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The sensitivity and FPR performance the of edge-based methods in noised added
conditions is presented in Figure 12. The six-channel method exhibited a good sensitivity
and a decreased FPR with high noise levels, as illustrated in Figure 12. The two-channel
findings were quite similar to the six-channel results. These graphs demonstrate that the
edge-based methods provided a superior visualization over the simple images.
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Finally, Figure 13 illustrates the qualitative results. The subband combinations could
persevere the edges in noisy image segmentation, and the subband combination images
extracted the boundaries and fluid sections better than the simple images.
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Figure 13. Sample image for different noise-added conditions (noise 80 and 160). The first row is with
a noise level of 80, and the second row is the result of the 160 noise level. (a) σ = 80. (b) 2 Ch-Comb.
Sen = 44%, FPR = 0.15%. (c) 6 Ch-Comb. Sen = 73%, FPR = 0.25%. (d) 7 Ch-Comb. Sen = 48%,
FPR = 0.09%. (e) Simple image. Sen = 31%, FPR = 0.04%. (f) σ = 160. (g) 2 Ch-Comb. Sen = 33%,
FPR = 0.12%. (h) 6 Ch-Comb. Sen = 47%, FPR = 0.19%. (i) 7 Ch-Comb. Sen = 38%, FPR = 0.19%.
(j) Simple image. Sen = 3%, FPR = 0%.

4. Discussion

We suggested subband-based DTCWT fluid segmentation approaches based on deep
learning transformers. We used numerous measures and strategies to evaluate the perfor-
mance of the proposed inputs and subbands. The optimum network for OCT segmentation
was chosen in this procedure. As illustrated in Figure 2, context-based and edge-based
methods were suggested for the input transform. The DTCWT subband combination
approach produced the best comparative results when selecting the best combination. Our
technique and some of the diverse inputs resulted in better Dice and Jaccard results in the
quantitative analysis and a faster loss reduction. The visualization results analysis revealed
considerable improvements for the various subband formations. In addition, the FPR and
sensitivity of the various methods were calculated, to compare the performance of the
methods in the visualization. The performance of pairs that emphasized edges (edge-based
methods) outperformed the context-based techniques. The six-channel and two-channel
edge-based methods produced the best input for OCT cyst segmentation.

The findings in the different figures reveal that applying subbands in the different
methods was more suitable for closely segmenting the fluid regions. This allowed sep-
arating the independent regions more precisely. Furthermore, it was demonstrated that
employing subbands under noise-added situations was effective. We conducted tests to
compare the influence of images under noise-added conditions with various noise intensity
parameters. It was discovered that the applied subband outperformed the simple image
for edge-based methods. The robustness of the suggested strategy was demonstrated by
the findings shown in Figures 11 and 12. We also investigated the performance of each
subband and analyzed the performance of each subband for low-pass and high-pass filters.
The results indicated that each subband could add more information to the main image.

5. Conclusions and Future Work

Segmenting fluid areas in retinal OCT images is very important, since it may help the
clinician detect macular edema and conduct treatment procedures promptly. This paper
proposed an automatic fluid segmentation method in retinal OCT images using DTCWT
subband combinations based on deep learning. The study’s main purpose was to examine
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the performance of DTCWT in semantic segmentation of normal and noisy images of OCT
corrupted by different noise levels.

Network and different input approaches were considered. A novel U-net algorithm
for OCT segmentation was applied as the base of the network. To exploit a U-net based on
transformers, different wavelet-based subband combinations were constructed.

We introduced different subband formations, context-based and Edge-based, as the
input transforms to properly segment fluid regions in OCT images. We also analyzed each
combination, to find the best subbands that could process the main images for segmentation.
The proposed methods showed very promising segmentation performances, and which
were competitive with the state-of-the-art alternatives.

The results showed that the DTCWT subband combinations in the proposed U-net
yielded better semantic segmentation results for both datasets. The enhanced performance
was due to the subbands’ capacity to capture the directional properties of linear and
nonlinear discontinuities. The six-channel and two-channel edge-based techniques had the
best performance among the other input transform shapes.

A variety of future tasks must be completed. For instance, one planned future work
includes fine-tuning the parameters and incorporating a loss function and a model hyper-
parameter. Future work will include using other X-lets, selecting the optimal combination
among them, and introducing a unique loss function, and this will be published shortly.
This loss function could be used to analyze subbands as a network loss function, and also
a novel U-net architecture based on subbands will be proposed. Another idea we will
investigate in the future is applying different X-let subbands, using a mixture of experts.
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