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1 Introduction

In recent years, there has been considerable progress in understanding the low-energy
expansion of string scattering amplitudes. Of particular importance to both the physics
and mathematics communities is the study of the low-energy expansion for closed-string
genus one amplitudes, i.e. for strings whose world-sheet is a two-dimensional torus. This
problem led to the introduction of an infinite class of non-holomorphic objects: the so-
called modular graph forms (MGFs) [1–5]. These functions depend on a parameter τ in
the Poincaré upper half-plane associated with the moduli space of the world-sheet torus on
which the modular group SL(2,Z) acts in the standard fashion. MGFs are characterised by
having good transformation properties under the modular group, and they are constructed
from world-sheet Feynman-type diagrams. However, they are not necessarily holomorphic
functions of τ , since they include the real-analytic modular graph functions as well as
objects that have non-vanishing holomorphic or anti-holomorphic modular weight with
respect to the modular group.

Amongst the many remarkable properties of these objects we have: the appearance of
multiple zeta values in their expansion around the cusp τ → i∞, with τ the modular param-
eter of the torus, and an intricate network of algebraic and differential relations. The study
of these properties and their implications has received attention in both the physics [1–34]
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and mathematics literature [35–44]. A review and a Mathematica implementation can be
found in [45, 46], see also [47] for a recent comprehensive review.

The study of these modular objects has been tackled from multiple directions. In
particular, one can try to directly evaluate the world-sheet integrals in closed-string genus-
one amplitudes thus obtaining lattice-sum representations of MGFs [1–4, 18]. Although
it is possible to extract the asymptotic expansion at the cusp τ → i∞ from some of
these lattice-sum representations [39, 48], this is nonetheless a hard task suggesting that a
different approach might in general be necessary.

Crucially, the differential structure [5] satisfied by the MGFs suggests a different ap-
proach. The intricate differential relations amongst the various MGFs can be made man-
ifest by representing them via iterated integrals over holomorphic Eisenstein series Gk(τ)
and their complex conjugates [4, 15, 27]. While the lattice-sum representations mentioned
above manifest the modular properties of these objects and lead to the interpretation of
MGFs as discretised Feynman integrals for a scalar field on the torus, we have in turn that
the iterated-Eisenstein-integral representations expose the full structure of algebraic and
differential relations of MGFs, making their Fourier-expansion, and hence the asymptotic
expansion at the cusp τ → i∞, amenable to study.

Recently, a combined approach was introduced by presenting Poincaré-series repre-
sentations of MGFs restricted to the modular-invariant case, i.e. modular graph functions
and modular-invariant combinations of forms [33, 34]. Poincaré series are an extremely
convenient way of rewriting a modular-invariant function as a sum over images under the
modular group SL(2,Z) of a simpler function that is usually called its (Poincaré) seed
function.

For illustration we can consider MGFs associated with one-loop graphs with k ≥ 2 links.
These modular-invariant objects are known to be given by non-holomorphic Eisenstein
series Ek(τ), which can be expressed as very simple iterated integrals of a single holomorphic
Eisenstein series, hence they all are said to be of depth one. From the Poincaré-series point
of view, it is known that the non-holomorphic Eisenstein series Ek(τ) can be written as
a sum over SL(2,Z) images of the simple monomial seed (Im τ)k which can be assigned
depth zero, see e.g. [49, 50]. Using a Poincaré-series representation has reduced the depth
(hence in general the complexity) of the functions at play.

In [33, 34], the dictionary between lattice sums and iterated Eisenstein integrals was
advanced to the depth-two case, i.e. to iterated integrals of two holomorphic Eisenstein
series. We should stress that the notion of depth for an MGF is in general different from
the loop order of the graph defining it. While, as we just remarked, MGFs corresponding
to one-loop Feynman graphs can indeed be represented by iterated Eisenstein integrals of
depth one, the same is not generically true from two loops onwards. In particular, two-
loop MGFs do not exhaust all depth-two modular invariant objects and there are infinitely
many two-loop MGFs that can be reduced to one-loop ones and odd zeta values [2, 3]. The
notion of depth and loop order do not always agree, but depth is bounded from above by
the loop order of the world-sheet diagram.

Among the real MGFs of depth two, the most prominent instances are the two-loop
lattice sums Ca,b,c(τ) [3] built from integrals over w=a+b+c closed-string Green functions.
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Their asymptotic expansion at the cusp τ → i∞ can be written in terms of a Laurent
polynomial, i.e. a Laurent series with only finitely many non-zero coefficients, in y = π Im τ

with rational coefficients multiplying at most a bilinear in odd zeta values [39], as well as
carrying uniform transcendentality w in a sense that we will make precise later on.

To make the story clearer, if we perform a Fourier-expansion in Re τ , we have that
the asymptotic expansion of the Fourier zero-mode at the cusp τ → i∞ contains the
aforementioned Laurent polynomial, plus an infinite tower of exponentially suppressed
corrections of the form (qq̄)n = exp(−4πn Im τ) with q = exp(2πiτ) and n a strictly
positive integer. Although these terms are negligible at the cusp, they are of fundamental
importance in understanding the τ → 0 limit since they produce singular contributions
in this regime which will cancel some of the singular terms coming from the Laurent
polynomial [51].

In this paper we will combine the Poincaré-series representations introduced in [33,
34] with resurgent analysis, see [52] for a recent introduction, along the lines of previous
works [20, 53]. Firstly we will suitably deform the Poincaré seed relevant for all depth-two
MGFs and consider their modified behaviours at the cusp. Contrary to the undeformed
case, where the asymptotic expansion terminates after finitely many terms, we will see that
the deformed seed gives rise to an asymptotic, factorially divergent perturbative tail. Using
resurgence theory we will produce a non-perturbative resummation of these asymptotic
series which, upon sending the deformation parameter to zero, will reproduce both the
terminating perturbative Laurent polynomial at the cusp, as well as the correct tower of
non-perturbative, exponentially suppressed (qq̄)-terms, in a nice example of what is usually
called Cheshire Cat resurgence [54–57]. The general functional form of the exponentially
suppressed terms for the Ca,b,c has been determined in [39] based on the structure of the
Laplace equation satisfied by them, see section 2.1 below.

Furthermore, since τ → i∞ and τ → 0 are related by the usual SL(2,Z) S-duality
transformation τ → −1/τ , we have that modularity strongly intertwines the small-y be-
haviour of the infinite tower of (qq̄)n terms, no longer exponentially suppressed in this
regime, with the Laurent polynomial part of the MGFs. If resurgent analysis allows us to
retrieve the exponentially suppressed (qq̄)n corrections from perturbative data at the cusp
τ → i∞, modularity will make it possible to extract the Laurent polynomial from the (qq̄)n
sector at the origin τ → 0.

This paper is structured as followed. We review some of the basic definitions for MGFs
and Poincaré series in section 2. This also includes the definition of a certain space of depth-
two functions that transcends the space of MGFs and is easier to analyse. In section 3,
we then apply methods from resurgent analysis to MGFs and derive the exponentially
suppressed terms (for τ → i∞) in the Fourier zero-modes for all depth-two MGFs. We
present several examples and also combine the analysis with modular invariance to study
the analogue of the strong coupling behaviour τ → 0 in section 4. In section 5, we offer
some concluding remarks. Two appendices contain additional technical details.
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2 Review

In this section we recall some fundamental features of MGFs such as their Poincaré series,
Fourier series decomposition and expansion around the cusp τ → i∞. We also review some
of the necessary results of [33, 34] and explain how they generalise the space of MGFs.

2.1 Modular graph functions

String perturbation theory is naturally organised into different topological sectors. For
closed-string amplitudes at genus one the world-sheet is a torus T = C/(Z + τZ) with
complex modular parameter lying in the upper complex half-plane τ ∈ H = {τ ∈ C : Im τ >

0}. In order to calculate the amplitude of a scattering process, one introduces punctures
zj ∈ T and integrates them over all inequivalent configurations. Hence, in considerations
of the kinematic part of the amplitude, one encounters expressions like [1, 2]:

Mn(sij , τ) =
( n∏
j=2

∫
T

d2zj
Im τ

)
exp

( n∑
1≤i<j

sijG(zi−zj , τ)
)
, (2.1)

where translational invariance can be used to set z1 to an arbitrary value. In this expression
sij ∈ C are dimensionless Mandelstam invariants, which we take to be independent complex
numbers, and G(z, τ) is the Green function on a torus given by

G(z, τ) = Im τ

π

∑
(m,n) 6=(0,0)

e2πi(mv−nu)

|mτ+n|2 , (2.2)

where z = uτ + v with u, v ∈ [0, 1). This sum is only conditionally convergent and is
understood using the Eisenstein summation convention [58].

To proceed, we remind the reader that there is a natural action of SL(2,Z) — the
modular group1 — on τ ∈ H, which is given by

γ =
(
a b

c d

)
∈ SL(2,Z) , γ · τ = aτ + b

cτ + d
. (2.3)

The string amplitude is required to be invariant under modular transformations. This is
clear from (2.1), since both the integrand as well as the measure are invariant under trans-
formation (2.3). It will also be useful to consider the Borel subgroup B(Z) =

{(±1 n
0 ±1

)
:

n ∈ Z
}
, which corresponds to translations τ → τ + n.

When one Taylor expands the exponential in (2.1) in the sij , one is naturally led to a
graphical scheme for organising the terms that emerge — these objects are called modular
graph functions (MGFs) and were introduced in [4]. In order to construct a graph out of
the terms in the series, we associate a vertex with each of the punctures z1, z2, . . . , zn and
an edge connecting vertices i and j with each occurrence of the propagator G(zi − zj , τ).
In turn, every vacuum graph produced from a scalar field theory defined on a torus will
also be associated to a modular graph function. We define the weight of an MGF as the

1Only PSL(2,Z) = SL(2,Z)/{±1} acts faithfully on the upper half-plane, but this distinction plays no
role for us.
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Figure 1. The graphs corresponding to the one-loop and two-loop modular graph functions Ew

and Ca,b,c where a link with a boxed number w indicates w concatenated Green functions.

number of edges in the corresponding graph (which is also the number of Green functions
in the chosen monomial). It is important to note that weight as defined here is distinct
from modular weight, which is vanishing for all MGFs.

In order to understand the structure of MGFs a little better, it is useful to parametrise
the punctures as zj = ujτ + vj with uj , vj ∈ [0, 1) and d2zj

Im τ = duj dvj . In this case we
use the lattice-sum representation of the Green function (2.2) to observe that each integral
over a puncture simply enforces momentum conservation at the associated vertex. Since
the torus is a compact space, the momenta are discrete and form a two-dimensional lattice
(with origin removed)

p = mτ + n ∈ Λ′ , Λ′ = (Z + τZ) \ {0}. (2.4)

We are thus guaranteed that every one-particle reducible graph vanishes, since the momen-
tum flowing through the reducible edge must be 0. As a result, the simplest non-trivial
MGFs appear at one loop and are non-holomorphic Eisenstein series of weight w > 1

Ew(τ) =
( Im τ

π

)w ∑
p∈Λ′

1
|p|2w

. (2.5)

At two loops, every non-factorising MGF can be expressed as a function Ca,b,c of weight
w = a+b+c:

Ca,b,c(τ) =
( Im τ

π

)a+b+c ∑
p1,p2,p3∈Λ′

δ(p1+p2+p3)
|p1|2a|p2|2b|p3|2c

. (2.6)

The graphs corresponding to the MGFs Ew and Ca,b,c are depicted in figure 1. There are
obvious ways how one may construct MGFs at higher loop order [4] or even generalise to
objects that carry non-zero modular weight, so called modular graph forms [5], but in this
paper we only analyse the two-loop, modular-invariant case.

MGFs have a variety of interesting connections to number theory. For example, when
computing the asymptotic expansion near the cusp τ → i∞ of MGFs it is natural to
encounter multiple zeta values (MZVs), i.e. generalisations of the Riemann zeta function
defined by iterated (conical) sums. The weight of an MGF can be identified with the
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transcendental weight of the corresponding MZV2 [59] appearing in the expansion at the
cusp, however in general the loop order of an MGF is only an upper bound on the maximal
depth of its possible MZVs.

Furthermore, one finds that there exists an intricate web of connections between dif-
ferent MGFs and Q-linear combinations of multiple zeta values. Some easy examples were
first discussed in [3]:

C1,1,1(τ) = E3(τ) + ζ3 , C2,2,1(τ) = 2
5E5(τ) + ζ5

30 . (2.7)

Observe that both sides of equations (2.7) are consistent with the defined weight assign-
ments if furthermore the Riemann zeta3 ζw is assigned weight w. This is a generic feature:
algebraic relations between MGFs respect the weight grading but mix different loop orders
(i.e. the loop order is only a filtration). In section 2.2 we introduce the notion of depth as
a more useful alternative to loop order, at least for classifying algebraic relations.

Additionally to the algebraic relations discussed before, there are also differential equa-
tions relating different MGFs. Since modular functions are naturally defined in the hyper-
bolic plane, the equations they satisfy are with respect to the SL(2,R) invariant Laplacian
∆ = 4(Im τ)2∂τ∂τ̄ . At two loops it can be shown [3] that

∆Ca,b,c = (a(a− 1) + b(b− 1) + c(c− 1))Ca,b,c (2.8)
+ ab(Ca−1,b+1,c + Ca+1,b−1,c + Ca+1,b+1,c−2 − 2Ca,b+1,c−1 − 2Ca+1,b,c−1)
+ bc(Ca,b−1,c+1 + Ca,b+1,c−1 + Ca−2,b+1,c+1 − 2Ca−1,b,c+1 − 2Ca−1,b+1,c)
+ ca(Ca+1,b,c−1 + Ca−1,b,c+1 + Ca+1,b−2,c+1 − 2Ca+1,b−1,c − 2Ca,b−1,c+1),

where one of the indices on the right hand side might get reduced to 0 or −1, in which case
the two-loop function is replaced by

Cw−`,`,0 = E`Ew−` − Ew , Cw+1−`,`,−1 = E`Ew−` + E`−1Ew−`+1. (2.9)

Formally in this procedure the divergent non-holomorphic Eisenstein series E1 can appear,
but it always cancels out of the final answer. It was shown in [3] that the system of linear
equations (2.8) can be diagonalised by the introduction of eigenfunctions Cw;m;p, which are
linear combinations of different Ca,b,c with a fixed weight w = a+b+c. These eigenfunctions
then satisfy a significantly more manageable differential equation

(∆− (w − 2m)(w − 2m− 1))Cw;m;p = t(0)
w;m;pEw +

[w/2]∑
`=2

t(`)w;m;pE`Ew−`, (2.10)

where t(0)
w;m;p and t

(`)
w;m;p are constants, m is a label for the eigenvalue of the differential

equation, and p labels the degeneracy of the fixed eigenspace. The explicit coefficients
connecting the two bases Ca,b,c and Cw;m;p can be found in [60].

2Although not of crucial importance for this work, MZVs are defined by the conical sum ζn1,n2,...,nr =∑
0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr
r with ni ∈ N and nr ≥ 2. The transcendental weight of a MZV is given

by w =
∑

1≤i≤r ni while its depth by r.
3In this paper, we shall write the Riemann zeta function either as ζ(s) or as ζs depending respectively

on whether s is generic or fixed to some specific integer value.
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While the representation in terms of lattice sums is convenient for a graphical interpre-
tation and establishing connections to MZVs, the sums are hard to manipulate and many
identities are hidden. Moreover, we will be interested in finding the asymptotic behaviour
of MGFs as τ → i∞, which is a task of considerable difficulty from the perspective of
lattice sums. Instead it is much more convenient to use the differential equations satisfied
by MGFs such as (2.8) and (2.10) and solve them using a Poincaré series ansatz. We shall
discuss said method in the following sections.

Due to the SL(2,Z) invariance all modular graph functions have period one in the real
part of τ , hence they may be Fourier expanded in Re τ . This expansion contains a lot of
information about the behaviour of the function as the modular parameter approaches the
cusp τ → i∞. To proceed, we introduce the following variables

y = π Im τ , q = e2πiτ , q̄ = e−2πiτ̄ , (2.11)

in which the non-holomorphic Eisenstein series (2.5) for positive integer weight w > 1 can
be written as the Fourier series

Ew(τ) = (−1)w−1 B2w
(2w)! (4y)w + 4(2w−3)!ζ2w−1

(w−2)!(w−1)! (4y)1−w (2.12)

+ 2
Γ(w)

∞∑
n=1

nw−1σ1−2w(n)
[
w−1∑
a=0

(4ny)−a Γ(w+a)
a! Γ(w−a)

]
(qn + q̄n),

where σs(n) = ∑
d|n d

s is a divisor sum and we have introduced the Bernoulli numbers B2w
that are rational numbers related to even Riemann zeta values by

2ζ2w = (−1)w+1 (2π)2w

(2w)! B2w , w = 1, 2, 3, . . . . (2.13)

The general Fourier expansion for a modular graph function is quite similar to equa-
tion (2.12) — one can show that MGFs grow at most polynomially at the cusp, and the
expansion must be of the form ∑∞

M,N=0 LM,N (y)qM q̄N with LM,N (y) a Laurent polyno-
mial [4]. The dominant behaviour at the cusp clearly comes from L0,0. Some examples at
two-loop level are as follows [2, 3]

C2,1,1(τ) = 2y4

14175 + ζ3y

45 + 5ζ5
12y −

ζ2
3

4y2 + 9ζ7
16y3 +O(q, q̄) , (2.14)

C2,2,2(τ) = 38y6

91216125 + ζ7
24y −

7ζ9
16y3 + 15ζ2

5
16y4 −

81ζ11
128y5 +O(q, q̄) .

Notice the recurrent appearance of odd zeta values in the expansion, as well as uniform
transcendental weight w = a+ b+ c for each term once an assignment of weight 1 is given
to y = π Im τ . Unlike the case of Eisenstein series, the Fourier zero-mode gets additional,
exponentially suppressed contributions from the terms LN,N (qq̄)N with N > 0.

The focus of the present work is precisely to reconstruct the (qq̄)N non-perturbative
terms to the Fourier zero-mode from the purely perturbative Laurent polynomials, or
rather a suitable deformation thereof, using resurgent analysis following similar methods

– 7 –
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to the ones developed in [20, 53]. The structure of the differential equation (2.10) fixes the
functional form of these exponentially suppressed terms (see [39, Thm. 1.3]) in terms of
incomplete Gamma functions and Laurent polynomials. We shall not rely on these results
and arrive at fully explicit expression from resurgent analysis.

2.2 Depth-two Laplace systems

One of the key results of [33, 34] was to show that all two-loop modular invariant graph
functions can be written as rational linear combinations of real and imaginary modular
invariant functions denoted by F+(s)

m,k and F−(s)
m,k , respectively, and labelled by positive inte-

gers s,m, k where the ± signifies that they are even (odd) under the involution τ → −τ̄ of
the upper half-plane.

These modular invariant functions F±(s)
m,k do determine all MGFs of depth two, possibly

by adding single Eisenstein series or single odd zeta values, but actually provide a wider
class of modular invariant objects compared to MGFs. In particular, not all F±(s)

m,k can be
expressed as lattice sums, hence they necessarily transcend the realm of MGFs, however
they are still expressible in terms of iterated integrals over holomorphic modular forms
(including cuspidal ones) of depth at most two. For this reason the functions F±(s)

m,k are
referred to as depth-two modular invariant functions.

Since the functions F−(s)
m,k are odd under the involution τ → −τ̄ of the upper half-plane,

they must be cuspidal, i.e., have a vanishing Fourier zero-mode. In the present paper we
want to focus on reconstructing the non-perturbative (qq̄)n terms in the Fourier zero-mode
sector, but since for F−(s)

m,k the Fourier zero-mode sector identically vanishes, for the rest
of the paper we will henceforth focus our attention purely on the F+(s)

m,k and give some
comments about the cuspidal F−(s)

m,k in the conclusions.
The even modular-invariant functions F+(s)

m,k are characterised by inhomogeneous
Laplace eigenvalue equations that are very similar to the equations obeyed by lattice sums
in the diagonalised basis (2.10) namely(

∆− s(s−1)
)
F+(s)
m,k = EmEk , s ∈ {k−m+2, k−m+4, . . . , k+m−4, k+m−2} , (2.15)

where 2 ≤ m ≤ k, the non-holomorphic Eisenstein series Em was defined in (2.5), and
∆ = 4(Im τ)2∂τ∂τ̄ is the SL(2,Z) invariant Laplacian, as mentioned before. This differential
equation fixes the asymptotics of F+(s)

m,k at the cusp τ → i∞ up to two integration constants.
The latter can be fixed from the Poincaré-series representations whose seed functions enjoy
shift symmetry under τ → τ+1 or via alternative methods [39, 61], which also fixes the
boundary conditions for the differential equation. We note that the differential equation
is invariant under the interchange of s and 1−s and we always take s to be greater than
1 − s. Furthermore, the equation is also invariant under the interchange of m and k and
we label the function F+(s)

m,k with m ≤ k.

2.3 Poincaré series approach

A Poincaré series is a representation of a modular invariant function in terms of a sum over
SL(2,Z) images of another (modular non-invariant) function that we call its seed. Probably

– 8 –
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the simplest example of a Poincaré series comes from looking at the non-holomorphic
Eisenstein series (2.12). These are well-known to be expressible as (see for example [50])

Ew(τ) = 2ζ(2w)
πw

∑
γ∈B(Z)\SL(2,Z)

Im(γ · τ)w, (2.16)

where B(Z) =
{(±1 n

0 ±1
)

: n ∈ Z
}
is the Borel subgroup of translations. Observe that the

seed function is just the monomial (Im τ)w, so the procedure has reduced the depth by one
unit. The Poincaré series (2.16) converges for Re(w) > 1.

Similarly, we want to represent the modular invariant function F+(s)
m,k as a sum over

images of the group SL(2,Z) of some seed function f
+(s)
m,k . It turns out that it is once

again more convenient to choose the seed function to be periodic in the real direction and
quotient out by the Borel subgroup in the sum. As a result we can write

F+(s)
m,k (τ) =

∑
γ∈B(Z)\SL(2,Z)

f
+(s)
m,k (γ · τ), (2.17)

where f+(s)
m,k (τ + 1) = f

+(s)
m,k (τ). The advantage for choosing the seed to be periodic comes

from observing that it can then be Fourier decomposed as

f
+(s)
m,k (τ) =

∑
n∈Z

cn(y)e2πinRe τ , (2.18)

for real coefficient functions that satisfy cn(y) = c−n(y), since we want a real-analytic
function that is even under the involution τ → −τ̄ .

Upon substitution of (2.18) into (2.15) we can “fold” Ek, i.e. use its known Poincaré
sum representation (2.16), to arrive at a simpler equation for the seed function

(∆− s(s− 1))f+(s)
m,k = (−1)k−1 B2k

(2k)! (4y)kEm . (2.19)

From the known Fourier series of Em we can find an expression for the Fourier coeffi-
cients cn(y) that were defined in (2.18). These are Laurent polynomials in y and match-
ing corresponding powers on both sides of equation (2.19) gives an expression for cn(y).
In [33, 34], it was shown that the solution to this Laplace equation is given by

c0(y) = (−1)k+m B2kB2m(4y)k+m

(2k)!(2m)!(µk+m − µs)
− (−1)k 4B2k(2m− 3)!ζ2m−1(4y)k+1−m

(2k)!(m− 2)!(m− 1)!(µk−m+1 − µs)
,

cn(y) = (−1)k 2B2k
(2k)!Γ(m)σ1−2m(|n|)|n|m−k−1

k−1∑
`=k−m+1

g+
m,k,`,s(4|n|y)`e−2|n|y n 6= 0,

(2.20)

where µs = s(s− 1) and g+
m,k,`,s are the rational coefficients

g+
m,k,`,s = Γ(`)

Γ(`+ s)

k−1∑
i=`

(`+ 1− s)i−`Γ(s+ i)Γ(m+ k − i− 1)
Γ(k − i)Γ(i+ 1)Γ(m− k + i+ 1) , (2.21)

with (a)n = Γ(a+n)
Γ(a) the (ascending) Pochhammer symbol.
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Equation (2.20) can be rewritten in a more suggestive way if we introduce one of the
many flavours of iterated integrals at depth one:

E0(k, 0p; τ) = (2πi)p+1−k

p!

∫ i∞

τ
(τ−τ1)pG0

k(τ1)dτ1 , (2.22)

with even k > 2 and the notation 0p is a short-hand of p ∈ N successive zeros. Higher-
depth versions, where the iterated integral structure becomes more evident, can be found
in [15, 62].

The symbol G0
k appearing in the integrand denotes the cuspidal part of the standard

holomorphic Eisenstein series Gk(τ):

Gk(τ) =
∑
p∈Λ′

1
pk

= 2ζk + 2(2πi)k
(k−1)!

∑
n>0

σk−1(n)qn , k ∈ {4, 6, 8, . . .} , (2.23)

G0
k(τ) = Gk(τ)− 2ζk

and it is convenient to define G0
0 = −1.

The integral in (2.22) converges for p ≥ 0 and from the q-expansion of (2.23) one can
easily obtain [53, 62]

E0(k, 0p; τ) = − 2
(k−1)!

∞∑
m,n=1

mk−1

(mn)p+1 q
mn = − 2

(k−1)!

∞∑
m=1

mk−p−2σ1−k(m)qm (2.24)

= − 2
(k−1)!

∞∑
m=1

m−p−1σk−1(m)qm .

Going back to the Fourier modes (2.20) for the seed function f+(s)
m,k (τ), we see that the

general seed for all depth-two modular invariant functions can be written as

f
+(s)
m,k (τ) = c0(y)− (−1)k 2B2kΓ(2m)

(2k)!Γ(m)

k−1∑
`=k−m+1

g+
m,k,`,s(4y)` Re[E0(2m, 0k+m−`−1)] . (2.25)

Noticeably, the use of Poincaré series has reduced the depth of the objects under
consideration by one unit, thus making the problem more tractable. Furthermore, when
k > m, the Poincaré seed just obtained gives rise to a convergent Poincaré sum.

Once the Poincaré seeds for the F+(s)
m,k are known, we are also able to derive similar

expressions for all two-loop MGFs, for example [20],

C2,1,1(τ) =
∑

γ∈B(Z)\SL(2,Z)

[ 2y4

14175 + yζ(3)
90 + y

90

∞∑
m=0

σ−3(m)(qm + q̄m)
]
γ

, (2.26)

where [. . .]γ implies an action of γ on everything in the bracket. Once again we note that a
feature of using such a Poincaré series representation is that the seed of the Poincaré sum
has depth lower by one unit than the result of the series. In the present case, the summand
in the brackets is related to the depth-one object E2(τ) through its Fourier series (2.12)
while the MGF C2,1,1 is of depth two.
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3 Resurgent analysis for Poincaré series

The task at hand is now to start from the Poincaré-series representation (2.17) in terms of
seed functions and extract the asymptotic expansion at the cusp of the modular-invariant
function F+(s)

m,k (τ).
We can consider again the Eisenstein series as a warm-up exercise, and very standard

results [49, 50] tell us how to obtain the asymptotic expansion at the cusp (2.12) from its
Poincaré sum representation (2.16). For more general Poincaré series the analysis is more
involved, but in principle it is possible to rewrite each Fourier coefficient of a modular
invariant function in terms of some convoluted integral transform of the Fourier coefficients
of its seed function as well as involving complicated Kloosterman sums. We review this
general procedure in appendix A.

In the present case we can see that the Fourier non-zero mode of the general seed (2.20)
is of the form

cn(y) =
k−1∑

`=k−m+1

[
(−1)k B2k

(2k)!Γ(m)g
+
m,k,`,s

]
σ2m−1(|n|)|n|`−k−m(4y)`e−2|n|y , (3.1)

hence a finite and rational linear combination of seeds of the type

σa(|n|)|n|byre−2|n|y . (3.2)

Seeds of precisely this form were studied in [16, 20], where it was shown how to use
the procedure outlined in appendix A to compute the Laurent polynomial of the associated
Poincaré sum. To summarise the result, we consider the Poincaré sum

Φ(τ) =
∑
`∈Z

a`(y)e2πi`Re τ =
∑

γ∈B(Z)\SL(2,Z)
ϕ(γτ) , (3.3)

with seed function given by terms of the form (3.2)

ϕ(τ) =
∑

n∈Z\{0}
cn(y)e2πinRe τ , (3.4)

cn(y) = σa(|n|)|n|byre−2|n|y .

Then the Laurent polynomial part of the asymptotic expansion at the cusp y → ∞, for
the Fourier zero-mode coefficient a0(y) is given by

a0(y) ∼ I(a, b, r; y) = 23−2ry1+b−r

Γ(r)π2b−2r

[
y

π2
Γ(b+1)Γ(2r−b−2)

Γ(r−b−1)
ζ(2r−a−2b−2)ζ(1−a)

ζ(2r−a−2b−1)

+
(
y

π2

)a+1 Γ(a+b+1)Γ(2r−a−b−2)
Γ(r−a−b−1)

ζ(2r−a−2b−2)ζ(a+1)
ζ(2r−a−2b−1)

+
(
π2

y

)b∑
n≥0

(
−π2

y

)n Γ(2r+n−1)
n! · Γ(r+n) (3.5)

× ζ(−b−n)ζ(−a−b−n)ζ(2r−a−b+n−1)ζ(2r−b+n−1)
ζ(2r+2n)ζ(2r−a−2b−1)

]
.
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Using Ramanujan’s identity

∞∑
n=1

σa(n)σb(n)
ns

= ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)
ζ(2s−a−b) , (3.6)

the last term can be rewritten in Dirichlet series form

ζ(−b−n)ζ(−a−b−n)ζ(2r−a−b+n−1)ζ(2r−b+n−1)
ζ(2r+2n)

= 4sin
(
π(b+n)

2

)
sin
(
π(a+b+n)

2

)Γ(1+b+n)Γ(1+a+b+n)
(2π)a+2b+2n+2

∑
m>0

σa(m)σa+2b+2−2r(m)
ma+b+n+1 .

(3.7)

A few comments regarding the general expression (3.5) are in order.

• For generic a, b, r this asymptotic series is a Gevrey-1, factorially divergent formal
power series. Shortly we will use Borel resummation in order to reconstruct the
non-perturbative properties of a0(y) at the cusp y → ∞. As usual, ambiguities in
prescribing a unique resummation procedure will allow us to obtain the exponen-
tially suppressed contributions, (qq̄)n, which are hidden in the purely perturbative
asymptotic result (3.5).

• For a, b integers with a odd (as for the case under consideration (3.1)), the series
in (3.5) terminates after a finite number of terms. This can be easily understood by
noticing that for n large enough either ζ(−b−n) or ζ(−a− b−n) will be a zeta value
at a negative even integer, hence vanishing, while all other factors will be regular.
For a, b integers with a odd we then have that the series in (3.5) does terminate for
n > nmax = max(−b,−a− b) + 1. In particular for our choice of seeds (3.1), we have
a = 2m − 1 ≥ 0 while −b ∈ {m + 1,m + 2, . . . , 2m, 2m + 1}, hence for the case of
interest (3.5) always vanishes for n > −b+ 1.

• The parameter b serves the purpose of a regulator. When b is arbitrary our expres-
sion (3.5) is a formal asymptotic power series for which we can make use of resurgent
analysis to reconstruct the exponentially suppressed terms in the Fourier zero-mode.
At the end of the day, when we set b to its physical values appearing in (3.1) the
asymptotic power series will only have finitely many terms and it will reproduce the
expected finite Laurent polynomial, while the non-perturbative terms will survive.
This is an instance of Cheshire cat resurgence.

In [33] it was indeed shown that if we use the general expression (3.5) specialised to
the seed f+(s)

m,k from (2.25) then we obtain a Laurent polynomial for the modular invariant
functions F+(s)

m,k (τ):

F+(s)
m,k = P(s)

m,k(y) +O(q, q̄) ,
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where the Laurent polynomial P(s)
m,k(y) is given by

P(s)
m,k(y) = (−4)k+mB2mB2k

(k+m−s)(k+m+s−1)(2m)!(2k)!y
k+m

− 2(−1)m41+m−kB2mΓ(2k−1)ζ2k−1
Γ(k)Γ(k)(m−k+s)(m−k−s+1)(2m)!y

1+m−k

− 2(−1)k41+k−mB2kΓ(2m−1)ζ2m−1
Γ(m)Γ(m)(k−m+s)(k−m−s+1)(2k)!y

1+k−m (3.8)

+ 43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1
[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)y

2−k−m + c
(s)
m,kζk+m+s−1y

1−s ,

with the rational coefficient

c
(s)
m,k = 42−s(−1)m+s+1Bs+m−kBk+m−sBk+s−m(2s)!

(s+m−k)Γ(m)Γ(s)B2s(k+m−s)!(k+s−m)!

min(k−1,s)∑
`=k−m+1

(−1)`g+
m,k,`,s

Γ(`+s−1)
Γ(`)(s−`)! ,

(3.9)

expressed in terms of the rational numbers g+
m,k,`,s defined in (2.21).

The last term in (3.8) satisfies the homogeneous Laplace equation (2.15) and its coef-
ficient can also be rewritten [61]4 as

c
(s)
m,k = −4π

s−m−k−1
2

Γ
(
m+k+s−1

2

)
ζ∗(s+ 1−m− k)ζ∗(m+ s− k)ζ∗(k + s−m)

(2s− 1)Γ(m)Γ(k) ζ∗(2s) , (3.10)

with ζ∗(s) = ζ(s)Γ( s2)π− s2 .

3.1 Resumming an evanescent tail

Since we are interested in exploiting the asymptotic nature of the general expression (3.5),
we can simply focus on its last term which, for generic a, b, r, does indeed produce the
factorially divergent asymptotic tail

Iasy(a, b, r; y) = (4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b− 1)
∑
n>0

σa(n)σa+2b+2−2r(n) (3.11)

∑
m≥0

Γ(m+ a+ b+ 1)
(4ny)m+a+b+1

Γ(2r +m− 1)Γ(1 + b+m)
Γ(m+ r)Γ(m+ 1)

[
(−1)m cos

(aπ
2
)
− cos

((a+ 2b)π
2

)]
,

after making use of Ramanujan’s identity as discussed above. We note that Iasy(a, b, r; y)
should be understood only as a formal power series in y−1 with zero radius of convergence.

The next step is to perform a standard Borel resummation for (3.11). Rewriting the
integral representation of the gamma function as

Γ(m+ a+ b+ 1)
(4ny)m+a+b+1 =

∫ ∞
0

e−4nyttm+a+bdt , (3.12)

4In this reference the coefficient of the homogeneous solution is determined by projecting the Laplace
equation (2.15) on Es(τ) and integrating over the fundamental domain.
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we can then define the directional Borel resummation, see [52] for a recent review, of the
formal power series Iasy(a, b, r; y) as

Sθ
[
Iasy(a, b, r; y)

]
= (3.13)

(4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b− 1)
Γ(2r − 1)Γ(1 + b)

Γ(r)
∑
n>0

σa(n)σa+2b+2−2r(n)
∫ eiθ∞

0
e−4nytB(t)dt ,

where the Borel transform in the case at hand is given by

B(t) =
∑
n≥0

ta+b+n (2r − 1)n(1 + b)n
(r)nn!

[
(−1)n cos

(
aπ

2

)
− cos

((a+ 2b)π
2

)]
(3.14)

= ta+b
[

2F1(2r − 1, 1 + b; r| − t) cos
(
aπ

2

)
− 2F1(2r − 1, 1 + b; r|t) cos

((a+ 2b)π
2

)]
,

with 2F1(a, b; c|z) denoting a standard hypergeometric function.
We see that for θ ∈ (0, π/2), the directional Borel resummation Sθ

[
Iasy(a, b, r; y)

]
does

indeed define an analytic function in the complex wedge −π/2 − θ < arg y < π/2 − θ

whose asymptotic expansion near y → ∞ is precisely given by (3.11). Furthermore, if
we take two different directions θ1, θ2 ∈ (0, π/2), with θ1 < θ2, it is simple to see that
Sθ1

[
Iasy(a, b, r; y)

]
and Sθ2

[
Iasy(a, b, r; y)

]
are analytic continuations of one another since

the integrand is regular in the complex wedge θ1 ≤ arg t ≤ θ2.
A similar story can be repeated for θ ∈ (−π/2, 0), however if we define the lateral

Borel resummation as

S±
[
Iasy(a, b, r; y)

]
= lim

θ→0±
Sθ
[
Iasy(a, b, r; y)

]
, (3.15)

we see that the two continuations S±
[
Iasy(a, b, r; y)

]
belong to the same germ of analytic

functions at infinity (i.e. they both yield the same asymptotic expansion (3.11) when ex-
panded for y � 1) but differ on the common domain of analyticity. This follows from
the fact that the integrand (3.14), and in particular the term 2F1(2r − 1, 1 + b; r|t), has a
branch-cut singularity precisely along the direction arg t = 0, hence called a Stokes direc-
tion. Thus we have obtained two distinct continuations of the same formal power series
(3.11) which differ precisely on the direction of interest, namely y > 0. This is generically a
signal that we have to include non-perturbative, exponentially suppressed corrections [52].

From the properties of the hypergeometric series we can easily compute its discontinuity
across the branch cut t ∈ [1,∞):

Disc0
[

2F1(a, b; c|t)
]

= lim
ε→0

[
2F1(a, b; c|t+ iε)− 2F1(a, b; c|t− iε)

]
= 2πiΓ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)(t− 1)c−a−b2F1(c− a, c− b; c− a− b+ 1|1− t) , (3.16)
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valid for t > 1. We can then compute the difference between the two lateral resummations,
related to what is called the Stokes automorphism, and find

(S+−S−)
[
Iasy(a,b,r;y)

]
(3.17)

= (4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r−a−2b−1)
Γ(2r−1)Γ(1+b)

Γ(r)
∑
n>0

σa(n)σa+2b+2−2r(n)
∫ ∞

0
e−4nytDisc0B(t)dt

=− (4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r−a−2b−1)
∑
n>0

σa(n)σa+2b+2−2r(n)2πicos
((a+2b)π

2

)
e−4ny

×
∫ ∞

0
e−4nyt (t+1)a+bt−r−b

Γ(1−r−b) 2F1(1−r,r−b−1;1−r−b|−t)dt ,

where in the last step we substituted the discontinuity (3.16) and shifted the integration
variable t→ t+ 1.

Notice that this discontinuity in resummation is purely non-perturbative in nature
due to the presence of the exponentially suppressed term (qq̄)n = e−4ny. The present
discussion is very similar to [20, 53, 63]: the starting asymptotic series (3.5) cannot be
easily Borel resummed as it is, however by realising that the factorially growing coefficients
are “dressed” by a suitable Dirichlet series we obtain (3.11), amenable to standard Borel
resummation. The infinitely many exponentially suppressed corrections (qq̄)n = e−4ny can
be seen as arising from the unfolding of the Dirichlet series (3.7) combined with the shift
y → 4ny.

We can now define the median resummation of the asymptotic formal power series
Iasy(a, b, r; y)

Smed
[
Iasy(a, b, r; y)

]
= S±

[
Iasy(a, b, r; y)

]
∓ i Im[σ(a, b)]NP(a, b, r; y) , (3.18)

which is independent of our choice of sign, i.e. of direction of resummation, having defined
the imaginary part of the transseries parameter

Im [σ(a, b)] = cos
((a+ 2b)π

2

)
, (3.19)

and the non-perturbative part NP(a, b, r; y) is given

NP(a, b, r; y) = − (4y)2+a+b−rπ2r−a−2b−1

2a+2bΓ(r)ζ(2r − a− 2b− 1)
∑
n>0

σa(n)σa+2b+2−2r(n)e−4ny (3.20)

×
∫ ∞

0
e−4nyt(t+ 1)a+bt−r−b2F̃1(1− r, r − b− 1; 1− r − b| − t)dt ,

where 2F̃1(a, b; c|z) = 2F1(a, b; c|z)/Γ(c) denotes the regularised hypergeometric function.
In this context by a transseries we simply mean an expression that includes both the
perturbative series as well as all the exponentially suppressed non-perturbative terms.

We notice that the discontinuity (3.17) and in particular the Stokes constant cos[(a+
2b)π/2], only fixes the imaginary part of the transseries parameter σ(a, b), i.e. the overall
piece-wise constant (jumping only at Stokes directions) in front of the non-perturbative
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Figure 2. On the left diagram we show the two different lateral Borel resummations. On the right
diagram, the difference between the two lateral Borel resummations is represented as an Hankel
integral contour, used to evaluate the Stokes automorphism.

terms. Following [20, 53], we will make the assumption that the complete transseries pa-
rameter does in fact depend analytically on (a+2b), and the “minimal analytic completion”
with non-trivial real part is simply

σ±(a, b) = exp
(
± iπa+ 2b− 1

2

)
= sin

((a+ 2b)π
2

)
∓ i cos

((a+ 2b)π
2

)
, (3.21)

where once more we stress that the sign ± is correlated with the choice of resummation as
in (3.18).

Usually when we look for transseries solutions to say non-linear ODEs, the imaginary
part of the transseries parameter is fixed by the Stokes discontinuity, while its real part
is determined via some initial condition. At the present time we do not have such an
ODE construction for our problem and we are in a certain sense trying to bootstrap the
full transseries entirely out of the perturbative data generated by the Poincaré sum of our
seed (3.4) for a, b ∈ C generic, without having at our disposal any ODE or functional
equation to guide us.

One of the key features of what is generally called “Cheshire cat resurgence” [54–57] is
precisely that the Stokes constant crucially vanishes for special values of the deformation
parameter (a + 2b in the present case or a supersymmetry breaking deformation in the
aformentioned references) while non-perturbative corrections are expected to be present
for all values of the deformation. This implies that the transseries parameter must have
a non-vanishing real part as well. Our hypothesis (3.21) provides the minimal analytic
completion to achieve this, and, as we will see later on, will produce the correct non-
perturbative terms.

We then conclude that the non-perturbative resummation of (3.11) is given by

Smed
[
Iasy(a, b, r; y)

]
= S±

[
Iasy(a, b, r; y)

]
+ σ±(a, b)NP(a, b, r; y) . (3.22)

Thanks to the discontinuity equation (3.17), we can easily see that the this is a well-
defined analytic function providing a non-perturbative and unambiguous resummation for
the formal asymptotic power series (3.11) which is also real (as one would have expected)
for y > 0 with a, b ∈ R and continuous as arg y → 0.
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3.2 Non-perturbative completion

We can now specialise the results of the previous section for the generic seed (3.4) to
the case of interest for the seed functions f+(s)

m,k relevant for all two-loop MGFs. We can
rewrite (2.25) as

f
+(s)
m,k (y) =

c0(y) + (−1)k 2B2k
(2k)!Γ(m)

∑
n 6=0

k−1∑
`=k−m+1

g+
m,k,`,s(4y)`|n|`−k−mσ2m−1(|n|)e−2|n|ye2πinτ1 ,

(3.23)

such that, manifestly, each seed is a finite combination of building blocks (3.4) with a =
2m− 1, b = `− k −m, r = ` just analysed.

We start by decomposing F+(s)
m,k in Fourier modes for τ1 = Re τ

F+(s)
m,k (τ) =

∑
n∈Z

an(m, k; s; y)e2πinτ1 (3.24)

and focus on the asymptotic expansion for y →∞ of the Fourier zero-mode a0(m, k; s; y) .
From the seed mode expansion (3.23) we can use the results of appendix A to arrive

at the Laurent polynomial part

a0(m, k; s; y) ∼

(−1)k+mB2kB2m4k+mI0(k +m; y)
(2k)!(2m)!(µk+m − µs)

− (−1)k 4B2k(2m− 3)!ζ2m−1I0(k + 1−m; y)
(2k)!(m− 2)!(m− 1)!(µk−m+1 − µs)

+ (−1)k 2B2k
(2k)!Γ(m)

k−1∑
`=k−m+1

g+
m,k,`,s4

`I(2m− 1, `− k −m, `; y) , (3.25)

where I0(r; y), defined in (A.8a), comes from the Poincaré sum of the seed function Fourier
zero-mode c0(y) (2.20), while I(a, b, r; y) (3.5) comes from the Poincaré sum of the Fourier
non-zero modes.

As explained in [20, 33, 34], there are a few instances where the above expression has
to be regulated. For example, it is fairly easy to see from (A.8a) that whenever k = m

the second contribution, naively proportional to I0(1; y), is divergent. The correct way to
proceed is to regulate this expression by shifting k → k + ε where the expression becomes
regular for all m, k ≥ 2. To render the whole expression regular, it is actually enough to
consider the regulator I0(k+1−m; y)→ I0(k+ε+1−m; y) and I(2m−1, `−k−m, `; y)→
I(2m− 1, `− k − ε−m, `; y).

The I(a, b, r; y) contribution, coming from the Poincaré sum of all the Fourier non-zero
modes of the seed function, gets specialised to the particular values I(2m−1, `−k−m, `; y),
hence the regulator k → k + ε amounts to considering an analytic continuation in the b
parameter, thus introducing an asymptotic tail of factorially growing terms just as discussed
in the previous section.

As we send ε → 0 this tail will disappear and the precise combination of I0(r; y) and
I(a, b, r; y) contributions will give rise to the finite Laurent polynomial (3.8). However as
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argued above, the non-perturbative terms needed to provide an unambiguous resummation
of the formal power series for ε 6= 0 will survive in this limit, thus giving us the full, non-
perturbative Fourier zero-mode contribution a0(m, k; s; y) to F+(s)

m,k (τ).
In more detail, we can consider the non-perturbative resummation (3.22) for the formal

power series Iasy(a, b, r) and specialise it to the current case (3.25) arriving at:

a0(m,k;s;y) = P(s)
m,k(y)+ (3.26)

lim
ε→0

{
(−1)k 2B2k

(2k)!Γ(m)

k−1∑
`=k−m+1

g+
m,k,`,s4

lS±
[
Iasy(2m−1, `−k−ε−m,`;y)

]
+NPε±(m,k;s;y)

}
,

where we collected in P(s)
m,k(y) all the regular and finitely many perturbative terms arising

from the limit for ε → 0 of (3.25) and which reproduce the Laurent polynomial (3.8).
When ε is sent to zero we know, from our discussion above, that the resummation of the
asymptotic tail Iasy vanishes identically, i.e. there is no asymptotic tail when ε = 0. Finally
the non-perturbative terms, which will survive in the ε→ 0 limit, are given by

NPε±(m, k; s; y) = (3.27)

2× 42+m−kym+1−k

Γ(m)
∑
n>0

σ1−2k(n)σ2m−1(n)e−4ny
k−1∑

`=k−m+1

g+
m,k,`,se

±iπ(`−k−ε)

Γ(`)

×
∫ ∞

0
e−4nyt(t+ 1)`+m−k−1 tk+m+ε−2`

2F̃1(1− `, k +m− 1; k +m+ 1 + ε− 2`| − t)dt ,

where 2F̃1(a, b; c|z) is the regularised hypergeometric function, see (3.19). The suffix ± is
a reminder that we have already specialised the transseries parameter σ±(a, b) from (3.21)
to the present case a = 2m− 1, b = `− k −m− ε:

σ±(2m− 1, `− k −m− ε) = e±iπ(`−k−ε−1) ε→0−→ (−1)`+k+1 . (3.28)

The main result of our paper is given by equation (3.27) which contains all the expo-
nentially suppressed (qq̄)n = e−4ny terms in the Fourier zero-mode sector of all depth-two
modular invariant functions F+(s)

m,k .
The key role of the parameter ε is to regulate the Borel transform integrand in equa-

tion (3.27). To make things clearer, let us analyse the various terms appearing in the
integrand and see what the regulator ε does.

Firstly, we see from (3.28) that the transseries parameter is perfectly regular in this
limit and it reduces to (−1)`+k+1. Secondly, for the range of parameters considered here,
the term (t+ 1)`+m−k−1 is simply a polynomial in t of degree at most m−2. Similarly, the
regularised hypergeometric function 2F̃1(1− `, k +m− 1; k +m+ 1 + ε− 2`| − t) is also a
polynomial in t of degree `− 1, since its first entry is a non-positive integer while the third
entry is generic due to the presence of the regulator ε.

Hence we arrive at the conclusion that the integrand can be written as a polynomial
in t multiplied by tk+m+ε−2`, a non-integer power of t, and the usual exponential damping
factor. For generic ε, each monomial in t can be easily integrated to produce a gamma
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function multiplied by a power of (4ny), i.e.∫ ∞
0

e−4nyttk+m+ε−2`tndt = Γ(k +m+ n+ 1 + ε− 2`)
(4ny)k+m+n+1+ε−2` . (3.29)

We need to distinguish two cases now:

• When 2` ≤ k + m, the regulating factor tk+m+ε−2` is a positive power of t and the
integral is regular in the limit ε→ 0, hence we can directly compute:∫ ∞

0
e−4nyt(t+ 1)`+m−k−1 tk+m−2`

2F̃1(1− `, k+m−1; k+m+ 1−2`|− t)dt , (3.30)

which is a polynomial of degree 2m− 1 in (4ny)−1.

• When 2` ≥ k+m+1, the regulating factor tk+m+ε−2` is a negative power of t making
the integral ill-defined in the strict ε = 0 limit. However, in this case, the regularised
hypergeometric series 2F̃1(1 − `, k + m − 1; k + m + 1 + ε − 2`| − t) has a negative
third entry. If we write the hypergeometric in terms of Gauss’ series

2F̃1(1− `, k+m− 1; k+m+ 1 + ε− 2`| − t) =
∞∑
n=0

(1− `)n(k +m− 1)n
Γ(k +m+ 1 + ε+ n− 2`)

(−t)n
n! ,

it is now manifest that for 0 ≤ n ≤ 2` − k −m the coefficient of tn vanishes in the
ε → 0 limit, being proportional to Γ(k + m + 1 + ε + n − 2`)−1. This vanishing
behaviour exactly cancels the divergence that would originate from integrating, as
in (3.29), any negative power of t generated from the factor tk+m+ε−2` term. We
find that again there is a well-defined limit ε→ 0, that has to be taken after having
performed the t-integral:

lim
ε→0

[ ∫ ∞
0

e−4nyt(t+1)`+m−k−1 tk+m+ε−2`
2F̃1(1−`, k+m−1; k+m+1+ε−2`|−t)dt

]
,

which is again a polynomial of degree 2m− 1 in (4ny)−1.

This concludes the proof that equation (3.27) is regular as ε→ 0. This limit is interpreted
as describing the non-perturbative corrections to the Fourier zero-mode of F+(s)

m,k through
resurgent analysis and we have recovered the exact behaviour of the Fourier zero-mode at
the cusp.

3.3 Some Examples

We list some of the results for the Fourier zero-mode a0(m, k; s; y) that follow from the
previously derived calculations for a few small values of m, k, s.

In the (2, k) sector, where there is a single eigenvalue s = k, we have:

a0(2,2;2;y) = y4

20250−
yζ3
45 −

5ζ5
12y+ ζ2

3
4y2 +

∞∑
n=1

e−4nyσ−3(n)2

2y2 , (3.31)
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a0(2,3;3;y) = y5

297675−
y2ζ3
1890−

ζ5
360−

7ζ7
64y2 + ζ3ζ5

8y3 +
∞∑
n=1

e−4nyσ−5(n)σ−3(n)
[ 1

4y3 + n

4y2

]
,

(3.32)

a0(2,4;4;y) = y6

3827250−
y3ζ3

28350−
ζ7

720y−
25ζ9

432y3 + 5ζ3ζ7
64y4

+
∞∑
n=1

e−4nyσ−7(n)σ−3(n)
[ 5

32y4 + 5n
24y3 + n2

12y2

]
. (3.33)

Equation (3.31) is identical to the result of [39] for the exponentially suppressed terms of
the MGF C2,1,1 once we use the fact that F+(2)

2,2 = −C2,1,1 + 9
10E4.

In the (3, k) sector, with k ≥ 3, we encounter two choices of eigenvalues s ∈ {k − 1,
k + 1}:

a0(3,3;2;y) = y6

6251175−
yζ5
630−

5ζ7
288y+ ζ2

5
32y4 +

∞∑
n=1

e−4nyσ−5(n)2
[ 1

16y4 + n

4y3 + n2

8y2

]
, (3.34)

a0(3,3;4;y) = 2y6

8037225−
yζ5

3780−
35ζ9

1152y3 + 9ζ2
5

128y4 +
∞∑
n=1

e−4nyσ−5(n)2
[ 9

64y4 + n

4y3 + n2

8y2

]
,

(3.35)

a0(3,4;3;y) = y7

80372250−
y2ζ5

25200−
ζ7

4536−
49ζ9

11520y2 + 5ζ5ζ7
256y5

+
∞∑
n=1

e−4nyσ−7(n)σ−5(n)
[ 5

128y5 + 5n
32y4 + 7n2

48y3 + n3

24y2

]
, (3.36)

a0(3,4;5;y) = y7

49116375−
y2ζ5

113400−
ζ7

15120−
77ζ11

4608y4 + 3ζ5ζ7
64y5

+
∞∑
n=1

e−4nyσ−7(n)σ−5(n)
[ 3

32y5 + 37n
192y4 + 7n2

48y3 + n3

24y2

]
. (3.37)

As a last example, in the (4, k) sector with k ≥ 4 and eigenvalues s ∈ {k − 2, k, k + 2}, we
have:

a0(4,4;2;y) = y8

1205583750−
yζ7

7560−
5ζ9

3888y+ 5ζ2
7

512y6

+
∞∑
n=1

e−4nyσ−7(n)2
[ 5

256y6 + 5n
64y5 + 35n2

288y4 + 5n3

72y3 + n4

72y2

]
, (3.38)

a0(4,4;4;y) = y8

982327500−
yζ7

45360−
7ζ11

6912y3 + 5ζ2
7

384y6

+
∞∑
n=1

e−4nyσ−7(n)2
[ 5

192y6 + 5n
48y5 + 25n2

192y4 + 5n3

72y3 + n4

72y2

]
, (3.39)

a0(4,4;6;y) = y8

580466250−
yζ7

113400−
5055ζ13

530688y5 + 25ζ2
7

768y6

+
∞∑
n=1

e−4nyσ−7(n)2
[ 25

384y6 + 29n
192y5 + 7n2

48y4 + 5n3

72y3 + n4

72y2

]
. (3.40)

One can check that these results are in agreement with the differential equation (2.15).
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3.4 Exact results

From the general results derived previously, we know that the Fourier zero-mode (3.26) for
the modular invariant function F+(s)

m,k is given by

a0(m,k;s;y) = P(s)
m,k(y)+NP(s)

m,k(y) , (3.41)

with the perturbative terms given by the Laurent polynomials (3.8) and the non-perturba-
tive terms

NP(s)
m,k(y) = lim

ε→0
NPε±(m,k;s;y) ,

simply obtained from (3.27) by sending ε→ 0.
We can use the general result (3.27) to write the non-perturbative terms as

NP(s)
m,k(y) =

∑
n>0

e−4ny n
k+m−2σ1−2m(n)σ1−2k(n)

Γ(m)Γ(k) φ
(s)
m,k(4ny) , (3.42)

where we used the divisor sum identity σs(n) =nsσ−s(n), and defined φ(s)
m,k(y) by

φ
(s)
m,k(y) = lim

ε→0

[
8Γ(k)y1+m−k

k−1∑
`=k−m+1

g+
m,k,`,s(−1)`+k

Γ(`) (3.43)

×
∫ ∞

0
e−yt(t+1)m+`−k−1 tk+m+ε−2`

2F̃1(1−`,k+m−1;k+m+1+ε−2`|−t)dt
]
.

The non-perturbative terms in the Fourier zero-mode could have also been obtained by
using the ansatz (3.42) and substituting it into the inhomogeneous Laplace equation (2.15)
satisfied by the F+(s)

m,k . From the Fourier mode expansion for the Eisenstein series (2.12),
we can readily isolate the (qq̄)n contribution of the source term EmEk. This results in a
second-order differential equation for φ(s)

m,k(y) that could be solved using a Laurent series
ansatz. The solution found in this way can be checked to agree with the results presently
obtained via resurgent analysis.

From the discussion below (3.29), we have that φ(s)
m,k(y) is a polynomial of degree

k+m−2 in y−1 with rational coefficients. We will now prove that

φ
(s)
m,k(y) = (3.44)

8
y2 + 8[m(m−1)+k(k−1)−4]

y3 +4

{
[m(m−1)+k(k−1)−7]2+2s(s−1)−13

}
y4 +O(y−5).

Note that the coefficients of higher corrections in y−1 will in general have a dependence on
the eigenvalue s.

By using the integral transform (3.29), we observe that the leading contribution to
φ

(s)
m,k(y) as y→∞ comes from the lowest power of t in the integrand of equation (3.43). To

isolate this monomial, we start by noting that the lowest exponent for the factor tk+m+ε−2`

is clearly given by the highest value of the parameter `= `max = k−1. In this case we have a
simplification for the coefficients (2.21) g+

m,k,`,s appearing in (3.43), in that g+
m,k,k−1,s = 1

k−1
is independent of the eigenvalue s.
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To obtain the lowest power of t in the integrand of (3.43), we similarly have to choose
the constant term for both the hypergeometric series as well as the binomial when `= k−1:

2F̃1(2−k,k+m−1;m+3+ε−k|−t) = 1
Γ(m+3+ε−k) + (k−2)(k+m−1)

Γ(m+4+ε−k) t+O
(
t2
)
,

(t+1)m−2 = 1+(m−2)t+O(t2) . (3.45)

We then arrive at the leading, large-y asymptotic for (3.43) given by

φ
(s)
m,k(y)∼ lim

ε→0

[
8Γ(k)y1+m−k g

+
m,k,k−1,s
Γ(k−1)

∫ ∞
0

e−yt
tm+2+ε−k

Γ(m+3+ε−k) dt
]
∼ 8
y2 +. . . , (3.46)

where we used the standard integral (3.29) and reproduced the leading order in (3.44).
For the sub-leading correction in (3.44) we need to investigate higher powers of t in

the integrand of (3.43). Firstly we observe that decreasing `→ `max−1 = k−2 increases
the power of t by 2 for the tk+m+ε−2` term in the integrand. Hence we deduce that the
next sub-leading correction comes again from `= `max = k−1 where we consider instead
the linear terms in t for the hypergeometric function and the binomial (3.45). As a result,
since the coefficient g+

m,k,k−1,s = 1
k−1 does not depend on the eigenvalue s, we have that,

just like for the leading term, the 1
y3 coefficient must once more be eigenvalue independent.

The calculation is very similar to the one presented above

φ
(s)
m,k(y)∼ 8

y2 +lim
ε→0

[
8y1+m−k

∫ ∞
0

e−yt
tm+3+ε−k

Γ(m+3+ε−k)
[
(m−2)+ (k−2)(k+m−1)

m+3+ε−k
]
dt
]

∼ 8
y2 + 8[m(m−1)+k(k−1)−4]

y3 +. . . , (3.47)

and we reproduce, as anticipated, the sub-leading term of equation (3.44).
Getting analytic expressions for higher-order terms becomes slightly more complicated,

since multiple values of ` in (3.43) start contributing and the coefficients g+
m,k,`,s, see (2.21),

are in general eigenvalue dependent, thus higher-order terms do depend on the eigenvalue
s as well. For example, we can repeat a very similar discussion to the one above for the
O(y−4) term, which receives two different contributions — one from `= k−1 and a second
one from `= k−2. By using (2.21) to obtain the coefficient g+

m,k,k−2,s

g+
m,k,k−2,s = m(m−1)

(k−2) + (k−s−1)(k+s−2)
(k−1)(k−2) , (3.48)

and then collect the appropriate powers of t in the integrand, we arrive at

φ
(s)
m,k(y)∼ (3.49)

8
y2 + 8[m(m−1)+k(k−1)−4]

y3 +4

{
[m(m−1)+k(k−1)−7]2+2s(s−1)−13

}
y4 +. . . .

All of the results here discussed can be checked for comparison with the examples given
in section 3.3 and are consistent with the Laplace equation (2.15).
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4 Modularity and recovering the small-y behaviour

Up until now we have used the asymptotic nature of the large-y perturbative expansion to
reconstruct the non-perturbative, exponentially suppressed (qq̄)n corrections via resurgent
analysis. Now we want to understand a similar, yet conceptually different problem, namely
is it possible to reconstruct the perturbative data, i.e. the Laurent polynomials (3.8), from
the small-y expansion of the (qq̄)n terms? We will see that, complementary to resurgence,
modularity will play a crucial role.

First of all, we recall here an important lemma proved in [51].
Lemma. If F(τ) is an SL(2,Z) invariant function on the upper half-plane such that at

the cusp y→∞, with y=πτ2 =π Imτ , it satisfies the growth condition F(τ) =O(ys) with
s> 1, then each of its Fourier modes Fn(y) =

∫ 1
0 F(τ1+iy/π)e−2πinτ1dτ1 satisfies the bound

Fn(y) =O(y1−s) in the limit y→ 0.
Very roughly, the key idea behind this lemma is that a cuspidal growth of order ys

suggests that the modular invariant function F(τ) must be bounded by Es(τ) on the whole
upper half-plane and since for small y we have Es(τ) =O(y1−s), then the same bound must
hold for F(τ). Let us apply this lemma to our modular invariant functions F+(s)

m,k and in
particular let us try and understand the small-y behaviour of its Fourier zero-mode (3.41).

From the explicit Laurent polynomial (3.8) it is clear that F+(s)
m,k (τ) =O(yk+m) as τ→

i∞, hence from the lemma we deduce that for small y each Fourier mode of F+(s)
m,k cannot

be more singular than O(y1−k−m). We can easily see from (3.8) that, for the spectrum of
eigenvalues considered here, none of the perturbative terms is more singular than y1−k−m

and we conclude that the (qq̄)n terms (3.42), which were exponentially suppressed for large
y, can at most diverge as y1−k−m as y→ 0.

We can run a more refined argument to obtain analytically part of the small-y limit of
the (qq̄)n terms. To this end we can consider the modular invariant linear combination

F(τ) = F+(s)
m,k (τ)+αEm+k(τ) , (4.1)

where the constant α, given by

α= B2mB2k(2m+2k)!
B2m+2k(k+m−s)(k+m+s−1)(2m)!(2k)! , (4.2)

is chosen in a such a way (see (2.12) and (3.8)) that the coefficient of the leading term
yk+m of (4.1) is vanishing.

If we assume that k >m, we have thus obtained a new auxiliary modular invariant
function F(τ) with the tamer growth at the cusp F(τ) =O(y1+k−m). Note that we have
excluded the diagonal case, k=m, since F (τ) would grow at the cusp linearly as O(y1),
hence the Lemma cannot be applied directly; we will however show a diagonal example
where the results are consistent with the non-diagonal expectations and we can view the
diagonal case as the limit k→m.

By applying the lemma to F(τ) we deduce that its small-y limit cannot be more
singular than O(ym−k). However, if we inspect all the powers appearing in the perturbative
expansion (2.12) and (3.8) of the Fourier zero-mode, we find that the terms y1−s,y2−k−m,
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coming from F+(s)
m,k (τ), and the term y1−k−m, coming from αEk+m(τ), all violate the bound.

Since the addition of αEk+m(τ) does not modify the (qq̄)n sector, we must conclude that
the small-y limit of the (qq̄)n terms (3.42) must exactly cancel against these singular terms.
The small-y expansion of the (qq̄)n must then take the form:

NP(s)
m,k(y) =−c(s)

m,kζk+m+s−1y
1−s− 43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1

[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)y
2−k−m

−α4(2m+2k−3)!ζ2m+2k−1
(m+k−2)!(m+k−1)! (4y)1−m−k+O(ym−k) . (4.3)

Obtaining this expression directly from the small-y limit of (3.42) is not straightfor-
ward. A somewhat naive way to proceed is to expand the exponential factor (qq̄)n = e−4ny

for small-y and compute the sum over n term by term via its analytic continuation as a
Dirichlet series using Ramanujan’s identity (3.6).

To illustrate this, we first repeat the calculation, discussed in the previous section, to
obtain the most singular term at small-y for φ(s)

m,k(y)

φ
(s)
m,k(y) = 8Γ(2m−1)Γ(2k−1)

(k+m−s−1)(k+m+s−2)Γ(m)Γ(k)y
2−k−m+O(y3−k−m) . (4.4)

We can now consider its contribution in the small-y limit to NP(s)
m,k(y) given by:

NP(s)
m,k(y) =

∑
n>0

e−4ny n
k+m−2σ1−2m(n)σ1−2k(n)

Γ(m)Γ(k) (4.5)

×
[ 8Γ(2m−1)Γ(2k−1)

(k+m−s−1)(k+m+s−2)Γ(m)Γ(k)(4ny)2−k−m+O(y3−k−m)
]

∼ 8Γ(2m−1)Γ(2k−1)
(k+m−s−1)(k+m+s−2)[Γ(m)Γ(k)]2 (4y)2−k−m∑

n>0
σ1−2m(n)σ1−2k(n)+O(y3−k−m)

∼− 43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1
[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)y

2−k−m+O(y3−k−m) ,

where we expanded the exponential term e−4ny = 1+O(y) to leading order at small-y and
used the analytic continuation at s= 0 of Ramanujan’s identity to resum∑

n>0
σ1−2m(n)σ1−2k(n)“ = ”ζ(0)ζ(2m−1)ζ(2k−1) . (4.6)

This calculation reproduces precisely the expected y2−k−m term in equation (4.3) .
Using the explicit examples (3.31), (3.34) and (3.38) presented before, it is possible to

perform a similar argument to compute also the sub-leading corrections (4.3) by means of
analytically continuing the sum over n as a Dirichlet series. We notice, however, that the
most singular term in (4.3) is of order y1−m−k and cannot possibly be obtained via this
naïve analysis.

A more careful analysis of the small-y expansion of (3.42) can be derived from a Mellin
transform argument. From the generic expression (3.42), it is easy to see that NP(s)

m,k(y) is
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given by a finite linear combination of functions defined by

Da,b;c(y) =
∞∑
n=1

σa(n)σb(n)
nc

e−ny, (4.7)

with a= 1−2m,b= 1−2k and c∈Z≤0.
In appendix B we derive the small-y behaviour (B.5) of the function Da,b;c(y) with

a,b,c∈C generic. Using Mellin inversion formula, the asymptotic expansion at y→ 0 of
Da,b;c(y) is related to the poles and residues of its Mellin transform Ma,b;c(y).

We refer to appendix B for the general discussion and present here a few concrete
examples. Let us consider the non-perturbative terms NP(3)

2,3(y) for the Fourier zero-mode
of the depth-2 modular function F+(3)

2,3 , which are given by (3.32)

NP(3)
2,3(y) = 1

4

∞∑
n=1

σ−5(n)σ−3(n)e−4ny
[ 1
y3 + n

y2

]
= 1

4y3D−5,−3;0(4y)+ 1
4y2D−5,−3;−1(4y).

The relevant Mellin transforms, see (B.3), are

M−5,−3;0(t) =
∫ ∞

0
D−5,−3;0(y)yt−1dy= Γ(t)ζ(t)ζ(3+t)ζ(5+t)ζ(8+t)

ζ(8+2t) , (4.8)

M−5,−3;−1(t) =
∫ ∞

0
D−5,−3;−1(y)yt−1dy= Γ(t)ζ(−1+t)ζ(2+t)ζ(4+t)ζ(7+t)

ζ(6+2t) , (4.9)

from which it is easy to see thatM−5,−3;0(t) has simple poles at t∈Z in the range −8≤ t≤ 1,
while M−5,−3;−1(t) has simple poles at t∈Z in the range −7≤ t≤ 2, excluding t= 1.

Referring to appendix B for the details, we can use the Mellin inversion formula (B.4)
and, after the little exercise of computing the residues at these poles, we arrive at the
small-y expansion for NP(3)

2,3(y):

NP(3)
2,3(y)∼ 11ζ9

128y4−
ζ3ζ5
8y3 + 7ζ7

64y2−
ζ2

3
42y+ ζ5

360 + ζ3y
2

1890−
ζ7y

3

3240ζ5
+ ζ3ζ5y

4

23625ζ7
− y5

297675 . (4.10)

A comparison with (3.32) reveals that the small-y limit of the non-perturbative terms not
only matches perfectly the expected behaviour (4.3) but it actually cancels exactly the full
Laurent polynomial part:

NP(3)
2,3(y)∼ 11ζ9

128y4−P
(3)
2,3 (y)− ζ2

3
42y−

ζ7y
3

3240ζ5
+ ζ3ζ5y

4

23625ζ7
. (4.11)

The difference between the small-y limit of the non-perturbative sector and the Laurent
polynomial is given by the expected y1−k−m monomial of (4.3) and terms vanishing as
y→ 0. Although such terms present novel type of coefficients, in the form of ratios of zeta
values, they do respect uniform transcendentality with standard weight assignment.

As a second example, we can analyse the small-y limit of the non-perturbative terms
NP(s)

m,k(y) in the diagonal sector k=m. For simplicity let us consider the non-perturbative
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terms NP(2)
2,2(y) of the modular function F+(2)

2,2 that are given by (3.31)

NP(2)
2,2(y) =

∞∑
n=1

e−4nyσ−3(n)2

2y2 = 1
2y2D−3,−3;0(4y). (4.12)

The corresponding Mellin transform is given by

M−3,−3;0(t) =
∫ ∞

0
D−3,−3;0(y)yt−1dy= Γ(t)ζ(t)ζ(3+t)2ζ(6+t)

ζ(6+2t) , (4.13)

which has poles at t∈Z in the range −6≤ t≤ 1. The key difference between the diagonal
sector and the previous, non-diagonal example is the appearance of a double pole at t=−2,
while all others are simple poles. Referring again to appendix B for all the details, in this
case we have that a second order pole in the Mellin transform signals the presence of
logarithmic corrections, logy, in the asymptotic expansion as y→ 0 of NP(2)

2,2(y).
The asymptotic expansion as y→ 0 of NP(2)

2,2(y) is given by

NP(2)
2,2(y)∼ 7ζ7

48y3−
ζ2

3
4y2 + 5ζ5

12y+ ζ3
15

[
log
(8πy
A24

)
+ ζ ′3
ζ3
− ζ
′
4
ζ4

]
+ ζ3y

45 −
ζ5y

2

108ζ3
+ 2ζ2

3y
3

2835ζ5
− y4

20250

∼ 7ζ7
48y3−P

(2)
2,2 (y)+ ζ3

15

[
log
(8πy
A24

)
+ ζ ′3
ζ3
− ζ
′
4
ζ4

]
− ζ5y

2

108ζ3
+ 2ζ2

3y
3

2835ζ5
, (4.14)

where A is the Glaisher-Kinkelin constant, logA= 1
12−ζ

′(−1). If we assign transcendental
weight 1 to log(8πy/A24)+ζ ′3/ζ3−ζ ′4/ζ4, then the result respects uniform transcendentality.
This appears to be a variant of the transcendentality assignments in [23]. Note that we
reproduce again the expected behaviour (4.3), furthermore, after comparison with the Lau-
rent polynomial P (2)

2,2 (y) (3.31), we have the stronger statement that the non-perturbative
terms cancel exactly the perturbative ones as for the previous non-diagonal example.

For the general small-y expansion of NP(s)
m,k(y), we see that (3.42) can be expressed

as a finite linear combination of building blocks Da,b;c(y), defined in (4.7), with a= 1−
2m,b= 1−2k and c∈Z≤0. For this range of parameters, it is easy to see from the general
formula (B.5), derived in appendix B, that the y-coefficients appearing the small-y limit
NP(s)

m,k(y) can be at most ratios of bilinears in odd zetas divided by a single odd zeta, or
in the diagonal case m= k contain at most one derivative of a Riemann zeta.

Although quite different in spirit from the main message of this paper, the small-y
behaviour can also be retrieved by exploiting the spectral decomposition of the modular
functions F+(s)

m,k in terms of L2-normalisable eigenfunctions of the SL(2,R) invariant Lapla-
cian ∆ = 4(Imτ)2∂τ∂τ̄ . An interesting question is understanding the interplay between
resurgence theory and the spectral analysis of F±(s)

m,k , see [64, 65] for the spectral decompo-
sition of F+(s)

m,k with s,m,k ∈C. In particular, amongst the L2-normalisable eigenfunctions
of the Laplacian, non-holomorphic cusp forms should play a special role in reconstructing
the “instanton” sector, i.e. qn terms in the Fourier decomposition of the modular functions
F±(s)
m,k . Previous works [34] have shown from the different point of iterated integrals that

holomorphic cusp forms do also play a role in the instantonic sector, however there is no
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obvious or straightforward connection between the holomorphic and non- cusp functions.
We aim to address these issues in future works.

As a concluding remark for this section we want to stress that if resurgent analysis
allows us to retrieve the exponentially suppressed and non-perturbative corrections at large-
y from the perturbative data, modularity dramatically intertwines the two and permits us
to reconstruct the Laurent polynomial from the small-y behaviour of the infinite tower of
(qq̄)n terms, no longer exponentially suppressed.

5 Conclusions

In this paper, we have studied the non-perturbative terms of the form (qq̄)n that enter in
the Fourier zero-mode of the modular functions F+(s)

m,k satisfying the inhomogeneous Laplace
equation (2.15). The way we obtained these non-perturbative terms was by using Cheshire
cat resurgence and we checked that the results obtained in this way are consistent with the
differential equation. Combining the resurgent analysis results with modularity we could
also constrain the small-y limit and perform further consistency checks. The focus in this
paper was on depth-two functions and we remark that Laplace systems similar to (2.15)
have been recently investigated in [44] at depth three.

In [33, 34], the Fourier non-zero modes, an(m,k;s;y), for the τ1 =Reτ Fourier decom-
position of (3.24) of F+(s)

m,k were discussed in detail. The general an(m,k;s;y) has a form
very similar to the Fourier zero-mode (3.41) discussed in this work, namely an overall ex-
ponentially suppressed factor e−2|n|y, i.e. what one would call the real part of the instanton
action, multiplied by a Laurent polynomial, i.e. the would-be perturbative expansion in
the n-instanton sector. Furthermore, just like in (3.41)–(3.42), the Laurent perturbative
part receives an infinite tower of exponentially suppressed corrections, e−4Ny with N > 0,
corresponding to (qq̄)N contributions, multiplied by a Laurent polynomial similar to (3.42).

As shown in [33, 34], while the Fourier zero-mode perturbative sector is given by a
Laurent polynomial (3.8) in y with coefficients given by rational numbers times at most
bilinears in odd zeta values, the perturbative expansion in the Fourier non-zero mode sector
does involve a larger class of numbers including completed L-values of holomorphic cusp
forms.

On the other hand, just like in the present case (3.43), the (qq̄)N terms in the Fourier
non-zero mode sector are given by a Laurent polynomial in y with rational coefficients. It
would be extremely interesting to firstly understand how to generalise the Fourier zero-
mode result (A.8b) from [20] and obtain the perturbative expansion in the Fourier non-zero
mode sector where presumably the general Kloosterman sum in (A.3) will be the source
for the aforementioned completed L-values.

Secondly, very much in the spirit of the present work, one should be able to retrieve the
(qq̄)N terms in the Fourier non-zero mode sector from Cheshire cat resurgence applied to
a suitable deformation of the perturbative expansion in the Fourier non-zero mode sector.

The importance of these questions is even more prominent when considering a second
class of modular invariant functions, denoted by F−(s)

m,k in [33, 34]. Since the F−(s)
m,k are odd

under the involution τ→−τ̄ of the upper half-plane, they must be cuspidal i.e. they have
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a vanishing Fourier zero-mode a0(m,k;s;y) = 0. Although the Poincaré seeds for F−(s)
m,k are

completely understood [33], at the present time it is not known how to reconstruct the
Fourier non-zero modes, an(m,k;s;y), for F−(s)

m,k via the Poincaré series approach reviewed
in appendix A. We believe that a story closely resembling the present work should hold for
the non-zero modes of the cuspidal functions F−(s)

m,k as well.

Furthermore, the importance of our work extends to an even broader class of functions.
An equation very similar to (2.15) has appeared also in the context of higher-derivative
corrections, in particular the schematic term D6R4, to the type IIB low-energy effective
action, where now SL(2,Z) plays the role of U-duality acting on the axio-dilaton [66]. Even
though the inhomogeneous equation looks very similar, an important difference is that in
the context of the D6R4 term the indices m and k on the Eisenstein series in (2.15) are
half-integral. This leads to (qq̄)n that are multiplied by non-terminating asymptotic series
φ

(s)
m,k in (3.42) whereas for MGFs only Laurent polynomials entered, see section 3.3 for

examples. This makes the study of the MGFs more tractable. However, the half-integer
cases have also shown up in many contexts and we refer to [51, 51, 64, 66–72, 72–74] for
related work.

The U-duality-invariant higher derivative couplings are also relevant for precisions tests
of the AdS/CFT correspondence. On the AdS/CFT side, recent developments on the flat-
space limit of type-IIB effective actions on AdS5×S5 involving localisation and conformal-
bootstrap methods include [72, 75–81], and the interplay with correlation functions in
N = 4 super Yang-Mills has for instance been investigated in [82–92], see also the recent
review [93]. We expect some form of Cheshire cat resurgence to be also applicable to the
cases of higher derivative couplings, where the modular parameter τ is now representing
the axio-dilaton, while the recent work [94] discusses some resurgent analysis properties of
the large-N expansion from the point of view of (integrated) correlation functions in N = 4
super Yang-Mills.

Finally, a key point to understand is the generalisation of our results to higher genus
world-sheets. In a certain degeneration limit, a genus-two world-sheet can be thought of as
a genus-one world-sheet where we have “shrunk” one of the two handles down to a pair of
marked points on the surviving torus. The low-energy expansion of genus-two string scat-
tering amplitudes in the degeneration limit produces then a new class of functions, called
elliptic modular graph forms (eMGFs) [95, 96], depending both on the modular parameter
τ , as well as on a second parameter z, encoding the details of the degeneration limit. It is
still not fully understood how to compute in general the expansion of eMGFs at the cusp
τ→ i∞ since both the perturbative, Laurent polynomial part, and the non-perturbative
corrections do now depend on the additional parameter z. We believe a parametric resur-
gent analysis approach [97] (i.e. resurgent analysis with respect to τ , while z remains a
parameter) to this problem should allow us to reconstruct the non-perturbative correc-
tions, with their z-dependence, from the z-dependent perturbative asymptotic expansion
at the cusp.
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A Fourier expansions of Poincaré series

Here, we collect some standard results (see e.g. [49]) on relating the Fourier series of a
Poincaré series to that of its seed, following the notation of [20, 33]. We start from the
relation

Φ(τ) =
∑

γ∈B(Z)\SL(2,Z)
ϕ(γτ) , (A.1)

between the Poincaré series Φ(τ) and its seed ϕ(τ) that have the respective Fourier series

Φ(τ) =
∑
`∈Z

a`(τ2)e2πi`τ1 , ϕ(τ) =
∑
`∈Z

c`(τ2)e2πi`τ1 , (A.2)

with τ1 = Reτ and τ2 = Imτ . The relation between the Fourier coefficients a`(τ2) and c`(τ2)
is given by [49, 50]:

a`(τ2) = c`(τ2)+
∞∑
d=1

∑
n∈Z

S(n,`;d)
∫
R
e
−2πi`ω−2πin ω

d2(τ2
2 +ω2) cn

( τ2
d2(τ2

2 +ω2)
)
dω . (A.3)

In the above formula, S(n,`;d) denotes the Kloosterman sum

S(n,`;d) =
∑

r∈(Z/dZ)×
e2πi(nr+`r−1)/d , (A.4)

where r∈ (Z/dZ)× denotes the finite sum over all 0≤ r <d that are coprime with d. If r is
coprime with d it has a multiplicative inverse, denoted by r−1, in (Z/dZ)×.

The main focus for us is the Fourier zero-mode a0(τ2) for which (A.3) specialises to

a0(τ2) = c0(τ2)+
∞∑
d=1

∑
n∈Z

∑
r∈(Z/dZ)×

e2πinr/d
∫
R
e
−2πin ω

d2(τ2
2 +ω2) cn

( τ2
d2(τ2

2 +ω2)
)
dω

= I0(τ2)+I(τ2) . (A.5)

As indicated in the second line it is useful to separate the contributions of c0 from those
of the cn with n 6= 0, where we defined (changing also variables according to ω= τ2 t)

I0(τ2) = c0(τ2)+τ2

∞∑
d=1

∑
r∈(Z/dZ)×

∫
R
c0
( 1
τ2d2(1+t2)

)
dt ,

I(τ2) = τ2

∞∑
d=1

∑
n 6=0

∑
r∈(Z/dZ)×

e2πinr/d
∫
R
e
−2πn it

τ2d2(1+t2) cn
( 1
τ2d2(1+t2)

)
dt . (A.6)
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In this work only Poincaré seeds of a restricted functional form appear. More precisely,
all seeds here considered are given by (finite) linear combination of the basic objects

c0(y) = (πτ2)r = yr , (A.7a)
c`(y) =σa(|`|)(4π|`|)bτ r2 e−2π|`|τ2 =σa(|`|)(4π|`|)b(y/π)re−2|`|y , (A.7b)

with a,b,r∈C and y=πτ2. Their contributions to the Laurent polynomial in a0(τ) were
found in [20] to be

I0(r;y) = yr+ (−16)1−r(2r)!(2r−3)!
B2r(r−2)!(r−1)! ζ(2r−1)y1−r , (A.8a)

I(a,b,r;y) = 23−2r+2bπ

Γ(r)

(
y

π

)1+b−r[ y
π2

Γ(b+1)Γ(2r−b−2)
Γ(r−b−1)

ζ(2r−a−2b−2)ζ(1−a)
ζ(2r−a−2b−1)

+
(
y

π2

)a+1 Γ(a+b+1)Γ(2r−a−b−2)
Γ(r−a−b−1)

ζ(2r−a−2b−2)ζ(a+1)
ζ(2r−a−2b−1)

+
(
π2

y

)b∑
n≥0

(
−π2

y

)n Γ(2r+n−1)
n!·Γ(r+n) (A.8b)

× ζ(−b−n)ζ(−a−b−n)ζ(2r−a−b+n−1)ζ(2r−b+n−1)
ζ(2r+2n)ζ(2r−a−2b−1)

]
,

In view of (2.16), the result I0 for a seed c0(y) = yr is proportional to that of the standard
non-holomorphic Eisenstein series Er.

The above results (A.8) were obtained originally in the range of parameters where the
integrals and series converge. We shall also require their values at analytically continued
parameter values and refer the reader to [20, 33] for details on these analytic continuations.

B A Mellin transform Lemma

In this appendix we will derive the asymptotic expansion near y→ 0 of the series:

Da,b;c(y) =
∞∑
n=1

σa(n)σb(n)
nc

e−ny, (B.1)

with a,b,c∈C while y > 0. Notice that this series is absolutely convergent for any y > 0
since |σa(n)σb(n)n−c| ≤n2+|a|+|b|+|c|. Furthermore, using σa(n) =naσ−a(n) we have

Da,b;c(y) =D−a,b;c−a(y) =Da,−b;c−b(y) =D−a,−b;c−a−b(y) .

To proceed, we wish to evaluate the Mellin transform

Ma,b;c(t) :=M[Da,b;c](t) =
∫ ∞

0
Da,b;c(y)yt−1dy. (B.2)

Since the series (B.1) is exponentially suppressed as y→∞, we conclude that for sufficiently
large Re(t)>t0 the integral converges absolutely. Hence, when Re(t)>t0, we can commute
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Figure 3. Deformed t-integration contour for (B.4) and poles structure for the Mellin transform
Ma,b;c(t). For a,b,c∈C generic, there are two infinite families of poles: t=−n, n∈Z≥0 and t=
−n−c+ a+b

2 , n∈Z>0, as well as four isolated poles for t∈{1−c,1+a−c,1+b−c,1+a+b−c}.

the sum with the integral and integrate term by term. After using the standard Ramanujan
identity (3.6) we obtain

Ma,b;c(t) = Γ(t)ζ(t+c)ζ(t+c−a)ζ(t+c−b)ζ(t+c−a−b)
ζ(2t+2c−a−b) . (B.3)

Although we derived this equation working in the wedge Re(t)>t0, we have that (B.3) is
actually the unique meromorphic extension of Ma,b;c(t) to the whole complex plane t∈C.

The asymptotic expansion as y→ 0 of Da,b;c(y) is uniquely fixed by the singularities in
t of its Mellin transform Ma,b;c(t). To make this more precise we consider Mellin inversion
formula

Da,b;c(y) =M−1[Ma,b;c](y) = 1
2πi

∫ t1+i∞

t1−i∞
Ma,b;c(t)y−tdt, (B.4)

where t1>t0 is arbitrary. The asymptotic expansion as y→ 0 of (B.4) can now be computed
by closing the contour into a loop with Re t< 0, as depicted in figure 3, and evaluating
it using Cauchy’s residue theorem (and discarding exponentially suppressed corrections
e−4π2/y).

Note that the Mellin transform (B.3) is a meromorphic function with an infinite number
of poles for generic values of a,b,c. Hence from (B.4), we expect the expansion for y→ 0
of Da,b;c(y) to be a non-terminating asymptotic series expansion. It is easy to see that for
generic a,b,c∈C the Mellin transform (B.3) has only simple poles at locations:

• t=−n, n∈Z≥0, from the gamma function in the numerator;

• t∈{1−c,1+a−c,1+b−c,1+a+b−c}, from the zeta functions in the numerator;

• t=−n−c+ a+b
2 , n∈Z>0, from the zeta function in the denominator.
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Nevertheless, for non-generic values of the parameters a,b,c, we can have that zeros
at negative even integers of the zeta functions in the numerator, or the pole at one of the
zeta function in the denominator, can cancel against the poles listed above thus leaving
only a finite number of perturbative terms. Note that for non-generic values of a,b,c it is
also possible to generate higher order poles, thus leading to logarithmic terms, logy, in the
asymptotic expansion as y→ 0 of Da,b;c(y).

Assuming generic a,b,c∈C, we can compute (B.4) via residues calculus deforming the
contour of integration as depicted in figure 3 and derive the asymptotic expansion as y→ 0
of Da,b;c(y) given by:

Da,b;c(y)∼ (B.5)

yc−1 Γ(1−c)ζ(1−a)ζ(1−b)ζ(1−a−b)
ζ(2−a−b) +yc−a−1 Γ(1+a−c)ζ(1+a)ζ(1−b)ζ(1+a−b)

ζ(2+a−b)

+yc−b−1 Γ(1+b−c)ζ(1−a)ζ(1+b)ζ(1−a+b)
ζ(2−a+b)

+yc−a−b−1 Γ(1+a+b−c)ζ(1+a)ζ(1+b)ζ(1+a+b)
ζ(2+a+b)

+
∞∑
n=0

(−y)n ζ(c−n)ζ(c−a−n)ζ(c−b−n)ζ(c−a−b−n)
n!ζ(2c−2n−a−b)

+
∞∑
n=1

yc−
a+b

2 (−4π2y)n
Γ(a+b

2 −c−n)ζ(a+b
2 −n)ζ( b−a2 −n)ζ(a−b2 −n)ζ(−a+b

2 −n)
(2n)!ζ(2n+1) .

Note that for generic a,b,c∈C, both sums over n are asymptotic, factorially growing
series. An interesting exercise would be to use resurgent analysis to derive the exponentially
suppressed corrections e−4π2k/y, with k∈Z>0, from a median resummation of such series.
As a consistent, full-circle analysis the large-y expansion of such small-y non-perturbative
corrections must reproduce back the starting large-y exponentially suppressed series (B.1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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