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Squarefrees are Gaussian in short intervals
By Ofir Gorodetsky at Oxford, Alexander Mangerel at Durham and Brad Rodgers at Kingston

Abstract. We show that counts of squarefree integers up to X in short intervals of
size H tend to a Gaussian distribution as long as H !1 and H D Xo.1/. This answers
a question posed by R. R. Hall in 1989. More generally, we prove a variant of Donsker’s theo-
rem, showing that these counts scale to a fractional Brownian motion with Hurst parameter 1=4.
In fact, we are able to prove these results hold in general for collections of B-free integers as
long as the sieving set B satisfies a very mild regularity property, for Hurst parameter varying
with the set B .

1. Introduction

1.1. Statistics of counts of squarefrees. Let S � N be the set of squarefree natural
numbers (that is natural numbers without a repeated prime factor; by convention, we include
1 2 S ). We write

NS .x/ D j¹n � x W n 2 Sºj

for the number of squarefrees no more than x. It is well known that NS .x/ � x=�.2/; thus the
squarefrees have asymptotic density 1=�.2/ D 6=�2. Our purpose in this note is to investigate
their distribution at a finer scale. In particular, we will investigate the distribution of squarefrees
in a random interval .n; nCH�, where n is an integer chosen uniformly at random from 1 toX ,
with X !1.

IfH is fixed and does not grow withX , at mostO.1/ squarefrees can lie in such an inter-
val. Their distribution as X !1 is slightly complicated but completely understood; it may be
described by Hardy–Littlewood type correlations which can be derived from elementary sieve
theory (see [31, 32]). Or, more abstractly, the distribution of squarefrees in an interval of size
O.1/ can be described by a non-weakly mixing stationary ergodic process (see [7, 43]).

For H tending to infinity with X , matters become at once simpler and more difficult;
simpler because some of the irregularities in the distribution just described are smoothed out at
this scale, but more difficult in that natural conjectures become more difficult to prove.
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Let
NS .n;H/ D NS .nCH/ �NS .n/

be the count of squarefrees in the interval .n; nCH�. R. R. Hall [16,17] was the first to inves-
tigate the distribution of this count when H grows with X . In [16, Corollary 1], Hall proved
that the variance of the number of squarefrees is of order

p
H ifH is not too large with respect

to X . More exactly, as X !1, we have
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as long as H !1 with H � X2=9�".
Keating and Rudnick [25] studied this problem in a function field setting, connecting it

with Random Matrix Theory, and suggested based on this that (1.1) will hold for H � X1�".
The best known result is [13], where it is shown that (1.1) holds for H � X6=11�" uncondi-
tionally and H � X2=3�" on the Lindelöf Hypothesis. In fact, in [13], it is shown that even
an upper bound of order

p
H for H � X1�" for all " > 0 would already imply the Riemann

Hypothesis.
Because NS .n;H/ is on average of order H , one might naively have expected the vari-

ance to also be of order H . That the variance is of order
p
H speaks to the fact that the

squarefrees are a rather rigid sequence. This can be discerned even visually in comparison, for
instance, to the primes (Figure 1), and we will return to give a more exact description of it in
Section 1.3.

In [17], Hall1) studied higher moments of counts of squarefrees in short intervals

Mk.X;H/ D
1

X

X
n�X

�
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H

�.2/

�k
;

where k is a positive integer, proving the upper bound limX!1Mk.X;H/�k H
.k�1/=2.

Various authors have asked whether this can be refined, with the most recent result,

Mk.X;H/�" H
k=4C"

for any " > 0 as long as H � X4=.9k/�", being due to Nunes [37]. For H in the range consid-
ered, this is an optimal upper bound up to the factor ofH ". In [3], extensive numerical evidence
is presented that suggests that these moments are in fact Gaussian.

Our first main result confirms this conjecture.

Theorem 1.1. For 1 � H � X , as X !1,

Mk.X;H/ D �k.A
1
2H

1
4 /k COk.H

k
4
� c
k CHkX�

1
3
Co.1//

for every positive integer k, where �k D 1 � 3 � � � .k � 1/ if k is even and �k D 0 if k is odd.
Here c > 0 is an explicit constant.

1) Note that our definition of Mk differs slightly from [17]. Hall does not normalize by the factor 1=X .
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(a) A short interval near 100000 containing 125 primes.

(b) A short interval near 100000 containing 125 squarefrees.

Figure 1. A comparison between a short interval containing 125 primes with a short interval
containing 125 squarefrees. The relative paucity of gaps and clusters of squarefrees is
indicative of the rigidity of their distribution.

Thus if H !1 and H � X4=.9k/�" for some " > 0, we have

Mk.X;H/ D .�k C o.1//.A
1
2H

1
4 /k as X !1:

Note that the main term is the k-th moment of a centered Gaussian random variable with
variance A

p
H .

If H D Xo.1/, then for any fixed k, we have that H satisfies H � X4=.9k/�" for some
" > 0 for sufficiently large X . Hence, by the moment method (see [4, Section 30]), we obtain
the following result.

Theorem 1.2. Let H D H.X/ satisfy

H !1; yet
logH
logX

! 0 as X !1:

Then, for any z 2 R,
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2 dt:

That is, the centered, normalized counts tend in distribution to a Gaussian random vari-
able.

Gaussian limit theorems are known for the sums over short intervals of several important
arithmetic functions (for instance divisor functions dk (see [28]) and the sums-of-squares rep-
resentation function r (see [20])), and Gaussian limit theorems for counts of primes in short
intervals are known under the assumption of strong versions of the Hardy–Littlewood conjec-
tures [33], but Theorem 1.2 seems to be the first instance of an unconditional proof of Gaussian
behavior for short interval counts of a non-trivial, natural number theoretic sequence.

Hall in [17] asked also about the order of magnitude of the absolute moments

MC
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;

and as a standard corollary of Theorems 1.1 and 1.2, we obtain an asymptotic formula for these.

Corollary 1.3. For fixed � > 0, let H D H.X/ satisfy

H !1; yet
logH
logX

! 0 as X !1:
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Then
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Proof. We give a quick derivation in the language of probability. By [4, Theorem 25.12]
and the subsequent corollary, if Yj is a sequence of random variables tending in distribution to
a random variable Y and supj EjYj j1C" < C1 for some " > 0, then EYj ! EY . Having
chosen the function H D H.X/, for each X , let n 2 Œ1; X� be chosen randomly and uni-
formly, and define the random variables �X D j.NS .n;H/ �H=�.2//=.A1=2H 1=4/j�. Then,
as X !1, we have that �X tends in distribution to jGj� for G a standard normal random
variable, by Theorem 1.2. Moreover, Theorem 1.1 implies for any even integer 2` > � that
lim supX!1Ej�X j2` < C1. Thus the result follows by computing EjGj� via calculus.

Remark 1.4. For a given result relating to the behavior of an arithmetic function in short
intervals, it is natural to consider the analogous problem in a short arithmetic progression. For
example, in analogy to the quantity NS .n;H/ for n 2 Œ1; x� and H D H.x/ slowly growing,
one might consider the quantity

NS .xI q; a/´ j¹n � x W n 2 S; n � a mod qºj;

where 1 � q � x is chosen so large that x=q (which corresponds in this context to H ) is only
slowly growing, and a mod q is a specified residue class. When a is coprime to q, the expected
size of NS .xI q; a/ is

1
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;

and one can define the analogous moments

zMk.xI q/´
1
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for k � 2:

As noted by Nunes [37, Sections 1.2, 3.2], one may reduce the estimation of zMk.xI q/ to
a quantity that is very similar to what is obtained in the course of estimating Mk.x;H/, mak-
ing the analysis of the problem for arithmetic progressions nearly identical to that of short
intervals. As such, one could very similarly obtain an arithmetic progression analogue of the
Gaussian limit theorem, Theorem 1.2, if desired. However, unlike the short interval problem,
the problem in progressions does not seem to admit a nice interpretation in the language of
fractional Brownian motion (see Section 1.3). We have therefore chosen to focus on the short
interval problem in this paper in order to avoid making this paper even longer.

1.2. B-frees. It is natural to write our proofs in the more general setting of B-free
numbers. We recall their definition shortly, but first we fix some notation.

For a sequence J of natural numbers, we will write 1J for the indicator function of J ,
and

NJ .x/ D
X
n�x

1J .n/

for the count of elements of J no more than x.
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Definition 1.5. We say that a sequence J is of index ˛ 2 Œ0; 1� if NJ .x/ D x˛Co.1/.

Definition 1.6. A measurable function L defined, finite, positive, and measurable on
ŒK;1/ for some K � 0 is said to be slowly varying if, for all a > 0,

lim
x!1

L.ax/

L.x/
D 1:

A sequence J � N is said to be regularly varying if NJ .x/ � x˛L.x/ for some ˛ 2 Œ0; 1� and
some slowly varying function L.

For instance, the function L.x/ D .log x/j is slowly varying for any j 2 R. For any
slowly varying functionL, it is necessary thatL.x/ D xo.1/, but this condition is not sufficient.
Clearly, in the definition above, ˛ will be the index of the regularly varying sequence J . Further
information on regularly varying sequences can be found in [41, Chapter 4.1].

Fix a non-empty subset B � N>1 of pairwise coprime integers with
P
b2B 1=b <1;

we call such a set a sieving set. We say that a positive integer is B-free if it is indivisible by
every element of B . For instance, if B D ¹p2 W p primeº, B-frees are nothing but squarefrees.
Another studied example is B D ¹pm W p primeº for some m � 3, for which B-frees are the
m-th-power free numbers, i.e., integers indivisible by an m-th power of a prime. The notion
of B-frees was introduced by Erdős [12], who was motivated by Roth’s work [42] on gaps
between squarefrees. (See also [6, 22] for the closely related notion of convergent sieves. We
also mention that [22] upper bounded the quantity zM2.xI q/ mentioned in Remark 1.4.)

We write 1B-freeWN ! C for the indicator function of B-free integers, and NB-free.x/ for
the number of B-free integers n � x. For the sets B , we are considering here, it is known (see
e.g., [10, Theorem 4.1]) that

NB-free.x/ �MBx for MB D

Y
b2B

�
1 �

1

b

�
2 .0; 1/

so that B-frees have asymptotic density MB .
We write hBi for the multiplicative semigroup generated by B , that is the set of positive

integers that can be written as a product of (possibly repeated) elements of B . By conven-
tion, 1 2 hBi, as 1 arises from the empty product. (For instance, if B D ¹p2 W p primeº, then
hBi D ¹n2 W n 2 Nº.)

We introduce an arithmetic function �B WN ! C, analogous to the Möbius function �,
defined by

�B.n/ D

´
0 if n … hBi or if there exists b 2 B with b2 j n;

.�1/k if n D b1b2 � � � bk; b1 < b2 < � � � < bk; bj 2 B:

Observe that �B and 1B-free are multiplicative and relate via the multiplicative convolution

1B-free D �B � 1:

We denote by ŒB� � hBi the subset of hBi of elements n satisfying �2B.n/ D 1, i.e., those
n 2 hBi such that no b 2 B divides n twice. (For instance, if B D ¹p2 W p primeº, then we
have ŒB� D ¹n2 W n squarefreeº.) We will often use without mention the fact that both ŒB� and
hBi are closed under gcd and lcm, or equivalently, they are sublattices of the positive integers
with respect to these two operations.



6 Gorodetsky, Mangerel and Rodgers, Squarefrees are Gaussian in short intervals

1.2.1. Variance and moments. Let NB-free.n;H/ D NB-free.nCH/ �NB-free.n/ be
the count of B-frees in an interval .n; nCH�. We consider the moments

Mk;B.X;H/ D
1

X

X
n�X

�
NB-free.n;H/ �MBH

�k
:

Proposition 1.7. If the sequence hBi has index ˛ 2 .0; 1/, then for each fixed positive
integer k,

Ck;B.H/´ lim
X!1

Mk;B.X;H/

exists, and moreover, for any " > 0, we have

Mk;B.X;H/ D Ck;B.H/COk.H
kX

˛�1
˛C1
C"
C 1/:

We will describe an explicit formula for Ck;B.H/ later.
When k D 2, we have the following general result for the variance, building on ideas of

Hausman and Shapiro [19] and Montgomery and Vaughan [34].

Proposition 1.8. If the sequence hBi is of index ˛ 2 .0; 1/, then C2;B.H/ D H˛Co.1/.

If hBi is in addition a regularly varying sequence, then we prove an asymptotic formula
for C2;B.H/.

Proposition 1.9. If the sequence hBi is regularly varying with index ˛ 2 .0; 1/, then

C2;B.H/ � A˛NhBi.H/;

where

A˛ ´ �.2 � ˛/.˛/
Y
b2B

�
1 �

2

b
C

2

b1C˛
�

1

b2˛

�
with .˛/´

.2�/˛

�2
cos
��˛
2

�
�.1 � ˛/:

(1.2)

This generalizes a result of Avdeeva [2] which requires more robust assumptions about
hBi. It also gives a new proof for (1.1) that does not use contour integration and is essentially
elementary.

In fact, we do not need an asymptotic formula for the variance to prove that the moments
are Gaussian.

Theorem 1.10. If hBi has index ˛ 2 .0; 1/, then

Ck;B.H/ D �kC2;B.H/
k
2 COk.H

k˛
2
� c
k /

for every positive integer k. Here c is an absolute constant depending only on ˛.

It is evident that Proposition 1.8 and Theorem 1.10 recover the moment estimate Theo-
rem 1.1 for squarefrees. Moreover, for the same reasons as given for the central limit theorem
there, we have the following theorem.
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Theorem 1.11. Let H D H.X/ satisfy

H !1; yet
logH
logX

! 0 as X !1:

If the sequence hBi has index ˛ 2 .0; 1/, then for any z 2 R,

lim
X!1

1

X

ˇ̌̌̌²
n � X W

NB-free.n;H/ �MBHp
C2;B.H/

� z

³ˇ̌̌̌
D

1
p
2�

Z 1
z

e�
t2

2 dt:

Remark 1.12. Combining Theorem 1.10 and Proposition 1.7, we see that, for each k,
the moments Mk;B.X;H/ will be asymptotically Gaussian as long as H;X !1 with

H � X
c˛
k
�"; where c˛ D

1 � ˛

.1C ˛/.1 � ˛
2
/
:

In Section 6.2, we give a further application of Theorem 1.10 to estimates for the fre-
quency of long gaps between consecutive B-free numbers, improving results of Plaksin [39]
and Matomäki [29].

1.3. Fractional Brownian motion. We have mentioned that the squarefrees and more
generally B-frees in a random interval .n; nCH� with n � X are governed by a stationary
ergodic process if H remains fixed. The number of B-frees in such an interval is MBH on
average. This process has measure-theoretic entropy which becomes smaller the larger H is
chosen to be, and thus does not seem very “random”. This may be compared to primes in short
intervals .n; nC b� logXc�, which contain on average � primes. In such intervals, primes are
conjectured to be distributed as a Poisson point process, and thus appear very “random”.

Nonetheless, a glance at Figure 1 comparing squarefrees to primes – along with consider-
ation of the central limit theorems we have just discussed – reveals that, at a scale of H !1,
B-frees still retain some degree of randomness. It turns out that there is a natural framework to
describe the “random” behavior of B-frees at this scale (analogous to the Poisson process for
primes above), and this is fractional Brownian motion.

We give here a short introduction to fractional Brownian motion, as we believe this per-
spective sheds substantial light on the distribution of B-frees; however, the remainder of the
paper is arranged so that a reader only interested in the central limit theorems of the previous
sections can avoid this material.

Definition 1.13. A random process ¹Z.t/ W t 2 Œ0; 1�º is said to be a fractional Brownian
motion with Hurst parameter  2 .0; 1/ if Z is a continuous-time Gaussian process which
satisfies Z.0/ D 0 and also satisfies EZ.t/ D 0 for all t 2 Œ0; 1� and has covariance function

(1.3) EZ.t/Z.s/ D
1

2
.t2 C s2 � jt � sj2 /

for all t; s 2 Œ0; 1�.

Using Z.0/ D 0, it is easy to see the covariance condition (1.3) is equivalent to

EjZ.t/ �Z.s/j2 D jt � sj2 :

For a proof that such a stochastic process exists and is uniquely defined by this definition, see
e.g. [36].
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Classical Brownian motion is a fractional Brownian motion with a Hurst parameter of
 D 1=2. If  > 1=2, increments of the process are positively correlated, with a rise likely
to be followed by another rise, while if  < 1=2, increments of the process are negatively
correlated.

Donsker’s theorem is a classical result in probability theory showing that a random walk
with independent increments scales to Brownian motion (see [5, Section 8]). We prove an
analogue of Donsker’s theorem for counts of B-frees using the following set up. We select
a random starting point n � X at uniform and define the random variables �1; �2; : : : in terms
of n by

�k D 1B-free.nC k/ �MB D

´
1 �MB if nC k is B-free;

�MB otherwise:

Set

Q.�/ D

b�cX
kD1

�k C ¹�º�b�cC1;

where ¹�º denotes the fractional part.
For integer � , this is a random walk which increases on B-frees and decreases otherwise,

and for non-integer � , the function Q.�/ linearly interpolates between values; thus Q.�/ is
continuous.

Theorem 1.14. Let H D H.X/ satisfy

H !1; yet
logH
logX

! 0 as X !1;

and choose a random integer n 2 Œ1; X� at uniform. Suppose that hBi is a regularly varying
sequence of index ˛ 2 .0; 1/, and define the function

(1.4) WX .t/ D
1p

A˛NhBi.H/
Q.t �H/;

where A˛ is defined by (1.2). Then, as a random element of C Œ0; 1�, the functionWX converges
in distribution to a fractional Brownian motion with Hurst parameter ˛=2 as X !1.

Our proof of this result follows similar ideas as the proof of Theorem 1.10.
Note that ˛=2 < 1=2, so only a fractional Brownian motion with negatively correlated

increments can be induced this way. It would be very interesting to understand functional limit
theorems of this sort in the context of ergodic processes related to the B-frees described in
e.g. [3, 8–10, 24, 27, 30]. There seem to exist only a few other constructions in the literature of
a fractional Brownian motion as the limit of a discrete model, e.g. [1, 11, 18, 38, 44].

1.4. Notation and conventions. Throughout the rest of this paper, we allow the implicit
constants in� and O. � / to depend on k when considering a k-th moment, and implicit con-
stants are always for a fixed sieving set B . Later, we will introduce a weight function ', and
implicit constants depend on ' as well. Throughout the paper, where B has an index ˛, for
simplicity, we will assume that ˛ 2 .0; 1/. Some proofs would remain correct if ˛ D 0 or 1,
but the proofs of our central results would not be. We use the notation a � x as a subscript
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(a) A random walk on squarefrees (b) A random walk on primes

Figure 2. A graph of Q.�/ and an analogue for the primes in the short interval .n; nCH� with
n D 875624586 and H D 3000. (a) illustrates a walk which increments by 1 � 6=�2

if u is squarefree, and �6=�2 otherwise. (b) illustrates a walk which increments by
1 � 1=logu if u is prime, and �1=logu if u is composite.

(a)  D 0:25 (fBm) (b)  D 0:5 (Brownian motion)

Figure 3. A fractional Brownian motion and Brownian motion respectively, randomly generated
using Mathematica, to be compared with the previous figure.

in some sums to mean x < a � 2x. In general, we follow standard conventions; in particular,
e.x/ D ei2�x , kxk denotes the distance of x 2 R to the nearest integer, .a; b; c/ is the greatest
comment divisor of a, b, and c, while Œa; b; c� is the least common multiple.

1.5. The structure of the proof. There is a heuristic way to understand the Gaussian
variation of NB-free.n;H/. Note that

NB-free.n;H/ D
X

n<vd�nCH

�B.d/ D
X
d2ŒB�
d�XCH

�B.d/
�jnCH

d

k
�

jn
d

k�

D

X
d2ŒB�
d�XCH

��B.d/
d

H C �B.d/
�°n
d

±
�

°nCH
d

±��
:

The contribution of the first summand is close to the value MBH around which NB-free.n;H/

oscillates. On the other hand, the functions n 7! ¹.nCH/=dº � ¹n=dº are mean-zero func-
tions of period d and thus are linear combinations of terms e.n`=d/ for 1 � ` � d � 1. Upon
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reducing the fractions `=d by the maximal divisor b j .`; d/ with b 2 hBi, we see that

NB-free.n;H/ �MBH

is approximated by a linear combination of terms e.n`=d/ for .`; d/ B-free and d 2 ŒB�.
Heuristically, if X is large and n 2 Œ1; X� is chosen uniformly at random, one may

expect the terms ¹e.n`=d/ W .`; d/ B-freeº to behave like a collection of independent random
variables, and this would imply the Gaussian oscillation of NB-free.n;H/.

Nonetheless, we do not quite have independence; instead, roughly speaking, one may use
the same Fourier decomposition to relate the k-th moment Mk;B.X;H/ to (weighted) counts
of solutions to the equation

(1.5)
`1

d1
C � � � C

`k

dk
� 0 mod 1;

where k`i=dik < 1=H for all i . Indeed, the realization that Mk.X;H/ for the squarefrees are
related to these counts appears already in [17].

It can be seen that Gaussian behavior will then follow from most solutions to the above
equation being diagonal, meaning there is some pairing `i=di � � j̀ =dj mod 1 for all i , and
this is what we demonstrate. Our main tool is the Fundamental Lemma and its extensions
(see Lemmas 2.6, 4.1, and 5.5), developed by Montgomery–Vaughan [34] and later used by
Montgomery–Soundararajan [33] to prove a conditional central limit theorem for primes in
short intervals.

However, this strategy if used by itself is not sufficient to prove a central limit theorem;
the Fundamental Lemma was already known to Hall who used it to obtain his upper bound
Mk.X IH/� H .k�1/=2. The reason this strategy does not work as it did for Montgomery–
Soundararajan is that Mk;B.X IH/ has size roughly H˛k=2; for primes, the k-th moment of
a short interval count is (conditionally) much larger. Thus, in order to recover a main term, our
error terms must be shown to be substantially smaller than for the primes.

We obtain an upper bound for the number of off-diagonal solutions to (1.5) by bringing in
two ideas in addition to those used by Montgomery–Soundararajan. The first is due to Nunes,
who showed in the recent paper [37] that solutions to (1.5) make a contribution to Mk.X IH/

only when di is larger than H 1�o.1/ for all i and the least common multiple of the di is
larger than Hk=2�o.1/; this argument appears in Section 5.1. The second is an observation
that bounding a term T4 which appears in a variant of the Fundamental Lemma (Lemma 5.5)
requires a more delicate treatment than that which appears in [34, Lemma 8]. However, it can be
accomplished in our context by counting solutions to a certain congruence equation, which in
turn can be estimated using an averaging argument relying crucially on the Pólya–Vinogradov
inequality; this is done in Section 5.2. See Remark 5.10 for further discussion of how the more
direct, but less quantitatively precise, approach of [34, Lemma 8] is insufficient in our context.

In order to prove that counts of B-frees scale to a fractional Brownian motion, it is not
sufficient to consider the flat counts NB-free.n;H/, but instead, we must consider the weighted
counts X

u2Z

'
�u � n
H

�
1B-free.u/;

where ' belongs to a class of functions that includes step-functions. A proof of a central limit
theorem for flat counts remains essentially unchanged as long as ' is of bounded variation and
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compactly supported in Œ0;1/. Convergence to a fractional Brownian motion as a corollary of
this central limit theorem is discussed in Section 7.

2. An expression for moments

In this section, we prove Proposition 1.7, giving an expression for Ck;B.H/. The results
proved in this section all suppose that the sieving set B is such that hBi has index ˛. (We do
not yet need to suppose that hBi is regularly varying.)

In order to eventually have a nice framework to prove Theorem 1.14 on fractional Brown-
ian motion, we generalize the moments we consider. Suppose 'WR! R is a bounded function
supported in a compact subset of Œ0;1/. Define Mk;B.X;H I'/ DMk.X;H I'/ by

Mk.X;H I'/ D
1

X

X
n�X

�X
u2Z

'
�u � n
H

�
1B-free.u/ �MB

X
h2Z

'
� h
H

��k
:

For ' D 1.0;1�, this recovers Mk;B.X;H/ as defined above. We have tried to write this paper
so that a reader interested only in the more traditional Theorem 1.11 can read it with this
specialization in mind.

We introduce the arithmetic function gB D g defined by

g.n/ D
�B.n/

n

Y
b−n

.1 � b�1/:

Given a bounded function 'WR! R supported on a compact subset Œ0;1/, we also
define the 1-periodic function

ˆH .t/ D
X
m2Z

e.mt/'
�m
H

�
;

where, as usual, e.u/´ e2�iu for u 2 R. Finally, given r 2 ŒB�, we denote by RB.r/ the
subset of the group R=Z given by

RB.r/ D
°a
r
W 1 � a � r; .a; r/ is B-free

±
=Z:

Proposition 2.1. If the sequence hBi has index ˛ 2 .0; 1/ and ' is of bounded variation
and supported in a compact subset of Œ0;1/, then for all fixed integers k � 1 and any " > 0,
as long as H � X ,

Mk.X;H I'/ D Ck.H I'/CO.H
kX

˛�1
˛C1
C"
C 1/;

where Ck.H I'/ is defined by the absolutely convergent sum

Ck.H I'/ D Ck;B.H I'/´
X

r1;:::;rk>1
rj2ŒB�8j

kY
jD1

g.rj /
X

�1C���C�k2Z
�i2RB.ri /8i

Y
1�j�k

ˆH .�j /:

Obviously, Proposition 2.1 implies Proposition 1.7 by setting ' D 1.0;1�.
Our ultimate goal will be to prove generalizations of Theorems 1.1 and 1.10, showing

that the moments Mk.X;H I'/ and Ck.H I'/ have Gaussian asymptotics for general '. This
will be the content of Theorems 6.1 and 6.2.
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2.1. The Fundamental Lemma and other preliminaries. We prove Proposition 2.1
in the next subsection, but first we must introduce a few tools.

For t 2 R and Y � 1, we let

(2.1) EY .t/ D

YX
nD1

e.nt/:

Note that EH is ˆH .t/ for ' D 1.0;1�. One has EH .t/� FH .t/ for all t , where

(2.2) FH .t/´ min
°
H;

1

ktk

±
;

and recall ktk is the distance from t to the nearest integer. The next lemma studies the first
and second moment of FH . The second moment was studied in [34, Lemma 4], and the first
moment is implicit in [37, Lemma 2.3]; we include a proof for completeness.

Lemma 2.2. We have

d�1X
`D1

FH

� `
d

�
� d min¹log d; logH º;

d�1X
`D1

F 2H

� `
d

�
� d min¹d;H º:

Proof. We use (2.2) to obtain

d�1X
`D1

F kH

� `
d

�
�

d�1X
`D1

min
°
H;
 `
d

�1±k � 2 X
max¹1;d=Hº�j�d=2

dk

j k
C 2

X
1�j�d=H

Hk

for k 2 ¹1; 2º. If k D 1, this is

� 2d
�
1C

X
max¹1;d=Hº�j�d=2

1

j

�
;

and we use the estimate X
j�n

1

j
D lognCO.1/

to conclude. For k D 2, we use X
j>n

1

j 2
�

1

n

and consider d � H and d > H separately.

Lemma 2.3. For ' supported in a compact subset of Œ0;1/ and of bounded variation,

ˆH .t/� FH .t/;

where the implied constant depends on ' only.
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Proof. Suppose ' is supported on an interval Œ0; c�. By partial summation,

jˆH .t/j D
ˇ̌̌ X
1�j�cH

Ej .t/
�
'
�j � 1
H

�
� '

� j
H

��ˇ̌̌
� FH .t/

X
1�j�cH

ˇ̌̌
'
�j � 1
H

�
� '

� j
H

�ˇ̌̌
:

As ' is of bounded variation, the claim follows.

We introduce the arithmetic function

�B;lcm;k.d/´ j¹d1; : : : ; dk 2 B W Œd1; : : : ; dk� D dºj;

Lemma 2.4. For a sieving set B , for any k � 1 and any " > 0,

�B;lcm;k.d/�" d
":

Proof. Note that �B;lcm;k.d/ vanishes for d … hBi and is multiplicative for d 2 hBi.
If b 2 B , then �B;lcm;k.b

r/� rOk.1/. But, for any " > 0, this implies �B;lcm;k.b
r/� A � .br/"

for A a constant depending on " and k only. Thus, for d 2 hBi,

�B;lcm;k.d/� A!.d/d " � d "Co.1/;

where !.d/ is the number of prime factors of d and we use the estimate !.d/ D o.log d/ (see
e.g. [35, Theorem 2.10]). This implies the claim.

The next lemma is a variation on an estimate of Nunes [37, Lemma 2.4], who treated the
corresponding result when B D ¹pm W p primeº with m � 2.

Lemma 2.5. Suppose the sequence hBi has index ˛ 2 .0; 1/. Let x > 1 andm1; : : : ; mk
be a k-tuple of distinct non-negative integers and let X D max1�i�k.x Cmi /. We have

(2.3)
X

d1;:::;dk2ŒB�
Œd1;:::;dk�>z

X
n�x

kY
iD1

�
1n��mi .di / C

1

di

�
� Xo.1/.Xz˛�1Co.1/ CX

2˛
˛C1 /:

Proof. We prove the claim by induction on k. For k D 1, the inner sum in the left-hand
side of (2.3) is � X=d1 (by considering X > d1 and X � d1 separately), so we obtain the
bound X

d12ŒB�
d1>z

X
n�x

�
1n��m1.d1/ C

1

d1

�
�

X
d12ŒB�
d1>z

X

d1
� Xz˛�1Co.1/;

which is stronger than what is needed. We now assume that the bound holds for k0 and prove
it for k D k0 C 1.

We set D D Œd1; d2; : : : ; dk0C1� and Di D Œd1; : : : ; di�1; diC1; : : : ; dk� and introduce
a parameter z0 � X to be chosen later. We write the left-hand side of (2.3) as T1 C T2, where,
in T1, we sum only over tuples d1; : : : ; dk0C1 with Di � z0 holding for all 1 � i � k0 C 1,
and in T2, we sum over the rest.
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Observe that, by comparing exponents in the factorizations, D �
Qk0C1
iD1 .Di /

1=k0 . To
bound T1, observe that the condition on Di implies D � .z0/1C1=k0 . Using the Chinese re-
mainder theorem, the inner sum for T1 is� X=D C 1, and so we obtain the upper bound

T1 �
X

d1;d2;:::;dk0C12ŒB�

z<D�.z0/1C1=k0

�X
D
C 1

�
�

X
d2ŒB�

z<d�.z0/1C1=k0

�B;lcm;k0C1.d/
�X
d
C 1

�

� Xo.1/
�
Xz˛�1Co.1/ C .z0/2˛

�
;

where we have used Lemma 2.4 in the last step.
For each of the tuples summed over in T2, there is some j (1 � j � k0 C 1) with

Dj > z
0. The tuples corresponding to this j contribute to T2 at mostX

d1;:::;dj�1;djC1;:::;dk0C12ŒB�

Dj>z
0

X
n�x

Y
i¤j

�
1n��mi .di / C

1

di

� X
dj2ŒB�

�
1n��mj .dj / C

1

dj

�

� Xo.1/
X

d1;:::;dj�1;djC1;:::;dk0C12ŒB�

Dj>z
0

X
n�x

Y
i¤j

�
1n��mi .di / C

1

di

�
;

where we used the facts that

(i) the number of dj j nCmj will be� Xo.1/, and

(ii)
P
1=dj D O.1/.

Applying the induction hypothesis to bound the last double sum, we obtain

T2 � Xo.1/
�
X.z0/˛�1Co.1/ CX

2˛
˛C1

�
:

Taking z0 D X1=.˛C1/, we see that T1 C T2 does not exceed the desired bound.

Finally, throughout this paper, in order to control the inner sums defining Ck.H I'/,
we will use the Fundamental Lemma of Montgomery and Vaughan [34]. The following is
a generalization of the result proved in [34], which corresponds to the case of B being the
set of primes. The original proof in [34] works without any change under the more general
assumptions. Let

C.r/´
°a
r
W 1 � a � r

±
=Z:

Lemma 2.6 (Montgomery and Vaughan’s Fundamental Lemma). Let r1, r2, . . . , rk
be positive integers from ŒB�, and set r D Œr1; : : : ; rk�. For each 1 � i � k, let Gi .�i / be
a complex-valued function defined on C.ri /. Suppose each prime factor of r divides at least
two of the ri .2) Thenˇ̌̌̌ X

�i2C.ri /Pk
iD1 �i�0 mod 1

kY
iD1

Gi .�i /

ˇ̌̌̌
�
1

r

kY
iD1

�
ri

X
�i2C.ri /

jGi .�i /j
2
� 1
2
:

Later, in Lemmas 4.1 and 5.5, we will cite variants of this result.
2) Equivalently, each b 2 B that divides r divides at least two of the ri .
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2.2. Proof of Proposition 2.1.

Proof. We examine the inner sum defining Mk.X;H I'/. Note, for integers n,X
u2Z

'
�u � n
H

�
1B-free.u/ �MB

X
h2Z

'
� h
H

�
D

X
d2ŒB�

X
v2Z

'
�vd � n

H

�
�B.d/ �

X
d2ŒB�

�B.d/

d

X
h2Z

'
� h
H

�
D

X
d2ŒB�

�B.d/ H .n; d/;

where for notational reasons we have written

(2.4)  H .n; d/´
X
m2Z

'
�m
H

��
1m��n.d/ �

1

d

�
:

The function n 7!  H .n; d/ has period d . Considering it as a function on Z=dZ, it has mean 0.
By taking the finite Fourier expansion in n, we have

(2.5)  H .n; d/ D
1

d

d�1X
`D1

ˆH

� `
d

�
e
�n`
d

�
:

Thus

Mk.X;H I'/ D
1

X

X
n�X

X
d1;:::;dk2ŒB�

kY
jD1

�B.dj / H .n; dj /:

From the definition (2.4), each term  H .n; d/ involves summing over� H indices m. Thus,
from Lemma 2.5, we have

1

X

X
n�X

X
d1;:::;dk2ŒB�
Œd1;:::;dk�>z

kY
jD1

�B.dj / H .n; dj /

�
Hk

X
�Xo.1/.Xz˛�1Co.1/ CX

2˛
˛C1 /

(2.6)

for a parameter z to be chosen later.
On the other hand, by (2.5),

1

X

X
n�X

X
d1;:::;dk2ŒB�
Œd1;:::;dk��z

kY
jD1

�B.dj / H .n; dj /

D

X
d1;:::;dk2ŒB�
Œd1;:::;dk��z

�B.d1/ � � ��B.dk/

d1 � � � dk

�

X
0< j̀<dj
81�j�k

ˆH

� `1
d1

�
� � �ˆH

� `1
d1

�� 1
X
EX

� `1
d1
C � � � C

`k

dk

��
;

(2.7)
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where EX is defined as in (2.1). Note that if `1=d1 C � � � C `k=dk … Z, we have `1
d1
C � � � C

`k

dk

 � 1

Œd1; : : : ; dk�
;

and in this latter case,

1

X
EX

� `1
d1
C � � � C

`k

dk

�
�

Œd1; : : : ; dk�

X
:

Furthermore, note using Lemma 2.3 and the first part of Lemma 2.2 thatX
0<`<d

ˆH

� `
d

�
�

X
0<`<d

FH

� `
d

�
� d logH:

Thus the contribution of terms for which `1=d1 C � � � C `k=dk … Z is

� H o.1/
X

d1;:::;dk2ŒB�
Œd1;:::;dk��z

Œd1; : : : ; dk�

X
�
H o.1/

X

X
d2ŒB�
d�z

�B;lcm;k.d/d D
H o.1/z1C˛Co.1/

X
:

Thus (2.7) is X
d1;:::;dk2ŒB�
Œd1;:::;dk��z

�B.d1/ � � ��B.dk/

d1 � � � dk

X
0< j̀<dj 8jP

`i=di2Z

ˆH

� `1
d1

�
� � �ˆH

� `1
d1

�

CO
�H o.1/z1C˛Co.1/

X

�
:

(2.8)

We now complete the sum above. Directly applying Lemma 2.6 (and appealing to Lemma 2.3
and the second part of Lemma 2.2), we see that the corresponding sum over tuples

d D .d1; : : : ; dk/ with Œd1; : : : ; dk� > z

is

(2.9) � H
k
2

X
d1;:::;dk2ŒB�
Œd1;:::;dk�>z

1

Œd1; : : : ; dk�
� H

k
2 z˛�1Co.1/:

Hence, from (2.6), (2.8), (2.9),

Mk.X;H I'/ D C
�
k .H I'/CO

�
Hkz˛�1Co.1/Xo.1/ CHkX

˛�1
˛C1
Co.1/

CH o.1/z1C˛Co.1/X�1
�
;

where

C �k .H I'/ D
X

d1;:::;dk2ŒB�

�B.d1/ � � ��B.dk/

d1 � � � dk

�

X
0< j̀<dj 8jP

`i=di2Z

ˆH

� `1
d1

�
� � �ˆH

� `1
d1

�
:

(2.10)
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(Note that the absolute convergence of this sum is implied by the above derivation.) Setting
z D X .1�"/=.˛C1/, we obtain the desired error term.

It remains to demonstrate C �
k
.H I'/ D Ck.H I'/. To do this, note that if �i D `i=di ,

with 0 < `i < di , we can find a maximal ei 2 ŒB� such that `i D ei l 0i , di D eid
0
i and so that

.l 0i ; d
0
i / isB-free. Moreover, writing �i D l 0i=d

0
i does not affect the condition �1C � � � C �k 2Z.

Consequently, we haveX
0< j̀<dj8jP
`i=di2Z

ˆH

� `1
d1

�
� � �ˆH

� `k
dk

�
D

X
e1jd1
e12ŒB�

� � �

X
ek jdk
ek2ŒB�

X
� 01;:::;�

0
k

� 0
j
2RB.dj =ej /8j

� 01C���C�
0
k
2Z

ˆH .�
0
1/ � � �ˆH .�

0
k/:

Note also that, as `i ¤ 0, di=ei ¤ 1. Therefore, setting rj ´ dj =ej in each of the above sums,
we have

C �k .H I'/ D
X

r1;:::;rk>1
rj2ŒB�8j

�B.r1/ � � ��B.rk/

r1 � � � rk

� X
e1;:::;ek�1
ej2ŒB�8j

.ej ;rj / is B-free

�B.e1/ � � ��B.ek/

e1 � � � ek

�

�

X
�1;:::;�k
�j2RB.rj /
�1C���C�k2Z

ˆH .�1/ � � �ˆH .�k/:

The sums over ej factor as
kY

jD1

Y
b−rj
b2B

�
1 �

1

b

�
;

and we see C �
k
.H I'/ D Ck.H I'/, as required.

Remark 2.7. From (2.10), reindexing `01 D `1 and `02 D d2 � `2, we have the follow-
ing useful alternative expression for C2.H I'/:

C2.H I'/ D
X

d1;d22ŒB�

�B.d1/�B.d2/

d1d2

X
0<`01<d1
0<`02<d2

`01=d1D`
0
2=d2

ˆH

� `01
d1

�
ˆH

�
�
`02
d2

�
:

The absolute convergence of this sum is implied by the above argument.

Remark 2.8. When ' D 1.0;1�, the corresponding expression for C2.H I'/ may also
be calculated using correlation formulae for �B . Indeed, upon expanding the k-th power in the
definition of Mk.X;H I 1.0;1� and swapping orders of summation, we find

Mk.X;H I 1.0;1�/ D
X

0�j�k

�
k

j

�
.�MBH/

k�j
X

0�h1;:::;hj�H

1

X

�

X
n�X

1B-free.nC h1/ � � � 1B-free.nC hj /:
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When B D ¹p2 W p primeº, Hall [17, Lemma 2] used this approach to compute the main terms
Ck.H I 1.0;1�/. This was generalized straightforwardly to the setting with B D ¹pm W p primeº
for m � 3 by Nunes [37, Lemma 2.2] and can be generalized to B-frees as well.

3. Estimates for variance

3.1. Preliminary results on the index of B, ŒB� and hBi. In this section, we will
estimate the variance C2.H/ in various ways. We first prove some preliminary results relating
the index of hBi to ŒB� and B itself.

Lemma 3.1. For a sieving set B , the sequence hBi has index ˛ if and only if ŒB� has
index ˛.

Proof. Suppose hBi has index ˛. We first show that ŒB� has index ˛ also. Plainly,

NŒB�.x/ � NhBi.x/ D x
˛Co.1/:

On the other hand,

(3.1)
X

b�x;b2hBi

NŒB�

� x
b2

�
D NhBi.x/:

Introducing a parameter y D x", we upper-bound the left-hand sum as follows. For b � y with
b 2 hBi, we applyNŒB�.x=b2/ � NhBi.x=b2/, and for b < y, we use monotonicity in the form
NŒB�.x=b

2/ � NŒB�.x/. Thus

NhBi.y/NŒB�.x/ � NhBi.x/ �
X

b�y; b2hBi

NhBi

� x
b2

�
� x˛Co.1/;

so NŒB�.x/ � x.1�"/˛Co".1/. Since this holds for every " > 0, we obtain the lower bound
needed for the claim.

In the converse direction, if ŒB� has index ˛, then

NhBi.x/ � NŒB�.x/ D x
˛Co.1/:

To prove an upper bound for NhBi.x/, use (3.1) and note the left-hand side will be� x˛Co.1/

since
P
b2hBi b

�2˛ <1.

Other authors have proved results in this area based on assumptions regarding the index
of the setB (for instance [15]). Though we will not require it in what follows, for completeness’
sake, we note the following implication.

Proposition 3.2. For a sieving set B , if B has index ˛, then hBi also has index ˛.

Proof. As B � hBi, it suffices to prove an upper bound on NhBi.x/. For n 2 hBi, let
!B.n/´ #¹b 2 B W b j nº and define

N
.k/

ŒB�
´ ¹n � x W n 2 ŒB�; !B.n/ � kº:
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We will first show for any " > 0 there is a constant C" such that

(3.2) N
.k/

ŒB�
.x/ � C k" x

˛C":

For notational reasons, let B�´ B [ ¹1º. Fix " > 0. It is plain there exists a constant C" such
that X

b�x; b2B�

1

b˛C"
� C" and NB�.x/ � C"x

˛C":

This gives (3.2) for k D 1. But (3.2) then follows inductively for all k from the above bounds
and

N
.k/

ŒB�
.x/ �

X
b�x; b2B�

N
.k�1/

ŒB�

�x
b

�
:

Now note !B.n/ � !.n/ D o.log x/ for all n � x (see [35, Theorem 2.10]). Hence, for all x,
there exists k D o.log x/ such that

NŒB�.x/ D N
.k/

ŒB�
.x/ � C k" x

˛C"
D x˛C"Co.1/:

As " is arbitrary, this implies
NŒB�.x/� x˛Co.1/:

Using (3.1) as before, this implies NhBi.x/� x˛Co.1/ as desired.

It seems likely that the converse to Proposition 3.2 is false, but we do not pursue this
here.

3.2. Variance for hBi with index ˛. We now show that the exponent of the variance
is determined by the index of hBi.

Lemma 3.3. Suppose ' is of bounded variation, supported on a compact subset of
Œ0;1/. Assume moreover that ' is non-vanishing on some open interval. If hBi is of index
˛ 2 .0; 1/, then

C2.H I'/ D H
˛Co.1/:

Proof. We have

C2.H I'/ D
X
r>1
r2ŒB�

g.r/2
X

�2RB.r/

jˆH .�/j
2:

For an upper bound, we apply Lemma 2.3 and the second part of Lemma 2.2 to see thatX
�2RB.r/

jˆH .�/j
2
� r min¹r;H º:

As g.r/� 1=r , we have

C2.H I'/�
X
r>1
r2ŒB�

1

r2
� r min¹r;H º � H˛Co.1/:
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Suppose 'WR! R is supported on an interval Œ0; c�. Before embarking on the proof of the
lower bound, we make the following observation. Since ' is of bounded variation, we haveˇ̌̌̌

ˆH .0/ �H

Z 1
0

'.t/ dt

ˇ̌̌̌
�

X
0�m�cH

ˇ̌̌̌
'
�m
H

�
�H

Z .mC1/=H

m=H

'.t/ dt

ˇ̌̌̌

� H

Z 1=H

0

X
0�m�cH

ˇ̌̌
'
�m
H

�
� '

�m
H
C u

�ˇ̌̌
du� 1:

(3.3)

We now split the proof of the lower bound into two cases, depending on whether or notR1
0 '.t/ dt D 0.

Case 1:
R1
0 '.t/ dt D 0. From (3.3), we obtainˆH .0/ D O.1/. Now, for convenience,

set �H .r/ D 0 if r … ŒB�, and otherwise, put

�H .r/´
X

�2RB.r/

jˆH .�/j
2
D

X
a mod r

.a;r/ is B-free

ˇ̌̌
ˆH

�a
r

�ˇ̌̌2
:

Using the convolution formula 1B-free D 1 � �B for each r 2 ŒB�, we obtain

�H .r/ D
X

a mod r

.1 � �B/..a; r//
ˇ̌̌
ˆH

�a
r

�ˇ̌̌2
D

X
mdDr
m;d2ŒB�

�B.d/
X

b mod m

ˇ̌̌
ˆH

� b
m

�ˇ̌̌2
D

X
mdDr
m;d2ŒB�

�B.d/
X

�2C.m/

jˆH .�/j
2:

Moreover, if m � 10cH , then by Plancherel’s theorem on Z=mZ, we obtain

(3.4)
1

m

X
�2C.m/

jˆH .�/j
2
D

X
n1;n22Z
mj.n1�n2/

'
�n1
H

�
'
�n2
H

�
D

X
n2Z

'
� n
H

�2
� H;

where in the last step we used the fact that ' is non-vanishing on some open interval.
Since g.r/2 � r�2 for r 2 ŒB�, we find that

C2.H I'/�
X
r>1

�H .r/

r2
D

X
md>1

m;d2ŒB�; .d;m/D1

�B.d/

d2
�
1

m2

X
�2C.m/

jˆH .�/j
2

D

X
m�1
m2ŒB�

1

m2

X
�2C.m/

jˆH .�/j
2

X
d�1

.d;m/D1

�B.d/

d2
� jˆH .0/j

2

D

X
m�1
m2ŒB�

1

m2

X
�2C.m/

jˆH .�/j
2
Y
b2B
b−m

.1 � b�2/ �O.1/:

Since Y
b2B
b−m

.1 � b�2/ �
Y
b2B

.1 � b�2/ > 0
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uniformly in m, we may use positivity to restrict to m � 10cH and apply (3.4), getting

C2.H I'/�
X

m�10cH
m2ŒB�

1

m

�
1

m

X
�2C.m/

jˆH .�/j
2

�

� H
X

m�10cH
m2ŒB�

1

m
� H �H˛�1Co.1/

D H˛Co.1/;

where in the second to last step we used the fact that ŒB� has index ˛ by Lemma 3.1. This
proves the lower bound in this case.

Case 2:
R1
0 '.t/ dt ¤ 0. In this case, we again use positivity to restrict the sum in

C2.H I'/ as
C2.H I'/ �

X
r>1
r2ŒB�

g.r/2
ˇ̌̌
ˆH

�1
r

�ˇ̌̌2
:

Let K � 10 be a large constant. Then, for r � KcH , we have e.j=r/ D 1CO.1=K/
uniformly for 1 � j � cH , so from (3.3), we getˇ̌̌

ˆH

�1
r

�ˇ̌̌
�

ˇ̌̌ X
1�j�cH

'
� j
H

�ˇ̌̌
�O

� 1
K

X
1�j�cH

ˇ̌̌
'
� j
H

�ˇ̌̌�
D jˆH .0/j �O

�H
K

�
� H

�ˇ̌̌̌Z 1
0

'.t/ dt

ˇ̌̌̌
�O

� 1
K

��
�O.1/� H

if K is large enough.
Since g.r/2 � r�2 for r 2 ŒB�, we have

C2.H I'/� H 2
X

r>KcH
r2ŒB�

1

r2
� H˛Co.1/

since, again by Lemma 3.1, ŒB� has index ˛. The claim is thus proved in this case as well.

Obviously, this implies Proposition 1.8 where ' D 1.0;1�.

3.3. Variance for regularly varying hBi. If hBi is a regularly varying sequence, we
can say more; in this case, we will show the asymptotic formula of Proposition 1.9.

We begin with a useful expression for C2.H/. Throughout this subsection, we use the
notation

V.t/ D
sin�t
�t

:

Lemma 3.4. We have

(3.5) C2.H/ D 2H
2
X
d2ŒB�

1

d2

Y
b−d
b2B

�
1 �

2

b

�X
��1

ˇ̌̌
V
�H�
d

�ˇ̌̌2
:
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Proof. We begin with the expression in Remark 2.7 for C2.H I'/. If we specialize to
the case ' D 1.0;1�, then ˆH .t/ D EH .t/. If we use the identity

EH .t/ D e
�H C 1

2
t
�sin.�Ht/

sin.�t/
;

we see that (2.10) gives

C2.H/ D
X

d1;d22ŒB�

�B.d1/�B.d2/

d1d2

X
0<`01<d1
0<`02<d2

`01=d1D`
0
2=d2

�sin.�H`01=d1/
sin.�`01=d1/

��sin.�H`02=d2/
sin.�`02=d2/

�
:

But, in this sum, `01=d1 D `
0
2=d2, and using

1

.sin�x/2
D

X
k2Z

1

.�.x C k//2
;

we obtain

C2.H/ D H
2

X
d1;d22ŒB�

�B.d1/�B.d2/

d1d2

X
�1;�2¤0

�1=d1D�2=d2

V
�H�1
d1

�
V
�H�2
d2

�

D 2H 2
X

d1;d22ŒB�

�B.d1/�B.d2/

d1d2

X
�1;�2�1

�1=d1D�2=d2

V
�H�1
d1

�
V
�H�2
d2

�
:

Write d D .d1; d2/ and d1 D �1d , d2 D �2d and parameterize solutions to �1=d1 D �2=d2
by �1 D ��1, �2 D ��2. Then the above expression for C2.H/ simplifies to

C2.H/ D 2H
2
X
d2ŒB�

X
�1;�22ŒB�
.�1;�2/D1

�B.d�1/�B.d�2/

d2�1�2

X
�>0

V
�H�
d

�2
;

which in turn simplifies to (3.5).

We will use the following result of Pólya to estimate the above sum.

Proposition 3.5 (Pólya). If NR.x/ is the counting function of a sequence R which reg-
ularly varies with index ˛, and if f W Œ0;1/! R is a function that is Riemann integrable over
every finite interval Œa; b� � Œ0;1/ which satisfies

jf .x/j �

´
x�˛C" as x ! 0;

x�˛�" as x !1;

for some " > 0, then

lim
X!1

1

NR.X/

X
r2R

f
� r
X

�
D

Z 1
0

f .t/ d.t˛/:



Gorodetsky, Mangerel and Rodgers, Squarefrees are Gaussian in short intervals 23

Proof. This can be found in Pólya and Szegő’s book [41, Problem No. 159 in Part II,
Chapter 4 of Volume I]; see also Pólya’s paper [40].

Proof of Proposition 1.9. We define

F .s/ D
X
d2ŒB�

1

d s

Y
b−d
b2B

�
1 �

2

b

�
D

Y
b2B

�
1 �

2

b
C
1

bs

�
;

G .s/ D
X
r2hBi

1

rs
D

Y
b2B

�
1 �

1

bs

��1
:

For both F .s/ and G .s/, the above sum and Euler product converge absolutely for <s > ˛.
Note that, for <s > ˛, we have

(3.6) F .s/ D G .s/U.s/;

where
U.s/ D

Y
b2B

�
1 �

2

b
C

2

b1Cs
�

1

b2s

�
D

X
c�1

uc

cs
;

where the coefficients uc are defined by this relation. (The coefficients uc will be supported on
hBi, but this fact will not be important.)

Note the Euler product defining U.s/ converges absolutely for <s > ˛=2, and therefore
the Dirichlet series also converges absolutely in this region. Hence it follows that, for any " > 0,X

t<c�2t

jucj � t
˛
2
C";

with the implications

(3.7)
X
c�t

jucj � t
˛
2
C";

X
c�t

jucj

c
� t

˛
2
�1C";

which will be important later.
By using the Dirichlet convolution implicit in (3.6), we can write

C2.H/ D 2
X
r2hBi

X
c

X
��1

uc �
�H
rc

�2 ˇ̌̌
V
�H�
rc

�ˇ̌̌2
D 2

X
r2hBi

f
� r
H

�
for

f .x/ D
X
c

X
��1

uc

.xc/2

ˇ̌̌
V
� �
xc

�ˇ̌̌2
:

But, from the bound V.�/2 � min.1; 1=�2/, we have

f .x/�
1

x2

X
c

jucj

c2

�X
��cx

1C
X
�>cx

x2c2

�2

�

�

X
c<1=x

jucj C
1

x

X
c�1=x

jucj

c
�

´
1
x

if x > 1;�
1
x

�˛
2
C" if x � 1:
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The last estimate follows because if x > 1, the first term vanishes while the second is bounded
trivially, while if x � 1, both terms satisfy the claimed estimate by (3.7).

Therefore, one may check that Pólya’s proposition may be applied and

C2.H/ � 2NhBi.H/

Z 1
0

f .t/˛t˛�1 dt

D 2NhBi.H/
X
c

X
��1

uc

c2

Z 1
0

1

t2
V
� �
tc

�2
˛t˛�1 dt;

(3.8)

where rearrangement of sums and integrals is justified in the second line of (3.8) by absolute
convergence. By a change of variables � D �=tc, the last line can be simplified to

2NhBi.H/�.2 � ˛/
Y
b2B

�
1 �

2

b
C

2

b1C˛
�

1

b2˛

�
˛

Z 1
0

�1�˛V.�/2 d�

since the sums over � and c can then be simplified as �.2 � ˛/ and U.˛/ respectively. But (see
[14, formula 3.823])Z 1

0

�1�˛V.�/2 d� D �2˛�1�˛�2 cos
��˛
2

�
�.�˛/;

which recovers the constant (1.2) claimed in the proposition.

Remark 3.6. We will not require it, but with a bit more work, one can show that if hBi
is regularly varying with index ˛ 2 .0; 1/, and ' is of bounded variation with compact support,

C2.H I'/ � A';˛NhBi.H/;

where

A';˛ D 2˛�.2 � ˛/
Y
b2B

�
1 �

2

b
C

2

b1C˛
�

1

b2˛

� Z 1
0

�1�˛jy'.�/j2 d�:

4. Diagonal terms

In this section, we show how the approximation ofCk.H I'/ by Gaussian moments arises
from terms in which r1; : : : ; rk are paired and non-repeated in the sum defining this quantity.
In the next section, we will show that the remaining terms are negligible.

We say that the tuple r1; : : : ; rk is paired if k is even and we may partition ¹1; 2; : : : ; kº
into k=2 disjoint pairs ¹.ai ; bi /ºk=2iD1 with rai D rbi and ai ¤ bi . We say that r1; : : : ; rk is
repeated if ri1 D ri2 D ri3 for some i1 < i2 < i3. For k D 2, all the terms in C2.H I'/ must
be paired.

We adopt the abbreviations r D Œr1; : : : ; rk� for the lcm and r D .r1; : : : ; rk/ for the
vector of the ri . Given integers r1; r2; : : : ; rk > 1 belonging to ŒB�, let

SH .r/´
X

�i2RB.ri / .1�i�k/P
�i�0 mod 1

kY
iD1

FH .�i /:
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Our approach in this section largely follows Montgomery and Soundararajan’s proof of [33,
Theorem 1]. We will use the following variant of the Fundamental Lemma; the result is a gen-
eralization of [33, Lemma 2], which corresponds to B being the set of primes. The original
proof3) works as is.

Lemma 4.1 (Montgomery and Soundararajan). Let q1; : : : ; qk be integers with qi > 1
and qi 2 ŒB�. Let G be a complex-valued function defined on .0; 1/, and suppose that G0 is
a non-decreasing function on ŒB� such that

q�1X
aD1

ˇ̌̌
G
�a
q

�ˇ̌̌2
� qG0.q/

for all 1 ¤ q 2 ŒB�. Thenˇ̌̌̌ X
a1;:::;ak
0<ai<qiP

ai=qi�0 mod 1

kY
iD1

G
�ai
qi

�ˇ̌̌̌
�

1

Œq1; : : : ; qk�

kY
iD1

�
qiG0.qi /

1
2

�
:

The next lemma separates repeated or non-paired r from what we will show is the main
contribution to Ck.H I'/.

Lemma 4.2. Let k � 3, and suppose ' is of bounded variation and supported in a com-
pact subset of Œ0;1/. If k is odd, we have

Ck.H I'/�
X

r is repeated
or non-paired
r1;:::;rk>1

kY
iD1

�2B.ri /

ri
SH .r/:

If k is even, we have

Ck.H I'/ D �k
X

r1;:::;rk=2>1

k=2Y
iD1

g2.ri /
X

b1;:::;bk=2
1�bi�riPk=2

iD1
bi=ri�0 mod 1

kY
iD1

JH .bi ; ri /

CO

� X
r is repeated
or non-paired
r1;:::;rk>1

kY
iD1

�2B.ri /

ri
SH .r/

�
;

where

JH .b; n/´

nX
aD1

.a;n/ is B-free
.b�a;n/ is B-free

ˆH

�a
n

�
ˆH

�b � a
n

�
:

3) In [33, p. 597], the second occurrence of ri in the first equation should not be there.
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Proof. We first consider odd k. There are no vectors .r1; : : : ; rk/ that are both paired
and non-repeated. The proof of this case is concluded by recalling that g.n/ is dominated by
�2B.n/=n and ˆH by FH .

We now consider even k. By the triangle inequality,

Ck.H I'/ D
X

r is paired
and non-repeated
r1;:::;rk>1

kY
iD1

g.ri /
X

�i2RB.ri / .1�i�k/
�1C���C�k�0 mod 1

kY
iD1

ˆH .�i /

CO

� X
r is repeated
or non-paired
r1;:::;rk>1

kY
iD1

�2B.ri /

ri
SH .r/

�
:

(4.1)

There are .k � 1/.k � 3/ � � � 1 D �k ways in which the pairing in the first sum in (4.1) can
occur. We take the pairing to be ri D rk=2Ci without loss of generality. We further write
�i D ai=ri and set bi to be the unique integer in Œ1; ri � congruent to ai C ak=2Ci modulo ri .
Hence

X
r is paired

and non-repeated
r1;:::;rk>1

kY
iD1

g.ri /
X

�i2RB.ri / .1�i�k/
�1C���C�k�0 mod 1

kY
iD1

ˆH .�i /

D �k
X

r1;:::;rk=2>1
distinct

k=2Y
iD1

g2.ri /
X

b1;:::;bk=2
1�bi�riPk=2

iD1
bi=ri�0 mod 1

kY
iD1

JH .bi ; ri /

D �k
X

r1;:::;rk=2>1

k=2Y
iD1

g2.ri /
X

b1;:::;bk=2
1�bi�riPk=2

iD1
bi=ri�0 mod 1

kY
iD1

JH .bi ; ri /

CO

� X
r is repeated
r1;:::;rk>1

kY
iD1

�2B.ri /

ri
SH .r/

�
:

This finishes the proof.

We now show that paired and non-repeated terms above can be reduced to powers of the
variance.

Proposition 4.3. Let k � 4 be even. Suppose ' satisfies the assumptions of Lemma 3.3.
If the sequence hBi has index ˛, then

X
r1;:::;rk=2>1

k=2Y
iD1

g2.ri /
X

b1;:::;bk=2
1�bi�riPk=2

iD1
bi=ri�0 mod 1

kY
iD1

JH .bi ; ri / D C2.H I'/
k
2

�
1CO.H�˛Co.1//

�
:
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Proof. Let j be the number of values of i for which bi ¤ ri so that bi D ri for the
remaining k=2 � j values of i . Since there are

�
k=2
j

�
ways of choosing the j indices, we see

that the left-hand side is
k=2X
jD0

�k
2

j

�
C2.H I'/

k
2
�jWj .H/;

where W0 � 1 and

Wj .H/ D
X

r1;:::;rj>1

jY
iD1

g2.ri /
X

b1;:::;bj
0<bi<riP

bi=ri�0 mod 1

jY
iD1

JH .bi ; ri /:

Recall C2.H I'/ D H˛Co.1/ by Lemma 3.3. The term j D 0 will contribute the main term, so
it remains to bound the other terms. It is also clear that j D 1 contributes 0 as b1=r1 2 .0; 1/.
To finish the proof, it suffices to show that Wj .H/ D O.H˛.j�1/Co.1// for j � 2.

Montgomery and Soundararajan [33, equation (34)] showed that

(4.2)
n�1X
bD1

jJH .b; n/j
2
� n3H

forB being the set of primes and ' D 1.0;1�. Their argument works as is for generalB and gen-
eral '. Indeed, their proof proceeds by dropping the conditions .a; n/ D 1 and .b � a; n/ D 1
from the sum defining J , applying the estimate ˆH � FH (in the general case, this is Lem-
ma 2.3), and straightforwardly estimating the sum of positive terms that result, so their bound
applies to our sum as well.

Due to (4.2), we may apply Lemma 4.1 with G0.n/ D CHn2 to find that

X
b1;:::;bj
0<bi<riP
bi=ri2Z

jY
iD1

JH .bi ; ri /�
1

Œr1; : : : ; rj �

jY
iD1

.r2i H
1
2 /:

Additionally, as jˆH .x/j � FH .x/ � 1=kxk, we have the simple bound

n�1X
bD1

jJH .b; n/j � n2
n�1X
aD1

1

min¹a; n � aº

n�1X
bD1
b¤a

1

min¹jb � aj; n � jb � ajº
� n2.logn/2;

and hence, for any value of Z � 1,

Wj .H/� H
j
2

X
r1;:::;rj2ŒB�
Œr1;:::;rj �>Z

1

Œr1; : : : ; rj �
C

X
r1;:::;rj2ŒB�
Œr1;:::;rj ��Z

jY
iD1

.log ri /2

� H
j
2

X
r>Z

�B;lcm;j .r/

r
C .logZ/2j

X
r�Z

�B;lcm;j .r/

� H
j
2Z˛�1Co.1/ CZ˛Co.1/:
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We take Z D H j=2 to find that the left-hand side is

� H
j˛
2
Co.1/

� H˛.j�1/Co.1/

as j � 2.

Taken together, Lemma 4.2 and Proposition 4.3 show that paired and non-repeated terms
in Ck.H I'/ are enough to recover the claimed main term.

5. Off-diagonal terms

In this section, we show that the repeated or non-paired terms contribute negligibly to
Ck.H I'/. Our main tool will be a refinement of the Fundamental Lemma, due also to Mont-
gomery and Vaughan [34, Lemma 8]. However, we will also crucially use ideas of Nunes to
bound the range of r that we need to consider. We also will critically make use of the Pólya–
Vinogradov inequality to bound a certain term that appears in the refined Fundamental Lemma;
this is a new ingredient of our proof, and some argument of this sort seems to be essential when
the index ˛ is less than or equal to 1=2 (see Remark 5.10 for a relevant discussion).

5.1. Preliminary estimates: Nunes’s reduction in the range of r. Following Nunes
[37], in this subsection, we will show that, in the sum defining Ck.H I'/, those r for which r is
large yet each ri is relatively small make a negligible contribution. We first make a few simple
observations.

The following bound follows directly from the Fundamental Lemma. (Very similar esti-
mates have been used in [34, p. 317, equation (9)], [17, equation (33)], and [37, Lemma 2.3].)

Lemma 5.1 (Montgomery and Vaughan). Given integers r1; r2; : : : ; rk > 1 belonging
to ŒB�, we have

SH .r/� r1r2 � � � rkr
�1

kY
iD1

min¹ri ;H º
1
2

� H
k
2 r1r2 � � � rkr

�1:

(5.1)

The following elementary estimate was proved by Nunes [37, Lemma 2.3] in the special
case B D ¹pm W p primeº (m � 2).

Lemma 5.2 (Nunes). Given r1; : : : ; rk > 1 belonging to ŒB�, we have

(5.2) SH .r/�
kY
iD1

ri log ri :

Proof. Ignore the restriction
P
�i � 0mod 1, and apply the first part of Lemma 2.2.

The Fundamental Lemma only sees the L2-norm of FH .i=r/. Lemma 5.2 is superior to
Lemma 5.1 in certain ranges, as it makes use of the much smaller L1-norm. As Nunes does,
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we may combine (5.1) and (5.2), obtaining the bound

SH .r/�
� kY
iD1

ri

�
min

²
H

k
2 r�1;

kY
iD1

log ri

³
�

kY
iD1

ri �min¹H
k
2 r�1; .log r/kº:

We now use Nunes’s bound (5.2) to deal with r with small lcm. They turn out to contribute
negligibly, a fact that is not detected directly by the Fundamental Lemma bound (5.1).

Lemma 5.3. Let H;M > 1. Suppose that hBi has index ˛ 2 .0; 1/. We have

X
r1;:::;rk>1
r�M

kY
iD1

�2B.ri /

ri
SH .r/�M ˛Co.1/:

Proof. Appealing to (5.2), the contribution of r with r �M is at most

�

X
r1;:::;rk>1
r�M

kY
iD1

�2B.ri /

ri

kY
iD1

ri log ri �
X

r1;:::;rk>1
ri2ŒB�; r�M

.log r/k

� .logM/k
X
r�M

�B;lcm;k.r/:

The claimed bound then follows from Lemma 2.4 since hBi has index ˛.

We now use the Fundamental Lemma to show that, among those r with r > M , the
contribution of r with ri � N is small. Here M and N are parameters to be chosen later.

Lemma 5.4. Let 1 < N < H and M > 1. If hBi has index ˛ 2 .0; 1/, we have

X
r1;:::;rk>1

ri�N for some i
r>M

kY
iD1

�2B.ri /

ri
SH .r/� H

k�1
2 N

1
2M ˛�1Co.1/:

Proof. If ri � N for some i , and all rj > 1 are in ŒB�, then (5.1) implies that

SH .r/� H
k�1
2 r1r2 � � � rkr

�1N
1
2

so that our sum is at most

X
r1;:::;rk>1

ri�N for some i
r>M

kY
iD1

�2B.ri /

ri
SH .r/

� H
k�1
2 N

1
2

X
r1;:::;rk>1

ri�N for some i
r>M

Qk
iD1 �

2
B.ri /

r
� H

k�1
2 N

1
2

X
r>M

�B;lcm;k.r/

r
:

The claimed bound again follows from Lemma 2.4, as hBi has index ˛.
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5.2. Using the Fundamental Lemma. To estimate off-diagonal contributions, we use
the following variant of the Fundamental Lemma. It generalizes [34, Lemma 7] of Mont-
gomery and Vaughan, which corresponds to B being the set of primes and T D H 1=9. The
proof follows that of [34] essentially without change, and so we do not include it here.

Lemma 5.5 (Montgomery and Vaughan). Let H > 1 and 1 � T � H 1=9. Let k � 3,
and let r1, r2, . . . , rk be integers with ri > 1 and ri 2 ŒB�. Further, let r D Œr1; : : : ; rk� and
d D .r1; r2/, and write d D st , where s j r3r4 � � � rk and .t; r3r4 � � � rk/ D 1. Then

SH .r/� r1r2 � � � rkr
�1H

k
2 .T1 C T2 C T3 C T4/;

where
T1 D

logH

T
1
2

;

T2 D

´
d�

1
4 if ri > HT �1 for all i;

0 otherwise;

T3 D

´
s�

1
2 if ri > HT �1 for all i and r1 D r2;

0 otherwise;

T4 D

�
1

r1r2sH 2

X
�2RB.t/

FH

�
kr 01s�k

r 01s

�2
FH

�
kr 02s�k

r 02s

�2� 12
if HT �1 � r1; r2 � H 2, t > d1=2 and d � .HT /1=2; otherwise, T4 D 0.

We use this to produce a first bound on repeated or non-paired r outside of the range
treated by Nunes’s bound.

Proposition 5.6. Let k � 3. Let N be in the range H � N � H 8=9 and M > 1. Sup-
pose that hBi has index ˛ 2 .0; 1/. We have

X
r is repeated
or non-paired
r1;:::;rk>N
r>M

kY
iD1

�2B.ri /

ri
SH .r/

� H
k�1
2
Co.1/.N

1
2 CH

1
2N�

1
4.k�1/ C E

1
2H�

1
2 /M ˛�1Co.1/;

where

E D
X

N 1=.k�1/�st�H=
p
N

.s;t/D1; s;t2ŒB�; t>s

s�˛�3t�˛�2
X

�2RB.t/

� X
aW.a;t/D1

N<ast�H2

a2ŒB�

a�˛�1FH

�
kas�k

as

�2�2
:

Proof. Let r be a vector which is either repeated or non-paired with r > M and such
that ri > N for all i . It suffices to boundX

r is repeated
r1;:::;rk>N
r>M

kY
iD1

�2B.ri /

ri
SH .r/C

X
r is non-paired

and non-repeated
r1;:::;rk>N
r>M

kY
iD1

�2B.ri /

ri
SH .r/:
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If r is repeated with ri1 D ri2 D ri3 , then we apply Lemma 5.5 with ri1 ; ri2 in place of r1; r2,
obtaining

SH .r/� r1r2 � � � rkr
�1H

k
2 .T1 C T2 C T3 C T4/:

(The parameter T is taken to beH=N .) To study the Ti ’s, recall that d D .ri1 ; ri2/ D ri1 factors
as d D st , where

s j
Y

i¤i1;i2

ri and
�
t;

Y
i¤i1;i2

ri

�
D 1:

In our case, t D 1 and s D d D ri1 > N . We have

T1 D
logH�
H
N

� 1
2

; T2 D d
� 1
4 < N�

1
4 ; T3 D s

� 1
2 D d�

1
2 < N�

1
2 and T4 D 0;

so the total contribution of the Ti ’s in the repeated case is at most

� H
k
2

�
N�

1
4 C

N
1
2 logH

H
1
2

� X
r1;:::;rk>N
ri2ŒB�; r>M

1

r
� H

k�1
2
Co.1/N

1
2

X
r>M

�B;lcm;k.r/

r
;

which is absorbed in the error term since the series over r is�M ˛�1Co.1/.
Suppose that r is non-paired and also non-repeated. The contribution of r is 0 if there

is a prime p dividing only one of the ri (as then SH .r/ D 0), so we assume that each prime
divisor of r divides at least two of the ri . This implies that ri j

Q
j¤i rj . As in [34, p. 323], this

implies ri �
Q
j¤i .rj ; ri /, and so, for each i , there exists j ¤ i such that

.rj ; ri / � r
1
k�1

i > N
1
k�1 :

We claim that there is at least one pair ri ; rj with i ¤ j , .rj ; ri / > N 1=.k�1/ and ri ¤ rj .
Indeed, if there is no such pair, it means that each value in the multiset ¹ri W 1 � i � kº appears
at least twice. We also know that each value appears at most twice, as we are in the non-repeated
case. Hence each value appears twice, contradicting the fact that we are in the non-paired case.

Hence, necessarily, ri1 ¤ ri2 with .ri1 ; ri2/ > N
1=.k�1/ for some i1¤ i2. We again apply

Lemma 5.5 with ri1 ; ri2 in place of r1; r2, and T D H=N . By definition, T3 D 0. As we have
T1 D .logH/=.H=N/1=2 and T2 D d�1=4 < N�1=.4.k�1//, we get that the total contribution
of T1, T2 and T3 in the non-paired case is at most

� H
k
2

�
N�

1
4.k�1/ C

.logH/N
1
2

H
1
2

� X
r>M

�B;lcm;k.r/

r
;

which is also absorbed in the error term.
We now treat the contribution of T4 when r is non-paired and non-repeated, and show

that it is at most Hk=2�1Co.1/M ˛�1Co.1/E1=2, so is absorbed as well.
Assuming always that Lemma 5.5 is applied with the first two elements of r (at the cost

of a constant of size k2 from permuting the indices), and recalling that if r is non-paired and
non-repeated, we may assume .r1; r2/ > N 1=.k�1/, we see that T4 contributes at most

(5.3) � H
k
2

X
r2X

T4.r/
r
� H

k
2

�X
r2X

T 24
r

� 1
2
�X

r2X

1

r

� 1
2
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by Cauchy–Schwarz, where

X D
°

r 2 Nk
>1 W N < r1; r2 � H

2; N
1
k�1 < d �

H
p
N
;

t > d
1
2 ; ri > N; r > M; ri 2 ŒB�

±
and d D .r1; r2/, s D .d; r3 � � � rk/, t D d=s. (Note that the condition t > d1=2 is the same as
t > s.) The second sum is at mostX

r>M

�B;lcm;k.r/

r
�M ˛�1Co.1/:

To study the first sum, we write r as r 01r
0
2stw, where r 0i D ri=d and w D r=.r 01r

0
2st/. Note

that r 01, r 02, s and t are pairwise coprime, so w must be an integer. Instead of summing over
r1 and r2, we sum over r 01, r 02, s and t (so r1 and r2 are determined). Given r1, r2 and w, we
have r ; given r , r1 and r2, there are at most �k�2.r/ possibilities for r with these values of r1,
r2 and r since each ri (3 � i � k) divides r D wr 01r

0
2st . Here � is the usual divisor function.

Hence we haveX
r2X

T 24
r
�

X
r 01;r
0
2;s;t2ŒB� coprime; t>s
N<r 0

i
st�H2 .iD1;2/

N 1=.k�1/�st�H=
p
N

1

r 01r
0
2st

T 24

X
w>M=.r 01r

0
2st/

w2ŒB�
.w;s/D1

�k�2.wr 01r
0
2st/

w

�

X
r 01;r
0
2;s;t2ŒB� coprime; t>s
N<r 0

i
st�H2 .iD1;2/

N 1=.k�1/�st�H=
p
N

�k�2.r 01r
0
2st/

r 01r
0
2st

T 24

X
w>M=.r 01r

0
2st/

w2ŒB�

�k�2.w/

w
:

Because ŒB� has index ˛ and �.n/ D no.1/, the innermost sum above is

�

� M

r 01r
0
2st

�˛�1Co.1/
so that X

r2X

T 24
r
�M ˛�1Co.1/H o.1/

X
r 01;r
0
2;s;t2ŒB� coprime; t>s
N<r 0

i
st�H2 .iD1;2/

N 1=.k�1/�st�H=
p
N

T 24
.r 01r

0
2st/

˛
:

Plugging the definition of T4 in the last equation, and first summing over s; t and only later
over r 0i , we obtainX

r2X

T 24
r
�M ˛�1Co.1/H o.1/�2

X
N 1=.k�1/�st�H=

p
N

.s;t/D1; s;t2ŒB�; t>s

s�˛�3t�˛�2

�

X
�2RB.t/

� X
aW.a;t/D1

N<ast�H2

a2ŒB�

a�˛�1FH

�
kas�k

as

�2�2
:

Plugging this bound in (5.3), we end up with Hk=2�1Co.1/M ˛�1Co.1/E1=2.



Gorodetsky, Mangerel and Rodgers, Squarefrees are Gaussian in short intervals 33

In order to get a good upper bound on E , we must estimate the frequency with which
kkas�k=.as/k is smaller than 1=H . We will do this by reduction to congruence conditions, and
we will bound sums over such congruence conditions using the following simple consequence
of the Pólya–Vinogradov inequality. (For Pólya–Vinogradov, see e.g. [21, Theorem 12.5].)

Lemma 5.7. Let � be a Dirichlet character modulo q, and suppose A� q. We have

ˇ̌̌ X
1�ji j�q=2

�.i/FH

� i
A

�2 ˇ̌̌
�

´
AH if � is principal;

min¹AH;H 2pq log qº if � is non-principal:

Proof. By the definition of FH ,ˇ̌̌ X
1�ji j�q=2

�.i/FH

� i
A

�2 ˇ̌̌
� H 2

ˇ̌̌ X
1�ji j�A=H

�.i/
ˇ̌̌
C A2

ˇ̌̌ X
ji j>A=H

�.i/

i2

ˇ̌̌
:

The bound for principal characters is evident, so we now consider non-principal ones. The sum
over smaller ji j satisfies the required bound by combining the Pólya–Vinogradov inequalityX

1�ji j�n

�.i/ D O.
p
q log q/

with the trivial bound j�j � 1. To bound the sum over larger i , we can either use the trivial
bound� H=A, or else again appeal to Pólya–Vinogradov together with partial summation as
follows: ˇ̌̌X

i>N

�.b/

b2

ˇ̌̌
�

1

N 2

ˇ̌̌X
i�N

�.i/
ˇ̌̌
C

Z 1
N

ˇ̌P
n�y �.n/

ˇ̌
y3

dy �

p
q log q
N 2

;

where N D A=H .

In what follows, we use the notation a � x to mean x < a � 2x. The following propo-
sition will be used shortly.

Proposition 5.8. Suppose hBi is of index ˛ 2 .0; 1/. Let s; t 2 ŒB� be coprime positive
integers with t � H . Let r be a B-free divisor of t . Given A � H 2, let

Gr;v.�1/´ A�.˛C1/
X

1�ji j�t=.2r/
.i;t=r/D1

FH

�
i

2Ast=r

�2 X
a�A;a2ŒB�; .a;t/D1

a�is�1.�1=r/
�1 mod t=r

1

for �1 with .t; �1/ D r . We have

X
�1=t2RB.t/
.t;�1/Dr

Gr;v.�1/
2
�

H 2

�
�
t
r

���st
r

�2
Ao.1/

C A�2.˛C1/ min
°
H 2 t

1Co.1/

r
;
�Ast
r

�2± X
� mod t=r

ˇ̌̌ X
a�A;a2ŒB�
.a;t/D1

�.a/
ˇ̌̌2�

:
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Proof. Expanding the square, we haveX
�1=t2RB.t/
.t;�1/Dr

Gr;v.�1/
2
� A�2.˛C1/

X
1�ji1j;ji2j�t=.2r/
.i1i2;t=r/D1

FH

�
i1

2Ast=r

�2
FH

�
i2

2Ast=r

�2

�

X
�1=t2RB.t/
.t;�1/Dr

X
a1;a2�A;a1;a22ŒB�

.a1a2;t/D1

a1�i1s
�1.�1=r/

�1 mod t=r
a2�i2s

�1.�1=r/
�1 mod t=r

1:

The two congruences in the innermost sum imply

(5.4) a1i2 � a2i1 mod
t

r
;

and we may replace the inner double sum over �1, a1 and a2 with the sumX
a1;a2�A;a1;a22ŒB�

.a1a2;t/D1
a1i2�a2i1 mod t=r

1:

We can detect (5.4) using orthogonality of characters, obtainingX
�1=t2RB.t/
.t;�1/Dr

Gr;v.�1/
2

�
A�2.˛C1/

�
�
t
r

� X
� mod t=r

� X
1�ji1j�t=.2r/

�.i1/FH

� i1r

2Ast

�2 X
a1�A;a12ŒB�
.a1;t/D1

�.a1/

�

�

� X
1�ji2j�t=r

�.i2/F
� i2r

2Ast

�2 X
a2�A;a22ŒB�
.a2;t/D1

�.a2/

�

D
1

�
�
t
r

� X
� mod t=r

A�2.˛C1/
ˇ̌̌ X
1�ji j�t=.2r/

�.i/FH

� ir

2Ast

�2 ˇ̌̌2 ˇ̌̌ X
a�A;a2ŒB�
.a;t/D1

�.a/
ˇ̌̌2
:

By Lemma 5.7, the contribution of the principal character � D �0 is

�
Ao.1/

�
�
t
r

� �Hst
r

�2
;

which gives the first term in the required bound. We now consider the non-principal characters.
Applying the pointwise bound for the sum of F twisted by � as given in Lemma 5.7, we see
that they contribute

� H 2A�2.˛C1/ min
°H 2t

r
log2 t;

�Ast
r

�2± 1

�
�
t
r

� X
�0¤� mod t=r

ˇ̌̌ X
a�A;a2ŒB�
.a;t/D1

�.a/
ˇ̌̌2
:

This gives the second contribution to the bound, and we are done.
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Proposition 5.9. Let N be in the range H � N � H 8=9. Suppose that hBi has index
˛ 2 .0; 1/. In the notation of Proposition 5.6, we have

E � H 2Co.1/

�� H
N
3
2

�˛
CN�

˛
k�1

�
:

Proof. We dyadically decompose the inner sum over a in the definition of E . Given
coprime integers s; t 2 ŒB� with t > 1 and � D �1=t 2 RB.t/, and setting r ´ .t; �1/ for
convenience, we haveX

a�U;a2ŒB�
.a;t/D1

FH

�
kas�k

as

�2
�

X
1�i�t=.2r/
.i;t=r/D1

FH

�
i

2Ust=r

�2 X
a�U;a2ŒB�; .a;t/D1

a�˙is�1.�1=r/
�1 mod t=r

1

�

X
1�ji j�t=.2r/
.i;t=r/D1

FH

�
i

2Ust=r

�2 X
a�U;a2ŒB�; .a;t/D1

a�is�1.�1=r/
�1 mod t=r

1

(5.5)

for any positive integer U , as we now explain.
First, we may replace

FH

�
kas�k

as

�
with FH

�
kas�k

2Us

�
as, in general, if 0 < x; y � 1=2 satisfy y � x, then FH .x/� FH .y/. The denominator of
the fraction kas�k in reduced form is exactly t=.t; �1/ since both s and a are coprime with t . We
write the left-hand side of (5.5) as a sum over the possible values of kas�k, and need to count
the number of times a given value is obtained, that is, count solutions to kas�k D i=.t=r/,
which is an equation that determines a modulo t=r up to a sign, yielding the new inner sum
over a.

Putting this in the definition of E and applying the Cauchy–Schwarz inequality, we thus
obtain

E � H o.1/
X

N 1=.k�1/�st�H=
p
N

.s;t/D1; s;t2ŒB�; t>s

s�˛�3t�˛�2
X
rjt

X
2v2.N=.2st/;H2=.st//

X
�1=t2RB.t/
.t;�1/Dr

G2r;v:

Now, by orthogonality, we have

1

�
�
t
r

� X
� mod t=r

ˇ̌̌ X
a�2v

a2ŒB�

�.a/
ˇ̌̌2
D

X
a1;a2�2

v

a1;a22ŒB�
.a1a2;t=r/D1

1a1�a2 mod t=r :

Thus, using this in the conclusion of Proposition 5.8 with A D 2v, we get

X
�1=t2RB.t/
.t;�1/Dr

G2r;v � H 2

�
s2
�
t
r

�2
�
�
t
r

� H o.1/
C 2�2v min

°H 2t

r
;
�2vst
r

�2±
�
1

22˛v

X
a1;a2�2

v

a1;a22ŒB�

1a1�a2 mod t=r

�
:
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Inserting this estimate back into our upper bound for E , we obtain a bound

E � H 2Co.1/.E1 C E2 C E3/;

where

E1´
X

N 1=.k�1/<st�H=
p
N

.s;t/D1; t>s; s;t2ŒB�

.ts/�˛�1
X
rjt

r�1;

E2´
X

N 1=.k�1/<st�H=
p
N

.s;t/D1; t>s; s;t2ŒB�

s�˛�3t�˛�2

�

X
rjt

X
N=.2st/<2v

�H2=.st/

2�2.˛C1/v min
°H 2t

r
;
�2vst
r

�2± X
a1;a2�2

v

a1;a22ŒB�
a1Da2

1;

E3´
X

r�H=
p
N

X
s2ŒB�

s�H=.r
p
N/

s�˛�3
X

N 3=2=.2H/<2v

�H2=N 1=.k�1/

2�2.˛C1/v

�

X
a1;a2�2

v

a1;a22ŒB�
a1¤a2

X
`Wr`2ŒB�

max¹N 1=.k�1/;N=2vC1º
<rs`�min¹H=

p
N;H2=2vº

.r`/�˛�2 min¹H 2`; .2vs`/2º1`j.a1�a2/;

where the variable ` in E3 represents the value of t=r . We estimate each of these terms in
sequence. Utilizing the index ˛ of ŒB�, we easily bound

E1 � H o.1/
X

N 1=.k�1/<m�H=
p
N

m2ŒB�

�.m/m�˛�1

� H o.1/
� .N

1
k�1 /˛�.˛C1/Co.1/ � H o.1/N�

1
k�1 ;

where � is the usual divisor function. To treat E2, we split the range of 2v atH=.s.t=r/1=2/ for
s; t and r j t given, which yields

E2 � H o.1/
X

N 1=.k�1/<st�H=
p
N

.s;t/D1; t>s; s;t2ŒB�

s�˛�3t�˛�2

�

X
rjt

� X
N=.2st/<2v

�H=.s.t=r/1=2/

2�.2C˛/v
�2vst
r

�2
C

X
H=.s.t=r/1=2/<2v

�H2=.st/

2�.2C˛/v
H 2t

r

�

� H o.1/
X

N 1=.k�1/<st�H=
p
N

.s;t/D1; t>s; s;t2ŒB�

s�˛�1t�˛
X
rjt

1

r2

� st
N

�˛

CH 2Co.1/
X

N 1=.k�1/<st�H=
p
N

.s;t/D1; t>s; s;t2ŒB�

s�˛�3t�˛�1
X
rjt

1

r

X
2v>H=.s.t=r/1=2/

2�.2C˛/v
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� H o.1/N�˛
X

s�H=
p
N

s2ŒB�

s�1
X

t�H=.s
p
N/

t2ŒB�

1

CH�˛Co.1/
X

N 1=.k�1/<st�H=
p
N

.s;t/D1; t>s; s;t2ŒB�

s�1t�
˛
2

X
rjt

r�2�
˛
2

� H o.1/

�� H
N
3
2

�˛
CH�˛

� H
p
N

�˛
2

�
� H o.1/

� H
N
3
2

�˛
:

It remains to treat E3. In this case, we split the range according to the condition `� .H=.s2v//2

as, when this inequality holds,

min¹H 2`; .2vs`/2º D 22vs2`2:

Hence, we further bound E3 � E 03 C E 003 , where we define

E 03´
X

r�H=
p
N

r�˛�2
X
s2ŒB�

s�H=.r
p
N/

s�˛�1
X

N 3=2=.2H/<2v

�H2=N 1=.k�1/

1

22˛v

�

X
a1;a2�2

v

a1;a22ŒB�
a1¤a2

X
`Wr`2ŒB�

max¹N 1=.k�1/=.rs/;N=.rs2vC1/º
<`�min¹H=.rs

p
N/;.H=.s2v//2º

`>s=r

`�˛1`j.a1�a2/;

E 003 ´ H 2
X

r�H=
p
N

r�˛�2
X
s2ŒB�

s�H=.r
p
N/

s�˛�3
X

N 3=2=.2H/<2v

�H2=N 1=.k�1/

2�2v �
1

22˛v

�

X
a1;a2�2

v

a1;a22ŒB�
a1¤a2

X
`Wr`2ŒB�

max¹N 1=.k�1/=.rs/;.H=.s2v//2º
<`�min¹H=.rs

p
N/;H2=.rs2v/º

`>s=r

`�˛�11`j.a1�a2/:

Consider first E 03. Note that the number of integers ` dividing a1 � a2 is

� ja1 � a2j
o.1/
D H o.1/:

The inner sum in E 03 is therefore

� H o.1/ min
° rs

N
1
k�1

;
2vrs

N

±˛
:

Bounding the minimum trivially by rs=N 1=.k�1/, we obtain

E 03 � H o.1/
X

r�H=
p
N

r�˛�2
X
s2ŒB�

s�H=.r
p
N/

s�˛�1
X

N 3=2=.2H/<2v

�H2=N 1=.k�1/

.rs/˛

N
˛
k�1

� H o.1/N�
˛
k�1 :
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Finally, we treat E 003 in a similar way, using a divisor bound to count ` j .a1 � a2/. This leads
to

E 003 � H 2Co.1/
X

r�H=
p
N

r�˛�2
X
s2ŒB�

s�H=
p
N

s�˛�3

�

X
N 3=2=.2H/<2v

�H2=N 1=.k�1/

2�2v min
° rs

N
1
k�1

;
�s2v
H

�2±˛C1
:

Using the bound min¹A;Bº˛C1 � A˛B , we obtain

E 003 � H 2Co.1/
X

r�H=
p
N

r�˛�2
X
s2ŒB�

s�H=
p
N

s�˛�3
X

N 3=2=.2H/<2v

�H2=N 1=.k�1/

2�2v
.rs/˛

N
˛
k
�1

�s2v
H

�2

�
H o.1/

N
˛
k�1

X
r�H=

p
N

1

r2

X
s2ŒB�

s�H=
p
N

1

s
� H o.1/N�

˛
k�1 :

It follows then that E3 � H o.1/N�˛=.k�1/. Combining this with our prior estimates for E1
and E2, we obtain

E � H 2Co.1/

�
N�

1
k�1 C

� H
N

3
2

�˛
CN�

˛
k�1

�
� H 2Co.1/

�� H
N
3
2

�˛
CN�

˛
k�1

�
;

as claimed.

Remark 5.10. It is worth highlighting the main novelty of our argument over the work
in [34, Lemma 8], specifically the treatment of the expressions Gr;v.�1/ in the notation of
Proposition 5.8.

For simplicity, assume that r D 1 and, fixing v, write A D 2v. In the context of [34], we
may replace ŒB� with the set of divisors t of the (squarefree) modulus q, in which case one may
estimate the inner sum in G1;v.�1/ using the simple boundX

a�A;ajq
.a;t/D1
a�b mod t

1 �
X
a�A

a�b mod t

1�
A

t
C 1;

uniformly over both reduced residues b mod t , and over t . This follows from the equidistribu-
tion in residue classes of integers in an interval. While somewhat crude, this estimate suffices
to produce the required power savings in H in Montgomery and Vaughan’s analogue of E , as
found in Proposition 5.6.

In contrast, when B is a sparse set of index ˛ < 1, we cannot reasonably hope for such
equidistribution in residue classes in general. Even if, say, the optimistic boundX

a�A;a2ŒB�
.a;t/D1
a�b mod t

1� .At/o.1/
�A˛
t
C 1

�

held uniformly in b 2 .Z=tZ/�, tracing through the remainder of the proof of [34, Lemma 8],
we would find that the corresponding savings obtained is of the shape H 1=2�˛Co.1/ and there-
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fore only provides power savings for ˛ > 1=2. To deal with the most general situation (i.e.,
potentially with ˛ � 1=2 and no guarantee of equidistribution), we cannot simply rely on point-
wise counts for elements of ŒB� in residue classes. The proof of Proposition 5.9 demonstrates
that power savings inH may be obtained upon averaging in both the residue class b mod t and
the modulus t .

6. The central limit theorem for general weights '

6.1. A proof of the central limit theorem. We assemble the estimates of the previous
sections to show that Ck.H I'/ and therefore Mk.X;H I'/ exhibit Gaussian behavior.

Theorem 6.1. Suppose ' is of bounded variation and supported in a compact subset
of Œ0;1/. Assume moreover that ' is non-vanishing on some open interval. If hBi has index
˛ 2 .0; 1/, then

Ck.H I'/ D C2.H I'/
k
2

�
�k CO.H

� c
k /
�

for every positive integer k. Here c is an absolute constant depending only on ˛.

Proof. By Lemma 4.2 and Proposition 4.3, we have

Ck.H I'/ D �kC2.H I'/
k
2

�
1CO.H�˛Co.1//

�
CO

� X
r is repeated
or non-paired
r1;:::;rk>1

kY
iD1

�2B.ri /

ri
S.r/

�
:

Let H 8=9 � N � H and M > 1. By Lemmas 5.3–5.4 and Proposition 5.6, we haveX
r is repeated
or non-paired
r1;:::;rk>1

kY
iD1

�2B.ri /

ri
S.r/

�M ˛Co.1/
CH

k�1
2
Co.1/.N

1
2 CH

1
2N�

1
4.k�1/ C E

1
2H�

1
2 /M ˛�1Co.1/:

We apply Proposition 5.9 to bound E so that the right-hand side is

�M ˛Co.1/

�
1C

H
k
2
Co.1/

M

��N
H

� 1
2
C

� H
N
3
2

�˛
2
CN�

min¹˛=2;1=4º
k�1

��
:

We now chooseN D H 1�c1 andM D Hk=2�c2=k , where ci are sufficiently small with respect
to ˛, and recall C2.H I'/ D H˛Co.1/ by Lemma 3.3.

Obviously, this implies Theorem 1.10 and thus the central limit theorem, Theorem 1.11,
for flat counts in short intervals. In fact, more generally, combining Theorem 6.1 with Proposi-
tion 2.1, we see that, as long as H � Xc˛=k�", we have

(6.1) Mk.X;H I'/ D C2.H I'/
k
2

�
�k CO.H

� c
k /
�
:

By the moment method, this implies that weighted counts also satisfy a central limit theorem.

Theorem 6.2. Let H D H.X/ satisfy

H !1; yet
logH
logX

! 0 as X !1;
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and choose a random integer n 2 Œ1; X� at uniform. Suppose that hBi is a regularly vary-
ing sequence of index ˛ 2 .0; 1/ and ' is a real-valued function of bounded variation and
supported in a compact subset of Œ0;1/ and non-vanishing on some open interval. Then the
random variable

1p
C2.H I'/

�X
u2Z

'
�u � n
H

�
1B-free.u/ �MB

X
h2Z

'
� h
H

��
tends to the standard normal distribution NR.0; 1/ as X !1.

6.2. An application to long gaps. Estimate (6.1) allows us to obtain strong information
about the frequency of long gaps between consecutive B-free integers. Given 1 � H � X , let

G .X;H/´ ¹n � X W NB-free.n;H/ D 0º:

Thus jG .X;H/j records the number of length H intervals with an endpoint n 2 Œ1; X� that
contains no B-free numbers.

Improving on work of Plaksin [39], Matomäki [29] used a sieve-theoretic method to show
that, for any " > 0,

jG .X;H/j � XH�1C" for 1 � H � X
1
6
�"

(with no upper bound constraint on the range of H if B consists only of primes). As a conse-
quence of our k-th-moment bounds, we can prove the following.

Corollary 6.3. If hBi is of index ˛ 2 .0; 1/, then for any k � 1 and 1 � H � Xc˛=k�",
we have jG .X;H/j �k XH

�.2�˛/k .

Since we have .2 � ˛/k � 1 whenever k � 1 and ˛ 2 .0; 1/, our result improves on that
of Matomäki in some range ofH . Note that, for instance, if k D 2, then c˛=k � 1=6 whenever
0 < ˛ < .7 �

p
33/=2 D 0:6277 : : : , and our range contains hers, at least if B does not consist

only of primes.

Proof. If n 2 G .X;H/, then we of course have�
NB-free.n;H/ �MBH

�2k
D .MBH/

2k :

Combined with Proposition 1.8 and Theorem 1.10, this implies that if H � Xc˛=k�", then

jG .X;H/j

X
.MBH/

2k
�
1

X

X
n�X

�
NB-free.n;H/ �MBH

�2k
D C2k;B.H/C o.H

k˛/

D �2kC2.H/
k
C o.Hk˛/�k H

k˛:

We deduce immediately that jG .X;H/j �k XH
k˛�2k D XH�k.2�˛/, as claimed.

7. Fractional Brownian motion

7.1. Convergence in CŒ0; 1�. We now prove Theorem 1.14, showing that a random
walk on the B-frees tends to a fractional Brownian motion. There is ready-made machinery to
demonstrate that a sequence of random elements of C Œ0; 1�, like WX .t/ in (1.4), tend in distri-



Gorodetsky, Mangerel and Rodgers, Squarefrees are Gaussian in short intervals 41

bution to a limiting element, and we cite the relevant results here. (For a motivated exposition
on convergence of random functions in C Œ0; 1�, see for instance [5].)

Theorem 7.1. If Y; Y1; Y2; : : : are random elements of C Œ0; 1�, then Yn converges in
distribution to Y as n!1 as long as both of the following conditions are met:

(i) (convergence of finite-dimensional distributions) for any k � 1 and .t1; : : : ; tk/ 2 Œ0; 1�k ,
we have convergence in distribution of the random vector�

Yn.t1/; : : : ; Yn.tk/
�
!
�
Y.t1/; : : : ; Y.tk/

�
I

(ii) (tightness) the sequence of random elements Yn of C Œ0; 1� is tight.4)

Proof. This is a direct consequence of [23, Lemma 16.2 and Theorem 16.3].

We also have the following device for proving tightness.

Theorem 7.2 (Kolmogorov–Chentsov). Using the notation of the previous theorem, if
Yn.0/ D 0 for all n and if there are an absolute constant C and constants a; b > 0 such that

sup
n

EjYn.s/ � Yn.t/j
a
� C js � t j1Cb

for all s; t 2 Œ0; 1�, then the sequence of random elements Yn of C Œ0; 1� is tight.

Proof. This is a special case of [23, Corollary 16.9].

7.2. The B-free random walk. We apply these results to the random functions WX .t/
with X !1. We need one last lemma regarding regularly varying sequences.

Lemma 7.3. If we have a sequence of natural numbers J is regularly varying with index
˛ 2 .0; 1/, then for any " > 0,

NJ .tH/

NJ .H/
�" t

˛�"

for all t � 1 and H larger than the first element of J .

Proof. Obviously, the result is true if tH < 1, so suppose tH � 1.
If J � N is regularly varying with index ˛ 2 .0; 1/, then there is some slowly varying

L such that NJ .x/� x˛L.x/ for all x and NJ .x/� x˛L.x/ for all x larger than the first
element of J . For convenience, we will take L.x/ to be defined for all x � 1 with

inf
x2Œ1;K�

L.x/ > 0 for any K > 0:

(The reader should check that this may be done.)

4) That is, for all " > 0, there is a compact subset K of C Œ0; 1� such that P .Yn … K/ < " for all sufficiently
large n. For C Œ0; 1�, this is equivalent to the condition that Yn.0/ is a tight family of real-valued random variables
and limı!0 lim supn!1 P .!.Yn; ı/ � "/ D 0, where the modulus of continuity of a function f 2 C Œ0; 1� is given
by !.f; ı/ D supjs�t j�ı jf .s/ � f .t/j; see [5, Theorem 7.3].
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It then follows from Karamata’s representation of slowly varying functions (see [26,
consequence (2.5) of Theorem 2.2, p. 180]) that if t � 1,

L.tH/

L.H/
� 2t�"

for tH and H sufficiently large depending on ". By compactness, then

L.tH/

L.H/
�" t

�"

for tH;H � 1, which implies the claim.

Proof of Theorem 1.14. Let ¹Z.t/ W t 2 Œ0; 1�º be a fractional Brownian motion with
Hurst parameter ˛=2. By Theorem 7.1, we need only demonstrate (i) the finite-dimensional
distributions of WX .t/ tend to those of Z.t/, and (ii) tightness for the family WX .

Let us treat (i) first. Note, for each t 2 Œ0; 1�, we have EWX .t/! 0 as X !1 (which
agrees of course with EZ.t/ D 0). Moreover, for s; t 2 Œ0; 1� with s > t ,

EjWX .s/ �WX .t/j
2

D
1

A˛NhBi.H/

1

X

XCbsHcX
nDbtHc

jNB-free.n; b.s � t /Hc/ �MBb.s � t /Hc CO.1/j
2

�
NhBi..s � t /H/

NhBi.H/
� .s � t /˛

by Proposition 1.9. As WX .0/ D 0, this allows one to deduce that WX .t/ has the same limiting
covariance function as Z.t/.

Thus we will have the finite-dimensional distributions of WX .t/ tend to those of Z.t/
if we show for any k � 1 and any t1; : : : ; tk that the vector .WX .t1/; : : : ;WX .tk// tends to
a Gaussian vector. By the Cramér–Wold device [4, Theorem 29.4], this will be true if, for any
fixed real numbers �1; : : : ; �k , the random variable

kX
jD1

�jWX .tj / D
1p

A˛NhBi.H/

kX
jD1

�jQ.tj �H/

tends to a real-valued Gaussian distribution. But
kX

jD1

�jQ.tj �H/ D
X
u2Z

'
�u � n
H

�
1B-free.u/

�MB

X
h2Z

'
� h
H

�
CO.1/ for ' D

X
�j 1.0;tj �;

and so the Gaussian behavior follows from Theorem 6.2.
We now demonstrate (ii). Note that, for any positive integer � and " > 0, we have

EjWX .s/ �WX .t/j
2�

D
1

.A˛NhBi.H//�
1

X

XCbsHcX
nDbtHc

jNB-free.n; b.s � t /Hc/ �MBb.s � t /Hc CO.1/j
2�

��
.NhBi..s � t /H/C 1/

�

NhBi.H/�
��;" js � t j

.˛�"/�
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as long as X (and thus H ) is sufficiently large so that NhBi.H/ is non-zero, using Lemma 7.3
in the last step. Hence, choosing " smaller than ˛ and � large enough that .˛ � "/� > 1,
condition (ii) follows from the Kolmogorov–Chentsov Theorem. This completes the proof.
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