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Abstract
The spectroscopy of hot atomic vapours is a hot topic. Many of the work-horse techniques of
contemporary atomic physics were first demonstrated in hot vapours. Alkali-metal atomic vapours
are ideal media for quantum-optics experiments as they combine: a large resonant optical depth;
long coherence times; and well-understood atom–atom interactions. These features aid with the
simplicity of both the experimental set up and the theoretical framework. The topic attracts much
attention as these systems are ideal for studying both fundamental physics and has numerous
applications, especially in sensing electromagnetic fields and quantum technology. This tutorial
reviews the necessary theory to understand the Doppler broadened absorption spectroscopy of
alkali-metal atoms, and explains the data taking and processing necessary to compare theory and
experiment. The aim is to provide a gentle introduction to novice scientists starting their studies of
the spectroscopy of thermal vapours while also calling attention to the application of these ideas in
the contemporary literature. In addition, the work of expert practitioners in the field is
highlighted, explaining the relevance of three extensively-used software packages that complement
the presentation herein.

ω Angular frequency of the incident field
λ Wavelength of the incident field
k k-vector of the incident field
ω0 Atomic resonance (angular) frequency
λ0 Atomic resonance wavelength
Δ Detuning, where Δ = ω − ω0

P(Δ) Frequency-dependent polarisability
Γ Radiative decay rate of the excited state and width of the resonance
cmF d Dipole moment of the atom, where d is the reduced dipole matrix element and cmF is a coefficient

dependent on the initial and final states
N Number density of the atomic medium
ε0 Permittivity of free space
χ Electric susceptibility
n Refractive index
� Thickness of the atomic vapour through which the field propagates
I0 Intensity of the field before propagating through the medium
I(�) Intensity of the field after propagating through the medium of thickness �
ISAT Saturation intensity of an atomic transition
T Normalised transmission defined as T = I(�)/I0

α Absorption coefficient of the medium
σ Atomic absorption cross section
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Nσ� Optical depth of the medium
T Temperature of the atomic medium
β Self-broadening coefficient
kB Boltzmann constant
m Mass of the atom
vz Velocity component of an atom along the direction of propagation of the field
u Atomic velocity distribution
e Charge of the electron
〈J‖er‖J ′〉 Reduced dipole matrix element
erq Component of the dipole operator in the spherical basis
� Equivalent to h/2π, where h is the Planck constant
c The speed of light in vacuum
B Magnetic field strength
Ahf Magnetic dipole constant for the ground term
μB Bohr magneton
NDP Number of experimental data points
σDP Standard deviation of NDP data points
αDP Standard error of NDP data points
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An atomic vapour—the gas phase that co-exists in equilibrium with solid metal—is an ideal resource for
spectroscopic studies, with investigations spanning the range from fundamental physics to the applied. Many
of the work-horse techniques of contemporary atomic physics experiments were first demonstrated in hot
vapours, such as: coherent population trapping [1]; electromagnetically induced transparency [2]; and slow
light [3]. Important experimental breakthroughs were also demonstrated with hot vapours, such as: the
demonstration of quantum memory for light [4–6]; continuous-variable entanglement [7]; quantum
metrology with nonclassical states of atomic ensembles [8]; realising fluids of light [9, 10]; deterministic
quantum teleportation between distant atomic objects [11]; orbital angular momentum transfer [12–16];
coherent frequency up-conversion [17, 18]; an atomic compass [19, 20]; and photon diffusion [21–25].

A prominent fraction of the research conducted is with vapours of alkali metals—for reasons explained
below—and laser spectroscopy of these atomic ensembles is the subject of this tutorial. Alkali-metal atomic
vapours are ideal media for atomic physics experiments as they combine: (i) a large resonant optical depth;
(ii) long coherence times; (iii) well-understood atom–atom interactions. These features aid with the
simplicity of both the experimental set up and the theoretical framework.

Atomic vapour cells find great utility in numerous applications, particularly with regard to sensing of
electromagnetic fields. For magnetic fields applications range from fundamental physics [26, 27] to the
applied (non-invasive magnetometry of livestock [28]). Atomic spectroscopy in the presence of external
fields has become an area of wide interest, with sensors developed for magnetic [29–35]; electric [36–41];
microwave [42–46]; and THz fields [47–50].

The detailed understanding of atom–light interactions in hot vapours has facilitated the development of
exquisitely sensitive sensors with applications spanning a range of topics: detecting explosives [51]; medical
imaging of soft tissues [52–56]; and microfluidics [57]. In addition, the ability to make quantitative
predictions of the atom–light interaction for an atomic vapour in an external magnetic field has enabled the
development of numerous magneto-optical devices [58–65].

The scope of this tutorial is to present a model that allow us to calculate the absolute susceptibility of the
atomic vapour; this enables quantitative predictions in the vicinity of the D lines3. The tutorial has two
halves: in the first half we review the basics of Doppler-broadened spectroscopy, leading to presentation and
a discussion of some exemplar absorption spectra, and then showing the work of expert practitioners in the
field; in part II we present experimental methods for data gathering, followed by data analysis, culminating
in fitting the experimental spectra to the theory presented in part I.

Part I. Generating theoretical spectra for hot atomic vapours

1. Calculating the absorption coefficient of a Doppler-broadened medium

In this section we shall calculate the absorption profile of a hot atomic vapour. We use the formalism of the
electric susceptibility, which relates the strength of the response of a medium to an applied oscillating
electric field. The induced dipole moment of an atom subject to an external field is calculated, and we shall
relate this microscopic property to the macroscopic properties of a medium of atoms. A formula for the
atomic cross section is developed, with the importance of the atomic density stressed. The velocity of the
atoms in the vapour is incorporated into the framework, as does the feature that the atoms have multiple
resonance frequencies. This will allow us to predict the shape of the spectrum, i.e. the relative linestrengths
of the atomic transitions. Finally, we shall show how it is possible to use well-known parameters of the atom
in our formalism, allowing us to predict the absolute absorption coefficient as a function of frequency, and
hence generate theoretical spectra for hot atomic vapours.

1.1. Electric susceptibility
We model our dilute atomic vapour as a dielectric material. The optical response when probed by
monochromatic light of angular frequency ω is encapsulated by the electric susceptibility, χ(ω). We shall
calculate the response of a single atom subject to a monochromatic field, and then find the field downstream
of a slab of randomly distributed atoms. The propagation of light through a cell of length � can then be
calculated by propagating the field from one slab to a neighbouring one.

3 The transitions n2S1/2 → n2P1/2 and n2S1/2 → n2P3/2, where n is the principal quantum number of the valence electron, are referred to
as the D1 and D2 transitions, respectively, for alkali-metal atoms.
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1.1.1. Fundamental concepts
The fundamental question we are addressing is the following: what is the field downstream of an atom that is
situated in a plane monochromatic laser of angular frequency ω? The field has two components: the original
incident wave, and the field radiated by the atom as a consequence of being immersed in the incident field.
The radiated field will be a function of the detuning, Δ, where Δ = ω − ω0 is the difference between the
laser’s (angular) frequency and the resonance frequency ω0. The physics involved in this problem is relatively
straightforward—it is that of induced dipoles. The frequency-dependent polarisability, P(Δ), is the
constant of proportionality between the induced dipole moment and the incident field. From our knowledge
of classical resonator theory, we expect the induced field to be in phase with the driving field for frequencies
below resonance, to be π/2 out of phase on resonance, and π out of phase when driving above resonance.
The frequency width of the crossover between in and out of phase is characterised by Γ, the width of the
resonance. Semi-classical quantum theory [66]—where the atom is treated quantum mechanically, and the
light field classically—can be applied to solve exactly for the polarisability of a single two level atom [67],
yielding

P(Δ) = − (cmF d)2

�

1

Δ+ iΓ/2
. (1)

Here, Γ is the radiative decay rate of the excited state and the width of the resonance. The dipole moment of
the atom is cmF d, where d is the reduced matrix element and cmF is a coefficient dependent on initial and
final states. Details on how to calculate the atom’s dipole moment are in section 1.6. To derive this result, a
weak field was assumed—such that most of the population remains in the ground state of the atom. As
expected, we find a complex polarisability: the radiated field changes both magnitude and phase with respect
to the driving field in the vicinity of resonance. Having derived the polarisability of a single atom, we now
move on to calculate the optical properties of a medium comprising an ensemble of atoms.

1.1.2. Relating microscopic to macroscopic properties of the medium
For a thin slice of medium with many atoms, with number density N, the results of Fresnel near-field
diffraction can be used to sum the total field downstream of the slab [67]. Two important results emerge: (i)
the sum of the fields of the individual atomic dipoles has the same functional form as for a single atom, but
there is an addition factor of i which represents a phase lag of π/2. As a consequence, the field radiated by
the atoms is exactly out of phase with the incident driving field on resonance, causing maximum extinction
of the light, and (ii) the field from the sum of dipoles is proportional to the number density of atoms. We
formally define the susceptibility as the dimensionless ratio

χ(Δ) =
NP(Δ)

ε0
, (2)

where ε0 is the permittivity of free space.
The susceptibility is related to the refractive index, n, via the equation n =

√
(1 + χ). As atomic vapours

are tenuous, the magnitude of the refractive index is much less than one and therefore n ≈ 1 + χ/2. The real
part of χ, and hence n, represents the slowing down of light and dispersive properties of the medium; the
imaginary part of χ is a measure of the extinction (or absorption) of the light [68].

Assuming that the intensity of the light is not too strong, the extinction of the light as it traverses a
medium is encapsulated in the Beer–Lambert equation [67]

I = I0 exp(−α�) = I0 exp(−Nσ�), (3)

where I is the intensity of the light after propagating a distance � in the medium; I0 is the incident intensity;
and the absorption coefficient α is related to the imaginary part of the susceptibility, χI, by the relation
α = 2πχI/λ, with λ the wavelength. In an experiment the quantity typically measured is the transmission,
T , defined as T = I(�)/I0. In equation (3) we have also introduced the atomic absorption cross section, σ,
which is an alternative way to represent the absorption. Calculating the frequency dependence of the cross
section for a vapour of alkali-metal atoms will enable us to predict the absorption spectrum. The product
Nσ� is known as the optical depth of the medium; high extinction is achieved with media of optical depth
greater than one.

4
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Figure 1. Right: vapour pressure curves for the alkali-metal atoms Rb, Na, K and Cs. Note the logarithmic scale on the
ordinate. Left: the temperature change needed, ΔT, to scale the initial number density N(T) by up to a factor of 10, for
a range of initial temperatures, T. Large scale factors (an order of magnitude increase) are achieved for modest increases of
temperature, of ∼30 ◦C.

1.2. Atomic absorption cross section
1.2.1. Radiative broadening
Using the results from the last section allows us to predict the lineshape for the absorption cross section for a
stationary two-level atom; it takes the form of a Lorentzian as a function of detuning, given by

σ(Δ) = σ0
Γ2

4Δ2 + Γ2 , (4)

where σ0 is the peak absorption cross section [69], and Γ is the rate of spontaneous emission from the
excited state. For a two-level atom with pure radiative broadening σ0 = 3λ2

0/2π, where λ0 is the resonant
wavelength [70]. Equation (4) confirms the assertion made earlier that Γ is the width of the resonance. We
note that it is possible to include power broadening in this formalism [66]. The Lorentzian lineshape is
retained, but with a broader width. High-intensity effects are beyond the scope of this tutorial, and we shall
restrict our attention to the weak-excitation regime (see section 1.8).

1.2.2. Number density and cell-length dependence
For many experiments the optical depth is the quantity which best parameterises the atom–light interaction.
The desire to fabricate compact devices demands a concomitant increase in the absorption coefficient,
realised by increasing the atomic density. The vapour pressure for alkali-metal atoms shows near exponential
sensitivity to temperature, see figure 1. One of the strongest motivations for using Rb and Cs as systems for
studying atomic physics and quantum optics is their large number density at room temperature, thus it is
quite straightforward to achieve large resonant optical depth (see section 1.10). By contrast, most
experiments conducted with K and Na vapours use heated cells. For an initial starting temperature T and
number density N(T), figure 1 also shows the temperature change ΔT needed to scale N(T) by up to a factor
of 10. Therefore, for example, for Rb at room temperature a tripling of the number density is achieved for an
increase in temperature of a modest 10 ◦C. For all the relevant species, an order of magnitude increase in
number density can be achieved by an increase of temperature in the range 20 ◦C–40 ◦C, depending on the
initial temperature and species. See appendix A in [71] for the relevant number density equations used to
compute figure 1.
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Although cell lengths of 1 m [72] have been used for studying optical pulse propagation in hot vapours4,
the vast majority of experiments are performed with cells that are between a few mm and up to 10 cm in
length; the theory presented in this half of the tutorial is relevant to the experimental results presented in the
second half, collected with cells a few cm in length.

For elements with high melting-points achieving high optical depth in vapour cells can be difficult, and
hollow cathode lamps are frequently used to generate sufficient atomic density [76–78]. Hollow cathode
lamps can also be used to generate high alkali-metal atomic density [79, 80].

The study of confinement of atoms and light on the micro- and nanoscales is burgeoning, with
motivation ranging from fundamental physics [81–83]; to miniature vapour-cell atomic-frequency
references and devices [55, 84–87]. Different fabrication techniques for constructing vapour cells for
alkali-metal atoms are being developed [88–92]. Particularly noteworthy are the nanometric thin cells
developed at the Institute for Physical Research, Armenia; these cells have been used to study a wide range of
fundamental physics [93–99] and have sensing applications [100–103]. The spectra of atoms confined to
thin cells is modified with respect to bulk cells, with interactions of atoms with the walls and cavity effects
being dominant. Sub-Doppler resolution can be obtained conveniently with nanometric cells (in contrast to
bulk cells where more elaborate solutions are required for comparable resolution, typically realised with
pump–probe techniques). The spectral profiles of atoms confined to thin cells are greatly modified, and
require more elaborate modelling to explain the transmission profiles [104–106]; consequently, a
comprehensive review of the spectroscopic studies of nanometric thin cells is beyond the scope of this
tutorial5.

1.2.3. Pressure broadening
The phenomenon of pressure broadening refers to the shortening of the excited-state lifetime—and
concomitant broadening of the spectral width of the resonance—as a consequence of collisions which
perturb the emission of radiation by the atoms in the vapour. A modification of Γ is easily incorporated into
the cross section via equation (4).

There are two relevant mechanisms of pressure broadening for an alkali-metal vapour: atom–buffer gas
collision, and pairs of alkali-metal atoms colliding. Typically an alkali-metal vapour cell has a finite amount
of inert buffer gas. One motivation for adding the buffer gas is to slow down atomic diffusion, which can
reduce transit-time broadening [108–110]. As was emphasised in the introduction, the collisional properties
of alkali-metal atoms are very well understood and characterised. The shift and broadening properties of
alkali-metal collisions with inert gases have been studied extensively [111].

For alkali-metal atoms it is possible to include dipole–dipole interactions that preserve the Lorentzian
lineshape, with a number-density dependent width, ΓN = Γ+ βN, where β is the self-broadening
coefficient. For the D1 and D2 transitions the coefficients β are given by [111, 112]

β1 = 2π × Γ1

(
λ1

2π

)3

, (5)

β2 = 2π ×
√

2Γ2

(
λ2

2π

)3

. (6)

Here, Γ1 (Γ2) and λ1 (λ2) are the natural linewidth and transition wavelength for the D1 (D2) transition.
The physical interpretation of these results is the following: a pair of alkali-metals with a separation ∼λ/2π
will influence each other’s radiative properties strongly via the dipole–dipole interaction; for smaller
separations the self-broadening term will dominate over the natural linewidth. Excellent agreement between
the theoretical predictions and experimental measurements have been found over a wide range of
parameters [112–117]. Note that as discussed in section 1.2.2 the rapid rise in number density with
temperature means that dipole–dipole interactions can evolve from being negligible to the dominant
Lorentzian broadening contribution for modest rises in temperature.

1.3. Including atomic velocity
Atoms in a vapour in thermal equilibrium have a distribution of velocity components along any particular
direction that is a Gaussian [118, 119]. The probability that an atom has a z-component of velocity in the

4 One of the earliest reports of the spectral properties of fluids and vapours is from 1815 by Biot [73]. At the time, studying the phe-
nomenon of optical activity played a key role in the development of wave optics [74]. A 30 m long iron tube with glass ends proved
useful to investigate light rotation in turpentine vapour; alas, the tube was overheated, exploded and set fire to the church in which it
was located [75].
5 We note that the theory presented in this tutorial will be valid for cells of length approximately ten wavelengths, or longer; corre-
sponding to approximately seven microns or longer for Cs and Rb [107].
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range vz to vz + dvz is given by f(vz)dvz, with

f(vz) =

√
m

2πkBT
exp

[
− mv2

z

2kBT

]
=

2

u

√
ln 2

π
exp

[
−4 ln 2v2

z

u2

]
. (7)

Here m is the mass of the atom; kB is the Boltzmann constant; T is the temperature of the vapour; and the
FWHM of the velocity distribution, u, is [69] u = 2

√
2 ln 2kBT/m. Consider an atom with velocity

component vz along the direction of propagation of the laser beam. As a consequence of the Doppler effect
there is a modification of the detuning: Δ→Δ′ = Δ− kvz, where k is the wave-vector of the incident field.
The number density of atoms having a z-component of velocity within the range vz to vz + dvz is
n(vz)dvz = Nf(vz)dvz. The range of velocities in equation (7) leads to Doppler broadening of a spectral line.

1.4. Voigt lineshape
The absorption lineshape can be calculated by taking into account both homogeneous (Lorentzian) and
inhomogeneous (Doppler) broadening. Incorporating the Doppler shift, the cross section of equation (4) is
modified thus:

σ(Δ, vz) = σ0
Γ2

4(Δ− kvz)2 + Γ2 , (8)

σ(Δ, vz) =
σ0Γ

2

k2u2

1

4
(
Δ/ku − vz/u

)2
+ Γ2/k2u2

, (9)

σ(Δ, vz) =
σ0Γ

2

k2u2
L

(
Δ

ku
,

vz

u

)
. (10)

Here, the function L is the normalised Lorentzian lineshape. Note that it can be written in terms of a
dimensionless velocity (vz in units of the FWHM u), and of a dimensionless detuning (detuning Δ in units
of FWHM of the Doppler shift, ku). The absorption coefficient of the vapour is obtained by summing
contributions from all the atomic velocity groups:

α(Δ) =

∫ ∞

−∞
n(vz)σ(Δ, vz)dvz . (11)

Inserting the Gaussian velocity distribution from equation (7) and the Lorentzian (10) into equation (11)
leads to

α(Δ) =
Nσ0Γ

2

2u

√
ln 2

π

∫ ∞

−∞

exp
[
−4 ln 2v2

z/u2
]

(Δ− kvz)2 + Γ2/4
dvz,

α(Δ) =
2Nσ0Γ

2

k2u2

√
ln 2

π

∫ ∞

−∞
f
(vz

u

)
L

(
vz

u
,
Δ

ku

)
dvz/u.

(12)

The integral in equation (12) is known as the Voigt profile [120], being the convolution of the Gaussian and
Lorentzian functions. Historically, tabulated values of the Voigt function [121] were used because this
integral cannot be evaluated analytically. However, efficient computer algorithms now allow the Voigt profile
to be calculated quickly; as a consequence, experimental spectra are amenable to least-squares optimisation
techniques [122] for parameter extraction. Various examples of Voigt profiles calculated for different but
realistic Gaussian and Lorentzian widths for 87Rb on the D2 line are plotted in figure 2.

In many experiments the Gaussian width is approximately two orders of magnitude wider than the
Lorentzian. In the limit that the Lorentzian can be approximated as a delta-function, it is a well-know
mathematical property of convolution integrals that the narrow distribution ‘picks out’ the broad
distribution; in this regime, the Voigt lineshape reverts to the Gaussian in the vicinity of line centre.
However, the approximation that the convolution of a broad Gaussian and a narrow Lorentzian can always
be reduced to a Gaussian is not universally valid, and this can be particularly important in velocity-selection
experiments [123], and when studying slow-light phenomena with hot vapours in the wings of the spectral
line [124, 125].

It should be noted that the Voigt profile provides an excellent fit to experimentally measured spectra for a
wide range of conditions; however, departures from the Voigt lineshape are known and have been studied,
and are particularly relevant in the field of Doppler-broadened thermometry [126–132].
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Figure 2. Examples of three Doppler-broadened lineshapes for 87Rb on the D2 line for three temperatures (note how insensitive
the width is to these changes in temperature), and three Lorentzian lineshapes corresponding to natural broadening for the 87Rb
D2 line. Voigt profiles for various combinations of Gaussian and Lorentzian are plotted. All of the line profiles in this figure have
been plotted with the same peak value.

1.5. Multiple transitions and their frequencies
So far, we have assumed that there is a single isolated atomic resonance. Alkali-metal atoms have got fine and
hyperfine structure, therefore their spectra are more complicated. However, it is easy to modify the theory
developed above for the case of multiple transitions. The location of the hyperfine-resolved transitions for
the alkali-metal atoms is very well known [133]. The susceptibility is calculated for each transition, with a
linestrength as described in the next sub-section. If the ith transition has a detuning of Δi with respect to the
line centre, then the total susceptibility as a function of a given global frequency detuning Δ is simply the
sum over all transitions [71]:

χ(Δ) =
∑

i

χi(Δ−Δi) . (13)

Zero detuning is typically chosen to be the weighted centre of the line [134].

1.6. Relative linestrengths
The strength of the interaction between an atom and near-resonant electromagnetic radiation is
encapsulated by the resonant cross section, which is proportional to a quantity known as the dipole
matrix element. For a transition between states |F, mF〉 and |F′, mF′ 〉 the dipole matrix element is〈

F, mF|erq|F′, mF′
〉

. Here, e is the charge of the electron, and erq is a component of the dipole operator in the
spherical basis (see equation (5.17) in [120]). We can factor out the angular dependence and use the
so-called reduced matrix element [135]:

〈F, mF|erq|F′, mF′ 〉 = (−1)2F′+I+J+J′+L+S+mF+1〈L‖er‖L′〉

×
√

(2F + 1)(2F′ + 1)(2J + 1)(2J ′ + 1)(2L + 1)

×
(

F′ 1 F
mF′ −q −mF

){
J J ′ 1
F′ F I

}{
L L′ 1
J ′ J S

}
. (14)

Here F, I, J, L, S, and mF are the angular momentum quantum numbers; I is the nuclear spin for the
particular isotope; S, the electron spin, is 1

2 . Primed variables relate to the excited state. q is associated with
different basis vectors of the polarisation of the light field, and determines the change in magnetic quantum
number during a transition; the notation used is σ+ transitions for the case q ≡ ΔmF ≡ mF′ − mF = 1, σ−

transitions when ΔmF = −1, and π transitions for ΔmF = 0. Using the notation introduced by Wigner this
formula contains so-called 3 − j and 6 − j symbols. The 3 − j symbol is the term contained in the large
round brackets, and the 6 − j in curly brackets. 〈L‖er‖L′〉 is the reduced matrix element, and can be
expressed in terms of the wavelength of the transition, λ, and the decay rate of the excited state, Γ. By
calculating the Wigner coefficients and prefactors, equation (14) reduces to

〈
F, mF|erq|F′, mF′

〉
= cmF〈L‖er‖L′〉 ≡ cmF d . (15)
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Each individual transition has a dipole moment that is the product of the coefficient cmF that is dependent
on the initial and final states, and the linestrength is proportional to the square of the transition matrix
element, c2

mF
d2. Historically, look-up tables were used to evaluate the relevant terms in equation (14) to

calculate the coefficients in equation (15); nowadays there exist numerous computer packages, often with
graphical user interfaces (GUIs), to calculate the coefficients. There is not much physical insight to be gained
by studying equation (14), with the subtleties of the atom–light interactions and the role of the polarisation
of the light being obfuscated by the notation. In appendix A we provide a different approach to calculating
relative linestrengths, by explicitly performing the decoupling of angular momentum in the uncoupled basis;
more physical insight is gleaned form this alternative method of calculation (at the expense of the
calculations taking longer)6.

1.7. Absolute absorption coefficient
The absolute value of the reduced matrix element, d, can be calculated using the expression for the excited
state decay rate [68, 134]

Γ =
ω3

0

3πε0�c3

2J + 1

2J ′ + 1
|〈J‖er‖J ′〉|2. (16)

The reduced matrix element with J as the relevant quantum number 〈J‖er‖J ′〉 can be written in terms of
another reduced matrix element with L as the quantum number:

〈J‖er‖J ′〉 = (−1)J′+L+S+1〈L‖er‖L′〉
√

(2J ′ + 1)(2L + 1)

⎧⎨
⎩

L L′ 1

J ′ J S

⎫⎬
⎭. (17)

To obtain a value from experimental measurements, equation (17) can be evaluated. For example, for the
D2 line we obtain

〈J = 1/2‖er‖J ′ = 3/2〉 =
√

2

3
〈L = 0‖er‖L′ = 1〉. (18)

Substituting (18) into (16) and rearranging,

d = 〈L = 0‖er‖L′ = 1〉 =
√

3

√
3ε0�Γλ3

8π2
. (19)

Tables B.4 and B.5 in [71], for example, list the wavelength and natural linewidth for the D1 and D2

transitions, respectively, for the alkali metals Na, K, Rb and Cs. Using equation (19) for the absolute matrix
element, and equation (15) for the relative linestrengths allows us to calculate the absorption spectrum for
all of the components in both D1 and D2 transitions using the total susceptibility of equation (13).

1.8. Weak-probe limit (and beyond)
The theoretical treatment presented above assumes that we are in the weak-probe limit, such that the
presence of the light does not cause significant population redistribution. For each atomic transition there is
a so-called saturation intensity, ISAT [70]. For a stationary atom in a beam with that intensity a quarter of the
population would be promoted into the excited state. Therefore, conventionally, the inequality I < ISAT

defines the weak-probe limit. However, for spectroscopy with alkali-metal atoms the situation is more subtle
than for the simple two-level atom approach. The new phenomenon that has to be taken into account is
optical (or hyperfine) pumping; an atom excited on the principal resonance D1 and four of the six dipole
allowed transitions of the D2 line7 can either de-excite by returning to the original F state in the 2S1/2 term,
or can fall into the other F state—this is the process of hyperfine pumping. As the latter is a few GHz off
resonance with transitions from the former, these atoms are removed from the system, and diminish the
atom–light interaction. A more stringent requirement for the laser intensity is therefore obtained,
specifically that the probability of hyperfine pumping to occur when the atom is in the laser beam has to be
much smaller than 1. For typical beam widths used in experiments, this can lead to intensities of the order of
I � 10−3ISAT being necessary to gain access to the weak-probe regime [136, 137].

A model that works beyond the weak-probe limit should therefore take into account both the width of
the laser beam, and the beam shape, in order to take into account the spatially varying intensity [138–142].
Power-dependent corrections to the Voigt lineshape have been introduced [143–145]. Progress has also been

6 We note that both approaches lead to the same result; it is a matter of choice for the user which one to adopt, as it does not impact the
overall model.
7 The exceptions are the transitions 2S1/2 F = I + 1/2 → 2P3/2F′ = F + 1, and 2S1/2 F = I − 1/2 → 2P3/2F′ = F − 1. These are closed
transitions, with the selection rule ΔF = ±1, 0 preventing hyperfine pumping into the other F state in the term 2S1/2.
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made in developing theoretical models incorporating spatially dependent absorption in a thermal vapour of
arbitrary optical thickness [146–150].

Note that all of the experimental results presented in the second half of this tutorial were obtained in the
weak-probe limit.

1.9. Adding an external magnetic field
There are many ways to calculate the Zeeman shift on alkali-metal atomic spectra; i.e. the modification
induced by an external magnetic field. Broadly the approaches divide into two camps: (i) finding analytic
results relevant within some constraints and approximations; and (ii) adding a Zeeman term to the atomic
Hamiltonian, and using numerical techniques for matrix diagonalisation to obtain the eigenenergies and
frequencies. An example of the latter is the open-source code ElecSus [71, 151] which uses the uncoupled
basis and populates the Hamiltonian matrix with the hyperfine structure and Zeeman interaction. Examples
of using the uncoupled basis for calculating atom–light interaction are provided in appendix A. An excellent
overview of the analytic results for certain regimes is provided by Bransden and Joachain [152]. Briefly, weak
fields are defined such that the Zeeman interaction is weaker than all hyperfine ones. In this regime (F, mF)
are good quantum numbers in ground 2S1/2 and excited 2P1/2,3/2 terms; there are simple analytic formulae
for shifts of energy levels, linearly proportional to the magnetic field strength, B; consequently it is easy to
calculate the Zeeman shift of the transition. Magnetometry with these magnitudes of fields is typically done
by measuring the Larmor precession frequency [29, 153]. Alkali-metal atoms are ideal for these devices
because: it is easy to optically pump the sample, producing large signals; there are well understood
interactions among the alkali atoms and buffer gases; the large number density of Cs and Rb in particular
means that room-temperature operation is feasible. For modest fields: (F, mF) are still good quantum
numbers for the ground state, but it is better to use mJ and mI in the excited state. This regime is achieved
when the Zeeman interaction is comparable to the excited state hyperfine interaction. It is more awkward to
find analytic results in this regime owing to the difference in suitable quantum numbers. In the hyperfine
Paschen Back (HPB) regime the analysis becomes simpler again, with simple analytic results for transition
shifts. Access is gained to the HPB regime when the Zeeman shift exceeds the ground state hyperfine
interaction. A convenient way to visualise this is via the Breit–Rabi diagram [154, 155] which encapsulates
the (non-linear) evolution of the energy level energies as a function of applied magnetic field. An estimate of
the field needed is BHPB = Ahf/μB, where Ahf is the magnetic dipole constant for the ground term, and μB is
the Bohr magneton8. For the heavier alkali-metal atoms in the HPB regime the separation of the lines from
the Zeeman interaction also exceeds the Doppler width, therefore clean isolated atomic resonances are
observed. Numerous experimental studies have been performed in the HPB regime [157–170]; in contrast to
the experiments at lower fields the Larmor precession frequency is too high for conventional electronic
systems, and obtaining the absorption spectrum of the atoms is a more direct way of measuring the
magnetic field. Spectroscopic studies of the Zeeman splitting with alkali-metal atoms has been used to
observe field strengths of the order of tens/hundreds of Tesla [171–173]. With the development of
non-destructive techniques for producing such large fields, spectroscopy in pulsed magnetic fields up to 58 T
has been performed with alkali-metal atomic vapour sensors [174, 175]. It is noteworthy that in a large
magnetic field a great simplification of the energy levels occurs in the HPB regime. This allows for the
generation of ideal two-, three- and four-level systems, with concomitant clean spectra, with minimal line
overlap. Also, the greatly simplified internal level structure facilitates the theoretical modelling of the system.
For example, experiments conducted in atomic Rb subject to a strong magnetic field of 0.6 T generated with
permanent magnets allowed for the textbook demonstration of V-EIT [176]; ladder-EIT [177];
electromagnetically induced absorption [178]; four-wave mixing [32]; and heralded single-photon
generation [179]. The increased application of alkali-metal atom spectroscopy in fields of the order of a Tesla
has motivated studies of generating large magnetic fields that are uniform over the vapour cell [180, 181].

For the Paschen-Back regime [152, 155] to be achieved the magnetic field must be sufficiently large to be
comparable to the fine structure splitting between the 2P1/2 and 2P3/2 terms. Some studies with Na at 50 T
were reported [182], but there is a dearth of measurements with the heavier alkali-metal atoms because of
the prohibitively large value of the magnetic field needed [31].

1.9.1. Stokes parameters

The main thrust of this tutorial is to explain the form of the Doppler-broadened absorption spectrum for
alkali-metal atoms. To this end we developed a model to that allowed us to calculate the complex
susceptibility of the medium, and used the imaginary part to calculate the extinction of light as it traverses
the cell. This model also allows us to calculate the real part of the susceptibility, and hence refractive index.

8 Typical values for BHPB are: Na 633 G, 39K 165 G, 85Rb 723 G, 87Rb 2441 G, Cs 1642 G [156].
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This tells us about the phase a plane wave picks up on traversing the cell. When a magnetic field is applied
the medium has two distinct eigenmodes, each of which picks up a different phase. This can lead to an
evolution of the polarisation of the light as it passes through the cell. For the absorption spectrum a single
detector after the cell is used to measure the transmission spectrum (see details in part II of this tutorial); it
is possible to add a second detector, and a polarising beamsplitter (PSB). The polarisation state of the
transmitted light can be characterised by pairs of measurements of the intensity in different sets of
orthogonal polarisation bases; these are processed to calculate the Stokes parameters [183–185]. Of most
importance to this tutorial is the Stokes parameter S0, which is equal to T , see section 1.1.2. As the evolution
of the polarisation state of the light as it traverses the cell depends both on the real and imaginary
components of the susceptibility, measuring the Stokes parameters provides a stringent test of the theoretical
model and has been tested with cw [169, 186, 187] and pulsed light propagation [125] in hot atomic
vapours.

1.9.2. Faraday, Voigt and unconstrained geometries
The spectrum of the light transmitted through a vapour cell subject to an external magnetic field is
dependent on the relative orientation of the field and the k-vector of the light. There are two special
geometric cases, named the Faraday [188] and Voigt [189] effect; these are defined as when the magnetic
field is parallel or perpendicular to the light propagation axis (the k-vector), respectively. For these cases the
wave equation for propagation has simple solutions with well defined eigenstates of polarisation. The
Faraday geometry is used frequently, not least because of its utility in constructing optical isolators
(OIs)—devices that allow light to propagate only in one direction [190, 191]. There are many studies of the
Voigt effect in atomic vapours [168, 169, 192–194]. The general case with arbitrary angle between the
magnetic field and the axis of propagation is more difficult to treat mathematically, and there are far fewer
experimental studies of this case [195, 196]. Nevertheless, there has been a recent burgeoning of interest in
this geometry, as it offers the perspective of realising better atomic line filters [63, 65], as discussed in the
next section.

1.9.3. Narrowband atomic line filters

Using a theoretical understanding of the magneto-optical properties of alkali-metal atom hot vapours allows
narrowband line filters to be realised. The idea is to place a vapour cell between crossed polarisers; unless
there is optical rotation of the plane of polarisation there will be no transmission. Optical rotation arises as a
difference in the speed of light for the left and right-hand circularly polarised light components in the
medium, induced (typically) by an axial magnetic field (the Faraday geometry). Understanding the interplay
between optical rotation (the real part of the atomic susceptibility) and the light absorption (imaginary
component of the susceptibility) allows for ultra narrow atomic filters to be designed and constructed. There
are numerous examples in solar physics [197], with the pioneering work of Cimino and co-workers
[198, 199] being noteworthy. Different filters were constructed when it was realised that the anomalous
dispersion of Faraday rotation near optical resonance lines can be exploited to build extremely narrowband
filters [200]. Dick and Shay [201] demonstrated the operation of a narrow-bandwidth optical filter, the
Faraday anomalous dispersion optical filter, that directly transmits light in the vicinity of an atomic
resonance. Magneto-optic filters find great utility in a large variety of applications that require isolating a
signal frequency from unwanted background radiation. The most frequently used filters employ alkali
metals, as these have favourable properties, including (see e.g. [134]): (i) strong principal resonance lines in
the visible or near infrared part of the electromagnetic spectrum [112, 202, 203], (ii) simple and
well-understood atomic structure and interactions with fields [65, 204], and (iii) the vapour pressure of
these elements allow large resonant optical rotations at modest temperatures [205]. Atomic line filters have
been demonstrated in different atomic species, including Cs [61, 206], Rb [201, 207, 208], Na [60, 209] and
K [210]. Gerhardt [211] provides a comprehensive list of different Faraday filters realised with alkali metals,
and discusses the role of anomalous dispersion in the generation of the transmission profile. By relaxing the
constraint that the magnetic field in the atomic medium and the direction of propagation of the light are
parallel, it is possible to produce generalised magneto-optical transmission filters [63], allowing more
flexibility in tailoring the spectroscopic transmission profile [65, 212].

The range of fields in which narrow-band atomic filters are used is vast, and spans the fundamental and
applied. Examples of the former include filtering of frequency-degenerate photon pairs [213]; filtering of
Mollow-triplet sidebands [214]; recording atomic spectra with single-molecule light sources [215];
free-space optical communications [216] and quantum key distribution [217]. Examples of the latter include
Faraday lasers [64, 218–221]; Doppler velocimetry [222]; atmospheric LIDAR [223–228]; simultaneous
atmospheric wind and temperature measurement [229]; and discerning rocket plumes from sunglints [230].
In addition, the same principle of achieving large optical rotation with minimal absorption in the vicinity of
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Table 1. Energy level splittings and Doppler widths for alkali-metal atoms on the D1 and D2 transitions (all units are MHz). The
splittings are obtained using tables B.4–B.11 in [71], from which more precise experimental values can be found (and from references
therein).

Element Ground state D1 excited D1 Doppler Largest D2 excited D2 Doppler
splitting state splitting width (100 ◦C) state splitting width (100 ◦C)

Na 1772 189 1467 58 1468
39K 462 56 863 21 867
85Rb 3036 362 566 121 577
87Rb 6835 812 560 267 570
Cs 9193 1168 402 251 422

an atomic resonance has been used to realise different photonic devices, such as dichroic beam splitters (BSs)
[59, 231], and compact OIs [58].

1.10. Exemplar atomic absorption spectra
We finish this section by bringing together all of the ingredients presented above, and plot theoretical
Doppler-broadened transmission spectra for alkali-metal atoms. We expect Voigt profile absorption for each
2S1/2F → 2P3/2F′ transition, with the number of lines governed by the selection rule ΔF = ±1, 0; for D1

there are four transitions: F = I + 1/2 → F′ = I ± 1/2, F = I − 1/2 → F′ = I ± 1/2; for D2 there are six
transitions, the same four as D1, and an additional two: F = I + 1/2 → F′ = I + 3/2, F = I − 1/2 → F′ =

I − 3/2. What is not as obvious is the expected number of isolated lines, as there will be spectral overlap.
In table 1 we list the ground state hyperfine splitting; the excited state hyperfine splitting for both D2 and

D1 transitions, and the Doppler widths for both transitions. For 39K the ground-state and excited state
splitting is smaller than the Doppler width; therefore both D2 and D1 transitions appear as single compound
lines, comprised of six and four individual transitions, respectively. For all of the other atoms the
ground-state hyperfine splitting exceeds the Doppler width, and discrete lines are expected for transitions
from the upper (F = I + 1/2 → F′) and lower (F = I − 1/2 → F′) hyperfine states in the 2S1/2 term. For
85Rb, 87Rb, Cs and Na on the D2 transition the Doppler width exceeds the excited state hyperfine interval,
therefore the three transitions F → F′ = F, F ± 1, overlap. For the D1 transition the Doppler width exceeds
the excited state hyperfine interval for Na and 85Rb therefore the two transitions overlap; by contrast, for D1

transition in 87Rb and Cs the excited state hyperfine interval exceeds the Doppler width, and the two
transitions are resolved.

All of the salient points from the previous paragraph are evident in figure 3. Here we plot the theoretical
Doppler-broadened transmission spectra for naturally abundant Rb, Na, naturally abundant K (as it is
93.3% 39K, only the transitions and quantum numbers for the dominant isotope are shown) and Cs. The
assumption is that the cell length is 75 mm, and the temperature (that appears in the top right-hand corner
of each spectrum) has been chosen to obtain a minimum transmission of 50%. As we predicted in
section 1.2.2, Rb and Cs exhibit large vapour pressure at room temperature, therefore substantial absorption
is achieved for modest temperatures; Na and K require more heating to generate adequate number density.

2. Analysis with theoretical models

We emphasised at the beginning of this tutorial that the scope of the article was to provide a gentle
introduction to novice scientists starting their studies of the spectroscopy of thermal vapours. At the end of
this first half we hope that the reader will have an understanding of the key concepts of Doppler-broadened
absorption spectroscopy, and will pick up some experimental and data-processing techniques in the second
half. We finish this half by showing the work of expert practitioners in the field, by highlighting three
freely-available software packages than can be used to (i) complement the discussion above, and (ii) provide
useful tools and ideas for further analysis.

2.1. Wolfram demonstrations project
The Wolfram [232] demonstrations project ‘Spectra of the D-Lines of Alkali Vapours’ developed by Gianni
Di Domenico and Antoine Weis is available here: [233]. A screen shot can be seen in figure 4. A GUI allows
the user to select isotope, transition (D2 or D1), temperature and cell length, and whether to plot the
transmission spectrum (as is shown in the figure), or the absorption coefficients. The relevant energy levels
for the lines n2S1/2 → n2P1/2 and n2S1/2 → n2P3/2, along with the dipole-allowed F → F′ transitions are
depicted. The calculation assumes pure Doppler broadening of the lines and a weak probe such that the
Beer–Lambert law is valid. The absolute absorption coefficients are calculated, incorporating the atomic
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Figure 3. Spectra for different species in a 75 mm cell with the temperature chosen to give lowest transmission of 50%. See text
for details.

vapour pressure. A related project calculates, and allows visualisation of, the vapour pressure and density of
the alkali-metal atoms [234].

2.2. ElecSus
The ElecSus package was developed at Durham, and is available here: [235]. There are also two papers
explaining how the code works [71, 151]. A screen shot can be seen in figure 5. The Python code calculates
the electric susceptibility for alkali-metal atoms, with or without an external magnetic field. The code uses
the uncoupled basis (see appendix A) to construct the atomic Hamiltonian, and incorporates the Zeeman
interaction. Numerical diagonalisation techniques are used to find the strength and frequency of transitions
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Figure 4. The GUI for ‘Spectra of the D-Lines of Alkali Vapours’ is used to plot the transmission spectra of the D2 line for a cell
containing pure 85Rb. Isotope, transition (D2 or D1), temperature and cell length are all selected by the user. The energy level
diagram and the allowed transitions are depicted on the right-hand side.

on the D1 and D2 lines9. Voigt lineshapes are calculated for each transition, and the total electric
susceptibility at any given detuning is obtained by summing over all allowed transitions. The real part of the
susceptibility allows the refractive index to be plotted, the imaginary part the transmission spectrum, and
both components are used to calculate the Stokes parameters (see section 1.9.1). Similar to ‘Spectra of the
D-Lines of Alkali Vapours’, ElecSus has a GUI that allows the user to specify: species; D line; temperature;
length of cell; strength and orientation of the magnetic field; the polarisation state of the input light. In
addition, ElecSus allows the user to input experimental data, and to perform least-squares fits to extract
optimised parameters; more details on how to do this are to be found in part II of this tutorial, specifically
section 4.

2.3. ADM: atomic density matrix
The atomic density matrix (ADM) package can be found here: [236]. It is a Mathematica [232] package that
‘facilitates analytic and numerical density-matrix calculations in atomic and related systems. It is intended to
be both general and user-friendly, and to be useful to the working physicist as well as to students’. A screen
shot can be seen in figure 6. ADM is a very sophisticated package than can calculate, and visualise, the results
of many problems in contemporary atom–light interactions; there is substantial documentation for
installing and using the package, and more than two dozen tutorials are provided to exemplify the types of
question that ADM can help analyse. The tutorial ‘Linear Absorption Fitting’ [237] is of particular relevance
to the content of the work presented herein.

9 A minor modification allows the absolute susceptibility, and hence spectrum, to be calculated for the n2S1/2 → (n + 1)2P1/2,3/2

transitions [203].

14



New J. Phys. 24 (2022) 125001 D Pizzey et al

Figure 5. Example of the GUI used by ElecSus. In this case a transmission spectrum of the D2 line is shown for a room
temperature 75 mm cell containing 85Rb and 87Rb, at natural abundance.

Figure 6. An example output from a tutorial used in the ADM package used to model nonlinear magneto-optical rotation in an
alkali atom. In this case a transmission spectrum of the D2 line is shown for 85Rb.

Part II. Experimental methods and data analysis

In the laboratory, we acquire atomic spectra using an oscilloscope, which displays the data as an electronic
signal (voltage) measured over the period for which the laser frequency is scanned (time). In order to fit the
experimental data to the theoretical model (as described in section 2), the experimental spectra need to be
calibrated such that we have normalised transmission as a function of linear detuning10. We can use the
experimental set-up shown in figure 7 for data calibration and for fitting experimental data to theory.

10 Recall that in section 1.1.1 we introduced the angular detuning, Δ, as the difference between the angular frequency of the laser and
resonance. In the laboratory it is more convenient to use linear frequencies; hence the linear detuning, equal to Δ/2π, is used in part II.
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Figure 7. Calibration of Rb atomic spectra, though this method is applicable to other atomic vapours too. (a) Experimental set
up to convert the raw data from an electronic signal vs time to normalised transmission vs linear detuning. A resonant external
cavity diode laser propagates through an OI and is split into three paths using mirrors (M) and 50:50 BS cubes. (i) Fabry–Pérot
etalon to convert from time to frequency and to correct non-linearities in the laser scan. The transmission through the etalon is
detected on a PD. (ii) Doppler-broadened set up consisting of a single pass through a 75 mm Rb vapour cell at room temperature
with laser power of 300 nW and 1/e2 width of 100 μm. A neutral density filter is used to ensure we are working in the weak-probe
regime necessary to fit to a theoretical model. (iii) Pump–probe spectroscopy through a 70 mm Rb vapour cell. The beam is split
into counter propagating ‘pump’ and ‘probe’ beams, and later recombined, using PBS cubes. The raw PD signals are shown in
(b), where the etalon transmission, Doppler-broadened spectra, and sub-Doppler spectra are shown in (i), (ii) and (iii),
respectively. There are 200 000 data points associated with each trace.

The calibration procedure addresses three problems we have with the raw data. First, the calibration
begins by converting the time axis into a frequency axis using a Fabry–Pérot etalon (shown in figure 7(ai)).
The etalon transmission peaks (figure 7(bi)) can also be used to remove non-linearities from the laser scan.
Second, the procedure removes optical power variations that can arise during the laser scan, and normalises
the transmission to be between 0 and 1. Third, we use pump–probe Doppler-free spectroscopy
(figure 7(aiii)) to provide an absolute frequency reference (figure 7(biii)) in order to define where ‘zero’
detuning lies within the trace. Depending on the investigation, other effects can arise, such as etaloning in
the vapour cell [127, 145], that need to be addressed. This is beyond the scope of this tutorial, however a
correction procedure for removing unwanted etalons has been provided in appendix B should the reader be
interested.

The Doppler-broadened spectra (figure 7(bii)), once calibrated, are used to fit to the theoretical model.
The optical power in the vapour cells are set such that we are operating in the weak probe regime
(a requirement of the theoretical model, see section 1.8) which depends on the waist size of the interrogating
laser beam [238]. The measured spectra are recorded on conventional photodiodes (PDs) and all of the
signals are recorded simultaneously on the oscilloscope. The raw outputs for the three PDs are shown in
figure 7(b). Note that the PD voltage displayed is dependent on the optical power of the laser, incident laser
wavelength and the type of PD and circuit.

In the remaining sections, we discuss how we fix these three problems and the data processing involved in
doing so.

3. Data processing

The entire processing, normalisation and fitting routines have been written in a ‘scope-to-theory’ Jupyter
notebook (see GitHub repository [239]) with commented text and example data. Data in this tutorial have
been taken with a PD and oscilloscope, and saved as a .csv file, but this data processing method also
applies to experiments that may require a photon counter too [240].

3.1. Linearising the laser scan
Upon collecting and saving the data, the first step is to remove non-linearities in the laser scan. To do this,
we require an accurate time-to-frequency calibration, which is done using the transmission peaks through
the Fabry–Pérot etalon. A Fabry–Pérot etalon consists of two highly reflective mirrors that are placed
parallel to one another, separated by a distance L. The frequency difference between two adjacent etalon
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Figure 8. (a) Normalised etalon transmission spectra. Etalon peaks are found (black crosses, peaks numbered) using the
find_peaks function in the scipy Python package. Peak detection is aided by using minimum peak height (mph) and
minimum peak distance (mpd). The time separation between adjacent peaks 1 and 2 is greater than between peaks 13 and 14.
(b) Time position of each peak numbered in order from left to right on the etalon scan, with the expected linear fit (black, dashed
line). (c) Non-linearities in laser scan have been corrected and the time axis has been converted to a relative frequency.
(d) Deviation of each etalon peak time position from the linear fit. A high order (7th) polynomial is fit to the deviation in order
to stretch the horizontal, resulting in a linear relationship between the horizontal axis and laser frequency.

peaks is known as the free spectral range (νFSR). For a confocal etalon, νFSR = c/4L, where c is the speed of
light [241]. For a cavity of length 10 cm, which is used in figure 7(ai), the typical νFSR is 750 MHz. The
measured etalon peaks should be equally spaced if the response to the voltage applied to the piezoelectric
transducer in the external cavity of the laser was linear. Figure 7(bi) shows the raw data of the etalon
transmission signal for a typical experiment.

Figure 8 illustrates the methodology of the linearising python subroutine. By measuring the time
difference between etalon peaks, we can compare this to the νFSR of the etalon. A python subroutine
normalises the etalon transmission peaks, selects all of the peaks in the etalon trace and lists them in their
ordered positions. Only data points with signal values above a threshold level and greater than an expected
peak separation are retained. Figure 8(a) shows the normalised etalon transmission as a function of time.
The transmission has been normalised by dividing through by the maximum transmission, making the
peak-finder subroutine independent on PD circuit gain and incident laser power. The subroutine has found
14 peaks in the trace, which are labelled in the figure, and has stored the ordered position (in time) for each
peak. In figure 8(b) the corresponding peak time as a function of the peak number is shown. With the
position of the peaks determined, a linear relation between peak positions and peak numbers is determined
via a least-squares fit using the scipy.optimize Python module, which represents linear time to
frequency conversion. From the linear fit to the peak position, we can see that the scan has a very small
non-linear contribution. It is this non-linearity that we want to remove from the scan. In figure 8(d) we plot
the difference from a linear fit as a function of the exact peak position. Using the lmfit package [242, 243],
a high-order (�5) polynomial is fit to the difference using a differential evolution (DE) algorithm, followed
by a least-squares minimisation in order to determine the uncertainties. The resulting curve is used to
convert the original time axis in figure 8(a) to a linearised time axis by evaluating the polynomial at the time
corresponding to each data point and subtracting the resulting correction from the data’s original time
value—we are essentially ‘stretching’ or ‘compressing’ the horizontal axis appropriately such that we now
have a linear relationship between the time axis and frequency.

The linearised time axis can be converted to a relative frequency axis using the known νFSR of the
Fabry–Pérot etalon and the fixed separation between adjacent etalon peaks. This is shown in figure 8(c). The
separation between each adjacent etalon peak is constant and equivalent to the νFSR of the etalon. To change
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Figure 9. Doppler-broadened spectra using the set-up shown in figure 7(aii). (a) Heated vapour cell to make the atomic
medium optically thick. There is clearly an offset on the PD output, as illustrated by the black dashed line. A first order
polynomial is fitted to the data that lie on the black dashed line; this is used to define the T = 0 line. (b) Room temperature
sub-Doppler spectra illustrating the laser power fluctuations with scanning laser frequency (shown as a black dashed line). The
non-resonant areas of the spectra are selected and fitted to a fifth order polynomial; this is used to define the T = 1 line.

this to an absolute frequency axis, or linear detuning, an atomic reference is required (see figure 7(aiii) for
pump–probe spectroscopy). This is discussed further in section 3.3.

3.2. Normalising the PD output
To compare the transmission spectra with a theoretical curve, the PD output data need to be normalised
between 0 and 1. There are two steps in this procedure; first we must define what ‘0’ is (i.e. maximum
absorption) and second we must define what ‘1’ is (i.e. maximum transmission).

There are a number of reasons why we never measure a PD output of zero (i.e. we always measure a
non-negligible output even when there is no laser light incident on the detector), some of which are PD
current noise, stray light or amplified spontaneous emission from the laser itself [244]. To define zero we
must remove the non-zero PD offset from the spectra; we make the atomic vapour optically thick by heating
the vapour cell, such that no resonant laser light can traverse the medium (as discussed in section 1.2.2).
Figure 9(a) is a Doppler-broadened absorption spectrum from a heated vapour cell (in fact the same vapour
cell used in figure 7(aii)). As indicated by the black dashed line, there is clearly an offset that needs to be
removed. The offset is non-constant due to optical power fluctuations of the scanning laser—this is more
evident when defining maximum transmission as we shall later see—thus we refer to this as the
‘frequency-dependent offset’. We remove the frequency-dependent offset by selecting all of the regions
where there is maximum absorption (i.e. the parts of the spectra that lie on the black dashed line). This is
implemented interactively (using the Python function ginput), such that the user selects the regions of the
spectrum graphically, significantly reducing post-processing time for any given dataset. The selected areas
are fitted to a polynomial function and this function is used as the T = 0 line. All datasets using the same
photodetector, laser power and vapour cell, including the spectra shown in figure 7(bii), have this
polynomial function subtracted from the PD output data. Note that since there are two PDs used for the
Doppler-broadened set up and sub-Doppler broadened set up, each detector needs to have the zero-offset
calibrated independently. Now we must define the maximum transmission through the atomic vapour. As
previously discussed, we need to eradicate laser power fluctuations. These fluctuations arise due to
feed-forward in most modern laser electronics; when the voltage to the piezo controlling the fine position of
the grating is scanned, the current is also modified, with the aim of increasing the mode-hop free tuning
range. The result is an asymmetric signal on the PD, which is clearly visible in figures 7(bii) and (biii), as the
output power changes with the frequency of the laser. To correct for this, we interactively select the areas of
the spectrum that are known to have no absorption on both the sub-Doppler trace and the Doppler trace,
and fit a polynomial function. This is shown in figure 9(b) by the black, dashed line on the Doppler spectra,
and this function is used as the T = 1 line. By dividing the data by this function, we define maximum
transmission.

3.3. Absolute frequency calibration
The next step is to centre the frequency axis, which is done using the sub-Doppler reference spectrum
(see figure 7(biii)). Spectra that resolve hyperfine structure are ideal frequency markers for locking lasers to a
specific frequency [136]. A modification is seen in the absorption spectrum when the pump and probe beam
interact with the atoms centred around zero velocity. When the laser beam is tuned to within the natural
linewidth of an atomic resonance, the probe beam detects a shortage of atoms. This is because some of the
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Figure 10. Pump–probe atomic spectra (D2 line) of room-temperature Rb vapour contained within a 70 mm glass cell.
(a) Normalised transmission with calibrated relative frequency axis. Inset are the sub-Doppler features corresponding to (i) 87Rb
F = 2, (ii) 85Rb F = 3, (iii) 85Rb F = 2 and (iv) 87Rb F = 1. The vertical black dashed lines are markers for the sub-Doppler
features. From left to right, F→ F′ = F − 1, X(F−1,F), F, X(F−1,F+1), X(F,F+1), F + 1, where X denotes a crossover feature. A
triangular smooth of weight 100 points for (i) to (iii) and 70 points for (iv) have been applied to the data in the insets. It is not
possible to resolve individual features in the sub-Doppler spectrum of 85Rb F = 2, as the excited state hyperfine intervals are
smallest for these transitions. (b) Expected linear detuning values as a function of the frequency with arbitrary offset (black
crosses). A linear fit (gold solid line) allows one to convert the relative frequency axis to an absolute frequency axis.

atoms have been excited by the pump beam and reside either in the excited state or have been hyperfine
pumped (see section 1.8) into the other ground state. Hence, pump–probe spectroscopy gives sub-Doppler
resolution: a narrow feature centred at ω0 within a Doppler broadened absorption spectrum.

For naturally abundant Rb with two isotopes, the electric-dipole selection rules predict that there should
be eight and twelve sub-Doppler features visible for the D1 and D2 lines, respectively. However, twelve
and twenty-four peaks are visible in total. Half of these features correspond to the resonant frequencies
F → F′ = F, F ± 1, where both probe and pump beams excite atoms with close to zero velocity. In addition
to these resonant lines, there are four and twelve crossover features [70] that occur at frequencies halfway
between each pair of transitions. Figure 10(a) illustrates a normalised sub-Doppler spectrum for the D2 line
in Rb. Inset are the sub-Doppler features corresponding to (i) 87Rb F = 2, (ii) 85Rb F = 3, (iii) 85Rb F = 2
and (iv) 87Rb F = 1. A triangular smooth of weight 100 points for (i) to (iii) and 70 points for (iv) have been
applied to the data in the insets. As explained in section 3.1, the raw time data of the sub-Doppler spectrum
has been linearised and converted to a relative frequency axis using the νFSR of the Fabry–Pérot etalon. Using
the sub-Doppler features, we can convert the relative frequency axis to an absolute frequency axis, or rather a
linear detuning, which is necessary for fitting a theoretical curve.
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Zero detuning is typically chosen to be the weighted centre of the line [134] (as discussed in section 1.5)
and is compatible with fitting to ElecSus. As such, the transition frequencies in the ‘scope-to-theory’ Jupyter
notebook [239] are stated with respect to the weighted line centre. Since the crossover resonances are often
more intense than the normal resonant transitions [136], it is best to use these to calibrate the frequency
axis. Now that the frequency axis is linear, we only require two points to fully calibrate the frequency axis.
Any points of the known frequency will do but in this worked example, for the D2 line, we use the
F = 2 → F′ = 2, 3 and F = 3 → F′ = 3, 4 crossover resonances in 87Rb and 85Rb, respectively, as these are the
strongest features. Figure 10(b) shows the absolute frequency of the individual sub-Doppler features against
our arbitrarily defined frequency axis. By fitting a linear function to the data, we extract the slope and
intercept of the fit. The slope should be equal to one, as we have already corrected for any non-linearities in
the laser scan (see section 3.1), whereas the intercept tells us the amount we should translate the frequency
axis by in order to set zero detuning appropriately. For example, the linear fit in figure 10(b) has a
y-intercept of −4.2 GHz hence the data shown in figure 10(a) needs to shift to the left by 4.2 GHz. The
uncertainties in the frequency calibration process are discussed in appendix C, but typically the error in our
frequency calibration over this linear detuning range is less than 1% [245].

The method described in this section is also applicable in other atomic species, though the transition
frequencies with respect to the weighted line centre will have to be defined by the user in the
‘scope-to-theory’ Jupyter notebook [239], as only the Rb transitions are defined herein.

4. Fitting the experimental spectra to theory

With the data processing complete, the experimental spectra can be fitted to theory. In this example, we will
demonstrate how we extract parameters of our thermal vapour (including but not limited to broadening,
shifts, atom temperature or magnetic field) using ElecSus [71, 151], one of the packages discussed in
section 2, that is obtained from [235].

The frequency-calibrated experimental data are introduced into the ElecSus GUI via the ‘Import Data’
tab. The data needs to be in .csv format with two columns of values; the first column specifies the linear
detuning (in GHz) while the second column gives the spectrum data. The processing of the data into this
format has been carried out in section 3.

The raw data that we obtain from the oscilloscope contains 200 000 data points, as shown in figure 7(b),
and, subsequently, this is the number of data points we import into ElecSus. This is typical of fairly basic
oscilloscopes used today, and in some (more expensive) versions, the number of data points can exceed tens
of millions. When fitting using ElecSus the main limiting factor time-wise is the speed of the iterations over
all of the data points, so to reduce the computational time we bin the data. Binning data is a method by
which we average over every NDP data points. By measuring the standard deviation σDP, of these NDP data
points, we can also extract a standard error, αDP, such that:

αDP =
σDP√
NDP

. (20)

This has the advantage of increasing the speed of the fitting algorithm, while also providing an error that
can be used to extract errors in the fit parameters. There is a trade-off with the bin size used however; a large
bin size reduces the number of data points, meaning the fits can be performed much faster, but at the
expense of lowering the spectral resolution. In the ‘Fit’ menu in the ElecSus GUI there is a ‘Data Processing’
tab that gives you the option to ‘smooth’ or ‘bin’ your data. In this worked example we chose to use a bin
size of 250 for all of the Doppler-broadened spectra, leaving 800 data points to be used in the fitting.

Fitting theory to the experimental data involves defining a ‘cost’ function. The ‘cost’ is often defined as
the square of the difference between theory and experiment summed at each point along the curve [122] and
the cost function is minimised by changing the parameters that define the theory curve. Under the ‘Fit
Settings’ tab in the ElecSus GUI, the experimental parameters are introduced as the initial parameters for the
calculations, and a fitting routine is chosen. Note the speed of the algorithm is fastest, and the likelihood of
finding the global minimum increased, with good initial input parameters.

The fits carried out with ElecSus, through use of the lmfit Python package, allow for multi-parameter
fits where individual parameters can be fixed or bound to vary within range values [151]. There are four
different fitting routines included in ElecSus that can be used and should be selected depending on the
complexity of the fitting problem. In simple cases the option of fitting via the Marquardt–Levenberg (ML)
method [122] should be chosen. This method is a ‘hill-climbing’ algorithm that will quickly find the local
minimum (or maximum). The standard errors, which were calculated when the data was binned, are used to
weight the residuals in order to get a χ2 fit. The lmfit package returns the optimised parameters together
with their uncertainties in the form of a covariance or error matrix. The elements of the covariance matrix
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Figure 11. ElecSus GUI screen shot displaying theoretical fit (purple line) to experimental data (gold), with residuals
underneath. The ML method was used to find the optimised parameters, with the fit settings displayed on the right-hand side.

Figure 12. ElecSus GUI screen shot displaying fitting information. The fitting information, as well as theoretical data, can be
exported to .csv.

quantify the statistical errors on the optimised parameters. The uncertainty in the ith parameter is given by
the square root of the ith diagonal element of the error matrix, whereas the off-diagonal elements define the
correlations between the parameters [122].

Figure 11 is a screenshot of the ElecSus GUI with the calibrated Rb absorption spectra (raw data shown in
figure 7(bii)) imported and fitted to theory, with the residuals of the fit displayed underneath. The ML
routine has been used to fit to the data in figure 11, with atomic vapour temperature as the sole fit
parameter. ElecSus provides fitting information, including RMS error between theory and experiment, in
addition to the optimised fitting parameters, as shown in figure 12. This information can be saved and the
best-curve fit data can be exported in .csv format. The temperature, and its associated error, for this data
set was found to be (19.67 ± 0.01) ◦C. The errors produced by ElecSus are correct, however these are an
underestimate of the true uncertainties of the fit parameters, as will be discussed further in section 4.1.

Figure 13 shows three experimental transmission spectra, where data have been taken in the same atomic
vapour cell, of length 75 mm, but at different temperatures. The spectra were fit using the ML method, with
temperature as the sole fit parameter. The atomic vapour temperatures were found to be (19.67 ± 0.01) ◦C
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Figure 13. (a) Absorption spectra of naturally abundant Rb vapour on the D2 line, contained within a 75 mm glass cell, at three
temperatures. The room-temperature spectrum (purple solid line) is the same data shown in figure 7(bii). Model fits (black
dash-dotted line) using ElecSus are overlaid on each spectra. The difference between the data and the fit for atomic vapour
temperatures of (19.67 ± 0.01) ◦C (RMS = 0.40%), (40.12 ± 0.01) ◦C (RMS = 0.68%) and (72.77 ± 0.02) ◦C (RMS = 0.68%),
known as the residuals (multiplied by 100 for better visibility), are shown in (b), (c) and (d), respectively. The uncertainties
associated with the temperature are taken from the ElecSus fitting algorithm and is an underestimate of the true uncertainties of
the fit parameters (see section 4.1).

(RMS = 0.40%), (40.12 ± 0.01) ◦C (RMS = 0.68%) and (72.77 ± 0.02) ◦C (RMS = 0.68%), with the
associated errors taken directly from the ElecSus fitting algorithm.

When dealing with many fit parameters, e.g. in searching for ultra-narrow filters [65, 208], the ML
technique tends to fail to find the global minimum, therefore a global fitting routine should be used. There
are three global fitting routines available on ElecSus: random-restart [246]; simulated annealing [247]; and
DE [248, 249]. Specific details on these algorithms, their operation and advantage can be found on the
documentation pages for lmfit [242, 243].

4.1. Extracting uncertainties in the fit parameters
To extract the statistical uncertainty in the fit parameters, the uncertainty of the data points, which will vary
between different experiments, need to be known. The current version of the ElecSus GUI has no facility to
accept these uncertainties as an input and so does not provide uncertainties in the fit parameters. However,
since ElecSus outputs the theoretical curve as a .csv file, the user can perform this analysis manually
(see [122]).

Another method to extract the statistical uncertainty in the fit parameters is to accumulate multiple data
sets under nominally the same experimental conditions and fit them independently. This gives several values
for each fit parameter from which the mean and standard error of each parameter can be found from this set
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of values. Although we have not taken repeated data sets in this worked example, using this method we have
found that our experimental technique typically gives statistical uncertainties of ≈ 0.1◦C for temperature
[245] and ≈1 G for magnetic fields [164] (for magnetic fields up to 5 kG).

5. Concluding remarks

Spectroscopy of thermal atomic vapours is attracting attention as ideal systems for studying fundamental
physics and for use in numerous applications, particularly in the arena of quantum technology and sensing
electromagnetic fields. As such, it is important to have an appreciation, and an understanding, of the
underlying atomic physics involved in such experiments. Our aim in this tutorial has been to provide a
gentle introduction to novice scientists starting their studies of the spectroscopy of thermal atomic vapours.
In summary, we have presented the necessary theory to understand the Doppler broadened absorption
spectroscopy of alkali-metal atoms, and have explained the data taking and processing required to compare
theory and experiment. We have provided a data-analysis notebook with example spectroscopy data, as well
as a step-by-step guide to process the experimental data. In the exciting and emerging world of quantum
technologies, clearly being able to characterise the medium is vital. We have demonstrated in this work that
we can extract parameters such as the temperature, number density, gas composition and magnetic field
(to name just a few) from the atomic vapour cell using Doppler-broadened absorption spectra.
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Appendix A. Relative linestrength factors: uncoupled basis

The mathematical treatment of dipole matrix elements in different bases hinges on angular momentum
decomposition. For a composite angular momentum J1 = J2 + J3 we can decompose the eigenstates with
well defined square-magnitude J2

1 and z-component (J1)Z ≡ M1 into a summation of states with well
defined J2

2 , J2
3 and M2, M3. The coefficients in the linear superposition are the Clebsch–Gordan coefficients

(or vector coupling coefficients), and they are related to the 3 − j symbol. The decomposition is:

|J1, M1〉 =
∑

〈J2, M2; J3, M3|J1, M1〉|J2, M2; J3, M3〉 . (A.1)

This equation has a geometric interpretation: we can think of a vector, |J1, M1〉, as being equal to the sum of
its components along a set of basis vectors, |J2, M2; J3, M3〉, with the magnitude of a component being the
overlap between the vector and the basis vector 〈J2, M2; J3, M3|J1, M1〉. The summation is over all states
that satisfy the equation for conservation of z component of angular momentum: M1 = M2 + M3. The
Clebsch–Gordan coefficients have many symmetry and permutation relations, and of particular relevance
to linestrength calculations are only non-zero if the triangle condition is met: |J2 − J3| � J1 � |J2 + J3|.

We shall now demonstrate the calculation of relative linestrengths, by considering three transitions of
interest, from the D2 line in 85Rb: 52S1/2|F = 3, mF = +3〉 −→ 52P3/2|F′ = 4, mF = +4, 3, 2〉. We start with
decoupling F into I + J. We adapt equation (A.1) to write |F, mF〉 =

∑
〈I, mI ; J, mJ |F, mF〉|I, mI ; J, mJ〉.

The combination |I, mI ; J, mJ〉 has two angular momenta operating in different spaces, and this state is
simply a direct product which we can write in a slightly different way: |I, mI ; J, mJ〉 = |I, mI〉 ⊗ |J, mJ〉.
Thus the decoupled state is |F, mF〉 =

∑
〈I, mI | ⊗ 〈J, mJ|F, mF〉|I, mI〉 ⊗ |J, mJ〉. For brevity, we shall write
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|I, mI〉 ⊗ |J, mJ〉 as |I, mI〉|J, mJ〉. For 85Rb the nucleus has spin I = 5/2. The ground state decomposition
is trivial as it as a stretched state. There is only one way of making up the state with a projection of +3,
namely |3, 3〉 = |5/2, 5/2〉|1/2, 1/2〉. Following a similar procedure we decouple the three excited states of
interest, all of which have J = 3/2. There is another example of a stretched state with a trivial
decomposition: |4, 4〉 = |5/2, 5/2〉|3/2, 3/2〉. The other two are evaluated (using look-up tables for the
coefficients) to be

|4, 3〉 =
√

3

8
|5/2, 5/2〉|3/2, 1/2〉+

√
5

8
|5/2, 3/2〉|3/2, 3/2〉 , (A.2)

and

|4, 2〉 =
√

3

28
|5/2, 5/2〉|3/2,−1/2〉+

√
15

28
|5/2, 3/2〉|3/2, 1/2〉+

√
5

14
|5/2, 1/2〉|3/2, 3/2〉 . (A.3)

Note the conservation of z component of angular momentum in the components on the right-hand side of
these equations.

The next step is a decoupling of J into L + S; i.e. a complete decoupling of F into I, L and S. We use
equation (A.1) again with different angular momenta. There is another stretched state whose
decomposition is trivial; using the notation |J, mJ〉 =

∑
〈L, mL; S, mS|J, mJ〉|L, mL; S, mS〉, we can write

|3/2, 3/2〉 = |1, 1〉|1/2, 1/2〉 . (A.4)

(Note that the last vector |1/2, 1/2〉 can also be written as |↑〉, as it represents an electron in the spin-up
state; we shall not adopt that notation here.) The uncoupling of the other states of interest follow:

|3/2, 1/2〉 =
√

1

3
|1, 1〉|1/2,−1/2〉+

√
2

3
|1, 0〉|1/2, 1/2〉 , (A.5)

and

|3/2,−1/2〉 =
√

2

3
|1, 0〉|1/2,−1/2〉+

√
1

3
|1,−1〉|1/2, 1/2〉 . (A.6)

This allows us to write down the complete decoupling of the states of interest using |L, mL〉, |I, mI〉 and
|S, mS〉 notation

|3, 3〉 = |5/2, 5/2〉|0, 0〉|1/2, 1/2〉 ,

|4, 4〉 = |5/2, 5/2〉|1, 1〉|1/2, 1/2〉 ,

|4, 3〉 =
√

1

8
|5/2, 5/2〉|1, 1〉|1/2,−1/2〉+

√
1

4
|5/2, 5/2〉|1, 0〉|1/2, 1/2〉+

√
5

8
|5/2, 3/2〉|1, 1〉|1/2, 1/2〉 ,

|4, 2〉 =
√

1

14
|5/2, 5/2〉|1, 0〉|1/2,−1/2〉+

√
1

28
|5/2, 5/2〉|1,−1〉|1/2, 1/2〉

+

√
5

28
|5/2, 3/2〉|1, 1〉|1/2,−1/2〉+

√
5

14
|5/2, 3/2〉|1, 0〉|1/2, 1/2〉

+

√
5

14
|5/2, 1/2〉|1, 1〉|1/2, 1/2〉 .

We can use these states to evaluate the relative transition linestrengths. There are two key simplification
in the calculation; the first arises as a consequence of the electric dipole operator acting only in real space,
and being able to change the orbital angular momentum of the atom. During an electric dipole transition
neither the electron spin nor the nuclear spin nor their z-components can change. Therefore the only states
that can be coupled by the electric dipole operator must have the same |S, mS〉 and |I, MI〉. The second is
the simplicity of the selection rule for transitions between states and |L, mL〉 and |L′, mL′ 〉; these are
ΔL ≡ L′ − L = ±1, and ΔmL ≡ mL′ − mL = ±1, 0, corresponding to σ±, and π transitions, respectively.
By defining the quantization axis z along B, the component of polarisation in the xy-plane results in a
non-zero dipole matrix element if and only if ΔmL = ±1. These transitions are called σ±, driven by left
(for σ+) and right (for σ−)-hand circular polarised beams propagating along the quantization axis z [67].
Similarly, any component of electric field oscillating along z induces a ΔmL = 0 dipole transition, which are
known as π transitions.
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Let us first look at the transition from |3, 3〉 to |4, 4〉. The dipole matrix element is

〈4, 4|er|3, 3〉 = 〈5/2, 5/2|〈1, 1|〈1/2, 1/2|er|5/2, 5/2〉|0, 0〉|1/2, 1/2〉 ,

= 〈5/2, 5/2|5/2, 5/2〉〈1/2, 1/2|1/2, 1/2〉〈1, 1|er|0, 0〉 ,

= 〈1, 1|er|0, 0〉 . (A.7)

Note that all of the overlaps among spin states are equal to 1, as these states are identical; otherwise, the
transition is not allowed.

For the other two transitions we obtain

〈4, 3|er|3, 3〉 = 〈4, 3|er|5/2, 5/2〉|0, 0〉|1/2, 1/2〉 ,

=

√
1

4
〈5/2, 5/2|5/2, 5/2〉〈1/2, 1/2|1/2, 1/2〉〈1, 0|er|0, 0〉 ,

=

√
1

4
〈1, 0|er|0, 0〉 , (A.8)

and

〈4, 2|er|3, 3〉 = 〈4, 2|er|5/2, 5/2〉|1, 1〉|1/2, 1/2〉 ,

=

√
1

28
〈5/2, 5/2|5/2, 5/2〉〈1/2, 1/2|1/2, 1/2〉〈1,−1|er|0, 0〉 ,

=

√
1

28
〈1,−1|er|0, 0〉 . (A.9)

Note that each state in the uncoupled basis has products of vector-coupling coefficients, or 3 − j symbols.
Therefore in evaluating a matrix element there will be terms with products of four vector-coupling
coefficients; this is the origin of the 6 − j symbol in equation (14), as these are defined as a sum over
products of four 3 − j symbols.

The Wigner–Eckart theorem [120, 135] is very useful in relating the m-dependence of such matrix
elements. The theorem states that a matrix element specified by the mF values of the initial and final states,
and the polarisation of the light (q), can be related to a reduced matrix element and a Clebsch–Gordan
(or a 3 − j) symbol:

〈J ′, mJ′ |erq|J, MJ〉 = 〈J ′, mJ′ |erq|J, Mj; 1, q〉〈J ′||r||J〉 ,

= (−1)J′−mJ′

(
J ′ 1 J

mJ′ −q −mJ

)
〈J ′||r||J〉 .

(The 1 appearing on the right-hand side is a manifestation of the fact that the electric dipole operator is a
vector. There is a more general form of the Wigner–Eckart theorem for arbitrary ranked tensors.)

We can use the Wigner–Eckart theorem to relate the three transition strengths of interest to us,
calculated above. As we are interested in the squares of the amplitudes we obtain:

|〈1, 1|er+|0, 0〉|2 = |〈1, 0|er0|0, 0〉|2 = |〈1,−1|er−|0, 0〉|2 = 1

3
|〈1||er||0〉|2 . (A.10)

In this case with L = 0, L′ = 1, all three are equal; this is not true in general.
Finally, we can calculate the ratios of the transition strengths for the three transitions 52S1/2|F = 3,

mF = +3〉 −→ 52P3/2|F′ = 4, mF = +4, 3, 2〉, given by the ratios of the squares of the dipole matrix
elements:

1 :
1

4
:

1

28
or 28 : 7 : 1 . (A.11)

Obviously, this is far too elaborate a procedure to go through to calculate every transition strength of
interest. Equation (14) can be used to calculate relative transition strengths; the purpose of this appendix is
to unpack the calculation for one worked example, to give some insight into to the origin of the various
factors in the expression.
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Appendix B. Etalon effects

In many cases, the processing described in sections 3 and 4 for the electronic signals to be converted into a
useful and quantitative atomic absorption spectra allows for excellent agreement between the experimental
data and the theoretical model. Nevertheless, there are additional systematic effects which may be present in
the processed signal and impede high precision measurements to be carried out reliably. We note that it is
possible to study one of these etalon effects—the one arising owing to multiple reflections from the
windows of the cell—to determine the atomic density and collisional broadening coefficient [251]. One
such effect is apparent in the case where the frequency of the laser used to obtain the atomic absorption
must be scanned over a range of tens or hundreds of GHz, particularly in the regions that are far
off-resonance from the atomic transitions. Here, the large range of frequencies covered by the laser light
leads to the formation of low-finesse etalons [127, 145] from the optical system, in particular uncoated or
misaligned surfaces. It is possible to take into account these low-finesse etalons in the signal background by
considering the model proposed in [127, 145, 252]. The model is based on the analytic expression for the
transmission signal T of an etalon [67],

T =
Tpeak

1 + (2F/π)2 sin2(πν/νFSR + φ)
, (B.1)

where F is the finesse of the etalon, φ is the frequency offset of the etalon, Tpeak is the peak transmission of
the etalon signal, ν is the frequency of the light and νFSR has been defined previously in section 3.1.
Assuming that the finesse of the etalon is low, that is F � 1, equation (B.1) can be rewritten in a simpler
form, where the approximation 1/(1 + x2) ≈ (1 − x2) gives an expression for the transmission of the etalon
in this regime of the form

T ≈ Tpeak(1 − (2F/π)2 sin2(πν/νFSR + φ)),

≈ Tpeak(1 − a sin2(πν/νFSR + φ)), (B.2)

where we have introduced the parameter a = 4F 2/π2 as the amplitude of the etalon.
Having defined the characteristic transmission of an etalon in equations (B.1) and (B.2) we proceed to

incorporate them into the theoretical model of the atomic absorption signal. These systematic effects are
independent of the interaction between the atoms and the light, so that we can, without loss of generality,
consider them as affecting the light transmitted after the atomic sample. Assuming n distinct low-finesse
etalons in the overall transmission we are now interested in measuring the total transmitted light Ttotal,
which is composed of the atomic absorption Tatom and the effects of these etalons Tetalon,

Ttotal = Tatom × Tetalon,

= Tatom

n∏
j=1

(1 − aj sin2(πν/νj,FSR + φj)). (B.3)

We note that in equation (B.3) we are considering that each of the n etalons has a unique finesse and
free-spectral-range, as well as an offset in phase.

In practice, removing the effects of low-finesse etalons in the optical signals acquired can be done
automatically without much additional complication in the processing of the data. Once an atomic
absorption spectrum is acquired in the experimental setup, the data are processed following the steps
discussed in section 3.

In doing this, the assumption is made that the effects of the etalons are not of a significant nature on the
atomic absorption and the absorption profiles are thus not altered. We then recall equation (B.3) and divide
the total transmission by the theoretical atomic absorption, Ttotal/Tatoms, in order to obtain a signal for the
component of the total transmission due to the effects of the etalons in the optical system. This signal is
then fit by using the expression (B.2) implemented as a custom model using the lmfit Python package
[242, 243]; three free parameters are used to characterise the etalon: its amplitude a, the free-spectral-range
νFSR and phase offset φ. Once a fit is obtained, the number of etalons included is increased iteratively,
typically from n = 1 to n = 6, so that upon observation of the fit residuals there are no slowly-oscillating
features and can be considered to be the experimental noise inherent to the light source and detector used.
A similar process used in reference [145] reaches this limit after introducing n = 3 etalons in the fit of an
atomic absorption spectrum.
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Appendix C. Uncertainties in the frequency calibration process

The uncertainties in the frequency calibration of experimental spectra originate from the uncertainty in the
horizontal axis of the raw data. In the first instance, this will be determined by the equipment used in the
acquisition of the raw signals. For example, the data shown in figure 7(b), with a resolution of 50 μs, the
manufacturer specifications state a ±2.5 p.p.m accuracy in the oscilloscope time base and an overall
resolution of 250 fs. Note that a Tektronix DPO7254 oscilloscope was used throughout this work; more
information is available at https://uk.tek.com/datasheet/dpo7000-series.

Given the raw times values for the experimental data, traw, the final frequency value ν along the
horizontal axis is determined by the expression

ν = mt→ν t lin + ct→ν = mt→ν(traw − tcorr) + ct→ν , (C.1)

where tcorr is the non-linear correction applied in order to linearise the time-axis, tlin is the linearised time
value, (mt→ν ± σmt→ν ) is the slope and (ct→ν ± σct→ν ) is the y-axis intercept of the calibration obtained from
fitting the reference spectrum. The slope and the intercept have associated uncertainties that are used to
calculate the uncertainty σν in the frequency value. Taking the standard formulas for the propagation of
errors in reference [122], we arrive at the expression

σν =
√

(σνlin
)2 + (σct→ν )2. (C.2)

Using equation (C.2), σν can be determined for each data point along the linearised frequency axis, and
used to estimate the percentage error in the frequency calibration over the extent of the frequency scan.
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