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Abstract
Based on a rough path foundation, we develop a model-
free approach to stochastic portfolio theory (SPT). Our
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based on Föllmer integration. Without the assumption
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portfolios to a pathwise version of the so-called master
formula of classical SPT.We show that the appropriately
scaled asymptotic growth rate of a far reaching general-
ization of Cover’s universal portfolio based on controlled
paths coincides with that of the best retrospectively cho-
sen portfolio within this class. We provide several novel
results concerning rough integration, and highlight the
advantages of the rough path approach by showing that
(nonfunctionally generated) log-optimal portfolios in an
ergodic Itô diffusion setting have the same asymptotic
growth rate as Cover’s universal portfolio and the best
retrospectively chosen one.
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1 INTRODUCTION

Classical approaches to portfolio theory, going back to the seminal work of Markowitz (1959) (see
also the early work of de Finetti (1940)), are essentially based on simplistic probabilistic models
for the asset returns or prices. As a first step, classical portfolio selection, thus, requires to build
and statistically estimate a probabilistic model of the future asset returns. The second step is usu-
ally to find an “optimal” portfolio with respect to the now fixed model. However, it is well known
that the obtained optimal portfolios and their performance are highly sensitive to model mis-
specifications and estimation errors; see, for example, Chopra and Ziemba (1993); DeMiguel et al.
(2007).
In order to account for model misspecification and model risk, the concept of model ambigu-

ity, also known as Knightian uncertainty, has gained increasing importance in portfolio theory;
see, for example, Pflug and Wozabal (2007); Guidolin and Rinaldi (2013). Here the rationale is
to accomplish the portfolio selection with respect to a pool of probabilistic models, rather than
a specific one. This has been pushed further by adopting completely model-free (or pathwise)
approaches, where the trajectories of the asset prices are assumed to be deterministic functions of
time. That is, no statistical properties of the asset returns or prices are postulated; see, for exam-
ple, Pal and Wong (2016); Schied et al. (2018); Cuchiero et al. (2019). In portfolio theory, there are
two major approaches, which provide such model-free ways of determining “optimal” portfolios:
universal and stochastic portfolio theory (SPT).
The objective of universal portfolio theory is to find general preference-free well-performing

investment strategies without referring to a probabilistic setting; see Li andHoi (2014) for a survey.
This theorywas initiated byCover (1991), who showed that a properly chosen “universal” portfolio
has the same asymptotic growth rate as the best retrospectively chosen (constantly rebalanced)
portfolio in a discrete-time setting. Here, the word “universal” indicates the model-free nature of
the constructed portfolio.
SPT, initiated by Fernholz (1999, 2001), constitutes a descriptive theory aiming to construct

and analyze portfolios using only properties of observable market quantities; see Fernholz (2002);
Karatzas and Fernholz (2009) for detailed introductions. While classical SPT still relies on an
underlying probabilisticmodel, its descriptive nature leads to essentiallymodel-free constructions
of “optimal” portfolios.
A model-free treatment of universal and SPT in continuous-time was recently introduced in

Schied et al. (2018); Cuchiero et al. (2019), clarifying the model-free nature of these theories. So
far, this analysis has been limited to so-called (generalized) functionally generated portfolios, com-
pare Fernholz (1999); Strong (2014); Schied et al. (2018). These are investment strategies based on
logarithmic gradients of so-called portfolio generating functions. This limitation is due to the fact
that the corresponding portfolio wealth processes can be defined in a purely pathwise manner
only for gradient-type strategies, namely, via Föllmer’s probability-free notion of Itô integration;
see Föllmer’s pioneering work (Föllmer, 1981) and its extensions (Cont and Fournié, 2010; Cont
and Perkowski, 2019; Chiu and Cont, 2022a, 2022b). Even though these limitations do not occur
in discrete time, optimal portfolio selection approaches based on functionally generated port-
folios have also gained attention in discrete time setups; see, for example, Campbell and Wong
(2022). Another strand of research is robust maximization of asymptotic growth within a pool of
Markovian models as pursued in Kardaras and Robertson (2012, 2021); Itkin and Larsson (2022).
While these approaches clearly account formodel uncertainty, a probabilistic structure still enters
via a Markovian volatility matrix and an invariant measure for the market weights process. In a
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ALLAN et al. 711

similar direction goes the construction of optimal arbitrages under model uncertainty as
pioneered in Fernholz and Karatzas (2011).
The main goal of the present article is to develop an entirely model-free portfolio theory in

continuous-time, in the spirit of stochastic and universal portfolio theory, which allows one to
work with a significantly larger class of investment strategies and portfolios. For this purpose,
we rely on the pathwise (rough) integration offered by rough path theory—as exhibited in, for
example, Lyons and Qian (2002); Lyons et al. (2007); Friz and Victoir (2010); Friz and Hairer
(2020)—and assume that the (deterministic) price trajectories on the underlying financial market
satisfy the so-called Property (RIE), as introduced in Perkowski and Prömel (2016); see Section 2.2.
While Property (RIE) does not require any probabilistic structure, it is satisfied, for instance, by
the sample paths of semimartingale models fulfilling the condition of “no unbounded profit with
bounded risk” and, furthermore, it ensures that rough integrals are given as limits of suitable
Riemann sums. This is essential in view of the financial interpretation of the integral as thewealth
process associated to a given portfolio.
In the spirit of SPT, we are interested in the relative performance of the wealth processes, where

the word “relative” may be interpreted as “in comparison with the market portfolio.” In other
words, given𝑑 assetswith associated price process𝑆 = (𝑆1𝑡 , … , 𝑆

𝑑
𝑡 )𝑡∈[0,∞) satisfying Property (RIE),

we choose the total market capitalization 𝑆1 +⋯+ 𝑆𝑑 as numéraire, so that the primary assets
are the market weights 𝜇 = (𝜇1𝑡 , … , 𝜇

𝑑
𝑡 )𝑡∈[0,∞), given by

𝜇𝑖𝑡 ∶=
𝑆𝑖𝑡

𝑆1𝑡 +⋯ + 𝑆𝑑𝑡
, 𝑖 = 1, … , 𝑑,

which take values in the open unit simplex Δ𝑑+. The main contributions of the present work may
be summarized by the following.

∙ In Proposition 3.9, we establish a pathwise formula for the relative wealth process associated
to portfolios belonging to the space of controlled paths, as introduced in Definition 2.3 below.
This includes functionally generated portfolios commonly considered in SPT—as for instance
in Strong (2014); Schied and Voloshchenko (2016); Karatzas and Ruf (2017); Ruf and Xie (2019);
Karatzas and Kim (2020)—as well as the class, which we refer to as functionally controlled
portfolios, which are portfolios of the form

(
𝜋𝐹𝑡

)𝑖
= 𝜇𝑖𝑡

(
𝐹𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝐹

𝑗(𝜇𝑡)

)
, (1)

for some 𝐹 ∈ 𝐶2(Δ
𝑑

+;ℝ
𝑑). Here, (𝜋𝐹)𝑖 denotes the proportion of the current wealth invested in

asset 𝑖 = 1, … , 𝑑. In the case of functionally generated portfolios, that is, when 𝐹 is the logarith-
mic gradient of some real-valued function, we also derive in Theorem 3.11 a purely pathwise
version of the classical master formula of SPT, compare Fernholz (2002); Strong (2014).

∙ We introduce Cover’s universal portfolio defined via a mixture portfolio based on the notion of
controlled paths, and show that its appropriately scaled logarithmic relativewealth process con-
verges in the long-run to that of the best retrospectively chosen portfolio; see Theorems 4.9 and
4.12. This extends the results of Cuchiero et al. (2019) to a considerably larger class of investment
strategies.
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712 ALLAN et al.

F IGURE 1 Expected utility of the
log-optimal versus the alpha-optimal portfolio
over time [Color figure can be viewed at
wileyonlinelibrary.com]

∙ In Section 5, we introduce a probabilistic setup where the dynamics of the market weights are
described by a stochastic differential equation (SDE) driven by Brownianmotion. Using the law
of large numbers for the increments of the Itô-rough path lift of Brownian motion, this setting
allows to replace the scaling function of Theorem 4.12 by 1∕𝑇. For this class of models, we can
thus prove that the asymptotic growth rates of Cover’s universal portfolio and the best retro-
spectively chosen one are the same (see Theorem 5.4(ii)). We also compare these two portfolios
with the log-optimal one assuming additionally that the SDE for the market weights is ergodic.
In this case, the corresponding growth rates are all asymptotically equivalent, as shown in The-
orem 5.4(iii). This is analogous to the result in Cuchiero et al. (2019), however, now proved for
the significantly larger class of functionally controlled portfolios.

∙ We develop novel results in the theory of rough paths to allow for the pathwise treatment of
portfolio theory. In particular, these results include an extension of Perkowski andPrömel (2016,
Theorem4.19), stating that the rough integral can be represented as a limit of left-point Riemann
sums—see Theorem 2.12—and the associativity of rough integration, exhibited in Section A.2.

One important motivation for our work comes from classical considerations of the log-optimal
portfolio in ergodic Itô diffusion models for the market weights process. Indeed, this is one
prominent example of an “optimal” portfolio that does not belong, in general, to the class of
(generalized) functionally generated portfolios, but is still a functionally controlled portfolio of
the form (1); see Section 5.2. As illustrated numerically in Figure 1, the log-optimal portfolio (an
example of a functionally controlled portfolio) might significantly outperform a corresponding
“best” functionally generated portfolio. Indeed, the blue line illustrates the expected utility of the
log-optimal portfolio over time, whereas the orange line depicts that of a certain best functionally
generated portfolio. For the details of this example, we refer to Section 5.3.
This indicates that going beyond functionally generated portfolios can have a substantial ben-

efit. This holds true in particular for Cover’s universal portfolio when defined as a mixture of
portfolios of the form (1), since in ergodic market models, it asymptotically achieves the growth
rate of the log-optimal portfolio (see Theorem 5.4). Note that, due to the rough path approach,
both the relative wealth processes obtained by investing according to the log-optimal portfolio
and according to the universal portfolio make sense for every individual price trajectory. This also
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ALLAN et al. 713

gives a theoretical justification for learning a (nonfunctionally generated) log-optimal portfolio
from the observations of a single price path.
Outline: In Section 2, we provide an overview of the essential concepts of rough paths and

rough integration relevant for our financial application. In Section 3, we introduce the pathwise
description of the underlying financial market and study the growth of wealth processes relative
to that of the market portfolio, which leads us to a pathwise master formula analogous to that of
classical SPT. Section 4 is dedicated to Cover’s universal portfolio and to proving that its appropri-
ately scaled asymptotic growth rate is equal to that of the best retrospectively chosen portfolio. In
Section 5, we introduce a probabilistic setup and show under an ergodicity assumption that the
asymptotic growth rate coincides for Cover’s universal portfolio, the best retrospectively chosen
one and the log-optimal one. In this setting, we also compare the wealth processes of functionally
controlled portfolios and functionally generated ones, illustrating their performance by means of
a concrete numerical example. Appendices A and B collect findings concerning rough path theory
and rough integration needed to establish the aforementioned results.

2 ROUGH INTEGRATION FOR FINANCIAL APPLICATIONS

In this section, we provide the essential concepts from rough path theory for our applications in
model-free portfolio theory. Additional results regarding rough integration are developed in the
appendices. For more detailed introductions to rough path theory, we refer to the books (Lyons
and Qian, 2002; Lyons et al., 2007; Friz and Victoir, 2010; Friz and Hairer, 2020). Let us begin by
introducing some basic notation commonly used in the theory of rough paths.

2.1 Basic notation

Let (ℝ𝑑, | ⋅ |) be standard Euclidean space and let𝐴⊗ 𝐵 denote the tensor product of two vectors
𝐴, 𝐵 ∈ ℝ𝑑, that is, the 𝑑 × 𝑑-matrix with (𝑖, 𝑗)-component given by [𝐴 ⊗ 𝐵]𝑖𝑗 = 𝐴𝑖𝐵𝑗 for 1 ≤ 𝑖, 𝑗 ≤
𝑑. The space of continuous paths 𝑆 ∶ [0, 𝑇] → ℝ𝑑 is given by 𝐶([0, 𝑇]; ℝ𝑑), and ‖𝑆‖∞,[0,𝑇] denotes
the supremum norm of 𝑆 over the interval [0, 𝑇]. For the increment of a path 𝑆 ∶ [0, 𝑇] → ℝ𝑑, we
use the standard shorthand notation

𝑆𝑠,𝑡 ∶= 𝑆𝑡 − 𝑆𝑠, for (𝑠, 𝑡) ∈ Δ[0,𝑇] ∶=
{
(𝑢, 𝑣) ∈ [0, 𝑇]2 ∶ 𝑢 ≤ 𝑣

}
.

For any partition  = {0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇} of an interval [0, 𝑇], we denote the mesh size
of  by || ∶= max{|𝑡𝑘+1 − 𝑡𝑘| ∶ 𝑘 = 0, 1, … ,𝑁 − 1}. A control function is defined as a function
𝑐 ∶ Δ[0,𝑇] → [0,∞), which is superadditive, in the sense that 𝑐(𝑠, 𝑢) + 𝑐(𝑢, 𝑡) ≤ 𝑐(𝑠, 𝑡) for all 0 ≤
𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇. For 𝑝 ∈ [1,∞), the 𝑝-variation of a path 𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑) over the interval [𝑠, 𝑡] is
defined by

‖𝑆‖𝑝,[𝑠,𝑡] ∶= sup
⊂[𝑠,𝑡]

( ∑
[𝑢,𝑣]∈

|𝑆𝑢,𝑣|𝑝)
1

𝑝

,

where the supremum is taken over all finite partitions  of the interval [𝑠, 𝑡], and we use the
abbreviation ‖𝑆‖𝑝 ∶= ‖𝑆‖𝑝,[0,𝑇]. We say that 𝑆 has finite 𝑝-variation if ‖𝑆‖𝑝 < ∞, and we denote

 14679965, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12376 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



714 ALLAN et al.

the space of continuous paths with finite 𝑝-variation by 𝐶𝑝-var([0, 𝑇]; ℝ𝑑). Note that 𝑆 having
finite 𝑝-variation is equivalent to the existence of a control function 𝑐 such that |𝑆𝑠,𝑡|𝑝 ≤ 𝑐(𝑠, 𝑡) for
all (𝑠, 𝑡) ∈ Δ[0,𝑇]. (For instance, one can take 𝑐(𝑠, 𝑡) = ‖𝑆‖𝑝

𝑝,[𝑠,𝑡]
.) Moreover, for a two-parameter

function 𝕊 ∶ Δ[0,𝑇] → ℝ𝑑×𝑑, we introduce the corresponding notion of 𝑝-variation by

‖𝕊‖𝑝,[𝑠,𝑡] ∶= sup
⊂[𝑠,𝑡]

( ∑
[𝑢,𝑣]∈

|𝕊𝑢,𝑣|𝑝)
1

𝑝

,

for 𝑝 ∈ [1,∞).
Given a 𝑘 ∈ ℕ and a domain 𝐴 ⊆ ℝ𝑑, we will write 𝑓 ∈ 𝐶𝑘(𝐴;ℝ𝑑), or sometimes simply

𝑓 ∈ 𝐶𝑘, to indicate that a function 𝑓 defined on 𝐴 with values in ℝ𝑑 is 𝑘-times continuously
differentiable (seen as restriction of 𝐶𝑘-functions on ℝ𝑑 if 𝐴 is closed), and we will make use of
the associated norm

‖𝑓‖𝐶𝑘 ∶= max
0≤𝑛≤𝑘 ‖D𝑛𝑓‖∞,

where D𝑛𝑓 denotes the 𝑛th-order derivative of 𝑓, and ‖ ⋅ ‖∞ denotes the supremum norm.
For a 𝑘 ∈ ℕ and 𝛾 ∈ (0, 1], we will write 𝑓 ∈ 𝐶𝑘+𝛾(𝐴;ℝ𝑑), or just 𝑓 ∈ 𝐶𝑘+𝛾, to mean that a

function 𝑓 defined on 𝐴 is 𝑘-times continuously differentiable (in the Fréchet sense), and that its
𝑘-order derivative D𝑘𝑓 is locally 𝛾-Hölder continuous. In this case, we use the norm

‖𝑓‖𝐶𝑘+𝛾 ∶= max
0≤𝑛≤𝑘 ‖D𝑛𝑓‖∞ + ‖D𝑘𝑓‖𝛾-H�̈�l,

where ‖ ⋅ ‖𝛾-H�̈�l denotes the 𝛾-Hölder norm.
Finally, given two vector spaces 𝑈,𝑉, we write (𝑈; 𝑉) for the space of linear maps from 𝑈 to

𝑉.
Let (𝐸, ‖ ⋅ ‖) be a normed space and let 𝑓, 𝑔 ∶ 𝐸 → ℝ be two functions. We shall write 𝑓 ≲ 𝑔 or

𝑓 ≤ 𝐶𝑔 to mean that there exists a constant 𝐶 > 0 such that 𝑓(𝑥) ≤ 𝐶𝑔(𝑥) for all 𝑥 ∈ 𝐸. Note that
the value of such a constant may change from line to line, and that the constants may depend on
the normed space, for example, through its dimension or regularity parameters.

2.2 Rough path theory and Property (RIE)

Let us briefly recall the fundamental definitions of a rough path and of a controlled path, which
allow to set up rough integration.

Definition 2.1. For 𝑝 ∈ (2, 3), a 𝑝-rough path is defined as a pair 𝐒 = (𝑆, 𝕊), consisting of a con-
tinuous path 𝑆 ∶ [0, 𝑇] → ℝ𝑑 and a continuous two-parameter function 𝕊 ∶ Δ[0,𝑇] → ℝ𝑑×𝑑, such
that ‖𝑆‖𝑝 < ∞, ‖𝕊‖𝑝∕2 < ∞, and Chen’s relation

𝕊𝑠,𝑡 = 𝕊𝑠,𝑢 + 𝕊𝑢,𝑡 + 𝑆𝑠,𝑢 ⊗ 𝑆𝑢,𝑡 (2)

holds for all 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇.
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ALLAN et al. 715

Remark 2.2. The success of rough path theory in probability theory is based on the observation that
sample paths ofmany important stochastic processes such as Brownianmotion, semimartingales,
and Markov processes can be enhanced to a rough path, by defining the “enhancement” 𝕊 via
stochastic integration; see, for example, Friz and Victoir (2010, Part III).

Definition 2.3. Let 𝑝 ∈ (2, 3) and 𝑞 ≥ 𝑝 be such that 2∕𝑝 + 1∕𝑞 > 1, and let 𝑟 > 1 be such
that 1∕𝑟 = 1∕𝑝 + 1∕𝑞. Let 𝑆 ∈ 𝐶𝑝-var([0, 𝑇]; ℝ𝑑), 𝐹 ∶ [0, 𝑇] → ℝ𝑑 and 𝐹′ ∶ [0, 𝑇] → (ℝ𝑑;ℝ𝑑)

be continuous paths. The pair (𝐹, 𝐹′) is called a controlled path with respect to 𝑆 (or an 𝑆-
controlled path), if the Gubinelli derivative 𝐹′ has finite 𝑞-variation, and the remainder 𝑅𝐹 has
finite 𝑟-variation, where 𝑅𝐹 ∶ Δ[0,𝑇] → ℝ𝑑 is defined implicitly by the relation

𝐹𝑠,𝑡 = 𝐹′𝑠𝑆𝑠,𝑡 + 𝑅𝐹𝑠,𝑡 for (𝑠, 𝑡) ∈ Δ[0,𝑇].

We denote the space of controlled paths with respect to 𝑆 by 𝑞
𝑆
= 𝑞

𝑆
([0, 𝑇]; ℝ𝑑), which becomes

a Banach space when equipped with the norm

‖𝐹, 𝐹′‖𝑞
𝑆
,[0,𝑇] ∶= |𝐹0| + |𝐹′0| + ‖𝐹′‖𝑞,[0,𝑇] + ‖𝑅𝐹‖𝑟,[0,𝑇].

Example 2.4. For a path 𝑆 ∈ 𝐶𝑝-var([0, 𝑇]; ℝ𝑑) with 𝑝 ∈ (2, 3), the prototypical example of a
controlled path is (𝑓(𝑆), D𝑓(𝑆)) ∈ 𝑞

𝑆
for any 𝑓 ∈ 𝐶1+𝜀 with 𝜀 ∈ (𝑝 − 2, 1] and 𝑞 = 𝑝∕𝜀. Examples

of more general controlled paths are discussed in Remark 3.5 and Section 4.1 in the context of
universal portfolios.

Based on the above definitions, one can establish the existence of the rough integral of a
controlled path (𝐹, 𝐹′) with respect to a 𝑝-rough path 𝐒. See Friz and Hairer (2020) for the cor-
responding theory presented in terms of Hölder regularity. The following formulation of rough
integration in the language of 𝑝-variation can be found in, for example, Perkowski and Prömel
(2016, Theorem 4.9).

Theorem2.5 (Rough integration). Let𝑝 ∈ (2, 3) and 𝑞 ≥ 𝑝 be such that 2∕𝑝 + 1∕𝑞 > 1, and let 𝑟 >
1 be such that 1∕𝑟 = 1∕𝑝 + 1∕𝑞. Let 𝐒 = (𝑆, 𝕊) be a𝑝-rough path and let (𝐹, 𝐹′) ∈ 𝑞

𝑆
be a controlled

path with remainder 𝑅𝐹 . Then the limit

∫
𝑇

0

𝐹𝑢 d𝐒𝑢 ∶= lim||→0

∑
[𝑠,𝑡]∈

𝐹𝑠𝑆𝑠,𝑡 + 𝐹′𝑠𝕊𝑠,𝑡 (3)

exists along every sequence of partitions  of the interval [0, 𝑇] with mesh size || tending to zero,
and takes values in ℝ. We call this limit the rough integral of (𝐹, 𝐹′) against 𝐒. Here, the product
𝐹𝑠𝑆𝑠,𝑡 is understood as the Euclidean inner product, and the product 𝐹′𝑠𝕊𝑠,𝑡 also takes values in ℝ
since the derivative 𝐹′ takes values in (ℝ𝑑;ℝ𝑑) ≅ (ℝ𝑑×𝑑;ℝ). Moreover, we have the estimate

||||∫
𝑡

𝑠

𝐹𝑢 d𝐒𝑢 − 𝐹𝑠𝑆𝑠,𝑡 − 𝐹′𝑠𝕊𝑠,𝑡
|||| ≤ 𝐶

(‖𝑅𝐹‖𝑟,[𝑠,𝑡]‖𝑆‖𝑝,[𝑠,𝑡] + ‖𝐹′‖𝑞,[𝑠,𝑡]‖𝕊‖ 𝑝

2
,[𝑠,𝑡]

)
, (4)

where the constant 𝐶 depends only on 𝑝, 𝑞, and 𝑟.
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716 ALLAN et al.

In Theorem 2.5, we defined the rough integral of a controlled path (𝐹, 𝐹′) against a rough path
𝐒 = (𝑆, 𝕊). As noted in Friz andHairer (2020, Remark 4.12), one can actually define amore general
integral of a controlled path (𝐹, 𝐹′) against another controlled path (𝐺, 𝐺′).

Lemma 2.6. Let 𝐒 = (𝑆, 𝕊) be a 𝑝-rough path, and let (𝐹, 𝐹′), (𝐺, 𝐺′) ∈ 𝑞
𝑆
be two controlled paths

with remainders 𝑅𝐹 and 𝑅𝐺 , respectively. Then the limit

∫
𝑇

0

𝐹𝑢 d𝐺𝑢 ∶= lim||→0

∑
[𝑠,𝑡]∈

𝐹𝑠𝐺𝑠,𝑡 + 𝐹′𝑠𝐺
′
𝑠𝕊𝑠,𝑡 (5)

exists along every sequence of partitions  of the interval [0, 𝑇] with mesh size || tending to zero,
and comes with the estimate

||||∫
𝑡

𝑠

𝐹𝑢 d𝐺𝑢 − 𝐹𝑠𝐺𝑠,𝑡 − 𝐹′𝑠𝐺
′
𝑠𝕊𝑠,𝑡

||||
≤ 𝐶

(‖𝐹′‖∞ (‖𝐺′‖𝑞
𝑞,[𝑠,𝑡]

+ ‖𝑆‖𝑝
𝑝,[𝑠,𝑡]

) 1

𝑟 ‖𝑆‖𝑝,[𝑠,𝑡] + ‖𝐹‖𝑝,[𝑠,𝑡]‖𝑅𝐺‖𝑟,[𝑠,𝑡]
+ ‖𝑅𝐹‖𝑟,[𝑠,𝑡]‖𝐺′‖∞‖𝑆‖𝑝,[𝑠,𝑡] + ‖𝐹′𝐺′‖𝑞,[𝑠,𝑡]‖𝕊‖ 𝑝

2
,[𝑠,𝑡]

)
,

(6)

where the constant 𝐶 depends only on 𝑝, 𝑞, and 𝑟.

Proof. Set Ξ𝑠,𝑡 ∶= 𝐹𝑠𝐺𝑠,𝑡 + 𝐹′𝑠𝐺
′
𝑠𝕊𝑠,𝑡 and 𝛿Ξ𝑠,𝑢,𝑡 ∶= Ξ𝑠,𝑡 − Ξ𝑠,𝑢 − Ξ𝑢,𝑡 for 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇. Using

Chen’s relation (2), one can show that

𝛿Ξ𝑠,𝑢,𝑡 = −𝐹′𝑠𝐺
′
𝑠,𝑢𝑆𝑠,𝑢𝑆𝑢,𝑡 − 𝐹𝑠,𝑢𝑅

𝐺
𝑢,𝑡 − 𝑅𝐹𝑠,𝑢𝐺

′
𝑢𝑆𝑢,𝑡 − (𝐹′𝐺′)𝑠,𝑢𝕊𝑢,𝑡. (7)

Since 1∕𝑟 = 1∕𝑝 + 1∕𝑞, Young’s inequality gives

| − 𝐹′𝑠𝐺
′
𝑠,𝑢𝑆𝑠,𝑢𝑆𝑢,𝑡| ≤ ‖𝐹′‖∞‖𝐺′‖𝑞,[𝑠,𝑢]‖𝑆‖𝑝,[𝑠,𝑢]‖𝑆‖𝑝,[𝑢,𝑡]

≲ ‖𝐹′‖∞ (‖𝐺′‖𝑞
𝑞,[𝑠,𝑢]

+ ‖𝑆‖𝑝
𝑝,[𝑠,𝑢]

) 1

𝑟 ‖𝑆‖𝑝,[𝑢,𝑡] = 𝑤1(𝑠, 𝑢)
1

𝑟 𝑤2(𝑢, 𝑡)
1

𝑝 ,

where𝑤1(𝑠, 𝑢) ∶= ‖𝐹′‖𝑟∞(‖𝐺′‖𝑞
𝑞,[𝑠,𝑢]

+ ‖𝑆‖𝑝
𝑝,[𝑠,𝑢]

) and𝑤2(𝑢, 𝑡) ∶= ‖𝑆‖𝑝
𝑝,[𝑢,𝑡]

are control functions.
Treating the other three terms on the right-hand side of Equation (7) similarly, we deduce the
hypotheses of the generalized sewing lemma (Friz and Zhang, 2018, Theorem 2.5), from which
the result follows. □

Rough integration offers strong pathwise stability estimates, and may be viewed as arguably
the most general pathwise integration theory, generalizing classical notions of integration such
as those of Riemann–Stieltjes, Young and Föllmer, and allowing one to treat many well-known
stochastic processes as integrators; see, for example, Friz and Hairer (2020). However, from the
perspective of mathematical finance, rough integration comes with one apparent flaw: the defi-
nition of rough integral (3) is based on so-called “compensated” Riemann sums, and thus does
not (at first glance) come with the natural interpretation as the capital gain process associated
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ALLAN et al. 717

to an investment in a financial market. Indeed, let us suppose that 𝑆 represents the asset prices
on a financial market and 𝐹 an investment strategy. In this case, neither the associated rough
path 𝐒 = (𝑆, 𝕊) nor the controlled path (𝐹, 𝐹′), assuming they exist, are uniquely determined by 𝑆
and 𝐹, but rather the value of the rough integral ∫ 𝑇

0
𝐹𝑢 d𝐒𝑢 will depend in general on the choices

of 𝕊 and 𝐹′. Moreover, the financial meaning of the term 𝐹′𝑠𝕊𝑠,𝑡 appearing in the compensated
Riemann sum in Equation (3) is far from obvious.
As observed in Perkowski and Prömel (2016), the aforementioned drawback of rough integra-

tion from a financial perspective can be resolved by introducing the following property of the price
path 𝑆.

Property (RIE). Let 𝑝 ∈ (2, 3) and let 𝑛 = {0 = 𝑡𝑛0 < 𝑡𝑛1 < ⋯ < 𝑡𝑛𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, be a sequence

of partitions of the interval [0, 𝑇], such that |𝑛| → 0 as 𝑛 → ∞. For 𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑), we define
𝑆𝑛 ∶ [0, 𝑇] → ℝ𝑑 by

𝑆𝑛𝑡 ∶= 𝑆𝑇𝟏{𝑇}(𝑡) +

𝑁𝑛−1∑
𝑘=0

𝑆𝑡𝑛
𝑘
𝟏[𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1

)(𝑡), 𝑡 ∈ [0, 𝑇],

for each 𝑛 ∈ ℕ. We assume that

∙ the Riemann sums ∫ 𝑡

0
𝑆𝑛𝑢 ⊗ d𝑆𝑢 ∶=

∑𝑁𝑛−1

𝑘=0
𝑆𝑡𝑛

𝑘
⊗ 𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 converge uniformly as 𝑛 → ∞ to a

limit, which we denote by ∫ 𝑡

0
𝑆𝑢 ⊗ d𝑆𝑢, 𝑡 ∈ [0, 𝑇],

∙ and that there exists a control function 𝑐 such that1

sup
(𝑠,𝑡)∈Δ[0,𝑇]

|𝑆𝑠,𝑡|𝑝
𝑐(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0≤𝑘<𝓁≤𝑁𝑛

|| ∫ 𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑆𝑛𝑢 ⊗ d𝑆𝑢 − 𝑆𝑡𝑛
𝑘
⊗ 𝑆𝑡𝑛

𝑘
,𝑡𝑛
𝓁

|| 𝑝2
𝑐(𝑡𝑛

𝑘
, 𝑡𝑛
𝓁
)

≤ 1.

Definition 2.7. A path 𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑) is said to satisfy (RIE) with respect to 𝑝 and (𝑛)𝑛∈ℕ, if
𝑝, (𝑛)𝑛∈ℕ and 𝑆 together satisfy Property (RIE).

As discussed in detail in Perkowski and Prömel (2016), if a path 𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑) satisfies (RIE)
with respect to 𝑝 and (𝑛)𝑛∈ℕ, then 𝑆 can be enhanced to a 𝑝-rough path 𝐒 = (𝑆, 𝕊) by setting

𝕊𝑠,𝑡 ∶= ∫
𝑡

𝑠

𝑆𝑢 ⊗ d𝑆𝑢 − 𝑆𝑠 ⊗ 𝑆𝑠,𝑡, for (𝑠, 𝑡) ∈ Δ[0,𝑇]. (8)

In other words, Property (RIE) ensures the existence of a rough path associated to the path 𝑆. The
advantage of the (more restrictive) Property (RIE) is that it guarantees that the corresponding
rough integrals can be well approximated by classical left-point Riemann sums, as we will see
in Section 2.4, thus allowing us to restore the financial interpretation of such integrals as capital
processes.

Remark 2.8. The assumption that the underlying price paths satisfy Property (RIE) appears to be
rather natural in the context of portfolio theory. Indeed, in stochastic portfolio theory, the price
processes are commonly modeled as semimartingales fulfilling the condition of “no unbounded
profit with bounded risk” (NUPBR); see, for example, Fernholz (2002). The condition (NUPBR)
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718 ALLAN et al.

is also essentially the minimal condition required to ensure that expected utility maximization
problems are well-posed; see Karatzas and Kardaras (2007); Imkeller and Perkowski (2015). As
established in Perkowski and Prömel (2016, Proposition 2.7 and Remark 4.16), the sample paths
of semimartingales fulfilling (NUPBR) almost surely satisfy Property (RIE) with respect to every
𝑝 ∈ (2, 3) and a suitably chosen sequence of partitions.

2.3 The bracket process and a rough Itô formula

A vital tool in many applications of stochastic calculus is Itô’s formula, and it will also be an
important ingredient in our contribution to portfolio theory. Usually, (pathwise) Itô formulae are
based on the notion of quadratic variation. In rough path theory, a similar role as that of the
quadratic variation is played by the so-called bracket of a rough path, compare Friz and Hairer
(2020, Definition 5.5).

Definition 2.9. Let 𝐒 = (𝑆, 𝕊) be a 𝑝-rough path and let Sym(𝕊) denote the symmetric part of 𝕊.
The bracket of 𝐒 is defined as the path [𝐒] ∶ [0, 𝑇] → ℝ𝑑×𝑑 given by

[𝐒]𝑡 ∶= 𝑆0,𝑡 ⊗ 𝑆0,𝑡 − 2Sym(𝕊0,𝑡), 𝑡 ∈ [0, 𝑇].

The bracket of a rough path allows one to derive Itô formulae for rough paths. For this purpose,
note that [𝐒] is a continuous path of finite 𝑝∕2-variation, which can be seen from the observation
that

[𝐒]𝑠,𝑡 = [𝐒]𝑡 − [𝐒]𝑠 = 𝑆𝑠,𝑡 ⊗ 𝑆𝑠,𝑡 − 2Sym(𝕊𝑠,𝑡), for all (𝑠, 𝑡) ∈ Δ[0,𝑇].

The following Itô formula for rough paths can be proven almost exactly as the one in Friz
and Hairer (2020, Theorem 7.7), so we will omit its proof here; see also Friz and Zhang (2018,
Theorem 2.12).

Proposition 2.10. Let 𝐒 = (𝑆, 𝕊) be a 𝑝-rough path and let Γ ∈ 𝐶
𝑝

2
-var

([0, 𝑇]; ℝ𝑑). Suppose that
𝐹, 𝐹′ and 𝐹′′ are such that (𝐹, 𝐹′), (𝐹′, 𝐹′′) ∈ 𝑞

𝑆
, and 𝐹 = ∫ ⋅

0
𝐹′𝑢 d𝐒𝑢 + Γ. If 𝑔 ∈ 𝐶𝑝+𝜀 for some 𝜀 >

0, then, for every 𝑡 ∈ [0, 𝑇], we have

𝑔(𝐹𝑡) = 𝑔(𝐹0) + ∫
𝑡

0

D𝑔(𝐹𝑢)𝐹
′
𝑢 d𝐒𝑢 + ∫

𝑡

0

D𝑔(𝐹𝑢) dΓ𝑢 +
1

2 ∫
𝑡

0

D2𝑔(𝐹𝑢)(𝐹
′
𝑢 ⊗ 𝐹′𝑢) d[𝐒]𝑢.

Assuming Property (RIE), it turns out that the bracket [𝐒] of a rough path 𝐒 = (𝑆, 𝕊) does
coincide precisely with the quadratic variation of the path 𝑆 in the sense of Föllmer (1981).

Lemma 2.11. Suppose that 𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑) satisfies (RIE) with respect to 𝑝 and (𝑛)𝑛∈ℕ. Let
𝐒 = (𝑆, 𝕊) be the associated rough path as defined in Equation (8). Then, the bracket [𝐒] has finite
total variation, and is given by

[𝐒]𝑡 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑆𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 ⊗ 𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡,
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ALLAN et al. 719

where the convergence is uniform in 𝑡 ∈ [0, 𝑇].

Proof. The (𝑖, 𝑗)-component of [𝐒]𝑡 is given by

[𝐒]
𝑖𝑗
𝑡 = 𝑆𝑖0,𝑡𝑆

𝑗
0,𝑡 − 𝕊

𝑖𝑗
0,𝑡 − 𝕊

𝑗𝑖
0,𝑡 = 𝑆𝑖𝑡𝑆

𝑗
𝑡 − 𝑆𝑖0𝑆

𝑗
0 − ∫

𝑡

0

𝑆𝑖𝑢 d𝑆
𝑗
𝑢 − ∫

𝑡

0

𝑆
𝑗
𝑢 d𝑆

𝑖
𝑢.

The result then follows from Lemmas 4.17 and 4.22 in Perkowski and Prömel (2016). □

In view of Lemma 2.11, when assuming Property (RIE), we also refer to the bracket [𝐒] as the
quadratic variation of 𝑆.

2.4 Rough integrals as limits of Riemann sums

As previously mentioned, the main motivation to introduce Property (RIE) is to obtain the rough
integral as a limit of left-point Riemann sums, in order to restore the interpretation of the rough
integral as the capital process associated with a financial investment. Indeed, we present the fol-
lowing extension of Perkowski and Prömel (2016, Theorem 4.19), which will be another central
tool in our pathwise portfolio theory. The proof of Theorem 2.12 is postponed to Appendix B.

Theorem2.12. Suppose that𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑) satisfies (RIE)with respect to𝑝 and (𝑛)𝑛∈ℕ. Let 𝑞 ≥
𝑝 such that 2∕𝑝 + 1∕𝑞 > 1. Let 𝑓 ∈ 𝐶𝑝+𝜀 for some 𝜀 > 0, so that in particular (𝑓(𝑆), D𝑓(𝑆)) ∈ 𝑞

𝑆
.

Then, for any (𝑌, 𝑌′) ∈ 𝑞
𝑆
, the integral of (𝑌, 𝑌′) against (𝑓(𝑆), D𝑓(𝑆)), as defined in Lemma 2.6,

is given by

∫
𝑡

0

𝑌𝑢 d𝑓(𝑆)𝑢 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑌𝑡𝑛
𝑘
𝑓(𝑆)𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡, (9)

where the convergence is uniform in 𝑡 ∈ [0, 𝑇].

As an immediate consequence of Theorem 2.12, assuming Property (RIE), we note that, for
(𝑌, 𝑌′) ∈ 𝑞

𝑆
, the rough integral

∫
𝑡

0

𝑌𝑢 d𝐒𝑢 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑌𝑡𝑛
𝑘
𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡, (10)

and indeed the more general rough integral in Equation (9), is independent of the Gubinelli
derivative 𝑌′. However, in the spirit of Föllmer’s pathwise quadratic variation and integration,
the right-hand sides of Equations (9) and (10) do in general depend on the sequence of partitions
(𝑛)𝑛∈ℕ.
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720 ALLAN et al.

3 PATHWISE (RELATIVE) PORTFOLIOWEALTH PROCESSES AND
MASTER FORMULA

In this section, we consider pathwise portfolio theory on the rough path foundation presented
in Section 2. In particular, we study the growth of wealth processes relative to the market
portfolio, and provide an associated pathwise master formula analogous to that of classical SPT,
compare Fernholz (1999); Strong (2014); Schied et al. (2018). We start by introducing the basic
assumptions on the underlying financial market.

3.1 The financial market

Since we want to investigate the long-run behavior of wealth processes, we consider the price
trajectories of 𝑑 assets on the time interval [0,∞). As is common in SPT, we do not include default
risk—that is, all prices are assumed to be strictly positive—and we do not distinguish between
risk-free and risky assets.
A partition  of the interval [0,∞) is a strictly increasing sequence of points (𝑡𝑖)𝑖≥0 ⊂ [0,∞),

with 𝑡0 = 0 and such that 𝑡𝑖 → ∞ as 𝑖 → ∞. Given any𝑇 > 0, we denote by([0, 𝑇]) the restriction
of the partition  ∪ {𝑇} to the interval [0, 𝑇], that is, ([0, 𝑇]) ∶= ( ∪ {𝑇}) ∩ [0, 𝑇]. For a path
𝑆 ∶ [0,∞) → ℝ𝑑, we write 𝑆|[0,𝑇] for the restriction of 𝑆 to [0, 𝑇], and we set ℝ+ ∶= (0,∞).

Definition 3.1. For a fixed 𝑝 ∈ (2, 3), we say that a path 𝑆 ∈ 𝐶([0,∞);ℝ𝑑
+) is a price path, if

there exists a sequence of partitions (𝑛
𝑆
)𝑛∈ℕ of the interval [0,∞), with vanishing mesh size

on compacts, such that, for all 𝑇 > 0, the restriction 𝑆|[0,𝑇] satisfies (RIE) with respect to 𝑝 and
(𝑛

𝑆
([0, 𝑇]))𝑛∈ℕ.
We denote the family of all such price paths byΩ𝑝.

It seems to be natural to allow the partitions (𝑛
𝑆
)𝑛∈ℕ to depend on the price path 𝑆, since

partitions are typically given via stopping times in stochastic frameworks.
Throughout the remainder of the paper, we adopt the following assumption on the regularity

parameters.

Assumption 3.2. Let 𝑝 ∈ (2, 3), 𝑞 ≥ 𝑝, and 𝑟 > 1 be given such that

2

𝑝
+
1

𝑞
> 1 and 1

𝑟
=
1

𝑝
+
1

𝑞
.

In particular, we note that 1 < 𝑝∕2 ≤ 𝑟 < 𝑝 ≤ 𝑞 < ∞.
By Property (RIE), we can (and do) associate to every price path 𝑆 ∈ Ω𝑝 the 𝑝-rough path 𝐒 =

(𝑆, 𝕊), as defined in Equation (8). We can then define the market covariance as the matrix 𝑎 =
[𝑎𝑖𝑗]1≤𝑖,𝑗≤𝑑, with (𝑖, 𝑗)-component given by the measure

𝑎𝑖𝑗(d𝑠) ∶=
1

𝑆𝑖𝑠𝑆
𝑗
𝑠

d[𝐒]
𝑖𝑗
𝑠 . (11)

Although we do not work in a probabilistic setting and thus should not, strictly speaking, talk
about covariance in the probabilistic sense, the relation (11) is consistent with classical SPT

 14679965, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12376 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALLAN et al. 721

(with the bracket process replaced by the quadratic variation), and it turns out to still be a use-
ful quantity in pathwise frameworks, compare Schied and Voloshchenko (2016); Schied et al.
(2018).

3.2 Pathwise portfolio wealth processes

We now introduce admissible portfolios and the corresponding wealth processes on the market
defined above. To this end, we first fix the notation:

Δ𝑑 ∶=

{
𝑥 = (𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑 ∶

𝑑∑
𝑖=1

𝑥𝑖 = 1

}
,

Δ𝑑+ ∶= {𝑥 ∈ Δ𝑑 ∶ 𝑥𝑖 > 0 ∀𝑖 = 1,… , 𝑑} and Δ
𝑑

+ ∶= {𝑥 ∈ Δ𝑑 ∶ 𝑥𝑖 ≥ 0 ∀𝑖 = 1,… , 𝑑}.

Definition 3.3. We say that a path 𝐹 ∶ [0,∞) → ℝ𝑑 is an admissible strategy if, for every 𝑇 > 0,
there exists a path 𝐹′ ∶ [0, 𝑇] → (ℝ𝑑;ℝ𝑑) such that (𝐹|[0,𝑇], 𝐹′) ∈ 𝑞

𝑆
is a controlled path with

respect to 𝑆 (in the sense of Definition 2.3). We say that an admissible strategy 𝜋 is a portfolio for
𝑆 if additionally 𝜋𝑡 ∈ Δ𝑑 for all 𝑡 ∈ [0,∞).

Remark 3.4. As explained in Friz and Hairer (2020, Remark 4.7), if 𝑆 is sufficiently regular then,
given an admissible strategy 𝐹, there could exist multiple different Gubinelli derivatives 𝐹′ such
that the pair (𝐹, 𝐹′) defines a valid controlled path with respect to 𝑆. However, thanks to Property
(RIE), Theorem 2.12 shows that the rough integral ∫ 𝐹 d𝐒 can be expressed as a limit of Riemann
sums, which only involve 𝐹 and 𝑆, and, therefore, is independent of the choice of 𝐹′. Thus, the
choice of the Gubinelli derivative 𝐹′ is unimportant, provided that at least one exists. Indeed,
one could define an equivalence relation ∼ on 𝑞

𝑆
such that (𝐹, 𝐹′) ∼ (𝐺, 𝐺′) if 𝐹 = 𝐺, and define

the family of admissible strategies as elements of the quotient space 𝑞
𝑆
∕ ∼. By a slight abuse of

notation, we shall, therefore, sometimes write simply 𝐹 ∈ 𝑞
𝑆
instead of (𝐹, 𝐹′) ∈ 𝑞

𝑆
.

Remark 3.5. While the admissible class of portfolios introduced in Definition 3.3 allows for a
pathwise (model-free) analysis (without notions like filtration or predictability), it also covers the
most frequently applied classes of functionally generated portfolios—see Fernholz (1999)—and
their generalizations as considered in, for example, Strong (2014) and Schied et al. (2018). Indeed,
every path-dependent functionally generated portfolio, which is sufficiently smooth in the sense
of Dupire (2019) (see also Cont and Fournié (2010)), is a controlled path and thus an admissible
strategy, as shown in Ananova (2020).
In the present work, we will principally focus on “adapted” strategies 𝐹, in the sense that 𝐹

is a controlled path, as in Definition 3.3, with 𝐹𝑡 being a measurable function of 𝑆|[0,𝑡] for each
𝑡 ∈ [0,∞). In other words, if 𝑆 is modeled by a stochastic process, then we require 𝐹 to be adapted
to the natural filtration generated by 𝑆. Clearly, such adapted admissible strategies are reasonable
choices in the context of mathematical finance.
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722 ALLAN et al.

A portfolio𝜋 = (𝜋1, … , 𝜋𝑑) represents the ratio of the investor’s wealth invested into each of the
𝑑 assets. As is usual, we normalize the initial wealth to be 1, since in the following, we will only
be concerned with the long-run growth. Suppose 𝑆 ∈ Ω𝑝 with corresponding sequence (𝑛

𝑆
)𝑛∈ℕ

of partitions. If we restrict the rebalancing according to the portfolio 𝜋 to the discrete times given
by 𝑛

𝑆
= (𝑡𝑛

𝑗
)𝑗∈ℕ, then the corresponding wealth process𝑊𝑛 satisfies

𝑊𝑛
𝑡 = 1 +

∞∑
𝑗=1

𝜋𝑡𝑗𝑊
𝑛
𝑡𝑗

𝑆𝑡𝑗
𝑆𝑡𝑗∧𝑡,𝑡𝑗+1∧𝑡 = 1 +

∞∑
𝑗=1

𝑑∑
𝑖=1

𝜋𝑖𝑡𝑗𝑊
𝑛
𝑡𝑗

𝑆𝑖𝑡𝑗

𝑆𝑖𝑡𝑗∧𝑡,𝑡𝑗+1∧𝑡

with 𝑡𝑗 ∧ 𝑡 ∶= min{𝑡𝑗, 𝑡}. Taking the limit to continuous-time (i.e., 𝑛 → ∞) and keeping Property
(RIE) in mind, we observe that the wealth process𝑊𝜋 associated to the portfolio 𝜋 should satisfy

𝑊𝜋
𝑡 = 1 + ∫

𝑡

0

𝜋𝑠𝑊
𝜋
𝑠

𝑆𝑠
d𝐒𝑠, 𝑡 ∈ [0,∞). (12)

Analogously to (classical) SPT (e.g., Karatzas and Kardaras (2007) or Schied et al.
(2018)), the wealth process associated to a portfolio may be expressed as a (rough)
exponential.

Lemma 3.6. Let 𝜋 be a portfolio for 𝑆 ∈ Ω𝑝. Then the wealth process𝑊𝜋 (with unit initial wealth),
given by

𝑊𝜋
𝑡 ∶= exp

(
∫

𝑡

0

𝜋𝑠
𝑆𝑠

d𝐒𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝑆𝑖𝑠𝑆
𝑗
𝑠

d[𝐒]
𝑖𝑗
𝑠

)
, 𝑡 ∈ [0,∞),

satisfies Equation (12), where ∫ 𝑡

0

𝜋𝑠

𝑆𝑠
d𝐒𝑠 is the rough integral of the controlled path 𝜋∕𝑆 with respect

to rough path 𝐒, and ∫ 𝑡

0

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝑆𝑖𝑠𝑆
𝑗
𝑠

d[𝐒]
𝑖𝑗
𝑠 is the usual Riemann–Stieltjes integral with respect to the (𝑖, 𝑗)-

component of the (finite variation) bracket [𝐒].

Proof. Note that, since 1∕𝑆 = 𝑓(𝑆) with the smooth function 𝑓(𝑥) = (1∕𝑥1, … , 1∕𝑥𝑑) on ℝ𝑑
+, the

pair (1∕𝑆, D𝑓(𝑆)) ∈ 𝑝
𝑆
⊂ 𝑞

𝑆
is a controlled path. Therefore, for each portfolio 𝜋 ∈ 𝑞

𝑆
, we can

define the quotient 𝜋∕𝑆 = (𝜋1∕𝑆1, … , 𝜋𝑑∕𝑆𝑑), which gives an element (𝜋∕𝑆, (𝜋∕𝑆)′) in 𝑞
𝑆
; see

Lemma A.1.
Setting 𝑍 ∶= ∫ ⋅

0

𝜋𝑠

𝑆𝑠
d𝐒𝑠, by Lemma B.1, we have that

[𝐙] = ∫
⋅

0

(
𝜋𝑠
𝑆𝑠

⊗
𝜋𝑠
𝑆𝑠

)
d[𝐒]𝑠 =

𝑑∑
𝑖,𝑗=1

∫
⋅

0

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝑆𝑖𝑠𝑆
𝑗
𝑠

d[𝐒]
𝑖𝑗
𝑠 ,

where 𝐙 is the canonical rough path lift of 𝑍 (see Section A.3). We then have that𝑊𝜋
𝑡 = exp(𝑍𝑡 −

1

2
[𝐙]𝑡), so that, by Lemma A.5,𝑊𝜋 satisfies

𝑊𝜋
𝑡 = 1 + ∫

𝑡

0

𝑊𝜋
𝑠 d𝐙𝑠, 𝑡 ∈ [0,∞).
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ALLAN et al. 723

By Lemma A.4 and Proposition A.2, it then follows that𝑊𝜋 satisfies Equation (12). □

Remark 3.7. Every portfolio 𝜋 can be associated to a self-financing admissible strategy 𝜉 by setting
𝜉𝑖𝑡 ∶= 𝜋𝑖𝑡𝑊

𝜋
𝑡 ∕𝑆

𝑖
𝑡 for 𝑖 = 1, … , 𝑑. Indeed, we have that𝑊𝜋

𝑡 =
∑𝑑

𝑖=1
𝜉𝑖𝑡𝑆

𝑖
𝑡, and that

𝑊𝜋
𝑡 = 1 + ∫

𝑡

0

𝜋𝑠𝑊
𝜋
𝑠

𝑆𝑠
d𝐒𝑠 = 1 + ∫

𝑡

0

𝜉𝑠 d𝐒𝑠, 𝑡 ∈ [0,∞),

so that 𝜉 is self-financing.

As in the classical setup of SPT (e.g., Fernholz (2002)) we introduce the market portfolio as a
reference portfolio.

Lemma 3.8. The path 𝜇 ∶ [0,∞) → Δ𝑑+, defined by 𝜇
𝑖
𝑡 ∶=

𝑆𝑖𝑡

𝑆1𝑡 +⋯+𝑆𝑑𝑡
for 𝑖 = 1, … , 𝑑, is a portfolio for

𝑆 ∈ Ω𝑝, called themarket portfolio (ormarket weights process). The corresponding wealth process
(with initial wealth 1) is given by

𝑊
𝜇
𝑡 =

𝑆1𝑡 +⋯+ 𝑆𝑑𝑡

𝑆10 +⋯+ 𝑆𝑑0

.

Proof. Since 𝜇 is a smooth function of 𝑆, it is a controlled path with respect to 𝑆, and is, therefore,
an admissible strategy. Since 𝜇1𝑡 +⋯+ 𝜇𝑑𝑡 = 1, we see that 𝜇 is indeed a portfolio.
Let 𝑓(𝑥) ∶= log(𝑥1 +⋯+ 𝑥𝑑) for 𝑥 ∈ ℝ𝑑

+. By the Itô formula for rough paths
(Proposition 2.10), it follows that

𝑓(𝑆𝑡) − 𝑓(𝑆0) = ∫
𝑡

0

(
1

𝑆1𝑠 +⋯+ 𝑆𝑑𝑠
, … ,

1

𝑆1𝑠 +⋯+ 𝑆𝑑𝑠

)
d𝐒𝑠 −

1

2 ∫
𝑡

0

(
𝜇𝑠
𝑆𝑠

⊗
𝜇𝑠
𝑆𝑠

)
d[𝐒]𝑠

= ∫
𝑡

0

𝜇𝑠
𝑆𝑠

d𝐒𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

𝜇𝑖𝑠𝜇
𝑗
𝑠

𝑆𝑖𝑠𝑆
𝑗
𝑠

d[𝐒]
𝑖𝑗
𝑠 ,

where we used the fact that 𝜇
𝑖
𝑠

𝑆𝑖𝑠
=

1

𝑆1𝑠 +⋯+𝑆𝑑𝑠
. By Lemma 3.6, the right-hand side is equal to log𝑊𝜇

𝑡 ,
so that

𝑊
𝜇
𝑡 = exp (𝑓(𝑆𝑡) − 𝑓(𝑆0)) =

𝑆1𝑡 +⋯+ 𝑆𝑑𝑡

𝑆10 +⋯+ 𝑆𝑑0

.

□

3.3 Formulae for the growth of wealth processes

In this subsection, we derive pathwise versions of classical formulae of SPT—see Fernholz
(1999)—which describe the dynamics of the relative wealth of a portfolio with respect to
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724 ALLAN et al.

the market portfolio; compare Schied et al. (2018) for analogous results relying on Föllmer’s
pathwise integration.
Given a portfolio 𝜋, we define the relative covariance of 𝜋 by 𝜏𝜋 = [𝜏𝜋

𝑖𝑗
]1≤𝑖,𝑗≤𝑑, where

𝜏𝜋
𝑖𝑗
(d𝑠) ∶= (𝜋𝑠 − 𝑒𝑖)

⊤𝑎(d𝑠)(𝜋𝑠 − 𝑒𝑗), (13)

where (𝑒𝑖)1≤𝑖≤𝑑 denotes the canonical basis ofℝ𝑑, and we recall 𝑎(d𝑠) as defined in Equation (11).
Henceforth, we will write

𝑉𝜋 ∶=
𝑊𝜋

𝑊𝜇 (14)

for the relative wealth of a portfolio 𝜋 with respect to the market portfolio 𝜇.

Proposition 3.9. Let𝜋 be a portfolio for 𝑆 ∈ Ω𝑝, and let 𝜇 be themarket portfolio as above.We then
have that

log𝑉𝜋
𝑡 = ∫

𝑡

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

𝜋𝑖𝑠𝜋
𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠), 𝑡 ∈ [0,∞). (15)

Remark 3.10. The integral ∫ 𝑡

0

𝜋𝑠

𝜇𝑠
d𝜇𝑠 appearing in Equation (15) is interpreted as the rough inte-

gral of the 𝑆-controlled path 𝜋∕𝜇 against the 𝑆-controlled path 𝜇 in the sense of Lemma 2.6. By
Theorem 2.12, the integral ∫ 𝑡

0

𝜋𝑠

𝜇𝑠
d𝜇𝑠 can also be expressed as a limit of left-point Riemann sums,

which justifies the financial meaning of Equation (15).

Proof of Proposition 3.9. Step 1. By the Itô formula for rough paths (Proposition 2.10), with the
usual notational convention log 𝑥 =

∑𝑑

𝑖=1
log 𝑥𝑖 , we have

log 𝑆𝑡 = log 𝑆0 + ∫
𝑡

0

1

𝑆𝑠
d𝐒𝑠 −

1

2

𝑑∑
𝑖=1

∫
𝑡

0

1

(𝑆𝑖𝑠)2
d[𝐒]𝑖𝑖𝑠 , 𝑡 ∈ [0,∞).

Since 𝜋 and log 𝑆 are 𝑆-controlled paths, we can define the integral of 𝜋 against log 𝑆 in the sense
of Lemma 2.6. By the associativity of rough integration (Proposition A.2), we have

∫
𝑡

0

𝜋𝑠 d log 𝑆𝑠 = ∫
𝑡

0

𝜋𝑠
𝑆𝑠

d𝐒𝑠 −
1

2

𝑑∑
𝑖=1

∫
𝑡

0

𝜋𝑖𝑠

(𝑆𝑖𝑠)2
d[𝐒]𝑖𝑖𝑠 .

It is convenient to introduce the excess growth rate of the portfolio 𝜋, given by

𝛾∗𝜋(d𝑠) ∶=
1

2

(
𝑑∑
𝑖=1

𝜋𝑖𝑠𝑎
𝑖𝑖(d𝑠) −

𝑑∑
𝑖,𝑗=1

𝜋𝑖𝑠𝜋
𝑗
𝑠 𝑎

𝑖𝑗(d𝑠)

)
.
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ALLAN et al. 725

By Lemma 3.6, we have that

log𝑊𝜋
𝑡 = ∫

𝑡

0

𝜋𝑠
𝑆𝑠

d𝐒𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

𝜋𝑖𝑠𝜋
𝑗
𝑠 𝑎

𝑖𝑗(d𝑠) = ∫
𝑡

0

𝜋𝑠 d log 𝑆𝑠 + 𝛾∗𝜋([0, 𝑡]). (16)

In particular, this implies that

log𝑉𝜋
𝑡 = ∫

𝑡

0

(𝜋𝑠 − 𝜇𝑠) d log 𝑆𝑠 + 𝛾∗𝜋([0, 𝑡]) − 𝛾∗𝜇([0, 𝑡]). (17)

Step 2. By Lemma 3.8 and Equation (16), we have

log 𝜇𝑖𝑡 = log 𝜇𝑖0 + log 𝑆𝑖𝑡 − log 𝑆𝑖0 − log𝑊
𝜇
𝑡

= log 𝜇𝑖0 + log 𝑆𝑖𝑡 − log 𝑆𝑖0 − ∫
𝑡

0

𝜇𝑠 d log 𝑆𝑠 − 𝛾∗𝜇([0, 𝑡])

= log 𝜇𝑖0 + ∫
𝑡

0

(𝑒𝑖 − 𝜇𝑠) d log 𝑆𝑠 − 𝛾∗𝜇([0, 𝑡]). (18)

By part (ii) of Proposition B.2 and Lemma B.1, we deduce that

[log 𝑆]𝑡 = 𝑎([0, 𝑡]), and [log 𝜇]𝑡 = 𝜏𝜇([0, 𝑡]). (19)

Applying the Itô formula for rough paths (Proposition 2.10) to exp(log 𝜇𝑖), using the associativity
of rough integration (Proposition A.2), and recalling Equation (18), we have

∫
𝑡

0

𝜋𝑖𝑠

𝜇𝑖𝑠
d𝜇𝑖𝑠 = ∫

𝑡

0

𝜋𝑖𝑠(𝑒𝑖 − 𝜇𝑠) d log 𝑆𝑠 − ∫
𝑡

0

𝜋𝑖𝑠 d𝛾
∗
𝜇(d𝑠) +

1

2 ∫
𝑡

0

𝜋𝑖𝑠 d[log 𝜇]
𝑖𝑖
𝑠 .

Using Equation (19) and summing over 𝑖 = 1, … , 𝑑, we obtain

∫
𝑡

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 = ∫
𝑡

0

(𝜋𝑠 − 𝜇𝑠) d log 𝑆𝑠 − 𝛾∗𝜇([0, 𝑡]) +
1

2

𝑑∑
𝑖=1

∫
𝑡

0

𝜋𝑖𝑠𝜏
𝜇
𝑖𝑖
(d𝑠). (20)

Step 3. Taking the difference of Equations (17) and (20), we have

log𝑉𝜋
𝑡 = ∫

𝑡

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 + 𝛾∗𝜋([0, 𝑡]) −
1

2

𝑑∑
𝑖=1

∫
𝑡

0

𝜋𝑖𝑠𝜏
𝜇
𝑖𝑖
(d𝑠).

It remains to note that

𝛾∗𝜋([0, 𝑡]) =
1

2

(
𝑑∑
𝑖=1

∫
𝑡

0

𝜋𝑖𝑠𝜏
𝜇
𝑖𝑖
(d𝑠) −

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

𝜋𝑖𝑠𝜋
𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠)

)
,
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726 ALLAN et al.

which follows from a straightforward calculation; see, for example, Fernholz (2002,
Lemma 1.3.4). □

While Definition 3.3 allows for rather general portfolios, so-called functionally generated port-
folios are the most frequently considered ones in SPT. In a pathwise setting, such portfolios and
the corresponding master formula were studied previously in Schied et al. (2018) and Cuchiero
et al. (2019).We conclude this section by deriving such amaster formula for functionally generated
portfolios in the present (rough) pathwise setting.
Let 𝐺 be a strictly positive function in 𝐶𝑝+𝜀(Δ𝑑+;ℝ+) for some 𝜀 > 0. One can verify that

∇ log𝐺(𝜇) ∈ 𝑞
𝜇 is a 𝜇-controlled path for a suitable choice of 𝑞 (see Example 2.4), and is, there-

fore, also an 𝑆-controlled path by Lemma A.4. Since the product of controlled paths is itself a
controlled path (by Lemma A.1), we see that the path 𝜋 defined by

𝜋𝑖𝑡 ∶= 𝜇𝑖𝑡

(
𝜕

𝜕𝑥𝑖
log𝐺(𝜇𝑡) + 1 −

𝑑∑
𝑘=1

𝜇𝑘𝑡
𝜕

𝜕𝑥𝑘
log𝐺(𝜇𝑡)

)
, 𝑡 ∈ [0,∞), 𝑖 = 1, … , 𝑑, (21)

is a 𝜇-controlled (and hence also an 𝑆-controlled) path, and is indeed a portfolio for 𝑆 ∈ Ω𝑝. The
function 𝐺 is called a portfolio generating function, and we say that 𝐺 generates 𝜋.

Theorem3.11 (Themaster formula).Let𝐺 ∈ 𝐶𝑝+𝜀(Δ𝑑+;ℝ+) for some 𝜀 > 0 be aportfolio generating
function, and let 𝜋 be the portfolio generated by 𝐺. The wealth of 𝜋 relative to the market portfolio is
given by

log𝑉𝜋
𝑡 = log

(
𝐺(𝜇𝑡)

𝐺(𝜇0)

)
−
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

1

𝐺(𝜇𝑠)

𝜕2𝐺(𝜇𝑠)

𝜕𝑥𝑖𝜕𝑥𝑗
𝜇𝑖𝑠𝜇

𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠), 𝑡 ∈ [0,∞).

Proof. Let 𝑔 = ∇ log𝐺(𝜇), so that 𝑔𝑖 = 𝜕

𝜕𝑥𝑖
log𝐺(𝜇) =

1

𝐺(𝜇)

𝜕𝐺

𝜕𝑥𝑖
(𝜇) for each 𝑖 = 1, … , 𝑑. We can then

rewrite Equation (21) as

𝜋𝑖 = 𝜇𝑖

(
𝑔𝑖 + 1 −

𝑑∑
𝑘=1

𝜇𝑘𝑔𝑘

)
, (22)

so that 𝜋𝑖∕𝜇𝑖 = 𝑔𝑖 + 1 −
∑𝑑

𝑘=1 𝜇
𝑘𝑔𝑘. Since

∑𝑑

𝑖=1 𝜇
𝑖
𝑠 = 1 for all 𝑠 ≥ 0, wemust have that

∑𝑑

𝑖=1 𝜇
𝑖
𝑠,𝑡 =

0 for all 𝑠 < 𝑡. Thus

∫
𝑡

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑑∑
𝑖=1

𝜋𝑖
𝑡𝑛
𝑘

𝜇𝑖
𝑡𝑛
𝑘

𝜇𝑖
𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡
= lim

𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑑∑
𝑖=1

𝑔𝑖
𝑡𝑛
𝑘

𝜇𝑖
𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡
= ∫

𝑡

0

𝑔𝑠 d𝜇𝑠.

We have from Equation (13) that
∑𝑑

𝑗=1
𝜇
𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠) = (𝜇𝑠 − 𝑒𝑖)

⊤𝑎(d𝑠)(𝜇𝑠 − 𝜇𝑠) = 0. It follows from
this and Equation (22) that

𝑑∑
𝑖,𝑗=1

𝜋𝑖𝑠𝜋
𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠) =

𝑑∑
𝑖,𝑗=1

𝑔𝑖𝑠𝑔
𝑗
𝑠𝜇

𝑖
𝑠𝜇

𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠). (23)
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ALLAN et al. 727

Recall from Equation (19) that [log 𝜇]𝑡 = 𝜏𝜇([0, 𝑡]). By applying the Itô formula for rough paths
(Proposition 2.10) to 𝜇𝑖 = exp(log 𝜇𝑖), we see that the path 𝑡 ↦ 𝜇𝑖𝑡 − ∫ 𝑡

0
𝜇𝑖𝑠 d log 𝜇

𝑖
𝑠 is of finite

variation. By part (ii) of Proposition B.2 and Lemma B.1, we, therefore, have that

[𝜇]
𝑖𝑗
𝑡 = ∫

𝑡

0

𝜇𝑖𝑠𝜇
𝑗
𝑠 d[log 𝜇]

𝑖𝑗
𝑠 = ∫

𝑡

0

𝜇𝑖𝑠𝜇
𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠). (24)

By the Itô formula for rough paths (Proposition 2.10), we then have

log

(
𝐺(𝜇𝑡)

𝐺(𝜇0)

)
= ∫

𝑡

0

𝑔𝑠 d𝜇𝑠 +
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

(
1

𝐺(𝜇𝑠)

𝜕2𝐺(𝜇𝑠)

𝜕𝑥𝑖𝜕𝑥𝑗
− 𝑔𝑖𝑠𝑔

𝑗
𝑠

)
d[𝜇]

𝑖𝑗
𝑠

= ∫
𝑡

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 +
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

(
1

𝐺(𝜇𝑠)

𝜕2𝐺(𝜇𝑠)

𝜕𝑥𝑖𝜕𝑥𝑗
− 𝑔𝑖𝑠𝑔

𝑗
𝑠

)
𝜇𝑖𝑠𝜇

𝑗
𝑠 𝜏

𝜇
𝑖𝑗
(d𝑠).

Combining this with Equations (15) and (23), we deduce the result. □

4 COVER’S UNIVERSAL PORTFOLIOS AND THEIR OPTIMALITY

Like SPT, Cover’s universal portfolios (Cover, 1991) aim to give general recipes to construct
preference-free asymptotically “optimal” portfolios; see also Jamshidian (1992) and Cover and
Ordentlich (1996). A first link between SPT and these universal portfolios was established in a
pathwise framework based on Föllmer integration in Cuchiero et al. (2019) (see alsoWong (2015)).
In this section, we shall generalize the pathwise theory regarding Cover’s universal portfolios
developed in Cuchiero et al. (2019) to the present rough path setting.
Cover’s universal portfolio is based on the idea of trading according to a portfolio, which is

defined as the average over a family  of admissible portfolios. In the spirit of Cuchiero et al.
(2019), we introduce pathwise versions of Cover’s universal portfolios—that is, portfolios of the
form

𝜋𝜈𝑡 ∶=
∫ 𝜋𝑡𝑉

𝜋
𝑡 d𝜈(𝜋)

∫ 𝑉𝜋
𝑡 d𝜈(𝜋)

, 𝑡 ∈ [0,∞),

where 𝜈 is a given probability measure on . In order to find suitable classes  of admissible
portfolios, we recall Assumption 3.2 andmake the following standing assumption throughout the
entire section.

Assumption 4.1. We fix 𝑞′ > 𝑞 and 𝑟′ > 𝑟 such that 2

𝑝
+

1

𝑞′
> 1 and 1

𝑟′
=

1

𝑝
+

1

𝑞′
.
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728 ALLAN et al.

4.1 Admissible portfolios

As a first step to construct Cover’s universal portfolios in our rough path setting, we need to find
a suitable set of admissible portfolios. To this end, we set

𝑞
𝜇([0,∞); Δ𝑑) ∶=

{
(𝜋, 𝜋′) ∶ ∀𝑇 > 0, (𝜋, 𝜋′)|[0,𝑇] ∈ 𝑞

𝜇([0, 𝑇]; Δ
𝑑)
}
.

Then, for some fixed control function 𝑐𝜇, which controls the 𝑝-variation norm of the market
portfolio 𝜇, and for some𝑀 > 0, we introduce a class of admissible portfolios as the set

𝑀,𝑞(𝑐𝜇) ∶=

⎧⎪⎪⎨⎪⎪⎩
(𝜋, 𝜋′) ∈ 𝑞

𝜇([0,∞); Δ𝑑) ∶

|||𝜋0𝜇0 ||| + |||(𝜋

𝜇

)′
0

||| ≤ 𝑀,

sup𝑠≤𝑡

|||||
(
𝜋

𝜇

)′
𝑠,𝑡

|||||
𝑞

𝑐𝜇(𝑠,𝑡)
+ sup𝑠≤𝑡

||||||𝑅
𝜋
𝜇
𝑠,𝑡

||||||
𝑟

𝑐𝜇(𝑠,𝑡)
≤ 1

⎫⎪⎪⎬⎪⎪⎭
. (25)

Here (𝜋∕𝜇, (𝜋∕𝜇)′) denotes the product of the two 𝜇-controlled paths (𝜋, 𝜋′) and ( 1
𝜇
, (

1

𝜇
)′) (see

Lemma A.1). In particular, (𝜋∕𝜇)′ = 𝜋′∕𝜇 + 𝜋(1∕𝜇)′, and 𝑅
𝜋

𝜇 is the remainder of the controlled
rough path 𝜋∕𝜇.

Remark 4.2. We consider here controlled paths with respect to 𝜇, instead of with respect to 𝑆.
As noted in Remark 3.10, every 𝑆-controlled path (𝜋, 𝜋′) ∈ 𝑞

𝑆
can be used to define the integral

∫ 𝜋𝑡

𝜇𝑡
d𝜇𝑡, and all the results in this section can also be established based on 𝑞

𝑆
with appropri-

ate modifications. We choose to consider (𝜋, 𝜋′) ∈ 𝑞
𝜇 as a 𝜇-controlled path in order to slightly

simplify the notation. It is straightforward to check that 𝑞
𝜇 ⊆ 𝑞

𝑆
.

Let us recall from Definition 2.3 that, for any 𝑇 > 0,

‖(𝑌, 𝑌′)‖𝑞
𝜇 ,[0,𝑇]

= |𝑌0| + |𝑌′
0| + ‖𝑌′‖𝑞,[0,𝑇] + ‖𝑅𝑌‖𝑟,[0,𝑇]

defines a complete norm on 𝑞
𝜇([0, 𝑇]; Δ

𝑑). We endow 𝑀,𝑞(𝑐𝜇) ⊂ 𝑞′

𝜇 ([0,∞); Δ𝑑) with the
seminorms

𝑝
𝜇,𝑞′

𝑇 ((𝜋, 𝜋′)) ∶=
‖‖‖𝜋𝜇 ,

(
𝜋

𝜇

)′‖‖‖𝑞′

𝜇 ,[0,𝑇]
, 𝑇 > 0. (26)

The reason for taking 𝑞′ > 𝑞 is that it will allow us to obtain a compact embedding of 𝑀,𝑞(𝑐𝜇)

into 𝑞′

𝜇 . This compactness of the set of admissible portfolios plays a crucial role in obtaining
optimality of universal portfolios.
Let us discuss some examples of admissible portfolios. We first check that the functionally gen-

erated portfolios treated in Cuchiero et al. (2019) belong to 𝑀,𝑞(𝑐𝜇) provided that the control

function 𝑐𝜇 is chosen appropriately. Recall that 𝐶𝑘(Δ
𝑑

+;ℝ+) denotes the space of 𝑘-times con-

 14679965, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12376 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALLAN et al. 729

tinuously differentiable ℝ+-valued functions on the closed (non-negative) simplex Δ
𝑑

+, and that‖𝐺‖𝐶𝑘 ∶= max0≤𝑛≤𝑘 ‖D𝑛𝐺‖∞.
Lemma 4.3. Let 𝐾 > 0 be a constant, and let

𝐾 =

{
𝐺 ∈ 𝐶3

(
Δ
𝑑

+;ℝ+

)
∶ ‖𝐺‖𝐶3 ≤ 𝐾, 𝐺 ≥ 1

𝐾

}
.

Then the portfolio 𝜋 generated by 𝐺, as defined in Equation (21), belongs to 𝑀,𝑝(𝑐𝜇) for a suit-
able control function 𝑐𝜇 and constant𝑀. More precisely, there exists a control function of the form
𝑐𝜇(⋅ , ⋅ ) = 𝐶‖𝜇‖𝑝

𝑝,[ ⋅ , ⋅ ]
and a constant𝑀 > 0, such that 𝐶 and𝑀 only depend on 𝐾, and

{
(𝜋𝐺, (𝜋𝐺)′) ∶ 𝜋𝐺 defined in Equation (21) for some 𝐺 ∈ 𝐾} ⊂ 𝑀,𝑝(𝑐𝜇).

Note that here we take 𝑞 = 𝑝 and 𝑟 = 𝑝∕2.

Proof. Fix 𝐺 ∈ 𝐾 , and let 𝜋 be the associated portfolio as defined in Equation (21). Since 𝜋 is
defined as a 𝐶2 function of 𝜇, we know immediately that it is a 𝜇-controlled path.
A simple calculation shows that

𝜋𝑡
𝜇𝑡

= 𝑔𝑡 + (1 − 𝜇𝑡 ⋅ 𝑔𝑡)𝟏,

where wewrite 𝟏 = (1, … , 1) and 𝑔𝑡 = ∇ log𝐺(𝜇𝑡), andwe use ⋅ to denote the standard inner prod-
uct on ℝ𝑑. The pair (𝟏, 0) is trivially a 𝜇-controlled path with 𝟏′ = 0 and 𝑅𝟏 = 0, and thus clearly
satisfies the required bounds in Equation (25) with an arbitrary control function. It thus suffices
to show that (𝑔, 𝑔′) and (𝜇 ⋅ 𝑔, (𝜇 ⋅ 𝑔)′) satisfy the required bounds with control functions 𝑐1𝜇 and
𝑐2𝜇, respectively, since then 𝑐𝜇 ∶= 𝑐1𝜇 + 𝑐2𝜇 gives the desired control function.
We begin with (𝑔, 𝑔′). Let 𝐹 ∶= ∇ log𝐺, so that 𝑔 = 𝐹(𝜇) and 𝑔′ = D𝐹(𝜇). By Taylor expansion,

we can verify that, for all 𝑠 ≤ 𝑡,

|𝑔𝑠,𝑡| ≤ ‖D𝐹‖∞|𝜇𝑠,𝑡|, |𝑔′𝑠,𝑡| ≤ ‖D2𝐹‖∞|𝜇𝑠,𝑡|, |𝑅𝑔𝑠,𝑡| ≤ ‖D2𝐹‖∞|𝜇𝑠,𝑡|2. (27)

Note that𝐹,D𝐹, andD2𝐹 only depend onD𝐺,D2𝐺,D3𝐺, and 1∕𝐺, and therefore, since ‖𝐺‖𝐶3 ≤ 𝐾

and 𝐺 ≥ 1∕𝐾, there exists a constant 𝐶 = 𝐶(𝐾), which only depends on 𝐾, such that ‖𝐹‖∞ ≤ 𝐶,‖D𝐹‖∞ ≤ 𝐶, and ‖D2𝐹‖∞ ≤ 𝐶. It follows that we can choose 𝑐1𝜇(𝑠, 𝑡) = 𝐶‖𝜇‖𝑝
𝑝,[𝑠,𝑡]

. Note also that‖𝑔‖∞ ≤ 𝐶 and ‖𝑔′‖∞ ≤ 𝐶.
We now turn to (𝜇 ⋅ 𝑔, (𝜇 ⋅ 𝑔)′). Noting that 𝜇 is trivially a 𝜇-controlled path with 𝜇′ = 1 and

𝑅𝜇 = 0, and that 𝑅𝜇⋅𝑔𝑠,𝑡 = 𝜇𝑠 ⋅ 𝑅
𝑔
𝑠,𝑡 + 𝜇𝑠,𝑡 ⋅ 𝑔𝑠,𝑡, we deduce that

|(𝜇 ⋅ 𝑔)′𝑠,𝑡| ≤ |𝑔𝑠,𝑡| + ‖𝜇‖∞|𝑔′𝑠,𝑡| + ‖𝑔′‖∞|𝜇𝑠,𝑡|, |𝑅𝜇⋅𝑔𝑠,𝑡 | ≤ ‖𝜇‖∞|𝑅𝑔𝑠,𝑡| + |𝜇𝑠,𝑡||𝑔𝑠,𝑡|.
Since 𝜇𝑡 takes values in the bounded set Δ𝑑+, we can use the bounds in Equation (27) to show
that there exists a constant 𝐿 = 𝐿(𝐾), depending only on 𝐾, such that |(𝜇 ⋅ 𝑔)′𝑠,𝑡| ≤ 𝐿|𝜇𝑠,𝑡| and|𝑅𝜇⋅𝑔𝑠,𝑡 | ≤ 𝐿|𝜇𝑠,𝑡|2. It follows that wemay take 𝑐2𝜇(𝑠, 𝑡) ∶= 𝐿‖𝜇‖𝑝

𝑝,[𝑠,𝑡]
. Finally, we note that the initial
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730 ALLAN et al.

values 𝜋0∕𝜇0 = 𝑔0 + (1 − 𝜇0 ⋅ 𝑔0)𝟏 = 𝐹(𝜇0) + (1 − 𝜇0 ⋅ 𝐹(𝜇0))𝟏 and (𝜋∕𝜇)′0 = D𝐹(𝜇0) − (𝐹(𝜇0) +

𝜇0D𝐹(𝜇0))𝟏 are also bounded by a constant𝑀 depending only on 𝐾. □

One particular advantage of rough integration is that the admissible strategies need not be of
gradient type, giving us more flexibility in choosing admissible portfolios compared to previous
approaches relying on Föllmer integration.

Example 4.4 (Functionally controlled portfolios). Let

2,𝐾 ∶=

{(
𝜋𝐹, 𝜋𝐹,′

)
∶ 𝐹 ∈ 𝐶2

(
Δ
𝑑

+;ℝ
𝑑

)
, ‖𝐹‖𝐶2 ≤ 𝐾

}
for a given constant 𝐾 > 0, where

(
𝜋𝐹𝑡

)𝑖
= 𝜇𝑖𝑡

(
𝐹𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝐹

𝑗(𝜇𝑡)

)
(28)

for 𝑡 ≥ 0 and 𝑖 = 1, … , 𝑑. Then 2,𝐾 ⊂ 𝑀,𝑝(𝑐𝜇), where we can again take 𝑞 = 𝑝. The point here
is that we can consider all 𝐶2-functions 𝐹, rather than requiring that 𝐹 is of the form 𝐹 = ∇ log𝐺

for some function 𝐺. One can verify that 2,𝐾 ⊂ 𝑀,𝑝(𝑐𝜇) for a suitable control function 𝑐𝜇 by
following the proof of Lemma 4.3 almost verbatim.

Example 4.5 (Controlled equation generated portfolios). Let us define

3,𝐾 ∶= {𝑓 ∈ 𝐶3(ℝ𝑑;(ℝ𝑑;ℝ𝑑)) ∶ ‖𝑓‖𝐶3 ≤ 𝐾}.

For a given 𝑓 ∈ 3,𝐾 , a classical result in rough path theory is that the controlled differential
equation with the vector field 𝑓, driven by 𝜇,

d𝑌
𝑓
𝑡 = 𝑓

(
𝑌
𝑓
𝑡

)
d𝜇𝑡, 𝑌0 = 𝜉 ∈ Δ𝑑, (29)

admits a unique solution (𝑌𝑓, (𝑌𝑓)′) = (𝜉 + ∫ ⋅

0
𝑓(𝑌

𝑓
𝑢 ) d𝜇𝑢, 𝑓(𝑌

𝑓)), which is itself a 𝜇-controlled
path. Moreover, writing 𝐴𝜇

𝑠,𝑡 = ∫ 𝑡

𝑠
𝜇𝑠,𝑢 ⊗ 𝑑𝜇𝑢 for the canonical rough path lift of 𝜇 (see Sec-

tion A.3), and 𝑐𝜇(𝑠, 𝑡) ∶= ‖𝜇‖𝑝
𝑝,[𝑠,𝑡]

+ ‖𝐴𝜇‖ 𝑝

2
𝑝

2
,[𝑠,𝑡]

, for every 𝑇 > 0, there exists a constant Γ𝑇

depending on 𝑝, 𝑐𝜇([0, 𝑇]) and 𝐾, such that

sup
(𝑠,𝑡)∈Δ[0,𝑇]

|||(𝑌𝑓
)′
𝑠,𝑡

|||𝑝
Γ𝑇𝑐𝜇(𝑠, 𝑡)

+ sup
(𝑠,𝑡)∈Δ[0,𝑇]

|||𝑅𝑌𝑓𝑠,𝑡 ||| 𝑝2
Γ𝑇𝑐𝜇(𝑠, 𝑡)

≤ 1.
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ALLAN et al. 731

Consequently, as in the proof of Lemma 4.3, one can show that there exists an increasing function
Γ ∶ [0,∞) → ℝ+, depending on 𝑝, 𝑐𝜇, and 𝐾 such that

sup
0≤𝑠≤𝑡<∞

|||||
(
𝜋𝑓

𝜇

)′
𝑠,𝑡

|||||
𝑝

𝑐𝜇(𝑠, 𝑡)
+ sup

0≤𝑠≤𝑡<∞

||||||𝑅
𝜋𝑓

𝜇

𝑠,𝑡

||||||
𝑝

2

𝑐𝜇(𝑠, 𝑡)
≤ 1,

where 𝜋𝑓 ∶= 𝜇(𝑌𝑓 + (1 − 𝜇 ⋅ 𝑌𝑓)𝟏) and 𝑐𝜇(𝑠, 𝑡) ∶= Γ𝑡𝑐𝜇(𝑠, 𝑡) is again a control function. This
implies that the set{
𝜋𝑓 = 𝜇(𝑌𝑓 + (1 − 𝜇 ⋅ 𝑌𝑓)𝟏) ∶ 𝑌𝑓 is the solution of Equation (29) for some 𝑓 ∈ 3,𝐾} ⊂ 𝑀,𝑝(𝑐𝜇)

for a suitable constant𝑀 > 0.

4.2 Asymptotic growth of universal portfolios

To investigate the asymptotic growth rates of our pathwise versions of Cover’s universal portfolio,
we first require some auxiliary results—in particular the compactness of the set of admissible
portfolios.

Lemma 4.6. The set 𝑀,𝑞(𝑐𝜇) is compact in the topology generated by the family of seminorms
{𝑝

𝜇,𝑞′

𝑇 ∶ 𝑇 ∈ ℕ} as defined in Equation (26), where we recall that 𝑞 < 𝑞′.

Proof. Step 1: We first show that the set

 ∶=

⎧⎪⎨⎪⎩(𝑌, 𝑌
′) ∈ 𝑞

𝜇([0,∞);ℝ𝑑) ∶ |𝑌0| + |𝑌′
0| ≤ 𝑀 and sup

𝑠≤𝑡

|||𝑌′
𝑠,𝑡
|||𝑞

𝑐𝜇(𝑠, 𝑡)
+ sup

𝑠≤𝑡

|||𝑅𝑌𝑠,𝑡|||𝑟
𝑐𝜇(𝑠, 𝑡)

≤ 1

⎫⎪⎬⎪⎭
is compact with respect to the topology generated by the seminorms ‖ ⋅ , ⋅‖𝑞′

𝜇 ,[0,𝑇]
for 𝑇 ∈ ℕ. It

suffices to show that for every fixed 𝑇 ∈ ℕ, the set

𝑇 ∶=

{
(𝑌, 𝑌′) ∈ 𝑞

𝜇

(
[0, 𝑇]; ℝ𝑑

)
∶ |𝑌0| + |||𝑌′

0
||| ≤ 𝑀 and

sup
(𝑠,𝑡)∈Δ[0,𝑇]

|𝑌′
𝑠,𝑡|𝑞

𝑐𝜇(𝑠, 𝑡)
+ sup

(𝑠,𝑡)∈Δ[0,𝑇]

|𝑅𝑌𝑠,𝑡|𝑟
𝑐𝜇(𝑠, 𝑡)

≤ 1

}

is compact with respect to the norm ‖ ⋅ , ⋅‖𝑞′

𝜇 ,[0,𝑇]
. We first note that, for all (𝑌, 𝑌′) ∈ 𝑇 ,

‖𝑌′‖𝑞,[0,𝑇] ≤ 𝑐𝜇(0, 𝑇)
1

𝑞 , ‖𝑌′‖∞,[0,𝑇] ≤ 𝑀 + 𝑐𝜇(0, 𝑇)
1

𝑞 and ‖𝑅𝑌‖𝑟,[0,𝑇] ≤ 𝑐𝜇(0, 𝑇)
1

𝑟 ,
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732 ALLAN et al.

where the second bound follows from the fact that |𝑌′
𝑡 | ≤ |𝑌′

0| + |𝑌′
0,𝑡| ≤ 𝑀 + ‖𝑌′‖𝑞,[0,𝑇]. The 𝑝-

variation of 𝑌 can also be controlled as follows. From 𝑌𝑠,𝑡 = 𝑌′
𝑠𝜇𝑠,𝑡 + 𝑅𝑌𝑠,𝑡, we have

|𝑌𝑠,𝑡|𝑝 ≤ 2𝑝−1
(‖𝑌′‖𝑝

∞,[0,𝑇]
|𝜇𝑠,𝑡|𝑝 + |||𝑅𝑌𝑠,𝑡|||𝑝), (𝑠, 𝑡) ∈ Δ[0,𝑇],

and hence

‖𝑌‖𝑝,[0,𝑇] ≤ 2
𝑝−1

𝑝
(‖𝑌′‖∞,[0,𝑇]‖𝜇‖𝑝,[0,𝑇] + ‖𝑅𝑌‖𝑝,[0,𝑇]) ≤ 2

𝑝−1

𝑝
(‖𝑌′‖∞,[0,𝑇]‖𝜇‖𝑝,[0,𝑇] + ‖𝑅𝑌‖𝑟,[0,𝑇]),

since 𝑟 < 𝑝 (see, e.g., Chistyakov and Galkin (1998, Remark 2.5)), and thus

‖𝑌‖∞,[0,𝑇] ≤ 𝑀 + ‖𝑌‖𝑝,[0,𝑇] ≤ 𝑀 + 2
𝑝−1

𝑝

((
𝑀 + 𝑐𝜇(0, 𝑇)

1

𝑞

)‖𝜇‖𝑝,[0,𝑇] + 𝑐𝜇(0, 𝑇)
1

𝑟

)
.

Therefore, by Friz and Victoir (2010, Proposition 5.28), every sequence (𝑌𝑛, 𝑌𝑛,′)𝑛≥1 ⊂ 𝑇

has a convergent subsequence, which we still denote by (𝑌𝑛, 𝑌𝑛,′)𝑛≥1, and limits 𝑌 ∈

𝐶𝑝-var([0, 𝑇]; ℝ𝑑) and 𝑌′ ∈ 𝐶𝑞-var([0, 𝑇]; ℝ𝑑), such that |𝑌𝑛
0 − 𝑌0| + ‖𝑌𝑛 − 𝑌‖𝑝′,[0,𝑇] → 0 and|𝑌𝑛,′

0 − 𝑌′
0| + ‖𝑌𝑛,′ − 𝑌′‖𝑞′,[0,𝑇] → 0, respectively, as 𝑛 → ∞, for an arbitrary 𝑝′ > 𝑝. Since

|||𝑅𝑌𝑛𝑠,𝑡 − 𝑅𝑌
𝑛+1

𝑠,𝑡
||| ≤ |||𝑌𝑛,′

𝑠 𝜇𝑠,𝑡 − 𝑌𝑛+1,′
𝑠 𝜇𝑠,𝑡

||| + |||𝑌𝑛
𝑠,𝑡 − 𝑌𝑛+1

𝑠,𝑡
|||

≤ |||𝑌𝑛,′
𝑠 − 𝑌𝑛+1,′

𝑠
||| ||𝜇𝑠,𝑡|| + |||𝑌𝑛

𝑡 − 𝑌𝑛+1
𝑡

||| + |||𝑌𝑛
𝑠 − 𝑌𝑛+1

𝑠
||| ⟶ 0

as 𝑛 → ∞, uniformly in (𝑠, 𝑡) ∈ Δ[0,𝑇], we have that

‖‖‖𝑅𝑌𝑛 − 𝑅𝑌
𝑛+1‖‖‖𝑟′,[0,𝑇] ≤ ‖‖‖𝑅𝑌𝑛 − 𝑅𝑌

𝑛+1‖‖‖ 𝑟

𝑟′

𝑟,[0,𝑇]
sup

(𝑠,𝑡)∈Δ[0,𝑇]

|||𝑅𝑌𝑛𝑠,𝑡 − 𝑅𝑌
𝑛+1

𝑠,𝑡
||| 𝑟
′−𝑟

𝑟′

≤ 2
𝑟

𝑟′ 𝑐𝜇(0, 𝑇)
1

𝑟′ sup
(𝑠,𝑡)∈Δ[0,𝑇]

|||𝑅𝑌𝑛𝑠,𝑡 − 𝑅𝑌
𝑛+1

𝑠,𝑡
||| 𝑟
′−𝑟

𝑟′ ⟶ 0

as 𝑛 → ∞. Thus, 𝑅𝑌𝑛 also converges to some 𝑅𝑌 in 𝑟′-variation.
To see that the limit (𝑌, 𝑌′) ∈ 𝑇 , we simply note that

|||𝑌′
𝑠,𝑡
|||𝑞

𝑐𝜇(𝑠, 𝑡)
+

|||𝑅𝑌𝑢,𝑣|||𝑟
𝑐𝜇(𝑢, 𝑣)

= lim
𝑛→∞

⎛⎜⎜⎜⎝
|||𝑌𝑛,′

𝑠,𝑡
|||𝑞

𝑐𝜇(𝑠, 𝑡)
+

|||𝑅𝑌𝑛𝑢,𝑣|||𝑟
𝑐𝜇(𝑢, 𝑣)

⎞⎟⎟⎟⎠ ≤ 1,

and then take the supremum over (𝑠, 𝑡) ∈ Δ[0,𝑇] and (𝑢, 𝑣) ∈ Δ[0,𝑇] on the left-hand side.
Thus,𝑇 is compact with respect to 𝑝

𝜇,𝑞′

𝑇 , and is then compact in the topology generated by
the seminorms 𝑝𝜇,𝑞

′

𝑇 for 𝑇 ∈ ℕ.
Step 2: Now suppose that {(𝜋𝑛, 𝜋𝑛,′)}𝑛∈ℕ is a sequence of portfolios in 𝑀,𝑞(𝑐𝜇). Corre-

spondingly, {(𝜋
𝑛

𝜇
, (
𝜋𝑛

𝜇
)′)}𝑛∈ℕ is then a sequence in  which, by the result in Step 1 above,
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ALLAN et al. 733

admits a convergent subsequence with respect to the seminorms ‖ ⋅ , ⋅‖𝑞′

𝜇 ,[0,𝑇]
for 𝑇 ∈ ℕ. Since

‖𝜋
𝜇
, (
𝜋

𝜇
)′‖𝑞′

𝜇 ,[0,𝑇]
= 𝑝

𝜇,𝑞′

𝑇 ((𝜋, 𝜋′)), the convergence also applies to the corresponding subsequence

of {(𝜋𝑛, 𝜋𝑛,′)}𝑛∈ℕ with respect to the seminorms {𝑝
𝜇,𝑞′

𝑇 }𝑇∈ℕ. Let (𝜙, 𝜙′) be the limit of (the conver-
gent subsequence of) {(𝜋

𝑛

𝜇
, (
𝜋𝑛

𝜇
)′)}𝑛∈ℕ. It is then easy to see that𝜙𝜇, the product of controlled paths

(𝜙, 𝜙′) and (𝜇, 𝐼), is a cluster point of {(𝜋𝑛, 𝜋𝑛,′)}𝑛∈ℕ in 𝑀,𝑞(𝑐𝜇) with respect to the seminorms
{𝑝

𝜇,𝑞′

𝑇 }𝑇∈ℕ. □

In the next auxiliary result, we establish continuity of the relative wealth of admissible portfo-
lios with respect to themarket portfolio. To this end, we recall the family of seminorms {𝑝𝜇,𝑞

′

𝑇 }𝑇>0,
defined in Equation (26), and, for a given sequence 𝛽 = {𝛽𝑁}𝑁∈ℕ with 𝛽𝑁 > 0 for all 𝑁 ∈ ℕ and
lim𝑁→∞ 𝛽𝑁 = ∞, we introduce a metric 𝑑𝛽 on𝑀,𝑞(𝑐𝜇) via

𝑑𝛽((𝜋, 𝜋
′), (𝜙, 𝜙′)) ∶= sup

𝑁≥1
1

𝛽𝑁𝛾𝑁
𝑝
𝜇,𝑞′

𝑁 ((𝜋, 𝜋′) − (𝜙, 𝜙′)),

where

𝛾𝑁 ∶= 1 +𝑀 + 𝑐𝜇(0,𝑁)
1

𝑞 + 𝑐𝜇(0,𝑁)
1

𝑟 .

Since 𝑝𝜇,𝑞
′

𝑁 ((𝜋, 𝜋′)) ≤ 𝛾𝑁 , we have that 𝑑𝛽((𝜋, 𝜋′), (𝜙, 𝜙′)) < ∞ for all portfolios (𝜋, 𝜋′), (𝜙, 𝜙′) ∈
𝑀,𝑞(𝑐𝜇). The metric 𝑑𝛽 is thus well-defined on 𝑀,𝑞(𝑐𝜇). Moreover, it is not hard to see that
the topology induced by the metric 𝑑𝛽 coincides with the topology generated by the family of
seminorms {𝑝𝜇,𝑞

′

𝑇 }𝑇∈ℕ, so that (𝑀,𝑞(𝑐𝜇), 𝑑𝛽) is a compact metric space. For 𝑇 > 0, we also denote

𝜉𝑇 ∶= ‖𝜇‖𝑝,[0,𝑇] + ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇] +

𝑑∑
𝑖=1

[𝜇]𝑖𝑖𝑇. (30)

Lemma 4.7. For any 𝑇 > 0, we have that the estimate

| log𝑉𝜋
𝑇 − log𝑉

𝜙
𝑇| ≤ 𝐶𝛽𝑁𝛾

2
𝑁𝜉𝑇𝑑𝛽((𝜋, 𝜋

′), (𝜙, 𝜙′)) (31)

holds for all (𝜋, 𝜋′), (𝜙, 𝜙′) ∈ 𝑀,𝑞(𝑐𝜇), for some constant 𝐶, which depends only on 𝑝, 𝑞′, 𝑟′ and
the dimension 𝑑, where𝑁 = ⌈𝑇⌉, and 𝑉𝜋 denotes the relative wealth process as defined in Equation
(14). In particular, the map from𝑀,𝑞(𝑐𝜇) → ℝ given by (𝜋, 𝜋′) ↦ 𝑉𝜋

𝑇 is continuous with respect to
the metric 𝑑𝛽 .

Proof. By Proposition 3.9 and the relation in Equation (24), we have that, for any (𝜋, 𝜋′) ∈
𝑀,𝑞(𝑐𝜇),

log𝑉𝜋
𝑇 = ∫

𝑇

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑇

0

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝜇𝑖𝑠𝜇
𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠 ,
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734 ALLAN et al.

which implies that, for (𝜋, 𝜋′), (𝜙, 𝜙′) ∈ 𝑀,𝑞(𝑐𝜇),

|||log𝑉𝜋
𝑇 − log𝑉

𝜙
𝑇
||| ≤ |||||∫

𝑇

0

𝜋𝑠 − 𝜙𝑠
𝜇𝑠

d𝜇𝑠

||||| + 1

2

|||||||
𝑑∑

𝑖,𝑗=1
∫

𝑇

0

(
𝜋𝑖𝑠 − 𝜙𝑖𝑠

) (
𝜋
𝑗
𝑠 + 𝜙

𝑗
𝑠

)
𝜇𝑖𝑠𝜇

𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠

||||||| .
We aim to bound the two terms on the right-hand side. Let 𝐴𝜇 be the canonical rough path lift

of 𝜇 (as defined in Section A.3), namely 𝐴𝜇
𝑠,𝑡 = ∫ 𝑡

𝑠
𝜇𝑠,𝑢 ⊗ d𝜇𝑢. Writing 𝑁 = ⌈𝑇⌉, by the estimate

for rough integrals in Equation (4), we obtain

|||||∫
𝑇

0

𝜋𝑠 − 𝜙𝑠
𝜇𝑠

d𝜇𝑠

||||| ≲
‖‖‖‖‖𝑅

𝜋−𝜙

𝜇

‖‖‖‖‖𝑟′,[0,𝑇] ‖𝜇‖𝑝,[0,𝑇] +
‖‖‖‖‖
(
𝜋 − 𝜙

𝜇

)′‖‖‖‖‖𝑞′,[0,𝑇] ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇]

+
||||𝜋0 − 𝜙0

𝜇0

|||| ‖𝜇‖𝑝,[0,𝑇] + |||||
(
𝜋 − 𝜙

𝜇

)′

0

||||| ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇]

≲ 𝑝
𝜇,𝑞′

𝑁 ((𝜋, 𝜋′) − (𝜙, 𝜙′))

(‖𝜇‖𝑝,[0,𝑇] + ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇]

)
≤ 𝛽𝑁𝛾𝑁𝑑𝛽

(
(𝜋, 𝜋′),

(
𝜙, 𝜙′

))(‖𝜇‖𝑝,[0,𝑇] + ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇]

)
.

For the second term, we note that

||||∫
𝑇

0

(𝜋𝑖𝑠 − 𝜙𝑖𝑠)(𝜋
𝑗
𝑠 + 𝜙

𝑗
𝑠 )

𝜇𝑖𝑠𝜇
𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠

|||| ≲ ‖‖‖𝜋 − 𝜙

𝜇
‖‖‖∞,[0,𝑇]

‖‖‖𝜋 + 𝜙

𝜇
‖‖‖∞,[0,𝑇]

𝑑∑
𝑖=1

[𝜇]𝑖𝑖𝑇. (32)

It follows from the relation 𝜋𝑡

𝜇𝑡
=

𝜋0

𝜇0
+ (

𝜋

𝜇
)′0𝜇0,𝑡 + 𝑅

𝜋

𝜇

0,𝑡, and the fact that 𝜇 takes values in the

bounded set Δ𝑑+, that

‖‖‖𝜋𝜇 ‖‖‖∞,[0,𝑇]
≲ 𝑀 + 𝑐𝜇(0, 𝑇)

1

𝑟 ≤ 𝛾𝑁.

It follows similarly from 𝜋𝑡−𝜙𝑡

𝜇𝑡
=

𝜋0−𝜙0

𝜇0
+ (

𝜋−𝜙

𝜇
)′0𝜇0,𝑡 + 𝑅

𝜋−𝜙

𝜇

0,𝑡 , that

‖‖‖𝜋 − 𝜙

𝜇
‖‖‖∞,[0,𝑇]

≲ 𝑝
𝜇,𝑞′

𝑁 ((𝜋, 𝜋′) − (𝜙, 𝜙′)) ≤ 𝛽𝑁𝛾𝑁𝑑𝛽((𝜋, 𝜋
′), (𝜙, 𝜙′)).

Substituting back into Equation (32), we obtain

|||||||∫
𝑇

0

(
𝜋𝑖𝑠 − 𝜙𝑖𝑠

) (
𝜋
𝑗
𝑠 + 𝜙

𝑗
𝑠

)
𝜇𝑖𝑠𝜇

𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠

||||||| ≲ 𝛽𝑁𝛾
2
𝑁𝑑𝛽((𝜋, 𝜋

′), (𝜙, 𝜙′))

𝑑∑
𝑖=1

[𝜇]𝑖𝑖𝑇.

Combining the inequalities above, we deduce the desired estimate. □
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ALLAN et al. 735

In the following, we will sometimes write simply𝑀,𝑞 ∶= 𝑀,𝑞(𝑐𝜇) for brevity.
For (𝜋, 𝜋′) ∈ 𝑀,𝑞, we have by definition that 𝜋 is a 𝜇-controlled path. We also have that the

relative wealth 𝑉𝜋 is also a 𝜇-controlled rough path—as can be seen for instance from Propo-
sition 3.9—and hence the product 𝜋𝑉𝜋 is also a controlled path. Let 𝜈 be a fixed probability
measure on (𝑀,𝑞, 𝑑𝛽). Observe that for every 𝑇 > 0, the space 𝑞

𝜇([0, 𝑇]; ℝ
𝑑) of controlled paths

is a Banach space, and that, as we will see during the proof of Lemma 4.8 below, 𝑉𝜋 is the unique
solution to the rough differential equation (34), which implies that the mapping 𝜋 ↦ 𝑉𝜋|[0,𝑇] ∈𝑞
𝜇([0, 𝑇]; ℝ

𝑑) is continuous by the continuity of the Itô–Lyons map (see, e.g., Lejay (2012, Theo-
rem 1)). Hence, for every 𝑇 > 0, we can define the Bochner integral ∫𝑀,𝑞 (𝜋𝑉

𝜋)|[0,𝑇] d𝜈(𝜋), which
is thus itself another controlled path defined on [0, 𝑇]. The 𝜇-controlled path

𝜋𝜈𝑡 ∶=
∫𝑀,𝑞 𝜋𝑡𝑉

𝜋
𝑡 d𝜈(𝜋)

∫𝑀,𝑞 𝑉
𝜋
𝑡 d𝜈(𝜋)

, 𝑡 ∈ [0,∞), (33)

is then well-defined, and defines indeed a portfolio in 𝑞
𝜇 , called the universal portfolio associated

to the set𝑀,𝑞 of admissible portfolios.

Lemma 4.8. Let 𝜋𝜈 be the universal portfolio as defined in Equation (33). Then, for all 𝑇 > 0,

𝑉𝜋𝜈

𝑇 = ∫𝑀,𝑞

𝑉𝜋
𝑇 d𝜈(𝜋).

Proof. By Proposition 3.9 and the relation in Equation (24), we have, for any portfolio 𝜋,

𝑉𝜋
𝑡 = exp

(
∫

𝑡

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑡

0

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝜇𝑖𝑠𝜇
𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠

)
.

Setting 𝑍 ∶= ∫ ⋅

0

𝜋𝑠

𝜇𝑠
d𝜇𝑠, by Lemma B.1, we can rewrite the relation above as 𝑉𝜋 = exp(𝑍 −

1

2
[𝐙]).

Thus, by Lemma A.5, Lemma A.4, and Proposition A.2, we deduce that 𝑉𝜋 is the unique solution
𝑌 to the linear rough differential equation

𝑌𝑡 = 1 + ∫
𝑡

0

𝑌𝑠
𝜋𝑠
𝜇𝑠

d𝜇𝑠, 𝑡 ≥ 0. (34)

It is, therefore, sufficient to show that the path 𝑡 ↦ ∫𝑀,𝑞 𝑉
𝜋
𝑡 d𝜈(𝜋) also satisfies the RDE (34) with

𝜋 replaced by 𝜋𝜈. By the definition of the universal portfolio in Equation (33), we have

∫𝑀,𝑞

𝑉𝜋
𝑠 d𝜈(𝜋)

𝜋𝜈𝑠
𝜇𝑠

= ∫𝑀,𝑞

𝜋𝑠
𝜇𝑠
𝑉𝜋
𝑠 d𝜈(𝜋). (35)

Recalling that 𝑉𝜋 satisfies Equation (34), we know that

𝑉𝜋
𝑡 = 1 + ∫

𝑡

0

𝜋𝑠
𝜇𝑠
𝑉𝜋
𝑠 d𝜇𝑠.
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736 ALLAN et al.

By the Fubini theorem for rough integration (Theorem A.6), we then have that

∫𝑀,𝑞

𝑉𝜋
𝑡 d𝜈(𝜋) = 1 + ∫

𝑡

0
∫𝑀,𝑞

𝜋𝑠
𝜇𝑠
𝑉𝜋
𝑠 d𝜈(𝜋) d𝜇𝑠 = 1 + ∫

𝑡

0
∫𝑀,𝑞

𝑉𝜋
𝑠 d𝜈(𝜋)

𝜋𝜈𝑠
𝜇𝑠

d𝜇𝑠,

where we used Equation (35) to obtain the last equality. Hence, both 𝑉𝜋𝜈 and ∫𝑀,𝑞 𝑉
𝜋 d𝜈(𝜋) are

the unique solution of the same RDE, and thus coincide. □

With these preparations in place, we now aim to compare the growth rates of the universal
portfolio (33) and the best retrospectively chosen portfolio. For this purpose, we fix an𝑀 > 0, and
assume that there exists a compact metric space (, 𝑑) together with a mapping 𝜄 ∶ (, 𝑑) →
(𝑀,𝑞, 𝑑𝛽) such that 𝜄 is continuous and injective (and thus a homeomorphism onto its image),
and that for every 𝑇 > 0 and 𝑥, 𝑦 ∈ , we have that

|||log𝑉𝜄(𝑥)
𝑇 − log𝑉

𝜄(𝑦)
𝑇

||| ≤ 𝐶𝜆(𝑇)𝑑(𝑥, 𝑦), (36)

where 𝜆 is a positive function of 𝑇, and 𝐶 is a universal constant independent of 𝑇. Here we list
some examples of (, 𝑑), 𝜄, and 𝜆:

(1)  = 𝐶𝑝+𝛼,𝐾(Δ
𝑑

+;ℝ
𝑑) = {𝐺 ∈ 𝐶𝑝+𝛼(Δ

𝑑

+;ℝ
𝑑) ∶ ‖𝐺‖𝐶𝑝+𝛼 ≤ 𝐾, 𝐺 ≥ 1

𝐾
}, 𝑑(𝐺, �̃�) = ‖𝐺 − �̃�‖𝐶2 ,

𝜄(𝐺) = 𝜋𝐺 , where 𝛼 > 0 and 𝜋𝐺 is a classical functionally generated portfolio of the form (21).
In this case, we can take 𝜆(𝑇) = 1 + max𝑖=1,…,𝑑[𝜇]

𝑖𝑖
𝑇; see the proof of Cuchiero et al. (2019,

Lemma 4.4).
(2)  = 𝐶2+𝛼,𝐾(Δ

𝑑

+;ℝ
𝑑) = {𝐹 ∈ 𝐶2+𝛼(Δ

𝑑

+;ℝ
𝑑) ∶ ‖𝐹‖𝐶2+𝛼 ≤ 𝐾}, 𝑑(𝐹, �̃�) = ‖𝐹 − �̃�‖𝐶2 , 𝜄(𝐹) =

𝜋𝐹 , where 𝛼 ∈ (0, 1] and 𝜋𝐹 is a functionally controlled portfolio defined as in Equation (28).
In this case one may take 𝜆(𝑇) = (1 + ‖𝜇‖2

𝑝,[0,𝑇]
)𝜉𝑇 , where 𝜉𝑇 is defined in Equation (30); see

Lemma 4.11 below.
(3)  = 𝑀,𝑞, 𝑑 = 𝑑𝛽 , 𝜄 = Id𝑀,𝑞 . In view of Equation (31), we have 𝜆(𝑇) = 𝛽⌈𝑇⌉𝛾2⌈𝑇⌉𝜉𝑇 .
Given such a compact space (, 𝑑) equipped with an embedding 𝜄 as above, we define

𝑉∗,,𝜄
𝑇 = sup

𝑥∈
𝑉
𝜄(𝑥)
𝑇 = sup

𝜋∈𝜄()
𝑉𝜋
𝑇 .

By the compactness of  and the continuity provided by the estimate in Equation (36), we have
that, for each 𝑇 > 0, there exists a portfolio 𝜋∗,𝑇 ∈ 𝜄(), which can be expressed as 𝜋∗,𝑇 = 𝜄(𝑥∗)

for some 𝑥∗ ∈ , known as the best retrospectively chosen portfolio associated with  and 𝜄, such
that

𝑉∗,,𝜄
𝑇 = 𝑉𝜋∗,𝑇 . (37)

The following theorem provides an analog of Cuchiero et al. (2019, Theorem 4.11) in our rough
path setting.

Theorem 4.9. Let (, 𝑑) be a compact metric space equipped with a continuous embedding 𝜄 ∶
(, 𝑑) → (𝑀,𝑞, 𝑑𝛽), which satisfies the bound in Equation (36) for some positive function 𝜆. Let𝑚
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ALLAN et al. 737

be a probability measure on with full support, and let 𝜈 = 𝜄∗(𝑚) denote the pushforward measure
on𝑀,𝑞 . If lim𝑇→∞ 𝜆(𝑇) = ∞, then

lim
𝑇→∞

1

𝜆(𝑇)

(
log𝑉∗,,𝜄

𝑇 − log𝑉𝜋𝜈

𝑇

)
= 0.

In particular, if  = 𝐶𝑝+𝛼,𝐾(Δ
𝑑

+;ℝ
𝑑) = {𝐺 ∈ 𝐶𝑝+𝛼(Δ

𝑑

+;ℝ
𝑑) ∶ ‖𝐺‖𝐶𝑝+𝛼 ≤ 𝐾, 𝐺 ≥ 1

𝐾
},

𝑑(𝐺, �̃�) = ‖𝐺 − �̃�‖𝐶2 , 𝜄(𝐺) = 𝜋𝐺 , where 𝜋𝐺 is a classical functionally generated portfolio
of the form (21), and 𝜆(𝑇) = 1 + max𝑖=1,…,𝑑[𝜇]

𝑖𝑖
𝑇 , then one also infers the version of Cover’s

theorem obtained in Cuchiero et al. (2019, Theorem 4.11).

Proof of Theorem 4.9. As the inequality “≥” is trivial, we need only show the reverse inequality.
As is compact and𝑚 has full support, we have that, for any 𝜂 ∈ (0, 1), there exists a 𝛿 > 0 such
that every 𝜂-ball around a point 𝑥 ∈  with respect to 𝑑 has𝑚-measure bigger than 𝛿.
Let𝑇 > 0 be such that 𝜆(𝑇) ≥ 1, and let𝜋∗,𝑇 = 𝜄(𝑥∗) be the best retrospectively chosen portfolio,

as in Equation (37). For any portfolio 𝜋 = 𝜄(𝑥) ∈ 𝜄() ⊆ 𝑀,𝑞(𝑐𝜇) such that 𝑑(𝑥, 𝑥∗) ≤ 𝜂, the
estimate in Equation (36) implies that

1

𝜆(𝑇)

(
log𝑉𝜋

𝑇 − log𝑉𝜋∗,𝑇

𝑇

) ≥ −𝐶𝑑(𝑥, 𝑥∗) ≥ −𝐶𝜂,

for some constant 𝐶. For any 𝜀 > 0, we can, therefore, choose 𝜂 small enough such that

1

𝜆(𝑇)

(
log𝑉𝜋

𝑇 − log𝑉𝜋∗,𝑇

𝑇

) ≥ −𝜀. (38)

Let 𝐵𝜂(𝑥∗) denote the 𝜂-ball in  around the point 𝑥∗ with respect to the metric 𝑑, which has
𝑚-measure |𝐵𝜂(𝑥∗)| ≥ 𝛿. By Lemma 4.8 and Jensen’s inequality, we have that

(𝑉𝜋𝜈

𝑇 )
1

𝜆(𝑇) ≥
(
∫
𝐵𝜂(𝑥∗)

𝑉
𝜄(𝑥)
𝑇 d𝑚(𝑥)

) 1

𝜆(𝑇)

≥ |𝐵𝜂(𝑥∗)| 1

𝜆(𝑇)
−1

∫
𝐵𝜂(𝑥∗)

(
𝑉
𝜄(𝑥)
𝑇

) 1

𝜆(𝑇)
d𝑚(𝑥).

Then, using Equation (38), we have

(
𝑉𝜋𝜈

𝑇

𝑉𝜋∗,𝑇

𝑇

) 1

𝜆(𝑇)

≥ |𝐵𝜂(𝑥∗)| 1

𝜆(𝑇)
−1

∫
𝐵𝜂(𝑥∗)

(
𝑉
𝜄(𝑥)
𝑇

𝑉
𝜄(𝑥∗)
𝑇

) 1

𝜆(𝑇)

d𝑚(𝑥) ≥ |𝐵𝜂(𝑥∗)| 1

𝜆(𝑇) 𝑒−𝜀 ≥ 𝛿
1

𝜆(𝑇) 𝑒−𝜀.

Taking 𝜀 > 0 arbitrarily small (which determines 𝜂 and hence also 𝛿) and then 𝑇 > 0 sufficiently
large, we deduce the desired inequality. □

4.3 Universal portfolios based on functionally controlled portfolios

The most frequently considered classes of portfolios are those which are generated by func-
tions acting on the underlying price trajectories, such as the functionally generated portfolios
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738 ALLAN et al.

in Lemma 4.3. In this section, we shall investigate the growth rate of universal portfolios based on
the more general class of functionally controlled portfolios, as introduced in Example 4.4. More
precisely, we fix constants 𝛼 ∈ (0, 1] and 𝐾 > 0, and consider the sets

𝐶2+𝛼,𝐾
(
Δ
𝑑

+;ℝ
𝑑

)
∶=

{
𝐹 ∈ 𝐶2+𝛼

(
Δ
𝑑

+;ℝ
𝑑

)
∶ ‖𝐹‖𝐶2+𝛼 ≤ 𝐾

}
and

2+𝛼,𝐾 ∶=
{
(𝜋𝐹, 𝜋𝐹,′) ∶ 𝐹 ∈ 𝐶2+𝛼,𝐾(Δ

𝑑

+;ℝ
𝑑)
}
,

where the portfolio 𝜋𝐹 is of the form in Equation (28). Here we recall that 𝐶2+𝛼 denotes the space
of twice continuously differentiable functions whose second derivative is 𝛼-Hölder continuous.

Lemma 4.10. For any 𝑇 > 0 and any 𝐹,𝐺 ∈ 𝐶2+𝛼,𝐾(Δ
𝑑

+;ℝ
𝑑), we have that

𝑝
𝜇,𝑝
𝑇

((
𝜋𝐹, 𝜋𝐹,′

)
−

(
𝜋𝐺, 𝜋𝐺,′

)) ≤ 𝐶‖𝐹 − 𝐺‖𝐶2 (1 + ‖𝜇‖2
𝑝,[0,𝑇]

)
, (39)

where the constant 𝐶 depends only on 𝑝, 𝑑, and 𝐾. Considering the map Φ ∶ 𝐶2+𝛼,𝐾(Δ
𝑑

+;ℝ
𝑑) →

2+𝛼,𝐾 given by2

𝐹 ↦ Φ(𝐹) ∶=
(
𝜋𝐹, 𝜋𝐹,′

)
,

where 𝜋𝐹 is of the form in Equation (28), we thus have that Φ is continuous with respect to the 𝐶2-
distance on 𝐶2+𝛼,𝐾(Δ

𝑑

+;ℝ
𝑑) and each of the seminorms {𝑝𝜇,𝑝𝑇 }𝑇>0 on 2+𝛼,𝐾 ⊂ 𝑀,𝑝(𝑐𝜇). As the

notation suggests, here 𝑝𝜇,𝑝𝑇 is defined as in Equation (26) with 𝑞′ replaced by 𝑝.

Proof. In the following, for notational simplicity, we will omit the Gubinelli derivative in the
norms ‖ ⋅ , ⋅‖𝑝

𝜇 ,[0,𝑇]
and seminorms 𝑝𝜇,𝑝𝑇 (( ⋅ , ⋅ )); that is, we will write, for example, ‖𝜋‖𝑝

𝜇 ,[0,𝑇]

instead of ‖𝜋, 𝜋′‖𝑝
𝜇 ,[0,𝑇]

. Let 𝐹,𝐺 ∈ 𝐶2+𝛼,𝐾 and 𝑠 ≤ 𝑡. We have

|||(D𝐹 − D𝐺)(𝜇𝑡) − (D𝐹 − D𝐺)(𝜇𝑠)
||| = ||||∫

1

0

(D2𝐹 − D2𝐺)(𝜇𝑠 + 𝜆𝜇𝑠,𝑡)𝜇𝑠,𝑡 d𝜆
||||

≤ ‖D2𝐹 − D2𝐺‖∞|𝜇𝑠,𝑡|,
so that

‖D𝐹(𝜇) − D𝐺(𝜇)‖𝑝,[0,𝑇] ≤ ‖𝐹 − 𝐺‖𝐶2‖𝜇‖𝑝,[0,𝑇].
Similarly, since

𝑅
𝐹(𝜇)
𝑠,𝑡 = 𝐹(𝜇𝑡) − 𝐹(𝜇𝑠) − D𝐹(𝜇𝑠)𝜇𝑠,𝑡 = ∫

1

0
∫

1

0

D2𝐹(𝜇𝑠 + 𝜆1𝜆2𝜇𝑠,𝑡)𝜇
⊗2
𝑠,𝑡 𝜆1 d𝜆2 d𝜆1,
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ALLAN et al. 739

we have

‖𝑅𝐹(𝜇) − 𝑅𝐺(𝜇)‖ 𝑝

2
,[0,𝑇] ≤ ‖𝐹 − 𝐺‖𝐶2‖𝜇‖2𝑝,[0,𝑇].

Thus, for 𝜇-controlled paths (𝐹(𝜇), D𝐹(𝜇)) and (𝐺(𝜇), D𝐺(𝜇)), we have that

‖𝐹(𝜇) − 𝐺(𝜇)‖𝑝
𝜇 ,[0,𝑇]

≲ ‖𝐹 − 𝐺‖𝐶2 (1 + ‖𝜇‖2
𝑝,[0,𝑇]

)
. (40)

Writing 𝜋𝐹𝑡 ∕𝜇𝑡 = 𝐹(𝜇𝑡) + (1 − 𝜇𝑡 ⋅ 𝐹(𝜇𝑡))𝟏 and 𝜋𝐺𝑡 ∕𝜇𝑡 = 𝐺(𝜇𝑡) + (1 − 𝜇𝑡 ⋅ 𝐺(𝜇𝑡))𝟏, we have that

𝜋𝐹𝑡 − 𝜋𝐺𝑡
𝜇𝑡

= 𝐹(𝜇𝑡) − 𝐺(𝜇𝑡) − (𝜇𝑡 ⋅ (𝐹(𝜇𝑡) − 𝐺(𝜇𝑡)))𝟏,

so that

𝑝
𝜇,𝑝
𝑇

(
𝜋𝐹 − 𝜋𝐺

)
≲ ‖𝐹(𝜇) − 𝐺(𝜇)‖𝑝

𝜇 ,[0,𝑇]
+ ‖𝜇 ⋅ (𝐹(𝜇) − 𝐺(𝜇))‖𝑝

𝜇 ,[0,𝑇]
. (41)

Similarly to the proof of Lemma 4.3, noting that 𝑅𝜇⋅(𝐹(𝜇)−𝐺(𝜇))𝑠,𝑡 = 𝜇𝑠 ⋅ 𝑅
𝐹(𝜇)−𝐺(𝜇)
𝑠,𝑡 + 𝜇𝑠,𝑡 ⋅ (𝐹(𝜇) −

𝐺(𝜇))𝑠,𝑡, we have that

|||𝑅𝜇⋅(𝐹(𝜇)−𝐺(𝜇))𝑠,𝑡
||| ≤ ‖𝜇‖∞,[0,𝑇]

|||𝑅𝐹(𝜇)−𝐺(𝜇)𝑠,𝑡
||| + ||𝜇𝑠,𝑡||(𝐹(𝜇) − 𝐺(𝜇))𝑠,𝑡| ≲ ‖𝐹 − 𝐺‖𝐶2 |𝜇𝑠,𝑡||2 ,

where we used the fact that 𝜇 is bounded, and we deduce that

‖𝜇 ⋅ (𝐹(𝜇) − 𝐺(𝜇))‖𝑝
𝜇 ,[0,𝑇]

≲ ‖𝐹 − 𝐺‖𝐶2 (1 + ‖𝜇‖2
𝑝,[0,𝑇]

)
.

Combining this with Equations (40) and (41), we obtain the estimate in Equation (39), which then
implies the desired continuity of Φ. □

Lemma 4.11. For any 𝑇 > 0 and any 𝐹,𝐺 ∈ 𝐶2+𝛼,𝐾(Δ
𝑑

+;ℝ
𝑑), we have that

| log𝑉𝜋𝐹

𝑇 − log𝑉𝜋𝐺

𝑇 | ≤ 𝐶‖𝐹 − 𝐺‖𝐶2(1 + ‖𝜇‖2
𝑝,[0,𝑇]

)𝜉𝑇, (42)

where 𝜉𝑇 is defined as in Equation (30), and the constant 𝐶 depends only on 𝑝, 𝑑, and 𝐾.

Proof. We recall that during the proof of Lemma 4.7, we showed that

|||log𝑉𝜋𝐹

𝑇 − log𝑉𝜋𝐺

𝑇
||| ≤ |||||∫

𝑇

0

𝜋𝐹𝑠 − 𝜋𝐺𝑠
𝜇𝑠

d𝜇𝑠

||||| + 1

2

|||||||
𝑑∑

𝑖,𝑗=1
∫

𝑇

0

(
𝜋𝐹,𝑖𝑠 − 𝜋𝐺,𝑖𝑠

)(
𝜋
𝐹,𝑗
𝑠 + 𝜋

𝐺,𝑗
𝑠

)
𝜇𝑖𝑠𝜇

𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠

||||||| ,
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740 ALLAN et al.

and (in the current setting replacing 𝑞′ by 𝑝)

|||||∫
𝑇

0

𝜋𝐹𝑠 − 𝜋𝐺𝑠
𝜇𝑠

d𝜇𝑠

||||| ≲ 𝑝
𝜇,𝑝
𝑇

((
𝜋𝐹, 𝜋𝐹,′

)
−

(
𝜋𝐺, 𝜋𝐺,′

))(‖𝜇‖𝑝,[0,𝑇] + ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇]

)
.

By the estimate in Equation (39), we obtain

|||||∫
𝑇

0

𝜋𝐹𝑠 − 𝜋𝐺𝑠
𝜇𝑠

d𝜇𝑠

||||| ≲
(
1 + ‖𝜇‖2

𝑝,[0,𝑇]

)(‖𝜇‖𝑝,[0,𝑇] + ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇]

)‖𝐹 − 𝐺‖𝐶2 .
Since ‖𝐹‖𝐶2+𝛼 ≤ 𝐾 and ‖𝐺‖𝐶2+𝛼 ≤ 𝐾, recalling Equation (28), we can verify that

|||||||
(
𝜋𝐹,𝑖𝑠 − 𝜋𝐺,𝑖𝑠

)(
𝜋
𝐹,𝑗
𝑠 + 𝜋

𝐺,𝑗
𝑠

)
𝜇𝑖𝑠𝜇

𝑗
𝑠

||||||| ≲ ‖𝐹 − 𝐺‖𝐶2 .
Hence, we have that

|||||||
𝑑∑

𝑖,𝑗=1
∫

𝑇

0

(
𝜋𝐹,𝑖𝑠 − 𝜋𝐺,𝑖𝑠

)
(𝜋

𝐹,𝑗
𝑠 + 𝜋

𝐺,𝑗
𝑠 )

𝜇𝑖𝑠𝜇
𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠

||||||| ≲ ‖𝐹 − 𝐺‖𝐶2 𝑑∑
𝑖=1

[𝜇]𝑖𝑖𝑇.

Combining the estimates above, we obtain Equation (42). □

As a special case of Theorem 4.9, we can deduce an asymptotic growth rate for the univer-
sal portfolio in the case that our portfolios are restricted to the class 2+𝛼,𝐾 of functionally
controlled portfolios.
Let 𝑚 be a fixed probability measure on 𝐶2+𝛼,𝐾 = 𝐶2+𝛼,𝐾(Δ

𝑑

+;ℝ
𝑑), and define 𝜈 ∶= Φ∗𝑚 as

the pushforward measure on 2+𝛼,𝐾 of 𝑚 under the map Φ given in Lemma 4.10. The universal
portfolio based on functionally controlled portfolios is then defined by

𝜋𝜈𝑡 ∶=
∫2+𝛼,𝐾 𝜋𝑡𝑉

𝜋
𝑡 d𝜈(𝜋)

∫2+𝛼,𝐾 𝑉
𝜋
𝑡 d𝜈(𝜋)

, 𝑡 ∈ [0,∞), (43)

and the wealth process of the best retrospectively chosen portfolio is defined as

𝑉∗,𝐾,𝛼
𝑇 ∶= sup

𝜋∈2+𝛼,𝐾

𝑉𝜋
𝑇 = sup

𝐹∈𝐶2+𝛼,𝐾
𝑉𝜋𝐹

𝑇 . (44)

By Lemma 4.11, the mapping 𝐹 ↦ 𝑉𝜋𝐹

𝑇 is a continuous map on 𝐶2+𝛼,𝐾 with respect to the 𝐶2-
norm.We also have that 𝐶2+𝛼,𝐾 is compact with respect to the 𝐶2-norm (see Cuchiero et al. (2019,
Lemma 4.1)). Combining these two facts, we see that, for each 𝑇 > 0, there exists a function 𝐹∗𝑇 ∈
𝐶2+𝛼,𝐾 such that

𝑉∗,𝐾,𝛼
𝑇 = 𝑉𝜋

𝐹∗
𝑇

𝑇 .
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ALLAN et al. 741

Theorem 4.12. Let𝑚 be a probability measure on 𝐶2+𝛼,𝐾 with full support. Let 𝜋𝜈 be the universal
portfolio as defined in Equation (43), and define 𝑉∗,𝐾,𝛼

𝑇 as in Equation (44).

(i) If lim𝑇→∞(1 + ‖𝜇‖2
𝑝,[0,𝑇]

)𝜉𝑇 = ∞, where as usual 𝜉𝑇 is defined as in Equation (30), then

lim
𝑇→∞

1

(1 + ‖𝜇‖2
𝑝,[0,𝑇]

)𝜉𝑇

(
log𝑉∗,𝐾,𝛼

𝑇 − log𝑉𝜋𝜈

𝑇

)
= 0. (45)

(ii) With the shorthand notation 𝜉𝑘,𝑘+1 ∶= ‖𝜇‖𝑝,[𝑘,𝑘+1] + ‖𝐴𝜇‖ 𝑝

2
,[𝑘,𝑘+1] +

∑𝑑

𝑖=1
[𝜇]𝑖𝑖

𝑘,𝑘+1
for each

𝑘 ∈ ℕ, if lim𝑇→∞
∑⌈𝑇⌉−1

𝑘=0
(1 + ‖𝜇‖2

𝑝,[𝑘,𝑘+1]
)𝜉𝑘,𝑘+1 = ∞, then

lim
𝑇→∞

1∑⌈𝑇⌉−1
𝑘=0

(1 + ‖𝜇‖2
𝑝,[𝑘,𝑘+1]

)𝜉𝑘,𝑘+1

(
log𝑉∗,𝐾,𝛼

𝑇 − log𝑉𝜋𝜈

𝑇

)
= 0. (46)

Proof. The result of part (i) follows from Theorem 4.9 applied with = 𝐶2+𝛼,𝐾 , 𝑑(𝐹, 𝐺) = ‖𝐹 −
𝐺‖𝐶2 , 𝜄 = Φ, and 𝜆(𝑇) = (1 + ‖𝜇‖2

𝑝,[0,𝑇]
)𝜉𝑇 , noting from the result of Lemma 4.11 that the bound

in Equation (36) is indeed satisfied in this case.
The result of part (ii) follows similarly with 𝜆(𝑇) =

∑⌈𝑇⌉−1
𝑘=0

(1 + ‖𝜇‖2
𝑝,[𝑘,𝑘+1]

)𝜉𝑘,𝑘+1. That the
bound in Equation (36) is satisfied in this case follows from a very straightforward adaptation of
the proofs of Lemmas 4.10 and 4.11, whereby the same estimates are applied over the subinterval
[𝑘, 𝑘 + 1] for each 𝑘 = 0,… , ⌈𝑇⌉ − 1, and the integrals over [0, 𝑇] in the proof of Lemma 4.11 are
trivially bounded by the sum of integrals over these subintervals. □

Remark 4.13. The result of Theorem 4.12 is stated for two different “clocks,” namely (1 +‖𝜇‖2
𝑝,[0,𝑇]

)𝜉𝑇 and
∑⌈𝑇⌉−1

𝑘=0 (1 + ‖𝜇‖2
𝑝,[𝑘,𝑘+1]

)𝜉𝑘,𝑘+1. One may wonder whether one of these clocks
always dominates the other, making one of the statements superfluous. However, this is not
the case.
On the one hand, in Section 4.4 below,wewill exhibit a particular scenario,which demonstrates

the nontriviality of the growth rate established in Equation (45). In this setting, one may check
that (1 + ‖𝜇‖2

𝑝,[0,𝑇]
)𝜉𝑇 gives a strictly better asymptotic rate than if one were to use the sum over

a partition of subintervals, as in part (ii) of Theorem 4.12.
On the other hand, in Section 5 below, wewill consider a probabilistic model, where themarket

portfolio𝜇 is given by the solution of a stochastic differential equation driven byBrownianmotion.
Using the fact that Brownian motion has independent increments, and the strong law of large
numbers, in Theorem 5.4, we will use Equation (46) to improve the asymptotic growth rate to 𝑇.
That is, we will actually show that, almost surely,

lim
𝑇→∞

1

𝑇

(
log𝑉∗,𝐾,𝛼

𝑇 − log𝑉𝜋𝜈

𝑇

)
= 0.

It is, therefore, valuable to include both parts of Theorem 4.12.

Remark 4.14. Strictly speaking, Theorems 4.9 (which also recovers the version of Cover’s theorem
established in Cuchiero et al. (2019)) and 4.12 do not say that the universal portfolio 𝜋𝜈 performs
asymptotically as well as the best retrospectively chosen one; rather, they provide bounds on how
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742 ALLAN et al.

large the gap can become as time increases. For instance, for classical functionally generated port-
folios of the form in Equation (21), the gap is 𝑜(max𝑖=1,…,𝑑[𝜇]𝑖𝑖𝑇), and for functionally controlled
portfolios of the form in Equation (28), the gap is, for example, 𝑜((1 + ‖𝜇‖2

𝑝,[0,𝑇]
)𝜉𝑇).

4.4 The nontriviality of the asymptotic growth rate

In this section, we will show that the asymptotic growth rate 𝜆(𝑇) = (1 + ‖𝜇‖2
𝑝,[0,𝑇]

)𝜉𝑇 for func-
tionally controlled portfolios, as established in part (i) of Theorem 4.12, is nontrivial, in the sense
that there exists an instance of the market portfolio 𝜇 = (𝜇𝑡)𝑡∈[0,∞) such that

lim sup
𝑇→∞

log𝑉∗,𝐾,𝛼
𝑇(

1 + ‖𝜇‖2
𝑝,[0,𝑇]

)
𝜉𝑇

> 0 and lim
𝑇→∞

log𝑉∗,𝐾,𝛼
𝑇 − log𝑉𝜋𝜈

𝑇(
1 + ‖𝜇‖2

𝑝,[0,𝑇]

)
𝜉𝑇

= 0,

where 𝜈 = Φ∗𝑚 for an arbitrary probability measure𝑚 on 𝐶2+𝛼,𝐾 with full support.

Lemma 4.15. Let 𝑝 ∈ (2, 3) as usual, and then fix 𝜆 > 0 such that 1

𝑝
< 𝜆 <

1

2
. Let 𝑑 = 3 and let

𝜇 = (𝜇𝑡)𝑡∈[0,∞) be the continuous Δ3+-valued path given by

𝜇𝑡 =

⎛⎜⎜⎜⎝
𝜇1𝑡

𝜇2𝑡

𝜇3𝑡

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

1

3
(1 +

𝑘−𝜆

3
(1 − cos 𝑡))

1

3
(1 +

𝑘−𝜆

3
sin 𝑡)

1

3
(1 +

𝑘−𝜆

3
(cos 𝑡 − 1 − sin 𝑡))

⎞⎟⎟⎟⎟⎠
, 𝑡 ∈ [2𝜋(𝑘 − 1), 2𝜋𝑘),

for each 𝑘 ∈ ℕ. For 𝛼 ∈ (0, 1] and 𝐾 > 0, let 𝑉∗,𝐾,𝛼
𝑇 be the wealth induced by the best retrospectively

chosen portfolio over 2+𝛼,𝐾 at time 𝑇. Then,

lim sup
𝑇→∞

log𝑉∗,𝐾,𝛼
𝑇(

1 + ‖𝜇‖2
𝑝,[0,𝑇]

)
𝜉𝑇

> 0.

Proof. Recall that for any portfolio 𝜋, it follows from Proposition 3.9 that

log𝑉𝜋
𝑇 = ∫

𝑇

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑇

0

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝜇𝑖𝑠𝜇
𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠 .

Clearly, since 𝜇 is continuous with bounded variation on every compact interval, we have that
[𝜇] = 0, so that the second term vanishes. For any functionally controlled portfolio 𝜋𝐹 ∈ 2+𝛼,𝐾 ,
using the relation

𝜋𝐹,𝑖𝑡

𝜇𝑖𝑡
= 𝐹𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝐹

𝑗(𝜇𝑡), 𝑖 = 1, … , 𝑑,
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ALLAN et al. 743

together with the fact that
∑𝑑

𝑖=1
d𝜇𝑖𝑡 = 0 (since

∑𝑑

𝑖=1
𝜇𝑖𝑡 = 1), we deduce that

log𝑉𝜋𝐹

𝑇 = ∫
𝑇

0

𝜋𝐹𝑡
𝜇𝑡

d𝜇𝑡 =

𝑑∑
𝑖=1

∫
𝑇

0

𝜋𝐹,𝑖𝑡

𝜇𝑖𝑡
d𝜇𝑖𝑡 =

𝑑∑
𝑖=1

∫
𝑇

0

𝐹𝑖(𝜇𝑡) d𝜇
𝑖
𝑡. (47)

We now choose the function 𝐹 ∈ 𝐶2+𝛼,𝐾 given by

𝐹(𝑥) =

⎛⎜⎜⎜⎝
𝑥2

0

0

⎞⎟⎟⎟⎠
for 𝑥 = (𝑥1, 𝑥2, 𝑥3)

⊤ ∈ Δ
3

+. Substituting this function into Equation (47), we have

log𝑉𝜋𝐹

𝑇 = ∫
𝑇

0

𝜋𝐹𝑡
𝜇𝑡

d𝜇𝑡 =

3∑
𝑖=1

∫
𝑇

0

𝐹𝑖(𝜇𝑡) d𝜇
𝑖
𝑡 = ∫

𝑇

0

𝜇2𝑡 d𝜇
1
𝑡 .

For 𝑛 ∈ ℕ, we compute

∫
2𝜋𝑛

0

𝜇2𝑡 d𝜇
1
𝑡 =

𝑛∑
𝑘=1

∫
2𝜋𝑘

2𝜋(𝑘−1)

𝜇2𝑡 d𝜇
1
𝑡 =

𝑛∑
𝑘=1

∫
2𝜋

0

1

3

(
1 +

𝑘−𝜆

3
sin 𝑡

)
⋅
𝑘−𝜆

9
sin 𝑡 d𝑡

=

𝑛∑
𝑘=1

𝑘−2𝜆

81 ∫
2𝜋

0

sin
2
𝑡 d𝑡 =

𝜋

81

𝑛∑
𝑘=1

𝑘−2𝜆,

and note that

‖𝜇‖𝑝,[0,2𝜋𝑛] ≲ (
𝑛∑
𝑘=1

𝑘−𝜆𝑝

)1

𝑝

<

(
∞∑
𝑘=1

𝑘−𝜆𝑝

)1

𝑝

< ∞

for every 𝑛 ∈ ℕ.
Writing 𝐴𝜇

𝑠,𝑡 = [𝐴
𝜇,𝑖,𝑗
𝑠,𝑡 ]𝑖,𝑗=1,2,3 = ∫ 𝑡

𝑠
(𝜇𝑢 − 𝜇𝑠) ⊗ d𝜇𝑢 for the canonical rough path lift of 𝜇, and

using the monotonicity of trigonometric functions on the intervals [0, 𝜋
2
], [𝜋

2
, 𝜋], [𝜋, 3𝜋

2
], and

[
3𝜋

2
, 2𝜋], one can readily check that

‖𝐴𝜇‖ 𝑝

2
,[0,2𝜋𝑛] ∼ 𝐴

𝜇,2,1
0,2𝜋𝑛 = ∫

2𝜋𝑛

0

𝜇2𝑡 d𝜇
1
𝑡 ∼

𝑛∑
𝑘=1

𝑘−2𝜆.

Recalling that 𝜉𝑇 = ‖𝜇‖𝑝,[0,𝑇] + ‖𝐴𝜇‖ 𝑝

2
,[0,𝑇] (since [𝜇] = 0), and combining the calculations

above, we deduce that, for 𝑇 = 2𝜋𝑛,

log𝑉∗,𝐾,𝛼
𝑇(

1 + ‖𝜇‖2
𝑝,[0,𝑇]

)
𝜉𝑇

≥ log𝑉𝜋𝐹

2𝜋𝑛(
1 + ‖𝜇‖2

𝑝,[0,2𝜋𝑛]

)
𝜉2𝜋𝑛

≳

∑𝑛

𝑘=1 𝑘
−2𝜆

1 +
∑𝑛

𝑘=1
𝑘−2𝜆

⟶ 1 as 𝑛 → ∞,
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744 ALLAN et al.

where we used the fact that 2𝜆 < 1. □

The example in Lemma 4.15 thus shows that for functionally controlled portfolios𝜋𝐹 generated
by a function𝐹 ∈ 𝐶2+𝛼,𝐾 which is not necessarily of gradient-type, the asymptotic growth rate (1 +‖𝜇‖2

𝑝,[0,𝑇]
)𝜉𝑇 appearing in Theorem 4.12 is actually sharp, in the sense that the log-relative wealth

log𝑉𝜋𝐹

𝑇 and the rate (1 + ‖𝜇‖2
𝑝,[0,𝑇]

)𝜉𝑇 grow at the same rate (up to a multiplicative constant) as
𝑇 → ∞.

4.5 Functionally controlled portfolios have better performance

Let us conclude this section by showing that classical functionally generated portfolios of form in
Equation (21), which are induced by functions of gradient type, are in general not optimal among
the class of functionally controlled portfolios of the form in Equation (28).
Let 𝜇 be a continuous Δ𝑑+-valued path which, for simplicity, we assume to have finite variation

on every bounded interval (and which, therefore, trivially satisfies Property (RIE)). For any 𝐹 ∈

𝐶2+𝛼,𝐾(Δ
𝑑

+;ℝ
𝑑), we know, as we saw in Equation (47) above, that for every 𝑇 > 0,

log𝑉𝜋𝐹

𝑇 = ∫
𝑇

0

𝜋𝐹𝑠
𝜇𝑠

d𝜇𝑠 −
1

2

𝑑∑
𝑖,𝑗=1

∫
𝑇

0

𝜋𝐹,𝑖𝑠 𝜋
𝐹,𝑗
𝑠

𝜇𝑖𝑠𝜇
𝑗
𝑠

d[𝜇]
𝑖𝑗
𝑠 = ∫

𝑇

0

𝐹(𝜇𝑠) d𝜇𝑠,

since the quadratic variation [𝜇] vanishes. Suppose now that the generating function 𝐹 were of
gradient-type, so that 𝐹 = ∇𝑓 for some suitably smooth real-valued function 𝑓. We then have that

log𝑉𝜋𝐹

𝑇 = ∫
𝑇

0

∇𝑓(𝜇𝑠) d𝜇𝑠 = 𝑓(𝜇𝑇) − 𝑓(𝜇0),

which implies together with the mean value theorem that

|||log𝑉𝜋𝐹

𝑇
||| ≤ ‖∇𝑓‖∞|𝜇𝑇 − 𝜇0| = ‖𝐹‖∞|𝜇𝑇 − 𝜇0| ≤ 2𝐾,

as ‖𝐹‖∞ ≤ 𝐾 and 𝜇𝑇, 𝜇0 ∈ Δ𝑑+. In particular, we have that

sup
𝑇≥0 log𝑉

𝜋𝐹

𝑇 ≤ 2𝐾 < ∞ (48)

for every generating function 𝐹 of gradient type.
Now let 𝜇 be themarket portfolio given in Lemma 4.15, and let𝐹(𝑥1, 𝑥2, 𝑥3) = (𝑥2, 0, 0)

⊤, which
we note is not of gradient type. In the proof of Lemma 4.15 we saw, for 𝑇 = 2𝜋𝑛 with any 𝑛 ∈ ℕ,
that log𝑉𝜋𝐹

𝑇 = ∫ 𝑇

0
𝜇2𝑡 d𝜇

1
𝑡 =

𝜋

81

∑𝑛

𝑘=1
𝑘−2𝜆 for some positive 𝜆 < 1

2
. We thus immediately have that

lim sup
𝑇→∞

log𝑉𝜋𝐹

𝑇 = ∞. (49)

Comparing Equation (49) with Equation (48), it is clear that the best retrospectively chosen port-
folio over the set of functionally controlled portfolios cannot be of gradient type. Indeed, we infer
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ALLAN et al. 745

that among the class of all functionally controlled portfolios, those corresponding to gradient-type
generating functions are in general far from being optimal, demonstrating the need to go beyond
gradient-type generating functions.

5 FUNCTIONALLY CONTROLLED PORTFOLIOS IN
PROBABILISTICMODELS

In this section, we shall demonstrate some further links between our purely pathwise theory
and classical SPT in a probabilistic setting. In particular, this will allow us to illustrate again the
advantages of functionally controlled portfolios, as introduced in Example 4.4, compared to (path-
wise) functionally generated portfolios (see Lemma 4.3), as were previously treated in Schied et al.
(2018); Cuchiero et al. (2019) based on Föllmer integration.

5.1 Probabilistic model for the market portfolio

Whereas in the previous sections we worked in a purely pathwise setting, we now assume that the
market portfolio (also known as the market weights process) 𝜇 = (𝜇1𝑡 , … , 𝜇

𝑑
𝑡 )𝑡∈[0,∞) is described

by a time-homogeneous Markovian Itô-diffusion with values in Δ𝑑+, of the form

𝜇𝑡 = 𝜇0 + ∫
𝑡

0

𝑐(𝜇𝑠)𝜆(𝜇𝑠) d𝑠 + ∫
𝑡

0

√
𝑐(𝜇𝑠) d𝑊𝑠, 𝑡 ∈ [0,∞), (50)

where 𝜇0 is distributed according to some measure 𝜌 on Δ𝑑+, 𝑊 is a 𝑑-dimensional Brownian
motion and

√
⋅ denotes thematrix square root. We assume that 𝜇 is the canonical process defined

on path space (Ω, , ℙ), that is,Ω = 𝐶([0,∞); Δ𝑑+),  = 𝜎(𝜇𝑡 ∶ 𝑡 ∈ [0,∞)), andℙ denotes the law
of 𝜇. For the moment, 𝜆 is just assumed to be a Borel measurable function from Δ𝑑+ toℝ𝑑. Writing

𝕊𝑑+ for the set of positive semi-definite symmetric matrices, 𝑐 ∈ 𝐶(Δ
𝑑

+; 𝕊
𝑑
+) is such that

𝑐(𝑥)𝟏 = 0 for all 𝑥 ∈ Δ𝑑+.

The latter requirement is necessary to guarantee that the process 𝜇 lies inΔ𝑑+. For a complete char-
acterization of stochastic invariance of the closed simplex (under additional regularity conditions
on the coefficients 𝜆 and 𝑐), we refer to Abi Jaber et al. (2019, Theorem 2.3) and the references
therein. To ensure that the process stays in the open simplex Δ𝑑+, conditions for nonattainment
of the boundary are established for instance in Filipović and Larsson (2016, Theorem 5.7). These
conditions build on versions of what is sometimes called “McKean’s argument” (see Mayerhofer
et al. (2011) for an overview and further references).
We further suppose that the so-called structure condition is satisfied, that is

∫
𝑇

0

𝜆⊤(𝜇𝑠)𝑐(𝜇𝑠)𝜆(𝜇𝑠) d𝑠 < ∞ ℙ-a.s., for all 𝑇 ∈ [0,∞), (51)

which is equivalent to “no unbounded profit with bounded risk” (NUPBR); see, for example, The-
orem 3.4 in Hulley and Schweizer (2010).
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746 ALLAN et al.

Remark 5.1. As (NUPBR) is satisfied due to Equation (51), the sample paths of 𝜇 almost surely
satisfy Property (RIE) with respect to every 𝑝 ∈ (2, 3) and a suitable sequence of partitions,
compare Remark 2.8.

We further impose the following ergodicity assumption in the spirit of Eberle (2016, Section 2.2,
Theorem 2.6 and Section 2.2.3, Theorem 2.8), along with an integrability condition on 𝜆.

Assumption 5.2. We assume that the market portfolio 𝜇, given by the dynamics in Equation
(50), is an ergodic process with stationary measure 𝜌 on Δ𝑑+. That is, we suppose that 𝜌𝑝𝑡 = 𝜌 for
every 𝑡 ∈ [0,∞), where here (𝑝𝑡)𝑡∈[0,∞) denotes the transition probability of 𝜇. Furthermore, we
suppose that 𝜆 ∈ 𝐿2(Δ𝑑+, 𝜌;ℝ

𝑑).

Note that the assumption that 𝜌 is a stationary measure implies that the shift semigroup
Θ𝑡(𝜔) = 𝜔(𝑡 + ⋅), 𝑡 ∈ [0,∞), 𝜔 ∈ Ω, preserves the measure ℙ, in the sense that ℙ◦Θ−1

𝑡 = ℙ.
Hence, the “ergodic theorem in continuous time” (see Eberle (2016, Section 2.2, Theorem 2.6,
Theorem 2.8)) can be applied.
While on the pathwise marketΩ𝑝, the portfolios were given by 𝜇-controlled paths (𝜋, 𝜋′) ∈ 𝑞

𝜇

(recall Definition 2.3), in the present semimartingale setting, we consider a portfolio 𝜋 to be an
element of the set Π of all predictable processes 𝜋 taking values in Δ𝑑, such that the Itô integral

∫
𝑇

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 = ∫
𝑇

0

𝑑∑
𝑖=1

𝜋𝑖𝑠

𝜇𝑖𝑠
d𝜇𝑖𝑠

is well-defined for every 𝑇 ∈ [0,∞). As established in Cuchiero et al. (2019, Section 4.2.3), for
𝜋 ∈ Π, the relative wealth process (recall Equation 14) can be written in the usual form, that is

𝑉𝜋
𝑇 = exp

(
∫

𝑇

0

𝜋𝑠
𝜇𝑠

d𝜇𝑠 −
1

2 ∫
𝑇

0

𝑑∑
𝑖,𝑗=1

𝜋𝑖𝑠𝜋
𝑗
𝑠

𝜇𝑖𝑠𝜇
𝑗
𝑠

𝑐𝑖𝑗(𝜇𝑠) d𝑠

)
, 𝑇 ∈ [0,∞). (52)

Remark 5.3. Note that if (𝜋, 𝜋′) is an adapted processwith sample paths,which are almost surely𝜇-
controlled paths, then it is predictable, and under Property (RIE), the rough integral interpretation
of ∫ 𝑇

0

𝜋𝑠

𝜇𝑠
d𝜇𝑠 coincides almost surely with the Itô integral interpretation. Indeed, the rough inte-

gral can be approximated by left-point Riemann sums (see Theorem 2.12), while the Itô integral
can be approximated by the same Riemann sums in probability (see, e.g., Protter (2004, Theo-
rem II.21)). Moreover, as established in Proposition 3.9, the identity in Equation (52) holds even
in a pathwise setting.

5.2 The log-optimal portfolio and equivalence of its asymptotic
growth rate with Cover’s universal and the best retrospectively chosen
portfolio

The results in this section will illustrate that in the presence of an appropriate probabilistic
structure, the asymptotic growth rate can be significantly improved for scenarios outside a null set.
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ALLAN et al. 747

For a given 𝑇 > 0, the log-optimal portfolio 𝜋 is the maximizer of the optimization problem

sup
𝜋∈Π

𝔼[log𝑉𝜋
𝑇 ]. (53)

We write

𝑉𝑇 ∶= 𝑉𝜋
𝑇

for the correspondingwealth process. As shown inCuchiero et al. (2019, Section 4.2.3), if𝜇 satisfies
the dynamics in Equation (50), then 𝜋 = (𝜋1, … , 𝜋𝑑) can be expressed as

𝜋𝑖𝑡 = 𝜇𝑖𝑡

(
𝜆𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝜆

𝑗(𝜇𝑡)

)
, 𝑡 ∈ [0,∞), (54)

and, due to Equation (52), the expected value of the log-optimal portfolio satisfies

𝔼[log𝑉𝑇] = sup
𝜋∈Π

𝔼[log𝑉𝜋
𝑇 ] =

1

2
𝔼

[
∫

𝑇

0

𝜆⊤(𝜇𝑠)𝑐(𝜇𝑠)𝜆(𝜇𝑠) d𝑠

]
. (55)

We suppose that the log-optimal portfolio has finite maximal expected utility and require thus
additionally to Equation (51) that

𝔼

[
∫

𝑇

0

𝜆⊤(𝜇𝑠)𝑐(𝜇𝑠)𝜆(𝜇𝑠) d𝑠

]
< ∞.

From the expression in Equation (54), we see immediately that the log-optimal portfolio𝜋 belongs
to the class of functionally controlled portfolios, as defined in Example 4.4, whenever 𝜆 is suf-
ficiently smooth. In general, however, it does not belong to the smaller class of functionally
generated portfolios, as we will see in Section 5.3.
In Equation (53), the supremum is taken over all predictable strategies inΠ. However, since the

optimizer is actually of the form in Equation (54), we can also take the supremum in Equation (53)
over a smaller set. Indeed, it is sufficient to consider (functionally controlled) portfolios of the form

(
𝜋𝐹𝑡

)𝑖
= 𝜇𝑖𝑡

(
𝐹𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝐹

𝑗(𝜇𝑡)

)
, (56)

for functions 𝐹 in the space 𝐿2(Δ𝑑+, 𝜌;ℝ𝑑).
Clearly, any portfolio 𝜋𝐹 of the form in Equation (56) can itself be considered as a function

𝜋𝐹 ∈ 𝐿2(Δ𝑑+, 𝜌;ℝ
𝑑), which maps 𝑥 ↦ 𝜋𝐹(𝑥), where

[𝜋𝐹(𝑥)]𝑖 = 𝑥𝑖

(
𝐹𝑖(𝑥) + 1 −

𝑑∑
𝑗=1

𝑥𝑗𝐹𝑗(𝑥)

)
, (57)

with the corresponding portfolio then being given by 𝑡 ↦ 𝜋𝐹(𝜇𝑡).
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748 ALLAN et al.

In the current probabilistic setting, we establish the following equivalence of the asymptotic
growth rates of the log-optimal, best retrospectively chosen and the universal portfolio based
on functionally controlled portfolios of the form in Equation (56), which can be viewed as a
generalization of Cuchiero et al. (2019, Theorem 4.12) for nonfunctionally generated portfolios.

Theorem 5.4. Let 𝜇 be a market weights process with the dynamics in Equation (50).

(i) Suppose that 𝜇 and 𝜆 satisfy Assumption 5.2, and that 𝑐 ∈ 𝐶(Δ
𝑑

+; 𝕊
𝑑
+). Let 𝑚 be a probability

measure on𝐿2(Δ𝑑+, 𝜌;ℝ𝑑) such that 𝜆 ∈ supp(𝑚). Define the universal portfolio𝜋𝜈 analogously
to Equation (43) but with 𝜈 being the pushforward measure of𝑚 under the mapping 𝐹 ↦ 𝜋𝐹

with 𝜋𝐹 as in Equation (57), compare Cuchiero et al. (2019, Section 4.2.2). Suppose that there
exists an integrable random variable𝑤 such that, for each𝑇 > 0, the growth rate of the universal
portfolio satisfies

1

𝑇
log𝑉𝜋𝜈

𝑇 ≥ −𝑤. (58)

We then have that

lim inf
𝑇→∞

1

𝑇
log𝑉𝜋𝜈

𝑇 = lim
𝑇→∞

1

𝑇
log𝑉𝑇 = �̂�, ℙ-a.s., (59)

where �̂� is given by

�̂� ∶=
1

2 ∫
Δ𝑑+

𝜆⊤(𝑥)𝑐(𝑥)𝜆(𝑥) 𝜌(d𝑥).

(ii) Suppose that

𝜆 ∈ 𝐶3
𝑏

(
Δ
𝑑

+;ℝ
𝑑

)
, and

√
𝑐 ∈ 𝐶3

𝑏

(
Δ
𝑑

+; 𝕊
𝑑
+

)
. (60)

With the same notation as in Section 4.3, let 𝑚 be a probability measure on 𝐶2+𝛼,𝐾 with full
support, and let 𝜈 = Φ∗𝑚 be the pushforward measure on 2+𝛼,𝐾 of𝑚 under the map Φ given
in Lemma 4.10. Let 𝜋𝜈 be the universal portfolio as defined in Equation (43), and let 𝑉∗,𝐾,𝛼 be
the wealth process of the best retrospectively chosen portfolio, as in Equation (44). We then have
that

lim
𝑇→∞

1

𝑇

(
log𝑉∗,𝐾,𝛼

𝑇 − log𝑉𝜋𝜈

𝑇

)
= 0, ℙ-a.s. (61)

(iii) Suppose that 𝜇, 𝜆, and 𝑐 satisfy both Assumption 5.2 and Equation (60), and that 𝐾 > 0 is suf-
ficiently large to ensure that 𝜆 ∈ 𝐶2+𝛼,𝐾 . Let𝑚, 𝜈, 𝜋𝜈 , and 𝑉∗,𝐾,𝛼 be as in part (ii) above. Then,

lim inf
𝑇→∞

1

𝑇
log𝑉𝜋𝜈

𝑇 = lim inf
𝑇→∞

1

𝑇
log𝑉∗,𝐾,𝛼

𝑇 = lim
𝑇→∞

1

𝑇
log𝑉𝑇 = �̂�, ℙ-a.s. (62)
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ALLAN et al. 749

Remark 5.5. Note that the assumption of ergodicity inAssumption 5.2 is only needed for assertions
(i) and (iii). The equivalence of the asymptotic growth rates of the best retrospectively chosen and
Cover’s universal portfolio, as established in part (ii), holds for all Brownian-driven SDEs with
sufficiently smooth coefficients.

As preparation for the proof of Theorem 5.4, we need the following technical lemma, which is
an adaptation of Hubalek et al. (2002, Lemma 3.1).

Lemma 5.6. Let (𝑓𝑛)𝑛∈ℕ be a sequence of non-negative measurable functions on some topological
space , such that the map 𝑎 ↦ lim inf𝑛→∞ 𝑓𝑛(𝑎) is continuous at some point 𝑎 ∈ . Let 𝜈 be a
probability measure on with 𝑎 ∈ supp(𝜈). Then,

lim inf
𝑛→∞

𝑓𝑛(𝑎) ≤ lim inf
𝑛→∞

(
∫ 𝑓𝑛𝑛(𝑎) 𝜈(d𝑎)

) 1

𝑛

.

Proof. Let 𝑔 ≥ 0 be bounded measurable function such that ∫ 𝑔(𝑎) 𝜈(d𝑎) = 1. By Fatou’s lemma
and Hölder’s inequality,

∫ lim inf
𝑛→∞

𝑓𝑛(𝑎)𝑔(𝑎) 𝜈(d𝑎) ≤ lim inf
𝑛→∞ ∫ 𝑓𝑛(𝑎)𝑔(𝑎) 𝜈(d𝑎)

≤ lim inf
𝑛→∞

(
∫ 𝑓𝑛𝑛(𝑎) 𝜈(d𝑎)

) 1

𝑛
(
∫ 𝑔

𝑛

𝑛−1 (𝑎) 𝜈(d𝑎)

) 𝑛−1

𝑛

= lim inf
𝑛→∞

(
∫ 𝑓𝑛𝑛(𝑎) 𝜈(d𝑎)

) 1

𝑛

,

where the last equality follows from the fact that lim𝑛→∞ ∫ 𝑔
𝑛

𝑛−1 𝜈(d𝑎) = ∫ 𝑔(𝑎) 𝜈(d𝑎) by
the dominated convergence theorem. Since 𝑔 was arbitrary, 𝑎 lies in the support of 𝜈, and
lim inf𝑛→∞ 𝑓𝑛 is continuous at 𝑎, we deduce the result. □

Proof of Theorem 5.4. Part (i): By the conditions on 𝜆 and 𝑐, and the fact that we consider portfolios
of the form in Equation (56) with𝐹 ∈ 𝐿2(Δ𝑑+, 𝜌;ℝ

𝑑), we see that the assumptions of Cuchiero et al.
(2019, Theorem 4.9) are satisfied. Thus, for each 𝐹 ∈ 𝐿2(Δ𝑑+, 𝜌;ℝ

𝑑), we have that

lim
𝑇→∞

1

𝑇
log𝑉𝜋𝐹

𝑇 = 𝐿𝜋
𝐹
, ℙ-a.s., (63)

where

𝐿𝜋
𝐹
∶= ∫

Δ𝑑+

(
𝜋𝐹(𝑥)

𝑥

)⊤
𝑐(𝑥)𝜆(𝑥) 𝜌(d𝑥) −

1

2 ∫
Δ𝑑+

(
𝜋𝐹(𝑥)

𝑥

)⊤
𝑐(𝑥)

(
𝜋𝐹(𝑥)

𝑥

)
𝜌(d𝑥).

Taking the supremum over 𝐹 ∈ 𝐿2(Δ𝑑+, 𝜌;ℝ
𝑑), we find that

sup
𝐹∈𝐿2(Δ𝑑+,𝜌;ℝ

𝑑)

𝐿𝜋
𝐹
= 𝐿𝜋

𝜆
= �̂�.
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750 ALLAN et al.

Recalling Equations (54) and (63), it follows that, ℙ-a.s.,

lim
𝑇→∞

1

𝑇
log𝑉𝑇 = lim

𝑇→∞

1

𝑇
log𝑉𝜋𝜆

𝑇 = 𝐿𝜋
𝜆
= �̂�. (64)

Note that the map

𝐹 ↦ exp(𝐿𝜋
𝐹
) = lim

𝑇→∞

(
𝑉𝜋𝐹

𝑇

) 1

𝑇

is continuous with respect to the 𝐿2(Δ𝑑+, 𝜌;ℝ𝑑)-norm. Thus, applying Lemma 5.6 with 𝑓𝑇(𝐹) =

(𝑉𝜋𝐹

𝑇 )
1

𝑇 , and recalling Lemma 4.8, we deduce that

lim
𝑇→∞

1

𝑇
log𝑉𝜋𝜆

𝑇 ≤ lim inf
𝑇→∞

1

𝑇
log𝑉𝜋𝜈

𝑇 , ℙ-a.s. (65)

On the other hand, by the definition of the log-optimal portfolio,

𝔼
[
log𝑉𝜋𝜈

𝑇

] ≤ 𝔼
[
log𝑉𝑇

]
. (66)

By Equation (55) and the ergodicity of the process 𝜇, we have that

lim
𝑇→∞

1

𝑇
𝔼
[
log𝑉𝑇

]
= �̂�. (67)

By Fatou’s lemma (which we may apply by the condition in Equation (58)), Equations (66), (67),
(64), and (65), we then have that, ℙ-a.s.,

𝔼

[
lim inf
𝑇→∞

1

𝑇
log𝑉𝜋𝜈

𝑇

]
≤ lim inf

𝑇→∞

1

𝑇
𝔼[log𝑉𝜋𝜈

𝑇 ] ≤ lim inf
𝑇→∞

1

𝑇
𝔼[log𝑉𝑇]

= �̂� = lim
𝑇→∞

1

𝑇
log𝑉𝑇 ≤ lim inf

𝑇→∞

1

𝑇
log𝑉𝜋𝜈

𝑇 ,

from which the result (59) follows.
Part (ii): The process 𝜇 is assumed to satisfy the Itô SDE (50), but since the vector fields 𝜆(⋅)𝑐(⋅)

and
√
𝑐(⋅) are in 𝐶3 with bounded derivatives, 𝜇 also coincides almost surely with the unique

solution of the rough differential equation

𝜇𝑡 = 𝜇0 + ∫
𝑡

0

𝑐(𝜇𝑠)𝜆(𝜇𝑠) d𝑠 + ∫
𝑡

0

√
𝑐(𝜇𝑠) d𝐖𝑠,

driven by the standard Itô-rough path lift𝐖 = (𝑊,𝕎) of𝑊 (see, e.g., Friz and Hairer (2020)). By
standard rough path estimates (see, e.g., Friz and Hairer (2020, (11.10))), for each 𝑘 ∈ ℕ, we may
deduce an estimate of the form

‖𝜇‖𝑝,[𝑘,𝑘+1] ≲ 1 +
(‖𝐖‖𝑝,[𝑘,𝑘+1] ∨ ‖𝐖‖𝑝

𝑝,[𝑘,𝑘+1]

)
,
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ALLAN et al. 751

where ‖𝐖‖𝑝,[𝑘,𝑘+1] ∶= ‖𝑊‖𝑝,[𝑘,𝑘+1] + ‖𝕎‖ 1

2
𝑝

2
,[𝑘,𝑘+1]

, and the implied multiplicative constant is

independent of 𝑘 and 𝑇. Using the bound in Equation (6), a similar estimate can be inferred for
the rough path lift𝐴𝜇 of 𝜇, defined as in Equation (A.4). Writing tr(⋅) for the trace operator, it also
follows from Lemma B.1 and the boundedness of 𝑐 that

𝑑∑
𝑖=1

[𝜇]𝑖𝑖
𝑘,𝑘+1

= tr

(
∫

𝑘+1

𝑘

𝑐(𝜇𝑡) d[𝐖]𝑡

)
= ∫

𝑘+1

𝑘

tr(𝑐(𝜇𝑡)) d𝑡 ≲ 1,

where we used that [𝐖]𝑡 = 𝑡𝐼𝑑 as shown, for example, in Friz and Hairer (2020, Example 5.9).
We, therefore, deduce the existence of a polynomial 𝑔 such that(

1 + ‖𝜇‖2
𝑝,[𝑘,𝑘+1]

)
𝜉𝑘,𝑘+1 ≤ 𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]) (68)

for every 𝑘 ∈ ℕ, with 𝜉𝑘,𝑘+1 defined as in Theorem 4.12.
Since Brownian motion is a Lévy process, the random variables 𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]), 𝑘 ∈ ℕ, are

independent and identically distributed. Moreover, by the enhanced Burkholder–Davis–Gundy
inequality3 (see Friz and Victoir (2010, Theorem 14.12)) applied to each of the monomials com-
prising 𝑔, we have that 𝔼[𝑔(‖𝐖‖𝑝,[0,1])] < ∞. Thus, by the strong law of large numbers, we have
that, almost surely,

1

𝑇

⌈𝑇⌉−1∑
𝑘=0

𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]) ⟶ 𝔼[𝑔(‖𝐖‖𝑝,[0,1])] as 𝑇 ⟶ ∞. (69)

From Equations (68), (69), and the result of part (ii) of Theorem 4.12, we then deduce that, almost
surely,

lim sup
𝑇→∞

1

𝑇

(
log𝑉∗,𝐾,𝛼

𝑇 − log𝑉𝜋𝜈

𝑇

)

≤ lim sup
𝑇→∞

∑⌈𝑇⌉−1
𝑘=0 𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1])

𝑇
⋅

log𝑉∗,𝐾,𝛼
𝑇 − log𝑉𝜋𝜈

𝑇∑⌈𝑇⌉−1
𝑘=0

(1 + ‖𝜇‖2
𝑝,[𝑘,𝑘+1]

)𝜉𝑘,𝑘+1

= 0,

which immediately implies Equation (61).
Part (iii): We have from part (ii) that Equation (61) holds. It is straightforward to check that

the result of part (i) also holds when we restrict to portfolios generated by functions 𝐹 ∈ 𝐶2+𝛼,𝐾 .
Thus, it suffices to verify the technical condition in Equation (58), since then part (i) implies that
Equation (59) holds, which, combined with Equation (61), gives Equation (62).
To this end, we first note that, similarly to the proof of part (ii) above, wemay deduce that there

exists a polynomial 𝑔 such that, for any 𝐹 ∈ 𝐶2+𝛼,𝐾 ,

|||log𝑉𝜋𝐹

𝑇
||| ≤ ‖𝐹‖𝐶2 ⌈𝑇⌉−1∑

𝑘=0

𝑔
(‖𝐖‖𝑝,[𝑘,𝑘+1])
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752 ALLAN et al.

for all 𝑇 > 0. In particular, we have that

log𝑉𝜋𝐹

𝑇 ≥ −𝐾

⌈𝑇⌉−1∑
𝑘=0

𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]).
Since, by Lemma 4.8, 𝑉𝜋𝜈

𝑇 = ∫
𝐶2+𝛼,𝐾

𝑉𝜋𝐹

𝑇 d𝑚(𝐹), and using Jensen’s inequality, we then have

1

𝑇
log𝑉𝜋𝜈

𝑇 ≥ 1

𝑇 ∫
𝐶2+𝛼,𝐾

log𝑉𝜋𝐹

𝑇 d𝑚(𝐹) ≥ −
𝐾

𝑇

⌈𝑇⌉−1∑
𝑘=0

𝑔
(‖𝐖‖𝑝,[𝑘,𝑘+1]) ,

and, again by the strong law of large numbers, Equation (69) holds almost surely. It is also
straightforward to verify that

(
1

𝑇

⌈𝑇⌉−1∑
𝑘=0

𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]))2

≤ ⌈𝑇⌉
𝑇2

⌈𝑇⌉−1∑
𝑘=0

𝑔
(‖𝐖‖𝑝,[𝑘,𝑘+1])2 ,

so that, for all 𝑇 > 1,

𝔼
⎡⎢⎢⎣
(
1

𝑇

⌈𝑇⌉−1∑
𝑘=0

𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1])
)2⎤⎥⎥⎦ ≤

⌈𝑇⌉2
𝑇2

𝔼[𝑔(‖𝐖‖𝑝,[0,1])2] ≤ 4𝔼[𝑔(‖𝐖‖𝑝,[0,1])2] < ∞.

We deduce that the family 1

𝑇

∑⌈𝑇⌉−1
𝑘=0

𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]) for 𝑇 > 1 is bounded in 𝐿2(Ω,ℙ), and there-

fore uniformly integrable. Thus, 1

𝑇

∑⌈𝑇⌉−1
𝑘=0

𝑔(‖𝐖‖𝑝,[𝑘,𝑘+1]) → 𝔼[𝑔(‖𝐖‖𝑝,[0,1])] as 𝑇 → ∞ both
almost surely and in 𝐿1(Ω,ℙ). It follows that

1

𝑇
log𝑉𝜋𝜈

𝑇 ≥ −𝑤𝑇,

for some random variables 𝑤𝑇 , 𝑇 > 0, which converge as 𝑇 → ∞ to an integrable random vari-
able 𝑤 almost surely and in 𝐿1(Ω,ℙ). Although weaker than the condition in Equation (58), it is
straightforward to verify that this condition suffices, as it is sufficient for the application of Fatou’s
lemma in the proof of part (i). □

5.3 Comparison of functionally controlled and functionally
generated portfolios

Recall that, as we observed from the expression in Equation (54), the log-optimal portfolio 𝜋
belongs to the class of functionally controlled portfolios, provided that the drift characteristic 𝜆—
as introduced in the model (50)—is sufficiently smooth. In fact, the log-optimal portfolio 𝜋 is
known to be even a (classical) functionally generated portfolio if 𝜆 can be written in the gradient
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ALLAN et al. 753

form

𝜆(𝑥) = ∇ log𝐺(𝑥) =
∇𝐺(𝑥)

𝐺(𝑥)
, 𝑥 ∈ Δ𝑑+,

for some differentiable function 𝐺 ∶ Δ𝑑+ → ℝ+; see Cuchiero et al. (2019, Proposition 4.7).
Considering again the stochastic model in Equation (50), we shall show in this section that

the log-optimal portfolio may genuinely not be a functionally generated portfolio, but still a func-
tionally controlled one, in cases when 𝜆 is not of the above gradient type. We will then illustrate
numerically that the difference between the true log-optimal portfolio and an approximate “best”
portfolio based on a class of gradient type trading strategies can be substantial. This demonstrates
that such extensions beyond classical functionally generated portfolios are crucial.
Let us consider a so-called volatility stabilized market model of the form in Equation (50),

where, for some 𝛾 > 0, the diffusion matrix is given by

𝑐𝑖𝑗(𝜇) ∶= 𝛾𝜇𝑖(𝛿𝑖𝑗 − 𝜇𝑗), 𝑖, 𝑗 = 1, … , 𝑑,

where 𝛿𝑖𝑗 is the Kronecker delta, and the drift is given by

𝑐(𝜇)𝜆(𝜇) = 𝐵𝜇,

where 𝐵 ∈ ℝ𝑑×𝑑 is defined by 𝐵𝑖𝑗 ∶= 1+𝛼

2
(1 − 𝛿𝑖𝑗𝑑) for some 𝛼 > 𝛾 − 1. In the context of SPT,

these models were first considered in Fernholz and Karatzas (2005). The condition 𝛼 > 𝛾 − 1

assures nonattainment of the boundary, as proved in Cuchiero (2019, Proposition 5.7), that is, the
process 𝜇 takes values in Δ𝑑+.
We can solve this linear system for 𝜆, and find as general solution

𝜆𝑖(𝜇) =
1 + 𝛼

2𝛾𝜇𝑖
+ 𝐶, 𝑖 = 1, … , 𝑑,

for an arbitrary 𝐶 ∈ ℝ. Note that this is well-defined as 𝜇 always stays within the interior of the
unit simplex Δ𝑑+ due to the condition 𝛼 > 𝛾 − 1. We now define the function 𝑓𝛼 ∶ ℝ𝑑

+ → ℝ by

𝑓𝛼(𝑥) ∶=
1 + 𝛼

2𝛾

𝑑∑
𝑖=1

log(𝑥𝑖) + 𝐶

𝑑∑
𝑖=1

𝑥𝑖. (70)

Then 𝜕𝑖𝑓𝛼(𝑥) = (1 + 𝛼)∕(2𝛾𝑥𝑖) + 𝐶 for 𝑖 = 1, … , 𝑑, so that

𝜆(𝑥) = ∇𝑓𝛼(𝑥) = ∇ log𝐺(𝑥), 𝑥 ∈ Δ𝑑+,

where 𝐺(𝑥) ∶= exp(𝑓𝛼(𝑥)). Hence, in this volatility stabilized model, the log-optimal portfolio 𝜋
can be realized as a functionally generated portfolio. It follows from Equation (55) that

sup
𝜋∈Π

𝔼
[
log𝑉𝜋

𝑇

]
=
(1 + 𝛼)2

8𝛾

(
𝔼

[
∫

𝑇

0

𝑑∑
𝑖=1

1

𝜇𝑖𝑠
d𝑠

]
− 𝑑2𝑇

)
.
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754 ALLAN et al.

A generalization of this model is a polynomial model with the same diffusion matrix (for some
fixed 𝛾), but a more general drift matrix 𝐵 just satisfying 𝐵𝑗𝑗 = −

∑
𝑖≠𝑗 𝐵𝑖𝑗 and 𝐵𝑖𝑗 ≥ 0 for 𝑖 ≠ 𝑗

(see Cuchiero (2019, Definition 4.9)). In this case, 𝜆 is in general no longer of gradient type. To see
this, let 𝑑 = 3, and

𝐵 =
⎛⎜⎜⎝
−𝑝 𝑞 𝑟

𝑝 −𝑞 0

0 0 −𝑟

⎞⎟⎟⎠ (71)

for 𝑝, 𝑞, 𝑟 > 0 such that 2min(𝑝, 𝑞, 𝑟) − 𝛾 ≥ 0, where the latter condition is imposed to guarantee
nonattainment of the boundary (see Cuchiero (2019, Propostion 5.7)). We refer also to Cuchiero
(2019, Theorem 5.1) for the relation to (NUPBR) and relative arbitrages.
The solution 𝜆 of 𝑐(𝑥)𝜆(𝑥) = 𝐵𝑥 is now found to be

𝜆1(𝑥) =
1

𝛾

(
𝑟 − 𝑝 + 𝑞

𝑥2

𝑥1
+ 𝑟

𝑥3

𝑥1

)
+ 𝐶,

𝜆2(𝑥) =
1

𝛾

(
𝑟 − 𝑞 + 𝑝

𝑥1

𝑥2

)
+ 𝐶,

𝜆3(𝑥) = 𝐶,

which cannot be realized as a gradient, for instance since 𝜕𝜆3

𝜕𝑥1
≠ 𝜕𝜆1

𝜕𝑥3
.

Let us now compare the log-optimal portfolio

(𝜋𝑡)
𝑖 = 𝜇𝑖𝑡

(
𝜆𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝜆

𝑗(𝜇𝑡)

)

with the functionally generated portfolio

(𝜋𝛼𝑡 ) = 𝜇𝑖𝑡

(
𝜕𝑖𝑓

𝛼(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝜕𝑗𝑓

𝛼(𝜇𝑡)

)
,

with 𝑓𝛼 as defined in Equation (70). We seek the value of 𝛼, which optimizes

sup
𝛼
𝔼[log𝑉𝜋𝛼

𝑇 ].

By Equations (50) and (52), we have that

𝔼[log𝑉𝜋𝛼

𝑇 ] = 𝔼

[
∫

𝑇

0

∇⊤𝑓𝛼(𝜇𝑠)𝐵𝜇𝑠 d𝑠 −
1

2 ∫
𝑇

0

∇⊤𝑓𝛼(𝜇𝑠)𝑐(𝜇𝑠)∇𝑓
𝛼(𝜇𝑠) d𝑠

]

=
1 + 𝛼

2𝛾
𝔼

[
∫

𝑇

0

(
1

𝜇1𝑠
, … ,

1

𝜇𝑑𝑠

)
𝐵𝜇𝑠 d𝑠

]
−
(1 + 𝛼)2

8𝛾

(
𝔼

[
∫

𝑇

0

𝑑∑
𝑖=1

1

𝜇𝑖𝑠
d𝑠

]
− 𝑑2𝑇

)
.
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ALLAN et al. 755

Since this expression is concave in 𝛼, we find the optimizer 𝛼∗ to be given by

𝛼∗ =

2𝔼

[
∫ 𝑇

0

(
1

𝜇1𝑠
, … ,

1

𝜇𝑑𝑠

)
𝐵𝜇𝑠 d𝑠

]
𝔼

[
∫ 𝑇

0

∑𝑑

𝑖=1

1

𝜇𝑖𝑠
d𝑠

]
− 𝑑2𝑇

− 1.

Note that if 𝐵 is the drift matrix of a volatility stabilizedmarketmodel with parameter 𝛼, the right-
hand side yields exactly 𝛼, and we find the correct log-optimal portfolio. However, when we take
𝜋𝛼

∗ as an approximate portfolio, for instance in the case of 𝐵 being of the form (71), this leads to
Figure 1. There, with the parameters 𝑝 = 0.15, 𝑞 = 0.3, 𝑟 = 0.2, the functions 𝑡 ↦ 𝔼[log𝑉𝑡] (blue)
and 𝑡 ↦ 𝔼[log𝑉𝜋𝛼

∗

𝑡 ] (orange) are plotted, where the expected value is computed via aMonte Carlo
simulation. This shows a significantly better performance of the log-optimal portfolio and, thus,
illustrates a clear benefit from going beyond functionally generated portfolios in SPT.
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ENDNOTES
1Here and throughout, we adopt the convention that 0

0
∶= 0.

2Note that Φ plays the role of the embedding 𝜄 in the previous section.
3Strictly speaking, the enhanced BDG inequality was proved for geometric rough paths constructed via
Stratonovich integration. However, since [𝐖]𝑡 = 𝑡𝐼𝑑 , it is easy to see that it also holds for the Itô lift𝐖.
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APPENDIX A: ON THE ROUGH PATH FOUNDATION
In this appendix, we collect some results regarding rough integration, including its associativity
and a Fubini type theorem. While such elementary results are well-known for stochastic Itô inte-
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gration and other classical theories of integration, the presented results seem to be novel in the
context of rough path theory and are essential for themodel-free portfolio theory developed in the
previous sections.
Throughout this section, we will consider a general 𝑝-rough path 𝐗 = (𝑋,𝕏)—that is, we will

not impose Property (RIE)—and, as usual, we will assume that 𝑝, 𝑞, and 𝑟 satisfy Assumption 3.2,
so that in particular 1 < 𝑝∕2 ≤ 𝑟 < 𝑝 ≤ 𝑞 < ∞.

A.1 Products of controlled paths
As a first step towards the associativity of rough integration, we show that the product of two
controlled paths is again a controlled path; see Friz and Hairer (2020, Corollary 7.4) for a similar
result in a Hölder-rough path setting.
Lemma A.1. Let 𝑋 ∈ 𝐶𝑝-var([0, 𝑇]; ℝ𝑑). The product operatorΠ, given by

𝑞
𝑋([0, 𝑇]; ℝ

𝑑) × 𝑞
𝑋([0, 𝑇]; ℝ

𝑑) → 𝑞
𝑋([0, 𝑇]; ℝ

𝑑),

((𝐹, 𝐹′), (𝐺, 𝐺′)) ↦ (𝐹𝐺, (𝐹𝐺)′),

where (𝐹𝐺)𝑖 ∶= 𝐹𝑖𝐺𝑖 and ((𝐹𝐺)′)𝑖𝑗 ∶= (𝐹′)𝑖𝑗𝐺𝑖 + 𝐹𝑖(𝐺′)𝑖𝑗 for every 1 ≤ 𝑖, 𝑗 ≤ 𝑑, is a continuous
bilinear map, and comes with the estimate

‖(𝐹, 𝐹′)(𝐺, 𝐺′)‖𝑞
𝑋
≤ 𝐶(1 + ‖𝑋‖𝑝)2‖𝐹, 𝐹′‖𝑞

𝑋
‖𝐺,𝐺′‖𝑞

𝑋
, (A.1)

where the constant𝐶 depends on 𝑝, 𝑞, 𝑟, and the dimension 𝑑. We callΠ((𝐹, 𝐹′), (𝐺, 𝐺′)) the product
of (𝐹, 𝐹′) and (𝐺, 𝐺′), which we sometimes denote simply by 𝐹𝐺.

Proof. It is clear from its definition thatΠ is a bilinear map. Suppose (𝐹, 𝐹′), (𝐺, 𝐺′) ∈ 𝑞
𝑋 . For all

1 ≤ 𝑖, 𝑗 ≤ 𝑑 and (𝑠, 𝑡) ∈ Δ[0,𝑇], we have

‖(𝐹𝐺)′‖𝑞 ≲ ‖𝐹′‖𝑞‖𝐺‖∞ + ‖𝐹′‖∞‖𝐺‖𝑞 + ‖𝐹‖𝑞‖𝐺′‖∞ + ‖𝐹‖∞‖𝐺′‖𝑞
≲ (‖𝐹‖∞ + ‖𝐹‖𝑞 + ‖𝐹′‖∞ + ‖𝐹′‖𝑞)(‖𝐺‖∞ + ‖𝐺‖𝑞 + ‖𝐺′‖∞ + ‖𝐺′‖𝑞) (A.2)

≲ (1 + ‖𝑋‖𝑝)2‖𝐹, 𝐹′‖𝑞
𝑋
‖𝐺,𝐺′‖𝑞

𝑋
.

To identify the remainder 𝑅𝐹𝐺 , we compute

(𝐹𝐺)𝑖𝑠,𝑡 = 𝐹𝑖𝑠,𝑡𝐺
𝑖
𝑠 + 𝐹𝑖𝑠𝐺

𝑖
𝑠,𝑡 + 𝐹𝑖𝑠,𝑡𝐺

𝑖
𝑠,𝑡

=

(
𝑑∑
𝑗=1

(𝐹′)
𝑖𝑗
𝑠 𝑋

𝑗
𝑠,𝑡 + (𝑅𝐹)𝑖𝑠,𝑡

)
𝐺𝑖
𝑠 + 𝐹𝑖𝑠

(
𝑑∑
𝑗=1

(𝐺′)
𝑖𝑗
𝑠 𝑋

𝑗
𝑠,𝑡 + (𝑅𝐺)𝑖𝑠,𝑡

)
+ 𝐹𝑖𝑠,𝑡𝐺

𝑖
𝑠,𝑡

=

𝑑∑
𝑗=1

(
(𝐹′)

𝑖𝑗
𝑠 𝐺

𝑖
𝑠 + 𝐹𝑖𝑠(𝐺

′)
𝑖𝑗
𝑠

)
𝑋
𝑗
𝑠,𝑡 + (𝑅𝐹)𝑖𝑠,𝑡𝐺

𝑖
𝑠 + 𝐹𝑖𝑠(𝑅

𝐺)𝑖𝑠,𝑡 + 𝐹𝑖𝑠,𝑡𝐺
𝑖
𝑠,𝑡

=

𝑑∑
𝑗=1

((𝐹𝐺)′)
𝑖𝑗
𝑠 𝑋

𝑗
𝑠,𝑡 + (𝑅𝐹𝐺)𝑖𝑠,𝑡,
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ALLAN et al. 759

where (𝑅𝐹𝐺)𝑖𝑠,𝑡 ∶= (𝑅𝐹)𝑖𝑠,𝑡𝐺
𝑖
𝑠 + 𝐹𝑖𝑠(𝑅

𝐺)𝑖𝑠,𝑡 + 𝐹𝑖𝑠,𝑡𝐺
𝑖
𝑠,𝑡. Using the fact that 2𝑟 ≥ 𝑝, we then estimate

‖𝑅𝐹𝐺‖𝑟 ≲ ‖𝑅𝐹‖𝑟‖𝐺‖∞ + ‖𝐹‖∞‖𝑅𝐺‖𝑟 + ‖𝐹‖2𝑟‖𝐺‖2𝑟
≲ (1 + ‖𝑋‖𝑝)(‖𝑅𝐹‖𝑟‖𝐺,𝐺′‖𝑞

𝑋
+ ‖𝐹, 𝐹′‖𝑞

𝑋
‖𝑅𝐺‖𝑟) + ‖𝐹‖𝑝‖𝐺‖𝑝 (A.3)

≲ (1 + ‖𝑋‖𝑝)2‖𝐹, 𝐹′‖𝑞
𝑋
‖𝐺,𝐺′‖𝑞

𝑋
.

The estimate (A.1) then follows from Equations (A.2) and (A.3). □

A.2 Associativity of rough integration
The following proposition provides an associativity result for rough integration.
Proposition A.2. Let 𝐗 = (𝑋,𝕏) be a 𝑝-rough path and let (𝑌, 𝑌′), (𝐹, 𝐹′), (𝐺, 𝐺′) ∈ 𝑞

𝑋 be
controlled paths. Then, the pair (𝑍, 𝑍′) ∶= (∫ ⋅

0
𝐹𝑢 d𝐺𝑢, 𝐹𝐺

′) ∈ 𝑞
𝑋 , and we have that

∫
⋅

0

𝑌𝑢 d𝑍𝑢 = ∫
⋅

0

𝑌𝑢𝐹𝑢 d𝐺𝑢,

where on the left-hand side, we have the integral of (𝑌, 𝑌′) against (𝑍, 𝑍′), and on the right-hand
side, we have the integral of (𝑌𝐹, (𝑌𝐹)′) against (𝐺, 𝐺′), each defined in the sense of Lemma 2.6.

Proof. The fact that (𝑍, 𝑍′) ∈ 𝑝
𝑋 follows from the estimate in Equation (6) combined with the

relation 𝐺𝑠,𝑡 = 𝐺′
𝑠𝑋𝑠,𝑡 + 𝑅𝐺𝑠,𝑡. It also follows from Equation (6) that the function 𝐻∫ 𝐹 d𝐺 , defined

by

𝑍𝑠,𝑡 = ∫
𝑡

𝑠

𝐹𝑢 d𝐺𝑢 = 𝐹𝑠𝐺𝑠,𝑡 + 𝐹′𝑠𝐺
′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝐹 d𝐺

𝑠,𝑡

for (𝑠, 𝑡) ∈ Δ𝑇 , has finite �̂�-variation for some �̂� < 1, and we can thus conclude that
lim||→0

∑
[𝑠,𝑡]∈ |𝐻∫ 𝐹 d𝐺

𝑠,𝑡 | = 0. We similarly obtain

∫
𝑡

𝑠

𝑌𝑢 d𝑍𝑢 = 𝑌𝑠𝑍𝑠,𝑡 + 𝑌′
𝑠𝑍

′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝑌 d𝑍

𝑠,𝑡 ,

∫
𝑡

𝑠

𝑌𝑢𝐹𝑢 d𝐺𝑢 = 𝑌𝑠𝐹𝑠𝐺𝑠,𝑡 + (𝑌𝐹)′𝑠𝐺
′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝑌𝐹 d𝐺

𝑠,𝑡 ,

with

lim||→0

∑
[𝑠,𝑡]∈

|𝐻∫ 𝑌 d𝑍

𝑠,𝑡 | = lim||→0

∑
[𝑠,𝑡]∈

|𝐻∫ 𝑌𝐹 d𝐺

𝑠,𝑡 | = 0.

Noting that (𝑌𝐹)′ = 𝑌𝐹′ + 𝑌′𝐹, we then calculate

∫
𝑡

𝑠

𝑌𝑢 d𝑍𝑢 = 𝑌𝑠𝑍𝑠,𝑡 + 𝑌′
𝑠𝑍

′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝑌 d𝑍

𝑠,𝑡
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760 ALLAN et al.

= 𝑌𝑠

(
𝐹𝑠𝐺𝑠,𝑡 + 𝐹′𝑠𝐺

′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝐹 d𝐺

𝑠,𝑡

)
+ 𝑌′

𝑠𝐹𝑠𝐺
′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝑌 d𝑍

𝑠,𝑡

= 𝑌𝑠𝐹𝑠𝐺𝑠,𝑡 + (𝑌𝑠𝐹
′
𝑠 + 𝑌′

𝑠𝐹𝑠)𝐺
′
𝑠𝕏𝑠,𝑡 + 𝑌𝑠𝐻

∫ 𝐹 d𝐺

𝑠,𝑡 + 𝐻
∫ 𝑌 d𝑍

𝑠,𝑡

= ∫
𝑡

𝑠

𝑌𝑢𝐹𝑢 d𝐺𝑢 − 𝐻
∫ 𝑌𝐹 d𝐺

𝑠,𝑡 + 𝑌𝑠𝐻
∫ 𝐹 d𝐺

𝑠,𝑡 + 𝐻
∫ 𝑌 d𝑍

𝑠,𝑡 .

Taking lim||→0
∑

[𝑠,𝑡]∈ on both sides, we obtain ∫ 𝑇

0
𝑌𝑢 d𝑍𝑢 = ∫ 𝑇

0
𝑌𝑢𝐹𝑢 d𝐺𝑢. □

Remark A.3. Denoting the integration operator by ∙, the result of Proposition A.2 may be
expressed formally as𝑌 ∙ (𝐹 ∙ 𝐺) = (𝑌𝐹) ∙ 𝐺. We, therefore, refer to this result as the associativity
of rough integration.

A.3 The canonical rough path lift of a controlled path
Given a 𝑝-rough path 𝐗 = (𝑋,𝕏) and a controlled path (𝑍, 𝑍′) ∈ 𝑞

𝑋 , one can use Lemma 2.6 to
enhance 𝑍 in a canonical way to a 𝑝-rough path 𝐙 = (𝑍,ℤ), where ℤ is defined by

ℤ𝑠,𝑡 ∶= ∫
𝑡

𝑠

𝑍𝑢 d𝑍𝑢 − 𝑍𝑠𝑍𝑠,𝑡, for (𝑠, 𝑡) ∈ Δ[0,𝑇], (A.4)

with the integral defined as in Equation (5). Indeed, we observe the following.
Lemma A.4. Let 𝐗 = (𝑋,𝕏) be a 𝑝-rough path and (𝑍, 𝑍′) ∈ 𝑞

𝑋 be a controlled path. Then, 𝐙 =

(𝑍,ℤ), as defined in Equation (A.4), is a 𝑝-rough path. Moreover, if (𝑌, 𝑌′) ∈ 𝑞
𝑍 , then (𝑌, 𝑌

′𝑍′) ∈

𝑞
𝑋 and

∫
𝑇

0

𝑌𝑢 d𝐙𝑢 = ∫
𝑇

0

𝑌𝑢 d𝑍𝑢,

where on the left-hand side, we have the rough integral of (𝑌, 𝑌′) against 𝐙, and on the right-hand
side, we have the integral of (𝑌, 𝑌′𝑍′) against (𝑍, 𝑍′) as defined in Equation (5).

Proof. That 𝐙 = (𝑍,ℤ) is a 𝑝-rough path follows immediately from Lemma 2.6. That (𝑌, 𝑌′𝑍′) ∈

𝑞
𝑋 can be shown in a straightforward manner using the definition of controlled paths. Arguing

similarly as in the proof of Proposition A.2 and using the same notation, we calculate, for (𝑠, 𝑡) ∈
Δ[0,𝑇],

∫
𝑡

𝑠

𝑌𝑢 d𝐙𝑢 = 𝑌𝑠𝑍𝑠,𝑡 + 𝑌′
𝑠ℤ𝑠,𝑡 + 𝐻

∫ 𝑌 d𝐙

𝑠,𝑡

= 𝑌𝑠𝑍𝑠,𝑡 + 𝑌′
𝑠

(
𝑍′𝑠𝑍

′
𝑠𝕏𝑠,𝑡 + 𝐻

∫ 𝑍 d𝑍

𝑠,𝑡

)
+𝐻

∫ 𝑌 d𝐙

𝑠,𝑡

= ∫
𝑡

𝑠

𝑌𝑢 d𝑍𝑢 − 𝐻
∫ 𝑌 d𝑍

𝑠,𝑡 + 𝑌′
𝑠𝐻

∫ 𝑍 d𝑍

𝑠,𝑡 + 𝐻
∫ 𝑌 d𝐙

𝑠,𝑡 .

Taking lim||→0
∑

[𝑠,𝑡]∈ on both sides, we obtain ∫ 𝑇

0
𝑌𝑢 d𝐙𝑢 = ∫ 𝑇

0
𝑌𝑢 d𝑍𝑢. □
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ALLAN et al. 761

A.4 The exponential of a rough path
Based on the bracket of a rough path (recall Definition 2.9), one can introduce the rough
exponential analogously to the stochastic exponential of Itô calculus.
Lemma A.5. For a one-dimensional 𝑝-rough path 𝐗 = (𝑋,𝕏) (so that in particular 𝑋 is
real-valued) such that 𝑋0 = 0, we introduce the rough exponential by

𝑉𝑡 ∶= exp

(
𝑋𝑡 −

1

2
[𝐗]𝑡

)
, 𝑡 ∈ [0, 𝑇].

Then ,𝑉 is the unique controlled path in 𝑝
𝑋 satisfying the linear rough differential equation

𝑉𝑡 = 1 + ∫
𝑡

0

𝑉𝑢 d𝐗𝑢, 𝑡 ∈ [0, 𝑇], (A.5)

with Gubinelli derivative 𝑉′ = 𝑉.

Proof. Applying the Itô formula of Proposition 2.10 with 𝑌 = 𝑋 −
1

2
[𝐗], 𝑌′ = 1, and 𝑓 = exp,

we observe that the Young integrals cancel, so that 𝑉 does indeed satisfy Equation (A.5). The
uniqueness of solutions to Equation (A.5) follows from the stability of rough integration, provided
in this setting by Friz and Zhang (2018, Lemma 3.4). □

A.5 A Fubini-type theorem for rough integration
In this subsection, we provide a Fubini-type theorem for Bochner and rough integrals. A result of
this type is mentioned in a Hölder-rough path setting in Friz and Hairer (2020, Exercise 4.10).
Theorem A.6. Let 𝐗 = (𝑋,𝕏) be a 𝑝-rough path, let be a measurable subset of 𝑞

𝑋 , and let 𝜈 be
a probability measure on. If ∫ ‖𝐾,𝐾′‖𝑞

𝑋
d𝜈 < ∞, then

∫
𝑇

0
∫ 𝐾𝑢 d𝜈 d𝐗𝑢 = ∫ ∫

𝑇

0

𝐾𝑢 d𝐗𝑢 d𝜈.

Proof. Due to ∫ ‖𝐾,𝐾′‖𝑞
𝑋
d𝜈 < ∞, the controlled path ∫(𝐾, 𝐾′) d𝜈 ∈ 𝑞

𝑋 exists as a well-
defined Bochner integral. For 𝑠 < 𝑡, we have

∫ ∫
𝑡

𝑠

𝐾𝑢 d𝐗𝑢 d𝜈 − ∫ 𝐾𝑠 d𝜈 𝑋𝑠,𝑡 − ∫ 𝐾′
𝑠 d𝜈 𝕏𝑠,𝑡 = ∫

(
∫

𝑡

𝑠

𝐾𝑢 d𝐗𝑢 − 𝐾𝑠𝑋𝑠,𝑡 − 𝐾′
𝑠𝕏𝑠,𝑡

)
d𝜈

and, by the estimate in Equation (4),

||||∫
𝑡

𝑠

𝐾𝑢 d𝐗𝑢 − 𝐾𝑠𝑋𝑠,𝑡 − 𝐾′
𝑠𝕏𝑠,𝑡

|||| ≤ 𝐶(‖𝑅𝐾‖𝑟,[𝑠,𝑡]‖𝑋‖𝑝,[𝑠,𝑡] + ‖𝐾′‖𝑞,[𝑠,𝑡]‖𝕏‖ 𝑝

2
,[𝑠,𝑡]). (A.6)
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762 ALLAN et al.

Since 1∕𝑟 + 1∕𝑝 > 1, there exists a �̂� > 𝑝 such that 1∕𝑟 + 1∕�̂� = 1. By Hölder’s inequality, for any
partition  of [0, 𝑇], we have

∫
∑

[𝑠,𝑡]∈
‖𝑅𝐾‖𝑟,[𝑠,𝑡]‖𝑋‖𝑝,[𝑠,𝑡] d𝜈 ≤ ∫

( ∑
[𝑠,𝑡]∈

‖𝑅𝐾‖𝑟
𝑟,[𝑠,𝑡]

) 1

𝑟
( ∑
[𝑠,𝑡]∈

‖𝑋‖�̂�
𝑝,[𝑠,𝑡]

) 1

�̂�

d𝜈

≤ ∫ ‖𝑅𝐾‖𝑟,[0,𝑇] d𝜈 ‖𝑋‖ 𝑝

�̂�

𝑝,[0,𝑇]

(
max
[𝑠,𝑡]∈ ‖𝑋‖ �̂�−𝑝

�̂�

𝑝,[𝑠,𝑡]

)
.

Since ∫ ‖𝑅𝐾‖𝑟,[0,𝑇] d𝜈 ≤ ∫ ‖𝐾,𝐾′‖𝑞
𝑋
d𝜈 < ∞, and since (𝑠, 𝑡) ↦ ‖𝑋‖𝑝,[𝑠,𝑡] is uniformly contin-

uous, we deduce, treating the second term on the right-hand side of Equation (A.6) similarly,
that

lim||→0

∑
[𝑠,𝑡]∈ ∫

(
∫

𝑡

𝑠

𝐾𝑢 d𝐗𝑢 − 𝐾𝑠𝑋𝑠,𝑡 − 𝐾′
𝑠𝕏𝑠,𝑡

)
d𝜈 = 0.

Thus, we obtain

∫ ∫
𝑇

0

𝐾𝑢 d𝐗𝑢 d𝜈 = lim||→0

∑
[𝑠,𝑡]∈ ∫ ∫

𝑡

𝑠

𝐾𝑢 d𝐗𝑢 d𝜈

= lim||→0

∑
[𝑠,𝑡]∈ ∫ 𝐾𝑠 d𝜈 𝑋𝑠,𝑡 + ∫ 𝐾′

𝑠 d𝜈 𝕏𝑠,𝑡 = ∫
𝑇

0
∫ 𝐾𝑢 d𝜈 d𝐗𝑢.

□

APPENDIX B: ROUGH PATH THEORY ASSUMING PROPERTY (RIE)
In this section, we provide additional results concerning rough path theory assuming Property
(RIE), and, in particular, we give a proof of Theorem 2.12. As usual, we adopt Assumption 3.2.

B.1 On the bracket of a rough path
We begin with some properties of the bracket of a rough path, introduced in Definition 2.9.
Lemma B.1. Let 𝐗 = (𝑋,𝕏) be a 𝑝-rough path and let (𝐾, 𝐾′) ∈ 𝑞

𝑋 . Recall from Proposition A.2
that (𝑍, 𝑍′) ∶= (∫ ⋅

0
𝐾𝑢 d𝐗𝑢, 𝐾) ∈ 𝑞

𝑋 . Let𝐙 = (𝑍,ℤ) be the canonical rough path lift of𝑍, as defined
in Equation (A.4), so that in particular, the bracket [𝐙] of 𝐙 exists. Then,

[𝐙] = ∫
⋅

0

(𝐾𝑢 ⊗ 𝐾𝑢) d[𝐗]𝑢,

where the right-hand side is defined as a Young integral.
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ALLAN et al. 763

Proof. Since [𝐗] has finite 𝑝∕2-variation, the integral

∫
𝑇

0

(𝐾𝑢 ⊗ 𝐾𝑢) d[𝐗]𝑢 = lim||→0

∑
[𝑠,𝑡]∈

(𝐾𝑠 ⊗ 𝐾𝑠)[𝐗]𝑠,𝑡

exists as a Young integral. In the following, we shall abuse notation slightly by writing 𝐻𝑠,𝑡 =

𝑜(|𝑡 − 𝑠|) whenever a function𝐻 satisfies lim||→0
∑

[𝑠,𝑡]∈ |𝐻𝑠,𝑡| = 0. We have

[𝐙]𝑠,𝑡 = 𝑍𝑠,𝑡 ⊗ 𝑍𝑠,𝑡 − 2Sym(ℤ𝑠,𝑡)

= (𝐾𝑠𝑋𝑠,𝑡 + 𝐾′
𝑠𝕏𝑠,𝑡) ⊗ (𝐾𝑠𝑋𝑠,𝑡 + 𝐾′

𝑠𝕏𝑠,𝑡) − 2(𝑍′𝑠 ⊗ 𝑍′𝑠)Sym(𝕏𝑠,𝑡) + 𝑜(|𝑡 − 𝑠|)
= (𝐾𝑠𝑋𝑠,𝑡) ⊗ (𝐾𝑠𝑋𝑠,𝑡) − 2(𝐾𝑠 ⊗ 𝐾𝑠)Sym(𝕏𝑠,𝑡) + 𝑜(|𝑡 − 𝑠|)
= (𝐾𝑠 ⊗ 𝐾𝑠)[𝐗]𝑠,𝑡 + 𝑜(|𝑡 − 𝑠|).

Taking lim||→0
∑

[𝑠,𝑡]∈ on both sides, we obtain [𝐙]𝑇 = ∫ 𝑇

0
(𝐾𝑢 ⊗ 𝐾𝑢) d[𝐗]𝑢. □

Proposition B.2. Suppose that 𝑆 ∈ 𝐶([0, 𝑇]; ℝ𝑑) satisfies (RIE) with respect to 𝑝 and (𝑛)𝑛∈ℕ. Let
𝐒 = (𝑆, 𝕊) be the associated rough path as defined in Equation (8). Let (𝐾, 𝐾′) ∈ 𝑞

𝑆
and (𝑍, 𝑍′) =

(∫ ⋅

0
𝐾𝑢 d𝐒𝑢, 𝐾) ∈ 𝑞

𝑆
. Let 𝐙 = (𝑍,ℤ) be the canonical rough path lift of 𝑍 as defined in Equation

(A.4), so that in particular, the bracket [𝐙] of 𝐙 exists. Then the following hold:

(i) The bracket [𝐙] has finite total variation, and is given by

[𝐙]𝑡 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑍𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 ⊗ 𝑍𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡, 𝑡 ∈ [0, 𝑇].

(ii) Let Γ be a continuous path of finite 𝑝∕2-variation. Then, the path 𝑌 ∶= 𝑍 + Γ admits a
canonical rough path lift 𝐘 = (𝑌,𝕐), such that

[𝐘]𝑡 = [𝐙]𝑡 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑌𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 ⊗ 𝑌𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡, 𝑡 ∈ [0, 𝑇]. (B.1)

Proof.

(i) Since, by Lemma 2.11, [𝐒] has finite variation, it follows from Lemma B.1 that the same is true
of [𝐙]. By the estimate in Equation (4), we know that 𝑍𝑠,𝑡 = 𝐾𝑠𝑆𝑠,𝑡 + 𝐾′

𝑠𝕊𝑠,𝑡 + 𝐻𝑠,𝑡 for some𝐻
satisfying lim||→0

∑
[𝑠,𝑡]∈ |𝐻𝑠,𝑡| = 0. It follows that

lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑍𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 ⊗ 𝑍𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 = lim

𝑛→∞

𝑁𝑛−1∑
𝑘=0

(
𝐾𝑡𝑛

𝑘
∧𝑡𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

)
⊗

(
𝐾𝑡𝑛

𝑘
∧𝑡𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

)
= ∫

𝑡

0

(𝐾𝑢 ⊗ 𝐾𝑢) d[𝐒]𝑢 = [𝐙]𝑡.
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764 ALLAN et al.

(ii) Since Γ has finite 𝑝∕2-variation, the Young integrals ∫ 𝑡

𝑠
𝑍𝑠,𝑢 ⊗ dΓ𝑢, ∫ 𝑡

𝑠
Γ𝑠,𝑢 ⊗ d𝑍𝑢, and

∫ 𝑡

𝑠
Γ𝑠,𝑢 ⊗ dΓ𝑢 are well-defined, and the function 𝕐, defined by

𝕐𝑠,𝑡 = ℤ𝑠,𝑡 + ∫
𝑡

𝑠

𝑍𝑠,𝑢 ⊗ dΓ𝑢 + ∫
𝑡

𝑠

Γ𝑠,𝑢 ⊗ d𝑍𝑢 + ∫
𝑡

𝑠

Γ𝑠,𝑢 ⊗ dΓ𝑢,

also has finite 𝑝∕2-variation. It follows that𝐘 = (𝑌,𝕐) is a 𝑝-rough path. The equality [𝐘]𝑡 =
[𝐙]𝑡 follows easily from the integration by parts formula for Young integrals. The second
equality in Equation (B.1) follows by a similar argument to the one in the proof of part (i).

□

B.2 Proof—the rough integral as a limit of Riemann sums
Proof of Theorem 2.12. Let (𝑌, 𝑌′) ∈ 𝑞

𝑆
. Recalling the Itô formula for rough paths (Proposi-

tion 2.10), it follows from the associativity of Young and rough integrals (recall Proposition A.2)
that

∫
𝑡

0

𝑌𝑢 d𝑓(𝑆)𝑢 = ∫
𝑡

0

𝑌𝑢D𝑓(𝑆𝑢) d𝐒𝑢 +
1

2 ∫
𝑡

0

𝑌𝑢D
2𝑓(𝑆𝑢) d[𝐒]𝑢.

By Perkowski and Prömel (2016, Theorem 4.19), we have

∫
𝑡

0

𝑌𝑢D𝑓(𝑆𝑢) d𝐒𝑢 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑌𝑡𝑛
𝑘
D𝑓(𝑆𝑡𝑛

𝑘
)𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡,

the convergence being uniform in 𝑡 ∈ [0, 𝑇]. By Friz and Hairer (2020, Lemma 5.11), we have the
pointwise convergence

lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑌𝑡𝑛
𝑘
D2𝑓(𝑆𝑡𝑛

𝑘
)𝑆⊗2
𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡
= ∫

𝑡

0

𝑌𝑢D
2𝑓(𝑆𝑢) d[𝐒]𝑢. (B.2)

Recalling Pólya’s theorem (see, e.g., Rao (1962)), which asserts that pointwise convergence of dis-
tribution functions onℝ to a continuous limit implies the uniformity of this convergence, we see
from the proof of Friz and Hairer (2020, Lemma 5.11) that the convergence in Equation (B.2) also
holds uniformly for 𝑡 ∈ [0, 𝑇]. Thus, we obtain

∫
𝑡

0

𝑌𝑢 d𝑓(𝑆)𝑢 = lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

(
𝑌𝑡𝑛

𝑘
D𝑓(𝑆𝑡𝑛

𝑘
)𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 +

1

2
𝑌𝑡𝑛

𝑘
D2𝑓(𝑆𝑡𝑛

𝑘
)𝑆⊗2
𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

)
, (B.3)

where the convergence is uniform in 𝑡 ∈ [0, 𝑇]. For every 𝑛 and 𝑘, we have, by Taylor expansion,

𝑌𝑡𝑛
𝑘
𝑓(𝑆)𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

= 𝑌𝑡𝑛
𝑘
D𝑓(𝑆𝑡𝑛

𝑘
)𝑆𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 +

1

2
𝑌𝑡𝑛

𝑘
D2𝑓(𝑆𝑡𝑛

𝑘
)𝑆⊗2
𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡
+ 𝑌𝑡𝑛

𝑘
𝑅𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡,

(B.4)
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ALLAN et al. 765

where

𝑅𝑢,𝑣 ∶= ∫
1

0
∫

1

0

(
D2𝑓(𝑆𝑢 + 𝑟1𝑟2𝑆𝑢,𝑣) − D2𝑓(𝑆𝑢)

)
𝑆⊗2𝑢,𝑣 𝑟1 d𝑟2 d𝑟1.

Since 𝑓 ∈ 𝐶𝑝+𝜀, we have that |𝑅𝑢,𝑣| ≲ |𝑆𝑢,𝑣|𝑝+𝜀, from which we see that 𝑅 has finite 𝑝∕(𝑝 + 𝜀)-
variation. Since 𝑝∕(𝑝 + 𝜀) < 1, it follows that

lim
𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝑌𝑡𝑛
𝑘
𝑅𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 = 0,

where the convergence is uniform in 𝑡 ∈ [0, 𝑇]. Thus, taking lim𝑛→∞
∑𝑁𝑛−1

𝑘=0
in Equation (B.4) and

substituting into Equation (B.3), we deduce the result. □
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