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Abstract

Based on a rough path foundation, we develop a model-
free approach to stochastic portfolio theory (SPT). Our
approach allows to handle significantly more general
portfolios compared to previous model-free approaches
based on Follmer integration. Without the assumption
of any underlying probabilistic model, we prove a path-
wise formula for the relative wealth process, which
reduces in the special case of functionally generated
portfolios to a pathwise version of the so-called master
formula of classical SPT. We show that the appropriately
scaled asymptotic growth rate of a far reaching general-
ization of Cover’s universal portfolio based on controlled
paths coincides with that of the best retrospectively cho-
sen portfolio within this class. We provide several novel
results concerning rough integration, and highlight the
advantages of the rough path approach by showing that
(nonfunctionally generated) log-optimal portfolios in an
ergodic Itd diffusion setting have the same asymptotic
growth rate as Cover’s universal portfolio and the best
retrospectively chosen one.
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Classical approaches to portfolio theory, going back to the seminal work of Markowitz (1959) (see
also the early work of de Finetti (1940)), are essentially based on simplistic probabilistic models
for the asset returns or prices. As a first step, classical portfolio selection, thus, requires to build
and statistically estimate a probabilistic model of the future asset returns. The second step is usu-
ally to find an “optimal” portfolio with respect to the now fixed model. However, it is well known
that the obtained optimal portfolios and their performance are highly sensitive to model mis-
specifications and estimation errors; see, for example, Chopra and Ziemba (1993); DeMiguel et al.
(2007).

In order to account for model misspecification and model risk, the concept of model ambigu-
ity, also known as Knightian uncertainty, has gained increasing importance in portfolio theory;
see, for example, Pflug and Wozabal (2007); Guidolin and Rinaldi (2013). Here the rationale is
to accomplish the portfolio selection with respect to a pool of probabilistic models, rather than
a specific one. This has been pushed further by adopting completely model-free (or pathwise)
approaches, where the trajectories of the asset prices are assumed to be deterministic functions of
time. That is, no statistical properties of the asset returns or prices are postulated; see, for exam-
ple, Pal and Wong (2016); Schied et al. (2018); Cuchiero et al. (2019). In portfolio theory, there are
two major approaches, which provide such model-free ways of determining “optimal” portfolios:
universal and stochastic portfolio theory (SPT).

The objective of universal portfolio theory is to find general preference-free well-performing
investment strategies without referring to a probabilistic setting; see Li and Hoi (2014) for a survey.
This theory was initiated by Cover (1991), who showed that a properly chosen “universal” portfolio
has the same asymptotic growth rate as the best retrospectively chosen (constantly rebalanced)
portfolio in a discrete-time setting. Here, the word “universal” indicates the model-free nature of
the constructed portfolio.

SPT, initiated by Fernholz (1999, 2001), constitutes a descriptive theory aiming to construct
and analyze portfolios using only properties of observable market quantities; see Fernholz (2002);
Karatzas and Fernholz (2009) for detailed introductions. While classical SPT still relies on an
underlying probabilistic model, its descriptive nature leads to essentially model-free constructions
of “optimal” portfolios.

A model-free treatment of universal and SPT in continuous-time was recently introduced in
Schied et al. (2018); Cuchiero et al. (2019), clarifying the model-free nature of these theories. So
far, this analysis has been limited to so-called (generalized) functionally generated portfolios, com-
pare Fernholz (1999); Strong (2014); Schied et al. (2018). These are investment strategies based on
logarithmic gradients of so-called portfolio generating functions. This limitation is due to the fact
that the corresponding portfolio wealth processes can be defined in a purely pathwise manner
only for gradient-type strategies, namely, via Follmer’s probability-free notion of It6 integration;
see Follmer’s pioneering work (Follmer, 1981) and its extensions (Cont and Fournié, 2010; Cont
and Perkowski, 2019; Chiu and Cont, 2022a, 2022b). Even though these limitations do not occur
in discrete time, optimal portfolio selection approaches based on functionally generated port-
folios have also gained attention in discrete time setups; see, for example, Campbell and Wong
(2022). Another strand of research is robust maximization of asymptotic growth within a pool of
Markovian models as pursued in Kardaras and Robertson (2012, 2021); Itkin and Larsson (2022).
While these approaches clearly account for model uncertainty, a probabilistic structure still enters
via a Markovian volatility matrix and an invariant measure for the market weights process. In a
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similar direction goes the construction of optimal arbitrages under model uncertainty as
pioneered in Fernholz and Karatzas (2011).

The main goal of the present article is to develop an entirely model-free portfolio theory in
continuous-time, in the spirit of stochastic and universal portfolio theory, which allows one to
work with a significantly larger class of investment strategies and portfolios. For this purpose,
we rely on the pathwise (rough) integration offered by rough path theory—as exhibited in, for
example, Lyons and Qian (2002); Lyons et al. (2007); Friz and Victoir (2010); Friz and Hairer
(2020)—and assume that the (deterministic) price trajectories on the underlying financial market
satisfy the so-called Property (RIE), as introduced in Perkowski and Promel (2016); see Section 2.2.
While Property (RIE) does not require any probabilistic structure, it is satisfied, for instance, by
the sample paths of semimartingale models fulfilling the condition of “no unbounded profit with
bounded risk” and, furthermore, it ensures that rough integrals are given as limits of suitable
Riemann sums. This is essential in view of the financial interpretation of the integral as the wealth
process associated to a given portfolio.

In the spirit of SPT, we are interested in the relative performance of the wealth processes, where
the word “relative” may be interpreted as “in comparison with the market portfolio.” In other
words, given d assets with associated price process S = (Stl, s Sd)telo,m) satisfying Property (RIE),
we choose the total market capitalization S' + --- + S as numéraire, so that the primary assets
are the market weights u = (,utl, ,M?)te[o,m), given by
oS

TSt

which take values in the open unit simplex Ai. The main contributions of the present work may
be summarized by the following.

* In Proposition 3.9, we establish a pathwise formula for the relative wealth process associated
to portfolios belonging to the space of controlled paths, as introduced in Definition 2.3 below.
This includes functionally generated portfolios commonly considered in SPT—as for instance
in Strong (2014); Schied and Voloshchenko (2016); Karatzas and Ruf (2017); Ruf and Xie (2019);
Karatzas and Kim (2020)—as well as the class, which we refer to as functionally controlled
portfolios, which are portfolios of the form

. d o
() = u <Fi(ut) +1-) uiFf(Mz)>, 6]

j=1

for some F € Cz(Ki; R9). Here, (7"")! denotes the proportion of the current wealth invested in
asseti = 1, ...,d. In the case of functionally generated portfolios, that is, when F is the logarith-
mic gradient of some real-valued function, we also derive in Theorem 3.11 a purely pathwise
version of the classical master formula of SPT, compare Fernholz (2002); Strong (2014).

* We introduce Cover’s universal portfolio defined via a mixture portfolio based on the notion of
controlled paths, and show that its appropriately scaled logarithmic relative wealth process con-
verges in the long-run to that of the best retrospectively chosen portfolio; see Theorems 4.9 and
4.12. This extends the results of Cuchiero et al. (2019) to a considerably larger class of investment
strategies.
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FIGURE 1 Expected utility of the
log-optimal versus the alpha-optimal portfolio
over time [Color figure can be viewed at
wileyonlinelibrary.com]
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* In Section 5, we introduce a probabilistic setup where the dynamics of the market weights are
described by a stochastic differential equation (SDE) driven by Brownian motion. Using the law
of large numbers for the increments of the Itd-rough path lift of Brownian motion, this setting
allows to replace the scaling function of Theorem 4.12 by 1/T. For this class of models, we can
thus prove that the asymptotic growth rates of Cover’s universal portfolio and the best retro-
spectively chosen one are the same (see Theorem 5.4(ii)). We also compare these two portfolios
with the log-optimal one assuming additionally that the SDE for the market weights is ergodic.
In this case, the corresponding growth rates are all asymptotically equivalent, as shown in The-
orem 5.4(iii). This is analogous to the result in Cuchiero et al. (2019), however, now proved for
the significantly larger class of functionally controlled portfolios.

* We develop novel results in the theory of rough paths to allow for the pathwise treatment of
portfolio theory. In particular, these results include an extension of Perkowski and Promel (2016,
Theorem 4.19), stating that the rough integral can be represented as a limit of left-point Riemann
sums—see Theorem 2.12—and the associativity of rough integration, exhibited in Section A.2.

One important motivation for our work comes from classical considerations of the log-optimal
portfolio in ergodic It6 diffusion models for the market weights process. Indeed, this is one
prominent example of an “optimal” portfolio that does not belong, in general, to the class of
(generalized) functionally generated portfolios, but is still a functionally controlled portfolio of
the form (1); see Section 5.2. As illustrated numerically in Figure 1, the log-optimal portfolio (an
example of a functionally controlled portfolio) might significantly outperform a corresponding
“best” functionally generated portfolio. Indeed, the blue line illustrates the expected utility of the
log-optimal portfolio over time, whereas the orange line depicts that of a certain best functionally
generated portfolio. For the details of this example, we refer to Section 5.3.

This indicates that going beyond functionally generated portfolios can have a substantial ben-
efit. This holds true in particular for Cover’s universal portfolio when defined as a mixture of
portfolios of the form (1), since in ergodic market models, it asymptotically achieves the growth
rate of the log-optimal portfolio (see Theorem 5.4). Note that, due to the rough path approach,
both the relative wealth processes obtained by investing according to the log-optimal portfolio
and according to the universal portfolio make sense for every individual price trajectory. This also
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gives a theoretical justification for learning a (nonfunctionally generated) log-optimal portfolio
from the observations of a single price path.

Outline: In Section 2, we provide an overview of the essential concepts of rough paths and
rough integration relevant for our financial application. In Section 3, we introduce the pathwise
description of the underlying financial market and study the growth of wealth processes relative
to that of the market portfolio, which leads us to a pathwise master formula analogous to that of
classical SPT. Section 4 is dedicated to Cover’s universal portfolio and to proving that its appropri-
ately scaled asymptotic growth rate is equal to that of the best retrospectively chosen portfolio. In
Section 5, we introduce a probabilistic setup and show under an ergodicity assumption that the
asymptotic growth rate coincides for Cover’s universal portfolio, the best retrospectively chosen
one and the log-optimal one. In this setting, we also compare the wealth processes of functionally
controlled portfolios and functionally generated ones, illustrating their performance by means of
aconcrete numerical example. Appendices A and B collect findings concerning rough path theory
and rough integration needed to establish the aforementioned results.

2 | ROUGH INTEGRATION FOR FINANCIAL APPLICATIONS

In this section, we provide the essential concepts from rough path theory for our applications in
model-free portfolio theory. Additional results regarding rough integration are developed in the
appendices. For more detailed introductions to rough path theory, we refer to the books (Lyons
and Qian, 2002; Lyons et al., 2007; Friz and Victoir, 2010; Friz and Hairer, 2020). Let us begin by
introducing some basic notation commonly used in the theory of rough paths.

2.1 | Basic notation

Let (R4, | - |) be standard Euclidean space and let A ® B denote the tensor product of two vectors
A, B € R, thatis, the d x d-matrix with (i, j)-component given by [A ® B/ = A'B/for1 <i,j <
d. The space of continuous paths S : [0,T] — R is given by C([0, T]; R%), and ||S l| c0.[0,7] denotes
the supremum norm of S over the interval [0, T]. For the increment of a path S : [0,T] - R%, we
use the standard shorthand notation

Sss i=S,—S;, for (s,t) € Ajor) 1= {(w,v) €[0,T]* : u < v}.

For any partition P = {0 =t, < t; < --- <ty = T} of an interval [0, T], we denote the mesh size
of P by |P| := max{|ty1 —tr] : k=0,1,...,N — 1}. A control function is defined as a function
¢ : Apo,r] = [0, ), which is superadditive, in the sense that c(s,u) + c(u,t) < c(s, t) for all 0 <
s<u<t<T.Forp € [1, ), the p-variation of a path § € C([0, T]; R%) over the interval [s, t] is
defined by

p
ISlp sy i= sup (D 1Suol? )
Pcls.] [u,v]eP

where the supremum is taken over all finite partitions P of the interval [s, t], and we use the
abbreviation ||S||, := [IS||5,j0,r]- We say that S has finite p-variation if ||S||, < oo, and we denote
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the space of continuous paths with finite p-variation by C?™Va([0, T]; R%). Note that S having
finite p-variation is equivalent to the existence of a control function c¢ such that |S; [P < c(s, t) for
all (s,t) € Ajo,r)- (For instance, one can take c(s, t) = ||S||§ [st J.) Moreover, for a two-parameter

function S : A1) — R%<? we introduce the corresponding notion of p-variation by

1
p
ISllpse) = sup < > |§u,U|P) :

PClst] \ [u,v]ep

for p € [1, ).

Given a k € N and a domain A C R%, we will write f € C¥(A4;R?), or sometimes simply
f € CK, to indicate that a function f defined on A with values in R? is k-times continuously
differentiable (seen as restriction of C¥-functions on R? if A is closed), and we will make use of
the associated norm

Ifllck 1= max [ID"fl,
0<n<k

where D" f denotes the nth-order derivative of f, and || - ||, denotes the supremum norm.

For a k € N and y € (0,1], we will write f € C¥*7(A4;R%), or just f € Ck*7, to mean that a
function f defined on A is k-times continuously differentiable (in the Fréchet sense), and that its
k-order derivative DX f is locally y-Holder continuous. In this case, we use the norm

= k
I licksr = max ID"fllos + ID*F1l, 1.

where || - || y-Hol denotes the y-Holder norm.

Finally, given two vector spaces U, V, we write L(U; V) for the space of linear maps from U to
V.

Let (E, || - ||) be a normed space and let f,g : E — R be two functions. We shall write f < g or
f < Cg to mean that there exists a constant C > 0 such that f(x) < Cg(x) for all x € E. Note that
the value of such a constant may change from line to line, and that the constants may depend on
the normed space, for example, through its dimension or regularity parameters.

2.2 | Rough path theory and Property (RIE)

Let us briefly recall the fundamental definitions of a rough path and of a controlled path, which
allow to set up rough integration.

Definition 2.1. For p € (2, 3), a p-rough path is defined as a pair S = (S, S), consisting of a con-
tinuous path S : [0,T] = R< and a continuous two-parameter function S : Ajor) — R4 such
that ||S||,, < o0, [|S]l/2 < o0, and Chen’s relation

Ss,t = Ss,u + Su,t + Ss,u ® Su,t (2)

holdsforall0 <s<u <t <T.
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Remark 2.2. The success of rough path theory in probability theory is based on the observation that
sample paths of many important stochastic processes such as Brownian motion, semimartingales,
and Markov processes can be enhanced to a rough path, by defining the “enhancement” S via
stochastic integration; see, for example, Friz and Victoir (2010, Part III).

Definition 2.3. Let p € (2,3) and g > p be such that 2/p +1/q > 1, and let r > 1 be such
that 1/r =1/p +1/q. Let S € CPV3([0,T];R%), F : [0,T] - R? and F’ : [0,T] —» L(R?;RY)
be continuous paths. The pair (F,F’) is called a controlled path with respect to S (or an S-
controlled path), if the Gubinelli derivative F' has finite g-variation, and the remainder R" has
finite r-variation, where RY : Ajor) = R< is defined implicitly by the relation

Fs, =F[S,, + Riz for (s,t) € Ay

We denote the space of controlled paths with respect to S by vg = Vg([O, T]; R%), which becomes
a Banach space when equipped with the norm

IF, Fllya o7y = IFol + IE ]+ 1 g 0.1 + IR Nl fo7)-

Example 2.4. For a path S € CPVaI([o,T]; RY) with p € (2,3), the prototypical example of a
controlled path is (f(S), Df(S)) € Vg forany f € C'*¢ withe € (p —2,1]and q = p/c. Examples
of more general controlled paths are discussed in Remark 3.5 and Section 4.1 in the context of
universal portfolios.

Based on the above definitions, one can establish the existence of the rough integral of a
controlled path (F, F’) with respect to a p-rough path S. See Friz and Hairer (2020) for the cor-
responding theory presented in terms of Ho6lder regularity. The following formulation of rough
integration in the language of p-variation can be found in, for example, Perkowski and Promel
(2016, Theorem 4.9).

Theorem 2.5 (Rough integration). Let p € (2,3)and q > pbesuchthat2/p +1/q > 1,and letr >
1besuchthat1/r =1/p +1/q. LetS = (S, S) be a p-rough path and let (F,F') € vg be a controlled
path with remainder RF'. Then the limit

T
/ F,dS, := lim FS;, + F!Sq, (3)
0 |P|—0 ’ ’

[s,t]leP

exists along every sequence of partitions P of the interval [0, T| with mesh size |P| tending to zero,
and takes values in R. We call this limit the rough integral of (F,F’) against S. Here, the product
FS;, is understood as the Euclidean inner product, and the product F!Sg, also takes values in R
since the derivative F' takes values in £(R%; R9) =~ £(R%*4; R). Moreover, we have the estimate

t
/ F,dS, — FSs; — FiSy,| < C<”RF”r,[s,t]”S”p,[s,t] + IIF’IIq,[s,nIISIIg,[s,t]>, 4)
N

where the constant C depends only on p,q, and r.
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In Theorem 2.5, we defined the rough integral of a controlled path (F, F’) against a rough path
S = (S, S). Asnoted in Friz and Hairer (2020, Remark 4.12), one can actually define a more general
integral of a controlled path (F, F") against another controlled path (G,G’).

Lemma 2.6. LetS = (S, S) be a p-rough path, and let (F,F'),(G,G’) € V; be two controlled paths
with remainders R and RO, respectively. Then the limit

T
/ F,dG, := lim FGy; + FiG!Sy,; (5)
0 P20 s ier

exists along every sequence of partitions P of the interval [0, T| with mesh size |P| tending to zero,
and comes with the estimate

t
/ Fu dGu - FsGs,t - FéGégs,t
N

1

< c<||F'||oo (NG iy + SHZ ) WS s + 15 IR ©)

IR N [ 1G o IS 1l p g1 + IIF'G’IIq,[s,z]IISIIg,[m>,

where the constant C depends only on p,q, and r.

Proof. SetE;,; := F,Gy, + F|GS,, and 68, , :=E;;, —E;, —E,,for0<s<u <t <T.Using
Chen’s relation (2), one can show that

6Es,u,t = _FgGé,uSs,uSu,t - Fs,uRlcj,t - RguG;Su,t - (F,G,)s,ugu,t- @)
Since 1/r = 1/p + 1/q, Young’s inequality gives

| _F;G;,uss,usu,tl < ”F,”oo”G,”q,[s,u]”S”p,[s,u]”S”p,[u,t]

! 1

SUF oo (NG + ISTE ) WSy = w1 5,0) 7 waat, 07,

where w;(s,u) := ||F'||% (||G’||q |+ ||S||p )and wy(u,t) 1= ||S||p  are control functions.
Treating the other three terms on the rlght hand side of Equation (7) 51m11arly, we deduce the
hypotheses of the generalized sewing lemma (Friz and Zhang, 2018, Theorem 2.5), from which
the result follows. O

Rough integration offers strong pathwise stability estimates, and may be viewed as arguably
the most general pathwise integration theory, generalizing classical notions of integration such
as those of Riemann-Stieltjes, Young and Follmer, and allowing one to treat many well-known
stochastic processes as integrators; see, for example, Friz and Hairer (2020). However, from the
perspective of mathematical finance, rough integration comes with one apparent flaw: the defi-
nition of rough integral (3) is based on so-called “compensated” Riemann sums, and thus does
not (at first glance) come with the natural interpretation as the capital gain process associated
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to an investment in a financial market. Indeed, let us suppose that S represents the asset prices
on a financial market and F an investment strategy. In this case, neither the associated rough
path S = (S, S) nor the controlled path (F, F’), assuming they exist, are uniquely determined by S
and F, but rather the value of the rough integral /OT F, dS,, will depend in general on the choices
of S and F’. Moreover, the financial meaning of the term F;S;, appearing in the compensated
Riemann sum in Equation (3) is far from obvious.

As observed in Perkowski and Promel (2016), the aforementioned drawback of rough integra-
tion from a financial perspective can be resolved by introducing the following property of the price
path S.

Property (RIE). Let p € (2,3) and let P" ={0 =1t <t <--- <ty =T}, n€N, be asequence
of partitions of the interval [0, T], such that |P"| — 0 as n — oo. For S € C([0,T];R%), we define
S : [0,T] — R4 by

N,—1
S{ 1= Srlny(0) + Z Sendynn (), t€[0,T],
k=0

foreach n € N. We assume that

. t N,—1 ;
* the Riemann sums fo SP®dsS, =) k0 StZ ® Szg/\t AL converge uniformly asn - oo to a
= Tk+1

limit, which we denote by /0[ S,®ds,, t€[0,T],
* and that there exists a control function c such that!

[SRLs]

[n
|y S1 @45, 5 @5y
su —— +sup  sup
sebor €58 neN ogk<f<N, c(ty, ty)

Definition 2.7. A path S € C([0, T]; R?) is said to satisfy (RIE) with respect to p and (P"),.en, if
p, (P™"),en and S together satisfy Property (RIE).

As discussed in detail in Perkowski and Promel (2016), if a path S € C([0, T]; R?) satisfies (RIE)
with respect to p and (P"),en, then S can be enhanced to a p-rough path S = (S, S) by setting

t
NS / S, ®dS, —S; ® S, for (s,0) € Ajo,r)- (8)
N

In other words, Property (RIE) ensures the existence of a rough path associated to the path S. The
advantage of the (more restrictive) Property (RIE) is that it guarantees that the corresponding
rough integrals can be well approximated by classical left-point Riemann sums, as we will see
in Section 2.4, thus allowing us to restore the financial interpretation of such integrals as capital
processes.

Remark 2.8. The assumption that the underlying price paths satisfy Property (RIE) appears to be
rather natural in the context of portfolio theory. Indeed, in stochastic portfolio theory, the price
processes are commonly modeled as semimartingales fulfilling the condition of “no unbounded
profit with bounded risk” (NUPBR); see, for example, Fernholz (2002). The condition (NUPBR)
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is also essentially the minimal condition required to ensure that expected utility maximization
problems are well-posed; see Karatzas and Kardaras (2007); Imkeller and Perkowski (2015). As
established in Perkowski and Promel (2016, Proposition 2.7 and Remark 4.16), the sample paths
of semimartingales fulfilling (NUPBR) almost surely satisfy Property (RIE) with respect to every
p € (2,3) and a suitably chosen sequence of partitions.

2.3 | The bracket process and a rough Ité6 formula

A vital tool in many applications of stochastic calculus is It6’s formula, and it will also be an
important ingredient in our contribution to portfolio theory. Usually, (pathwise) It6 formulae are
based on the notion of quadratic variation. In rough path theory, a similar role as that of the
quadratic variation is played by the so-called bracket of a rough path, compare Friz and Hairer
(2020, Definition 5.5).

Definition 2.9. Let S = (S, S) be a p-rough path and let Sym(S) denote the symmetric part of S.
The bracket of S is defined as the path [S] : [0,T] - R4 given by

[S][ = SO,t ® SO,t - ZSym(So,t), t (S [O, T].

The bracket of a rough path allows one to derive Itd formulae for rough paths. For this purpose,
note that [S] is a continuous path of finite p/2-variation, which can be seen from the observation
that

[S]s,t = [S]t - [S]s = Ss,t ® Ss,t - ZSYm(Ss,t), for all (S, [) € A[O,T]'

The following It6 formula for rough paths can be proven almost exactly as the one in Friz
and Hairer (2020, Theorem 7.7), so we will omit its proof here; see also Friz and Zhang (2018,
Theorem 2.12).

Proposition 2.10. Let S = (S, S) be a p-rough path and letT € C2 var([o, T]; RY). Suppose that

F,F' and F" are such that (F,F"),(F',F") € V! and F = [0 F| dS, + T.Ifg € CP* for some ¢ >
0, then, for every t € [0,T], we have

t t t
8F) =)+ [ DeIFds,+ [ DgF)Ar,+3 [ DgRE, ® Sl
0 0 0

Assuming Property (RIE), it turns out that the bracket [S] of a rough path S = (S,S) does
coincide precisely with the quadratic variation of the path S in the sense of Follmer (1981).

Lemma 2.11. Suppose that S € C([0,T];RY) satisfies (RIE) with respect to p and (P™"),en. Let
S = (S, S) be the associated rough path as defined in Equation (8). Then, the bracket [S] has finite
total variation, and is given by

[S]; = hm Z St”/\tt" A ®S RALLY AL

k+1 k+1
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where the convergence is uniformint € [0,T].

Proof. The (i, j)-component of [S]; is given by

t t
(81 = s),50, — S, — s}t = sis) — sis) - / st ds/ — / s/ dst.
0 0

The result then follows from Lemmas 4.17 and 4.22 in Perkowski and Promel (2016). O

In view of Lemma 2.11, when assuming Property (RIE), we also refer to the bracket [S] as the
quadratic variation of S.

2.4 | Rough integrals as limits of Riemann sums

As previously mentioned, the main motivation to introduce Property (RIE) is to obtain the rough
integral as a limit of left-point Riemann sums, in order to restore the interpretation of the rough
integral as the capital process associated with a financial investment. Indeed, we present the fol-
lowing extension of Perkowski and Promel (2016, Theorem 4.19), which will be another central
tool in our pathwise portfolio theory. The proof of Theorem 2.12 is postponed to Appendix B.

Theorem 2.12. Suppose that S € C([0, T]; RY) satisfies (RIE) with respect to p and (P™),en. Let q >
psuchthat2/p+1/q > 1. Let f € CP*¢ for some € > 0, so that in particular (f(S), Df(S)) € Vg.
Then, for any (Y,Y') € VI, the integral of (Y, Y") against (f(S),Df(S)), as defined in Lemma 2.6,
is given by

N,—1

t
[ Yudf®u=lim ¥ Vg ©
0 k=0

where the convergence is uniformint € [0,T].

As an immediate consequence of Theorem 2.12, assuming Property (RIE), we note that, for
(Y,Y’) € V!, the rough integral

t N,—1
/ Yy dSy = lim > YirSimueen ae (10)
0 k=0

n—oo k+1

and indeed the more general rough integral in Equation (9), is independent of the Gubinelli
derivative Y’. However, in the spirit of Follmer’s pathwise quadratic variation and integration,
the right-hand sides of Equations (9) and (10) do in general depend on the sequence of partitions

(pn)neN'
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3 | PATHWISE (RELATIVE) PORTFOLIO WEALTH PROCESSES AND
MASTER FORMULA

In this section, we consider pathwise portfolio theory on the rough path foundation presented
in Section 2. In particular, we study the growth of wealth processes relative to the market
portfolio, and provide an associated pathwise master formula analogous to that of classical SPT,
compare Fernholz (1999); Strong (2014); Schied et al. (2018). We start by introducing the basic
assumptions on the underlying financial market.

3.1 | The financial market

Since we want to investigate the long-run behavior of wealth processes, we consider the price
trajectories of d assets on the time interval [0, 00). As is common in SPT, we do not include default
risk—that is, all prices are assumed to be strictly positive—and we do not distinguish between
risk-free and risky assets.

A partition P of the interval [0, c0) is a strictly increasing sequence of points (¢;);>o C [0, o),
with t, = 0 andsuch thatt; — coasi — 0. Givenany T > 0, we denote by P([0, T]) the restriction
of the partition P U {T} to the interval [0, T], that is, P([0,T]) := (P U{T}) n[0,T]. For a path
S : [0, 00) — RY, we write S|[o,r] for the restriction of S to [0, T], and we set R, := (0, ).

Definition 3.1. For a fixed p € (2,3), we say that a path S € C(]0, ); Ri) is a price path, if
there exists a sequence of partitions (P¢),ecn of the interval [0, co), with vanishing mesh size
on compacts, such that, for all T > 0, the restriction S||o 1) satisfies (RIE) with respect to p and
(P20, TD)nen-

We denote the family of all such price paths by Q.

It seems to be natural to allow the partitions (P¢),cn to depend on the price path S, since
partitions are typically given via stopping times in stochastic frameworks.

Throughout the remainder of the paper, we adopt the following assumption on the regularity
parameters.

Assumption 3.2. Let p € (2,3),q > p, and r > 1 be given such that

2 1 1
—+->1 and -=—+
p g r

S
Q|

In particular, we note that 1 < p/2 <r < p < q < oo.

By Property (RIE), we can (and do) associate to every price path S € Q,, the p-rough path S =
(S, S), as defined in Equation (8). We can then define the market covariance as the matrix a =
[a"]1<; j<4» With (i, j)-component given by the measure

1 ij
—— dIsls. (1)
SsSs

ai(ds) :=

Although we do not work in a probabilistic setting and thus should not, strictly speaking, talk
about covariance in the probabilistic sense, the relation (11) is consistent with classical SPT
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(with the bracket process replaced by the quadratic variation), and it turns out to still be a use-
ful quantity in pathwise frameworks, compare Schied and Voloshchenko (2016); Schied et al.
(2018).

3.2 | Pathwise portfolio wealth processes

We now introduce admissible portfolios and the corresponding wealth processes on the market
defined above. To this end, we first fix the notation:

Al = {xz(xl,...,xd)eRd : in =1},

d . d . i : = . d . i :
AL ={xeA? x*>0Vi=1,.,d}andA; :={x€A® :x'>0Vi=1,..,d}.

Definition 3.3. We say that a path F : [0, c0) — R¢ is an admissible strategy if, for every T > 0,
there exists a path F’ : [0,T] - £(R9; R?) such that (F|jo 7, F’) € V{ is a controlled path with
respect to S (in the sense of Definition 2.3). We say that an admissible strategy 7 is a portfolio for
S if additionally 77, € A4 for all t € [0, ).

Remark 3.4. As explained in Friz and Hairer (2020, Remark 4.7), if S is sufficiently regular then,
given an admissible strategy F, there could exist multiple different Gubinelli derivatives F’ such
that the pair (F, F") defines a valid controlled path with respect to S. However, thanks to Property
(RIE), Theorem 2.12 shows that the rough integral / F dS can be expressed as a limit of Riemann
sums, which only involve F and S, and, therefore, is independent of the choice of F’. Thus, the
choice of the Gubinelli derivative F’ is unimportant, provided that at least one exists. Indeed,
one could define an equivalence relation ~ on vg such that (F,F") ~ (G,G") if F = G, and define
the family of admissible strategies as elements of the quotient space vg / ~. By a slight abuse of
notation, we shall, therefore, sometimes write simply F € vg instead of (F,F') € vg .

Remark 3.5. While the admissible class of portfolios introduced in Definition 3.3 allows for a
pathwise (model-free) analysis (without notions like filtration or predictability), it also covers the
most frequently applied classes of functionally generated portfolios—see Fernholz (1999)—and
their generalizations as considered in, for example, Strong (2014) and Schied et al. (2018). Indeed,
every path-dependent functionally generated portfolio, which is sufficiently smooth in the sense
of Dupire (2019) (see also Cont and Fournié (2010)), is a controlled path and thus an admissible
strategy, as shown in Ananova (2020).

In the present work, we will principally focus on “adapted” strategies F, in the sense that F
is a controlled path, as in Definition 3.3, with F; being a measurable function of S|, for each
t € [0, 00). In other words, if S is modeled by a stochastic process, then we require F to be adapted
to the natural filtration generated by S. Clearly, such adapted admissible strategies are reasonable
choices in the context of mathematical finance.
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A portfolio 7 = (7, ..., 7%) represents the ratio of the investor’s wealth invested into each of the
d assets. As is usual, we normalize the initial wealth to be 1, since in the following, we will only
be concerned with the long-run growth. Suppose S € Q, with corresponding sequence (P¢),en
of partitions. If we restrict the rebalancing according to the portfolio 7 to the discrete times given
by Pg = (t;’) jens then the corresponding wealth process W" satisfies

n 7fl Wl’l

o0 ﬂthIj oo d
Wl —_ 1 + s TstjAt?tj+1At - 1 + S
Jj= i

j=1i=1

i Si J/\t tip1AL
L

with t; At 1= min{¢;, t}. Taking the limit to continuous-time (i.e., n — o) and keeping Property
(RIE) in mind, we observe that the wealth process W7 associated to the portfolio 7z should satisfy

t T
%
wWi=1 +/ SS > ds,, t €0, ). (12)
0 s

Analogously to (classical) SPT (e.g., Karatzas and Kardaras (2007) or Schied et al
(2018)), the wealth process associated to a portfolio may be expressed as a (rough)
exponential.

Lemma 3.6. Let 7 be a portfolio for S € Q. Then the wealth process W™ (with unit initial wealth),

given by
w7 :=exp(/ Z/ ”s”]sd ), t € [0, ),
0 l_] 1 S S

satisfies Equation (12), where fot D ds, is the rough integral of the controlled path 7t /S with respect

S]ij is the usual Riemann-Stieltjes integral with respect to the (i, j)-

component of the (] ﬁmte varlatlon ) bracket [S].

Proof. Note that, since 1/S = f(S) with the smooth function f(x) = (1/x%,...,1/x%) on Ri, the
pair (1/S,Df(S)) € v;’ C V;I is a controlled path. Therefore, for each portfolio 7 € VI, we can
define the quotient /S = (7' /S, ..., 7%/S%), which gives an element (/S, (/S)’) in VI; see
Lemma A.1.

Setting Z : = /o. ? dS;, by Lemma B.1, we have that

(T T
Z] = =2 ®=)d[S], =
1z /0<SS SS> 5] ”1'/0 SSJ

where Z is the canonical rough path lift of Z (see Section A.3). We then have that W[ = exp(Z; —
%[Z] ¢), so that, by Lemma A.5, W7 satisfies

t
Wf=1+/ widz,, t € [0, ).
0
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By Lemma A.4 and Proposition A.2, it then follows that W7 satisfies Equation (12). O

Remark 3.7. Every portfolio 7 can be associated to a self-financing admissible strategy & by setting
St‘ = n';'Wf/Sti fori =1,...,d. Indeed, we have that W[ = Z?:l §'fS§, and that

t T t
T W
W;T=1+/ SS . dSS=1+/ &, ds,, t € [0, ),
0 s 0

so that £ is self-financing.

As in the classical setup of SPT (e.g., Fernholz (2002)) we introduce the market portfolio as a
reference portfolio.

Lemma 3.8. Thepath yu : [0,00) — A‘}r, defined by ,uf i= fori=1,...,d, isa portfolio for

m
S € Q, called the market portfolio (or market weights process) The corresponding wealth process
(with initial wealth 1) is given by

1 d

Sl I M St
t Svl } Svd'
0 h 0

Proof. Since u is a smooth function of S, it is a controlled path with respect to S, and is, therefore,
an admissible strategy. Since ,utl +- 4 /,tf = 1, we see that u is indeed a portfolio.

Let f(x):=log(x'+---+x%) for xe€ R‘i. By the Itd formula for rough paths
(Proposition 2.10), it follows that

t t
1 1 1 Ms o HMs
(Sp) — (S)=/ s s dS——/ <—®—>d[S]
/e 1o 0 S§+---+S§l Ssl+"'+S§l P2 0 Ss Ss :

t d
M 1 / usus ij
=/ 2548, - = Z d[s]/,
/0 Ss ) 21',]‘:1 0 SLSJ

1

where we used the fact that ”—% = . By Lemma 3.6, the right-hand side is equal to log Wf ,

L Sl qsd
so that
" SH 4. 454
Wi =exp(f(S) — f(So)) = ﬁ-
S+ -+ S
O
3.3 | Formulae for the growth of wealth processes

In this subsection, we derive pathwise versions of classical formulae of SPT—see Fernholz
(1999)—which describe the dynamics of the relative wealth of a portfolio with respect to
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the market portfolio; compare Schied et al. (2018) for analogous results relying on Follmer’s
pathwise integration.
Given a portfolio 7z, we define the relative covariance of 7 by v = [Tz]lsi, j<d> Where

7 (ds) = (7 — e) a(ds)(zs —e;), (13)

where (e;)1<;<q denotes the canonical basis of R<, and we recall a(ds) as defined in Equation (11).
Henceforth, we will write

77:
T e
V= o (14)
for the relative wealth of a portfolio 7z with respect to the market portfolio u.

Proposition 3.9. Let 7w be a portfolio for S € Q,,, and let u be the market portfolio as above. We then

have that
logV[ = /
0

Remark 3.10. The integral f D dy, appearing in Equation (15) is interpreted as the rough inte-

Z / 7! Thds),  te[0,00). (15)

l]l

gral of the S-controlled path T / u against the S-controlled path u in the sense of Lemma 2.6. By
Theorem 2.12, the integral f T dug can also be expressed as a limit of left-point Riemann sums,

which justifies the financial meanmg of Equation (15).

Proof of Proposition 3.9. Step 1. By the It6 formula for rough paths (Proposition 2.10), with the
usual notational convention log x = 2?21 log x!, we have

t
log S =logSo+/ - / , t € [0, c0).
‘ Z‘ 0 Gl k

Since 7 and log S are S-controlled paths, we can define the integral of 7 against log S in the sense
of Lemma 2.6. By the associativity of rough integration (Proposition A.2), we have

t
/Onsdlogss=/o s, 22/0 (Sl)z it

It is convenient to introduce the excess growth rate of the portfolio 7, given by

d d
Yz(ds) 1= %(2 mlali(ds) — 2 ﬂéﬂﬁaij(ds))
i=1

ij=1
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By Lemma 3.6, we have that

t
logWT = / Zs ds, — = Z / minlali(ds) = / mydlog Sy + yi([0,t]). 16)
0

l ,Jj=1
In particular, this implies that
t
logV7 = | (m, = w)dlogS, +7:10.1) - yi((0.1D. a7)
0
Step 2. By Lemma 3.8 and Equation (16), we have
log ,uf = log yé + log Sf —log S(i) —log Wﬁ‘

t
= log,ué + logsi - logS(i) - / usdlog Sy —y,([0,t])
0

t
—togs, + [ (e w)dlogS, ~ ri(lo.1): 13)
0
By part (ii) of Proposition B.2 and Lemma B.1, we deduce that

[log S]; = a([0, t]), and  [logu], = 7#([0,t]). 19)

Applying the It6 formula for rough paths (Proposition 2.10) to exp(log u'), using the associativity
of rough integration (Proposition A.2), and recalling Equation (18), we have

t i t t t
. . . 1 . N
/ n—f dui = / mi(e; — us)dlog S, — / 7y dy,(ds) + 3 / s d[log uly.
0 Ms 0 0 0

Using Equation (19) and summing over i = 1, ..., d, we obtain

d
D / [ ith(ds). (20)
i=170

Step 3. Taking the difference of Equations (17) and (20), we have

N

t
/ ™ du, = / (, — uy) dlog S, — y2([0,1]) +
0

t
Vg
10gi=/ I’L—Sd/,t5+yﬂ(0t)—— E/ f;(ds).
0 Ms

It remains to note that

d t
o =33 [ st
i=170

/ 71' Vo f“(ds))

i,j=1

SUONIPUOD PUE SIS | 31 385 *[£202/90/0€] U0 AIq1T 3UIIUO AB]IM 80110 LSO YBINGUIPT 'SIN PUBI0IS 10) UOEINPI SHN A 9/€2T 1EW/TTTT'OT/I0P/W0d A8 | I AR 1pU1IUO//SANY WOAJ papeojumod ‘€ ‘€202 ‘G96629rT

fopm A

85UB017 SUOLULIOD aAeaID 3 el dde ay) Aq pausenob ae sap e O ‘8sn Jo Sa|ni Jo) Arig1auliuQ 81 Uo (Suony



ALLAN ET AL.

% | WILEY

which follows from a straightforward calculation; see, for example, Fernholz (2002,
Lemma 1.3.4). O

While Definition 3.3 allows for rather general portfolios, so-called functionally generated port-
folios are the most frequently considered ones in SPT. In a pathwise setting, such portfolios and
the corresponding master formula were studied previously in Schied et al. (2018) and Cuchiero
etal. (2019). We conclude this section by deriving such a master formula for functionally generated
portfolios in the present (rough) pathwise setting.

Let G be a strictly positive function in CP*¢ (Ai; R,) for some ¢ > 0. One can verify that
VlogG(u) € VZ is a p-controlled path for a suitable choice of g (see Example 2.4), and is, there-
fore, also an S-controlled path by Lemma A.4. Since the product of controlled paths is itself a
controlled path (by Lemma A.1), we see that the path 7 defined by

d
) 3 o)
i i _ k i =
o= M‘(_axi logG(u;) +1 kzzl,ut ax, log G(/,tt)>, tef0,0), i=1,..,d, (21)

is a u-controlled (and hence also an S-controlled) path, and is indeed a portfolio for S € Q,,. The
function G is called a portfolio generating function, and we say that G generates 7.

Theorem 3.11 (The master formula). Let G € CP*(A%; R.,) forsomee > 0 be a portfolio generating
function, and let r be the portfolio generated by G. The wealth of 7t relative to the market portfolio is
given by

d t 2
log V7 =1og<G(“f)> -1y / L 90W) i ikds),  telo,o0).
0

G(luO) 2i,j=1 G(lus) axlaxj FbsT Y

Proof. Letg = VlogG(u),so thatg! = — 10g (w) = m a—(,u) foreachi =1,...,d. We can then

rewrite Equation (21) as

d
=yl (gi +1-) M"g">, (22)

k=1

sothatz! /ul =gl +1— Zzzl ukgk. Since Z?zl ul = 1foralls > 0, we must have that 2?21 i, =
Oforalls < t. Thus

N—ldT[ N,-1 d

t t

7TS

_dlu n n lim gn“n n _/gdlu
/Ous T nSe Olllutn t/\tt n_,ooZZt AL AT SSTES

k=0 i=

We have from Equation (13) that ijl ug rf;.(ds) = (us — ;)T a(ds)(us — ) = 0. It follows from
this and Equation (22) that

d
> mimlti(ds) = Z ghgl it (ds). (23)

i,j=1 i,j=1
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Recall from Equation (19) that [log u], = 7#([0, t]). By applying the It6 formula for rough paths
(Proposition 2.10) to u' = exp(logu'), we see that the path ¢ > u! — fot uldlogul is of finite
variation. By part (ii) of Proposition B.2 and Lemma B.1, we, therefore, have that

. t t
[#]ltj /:us:us d[IOg#] /:us:us lj(ds) (24)

By the 1t6 formula for rough paths (Proposition 2.10), we then have

Ok ) _ 1 26() 1\ 4
10g<G(/v‘0)> _/ B0+ 3 z <G(/¢5) 9x;0x; —gsgs>d[u]s

i,j=1
1 0%°G(uy)
T du + / ( - glg) ) Tl (ds).
/ 2,52 Jo \Glu) 0x,0x; DA
Combining this with Equations (15) and (23), we deduce the result. O

4 | COVER’S UNIVERSAL PORTFOLIOS AND THEIR OPTIMALITY

Like SPT, Cover’s universal portfolios (Cover, 1991) aim to give general recipes to construct
preference-free asymptotically “optimal” portfolios; see also Jamshidian (1992) and Cover and
Ordentlich (1996). A first link between SPT and these universal portfolios was established in a
pathwise framework based on Follmer integration in Cuchiero et al. (2019) (see also Wong (2015)).
In this section, we shall generalize the pathwise theory regarding Cover’s universal portfolios
developed in Cuchiero et al. (2019) to the present rough path setting.

Cover’s universal portfolio is based on the idea of trading according to a portfolio, which is
defined as the average over a family A of admissible portfolios. In the spirit of Cuchiero et al.
(2019), we introduce pathwise versions of Cover’s universal portfolios—that is, portfolios of the
form

- /A VI dv(rr)
T, = m, (S [0,00),
At
where v is a given probability measure on .4. In order to find suitable classes .A of admissible
portfolios, we recall Assumption 3.2 and make the following standing assumption throughout the
entire section.

Assumption 4.1. We fix ¢’ > g and ' > r such that 2y l, > 1and l, ==+
P q r

1
;.

S =
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4.1 | Admissible portfolios

As a first step to construct Cover’s universal portfolios in our rough path setting, we need to find
a suitable set of admissible portfolios. To this end, we set

V[0, 00); A%) := {(71', ) 1 VT >0, (2, 7)1 € VO, T];Ad)}.

Then, for some fixed control function Cus which controls the p-variation norm of the market
portfolio y, and for some M > 0, we introduce a class of admissible portfolios as the set

n AR
Mo K70 .
AMa(c,) =4 (z, 7") € V([0, 00); A%) : (n), q N (25)
- S,t
H st
: <
SupSSt CM(S,Z) + supSSt C#(S,t) <1

Here (7t /u, (/1)) denotes the product of the two u-controlled paths (7, 7") and (i, (i)’ ) (see

Lemma A.1). In particular, (7/u) = 7' /u+ 7(1/u)’, and R# is the remainder of the controlled
rough path 7 /u.

Remark 4.2. We consider here controlled paths with respect to u, instead of with respect to S.

As noted in Remark 3.10, every S-controlled path (7, 7’) € Vg can be used to define the integral

/ 2t du,, and all the results in this section can also be established based on vg with appropri-
He

ate modifications. We choose to consider (7, ') € V;f as a u-controlled path in order to slightly
simplify the notation. It is straightforward to check that V! C Vg .

Let us recall from Definition 2.3 that, for any T > 0,

Iy, Y')Ilvg,[o,T] = Yol +1Ygl + 1Y/ llg 011 + IRV Il jo.1]

defines a complete norm on Vg([O, T];A%). We endow AM’q(c#) C Vg,([O,oo);Ad) with the
seminorms

P (7)) 1= “% <§>,“v;j’,[o,ﬂ’ r=o o

The reason for taking g’ > g is that it will allow us to obtain a compact embedding of AM’q(cu)

into v;{. This compactness of the set of admissible portfolios plays a crucial role in obtaining
optimality of universal portfolios.

Let us discuss some examples of admissible portfolios. We first check that the functionally gen-
erated portfolios treated in Cuchiero et al. (2019) belong to .AM “d(c,,) provided that the control

—d
function ¢, is chosen appropriately. Recall that Ck(A,;R,) denotes the space of k-times con-
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—d
tinuously differentiable R -valued functions on the closed (non-negative) simplex A, and that
IGllck 2= maxo< < [ID"Glco-

Lemma 4.3. Let K > 0 be a constant, and let
_d 1
cK = {G ec? <A+;IR+> :IGlles £K, G > E}.

Then the portfolio 7 generated by G, as defined in Equation (21), belongs to AMP(c,) for a suit-
able control function c,, and constant M. More precisely, there exists a control function of the form
cu (-, = C||,u||§ (] and a constant M > 0, such that C and M only depend on K, and

{(ﬂG, (%Y : 7€ defined in Equation (21) for some G € GK } c AMP(c)).
Note that here we take g = pandr = p/2.

Proof. Fix G € ¢K, and let 7 be the associated portfolio as defined in Equation (21). Since 7 is
defined as a C? function of i, we know immediately that it is a u-controlled path.

A simple calculation shows that
4 =g +Q— g,

Mt

where we write1 = (1, ...,1) and g, = Vlog G(u,), and we use - to denote the standard inner prod-
uct on R%. The pair (1, 0) is trivially a u-controlled path with 1’ = 0 and R' = 0, and thus clearly
satisfies the required bounds in Equation (25) with an arbitrary control function. It thus suffices
to show that (g, g’) and (u - g, (u - 2)’) satisfy the required bounds with control functions c}‘ and
c;,» respectively, since then ¢, := ¢, + c;, gives the desired control function.

We begin with (g, g’). Let F := VlogG, so that g = F(u) and g’ = DF(u). By Taylor expansion,
we can verify that, for all s <,

18s5,e] < IIDF |0 | szl 185.:] < ID*Fllco lits 11, RS | < ID?Fllo 5,1 27)

Note that F, DF, and D?F only depend on DG, D?>G, DG, and 1/G, and therefore, since ||G||cs < K
and G > 1/K, there exists a constant C = C(K), which only depends on K, such that |F||,, < C,
IDF|| < C,and ||D?F|| < C. It follows that we can choose c}‘(s, t) = Cllylli,[s’tj. Note also that
lglleo < Cand [|Ig']l < C.

We now turn to (u - g, (i - g)'). Noting that y is trivially a u-controlled path with ¢’ = 1 and
R* =0, and that Rf’;g = U -Rit + Us; - 85> we deduce that

- @) | < Mgl + Il gl ) + 18 Moo lbtse s IREE] < Nl |RE | + 1t

Since y, takes values in the bounded set Ai, we can use the bounds in Equation (27) to show
that there exists a constant L = L(K), depending only on K, such that |(u - g);,t| < L|ug,| and

|Rf 'tg| < Lpgy |2. It follows that we may take cﬁ(s, t) ;=L ,u||§ (] Finally, we note that the initial
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values 7o/ uo = 8o + (1 — Ko - 80)1 = F(uo) + (1 — o - F(o))1 and (7 /) = DF (1) — (F (o) +
HoDF(uy))1 are also bounded by a constant M depending only on K. O

One particular advantage of rough integration is that the admissible strategies need not be of
gradient type, giving us more flexibility in choosing admissible portfolios compared to previous
approaches relying on Follmer integration.

Example 4.4 (Functionally controlled portfolios). Let
—d
F2K .= {(ﬂF,n'F”) :FecC? <A+;Rd>, IIF |l c2 gK}

for a given constant K > 0, where

. d
(=)’ =M§<Fi(#z)+1— ZMfFf(Mz)> (28)

j=1

fort >0andi=1,...,d. Then F>K c AMP(c,), where we can again take g = p. The point here
is that we can consider all C2-functions F, rather than requiring that F is of the form F = V log G
for some function G. One can verify that 72X c AMP(c,) for a suitable control function c, by
following the proof of Lemma 4.3 almost verbatim.

Example 4.5 (Controlled equation generated portfolios). Let us define

K ={f e CRELELREGRY) ¢ Iflles < KL

For a given f € C*K, a classical result in rough path theory is that the controlled differential

equation with the vector field f, driven by y,
I _ ! — d
dy; = f(Y; ) du,, Yy =§& € A4, (29)

admits a unique solution (Y/,(Y/)) = (£ + /o. f (Y{: Ydpu,, f(Y1)), which is itself a u-controlled
path. Moreover, writing Ag (= /S[ Hsy @ du, for the canonical rough path lift of i (see Sec-
p

tion A.3), and c,(s,1) := ||/,¢||§[

s T Al 5 (5]’ for every T > 0, there exists a constant 'y
oLs Els,
2

depending on p, ¢,([0, T]) and K, such that

' P

(/)
sup LR + sup —) X L.
(S,[)€A|0’T| PTCM(S9 t) (S,t)€A|0,T] FTC‘L{(S’ t)

f
Y 2
RS,[
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Consequently, as in the proof of Lemma 4.3, one can show that there exists an increasing function
I :[0,00) » R,, depending on p, Cus and K such that

4,
SNk

p i
"

().
K st +
sup —— sup  — <
0<s<i<oo  Cu(S,t) o<s<i<co Cu(S, 1)

where 7/ 1= u(Yf + (1 — - Y1) and ¢,(s,t) :=T;c,(s,t) is again a control function. This
implies that the set

{7/ =pu(Y" + @ —p- Y1) : Y/ is the solution of Equation (29) for some f € C3K} c AMP(¢,)

for a suitable constant M > 0.

4.2 | Asymptotic growth of universal portfolios

To investigate the asymptotic growth rates of our pathwise versions of Cover’s universal portfolio,
we first require some auxiliary results—in particular the compactness of the set of admissible
portfolios.

Lemma 4.6. The set AM “d(c,) is compact in the topology generated by the family of seminorms

{p?’q/ : T € N} as defined in Equation (26), where we recall that g < q'.

Proof. Step 1: We first show that the set

A:=1v,Y) € VI([0,00);RY) 1 |Yo| +|Y/|<M and o i
= ) (10, 00); Yol + | ol— an sup sup <
s<t Cl,{(s! t) s<t C‘u(sa t)

is compact with respect to the topology generated by the seminorms || -, - || forT e N. It

vq/ [0.T]
suffices to show that for every fixed T € N, the set

Ap = {(Y,Y’)evg([o,T];Rd) : |Y0|+|Y(’)|§M and

Yy, IR, I"
sup A sup Lo

(S,[)EA[O,T] C;,L(Ss t) (S,[)EA[O,T] C;,L(Sr t) -

is compact with respect to the norm || -, - || We first note that, for all (Y,Y’) € Ar,

vq Jo,T

1

1 1
1Y llgor) < (0,74, 1Y leoor) <M +¢,(0,T) and |IRY ||, o) < c,(0,T)7,
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where the second bound follows from the fact that | Y| < |[Y{| + |Y(,| < M + Y |lg0.r]- The p-

variation of Y can also be controlled as follows. From Y, = Y}u, + th, we have

p
Yorl? <2 (NI, o sl + [RE]), ()€ Aoy,

Y
Rs,t

and hence
p-l p-1
p p

1Y o1 <2 2 (1Y Nleogori il por + IR  Wpjor)) <2 2 (1Y ooyl o,y + IRY Il jo.77)s

since r < p (see, e.g., Chistyakov and Galkin (1998, Remark 2.5)), and thus

P 1 1
1Y llojor S M + Yl pjor) <M+2 ¢ <<M+ ¢, (0, T)q> llell pjo,77 + €,.(0, T)’)-

Therefore, by Friz and Victoir (2010, Proposition 5.28), every sequence (Y",Y"),5; C Ar
has a convergent subsequence, which we still denote by (Y",Y"),-;, and limits Y €
CPVAL([0,T];RY) and Y’ € CTV3I([0, T];RY), such that |Y] = Yol + Y™ = Y|l o) — O and
|Yg" =Y+ 1IY"™ = Y'|lg [0,r] = O, respectively, as n — oo, for an arbitrary p’ > p. Since

Yn+1

S,t S

y”" n,/ n+1,/
R;, —R Yo pse =Yg 7 se| +

n n+1
Ys,t Ys,t |

<

Y;z,/ _ Y;z+1,l' |:us,t| + |Ytn _ Y;1+1‘ +

yr —Y;”l' o0

as n — oo, uniformly in (s, £) € Ajo 1), we have that

/

r r'—r
n n+1 n n+l || 7 n n+l| 7
R =R <R R sup |RY, —RY,"| "
r',[0,T] r,[0,T] (s.0€A[07]
r 1 e
r - n n+l| 7
<27¢,(0,T)7 sup |RY, —R!,"|" — 0

(s’t)EA[O,TJ

as n — oo. Thus, RY" also converges to some RY in #/-variation.
To see that the limit (Y, Y’) € A, we simply note that

r r

q Yn’/ q

/ Y yn"
Ys,t Ru,v st Ru,v

c,(s,t) cM(u,v)_n—wo c (s, 1) cu(u,v)

and then take the supremum over (s, t) € Ao} and (u,v) € Ajg 7 on the left-hand side.
Thus, At is compact with respect to p?’q/, and A is then compact in the topology generated by

!
the seminorms p;? for T € N.
Step 2: Now suppose that {(z", 7""")},cn is a sequence of portfolios in AM’q(cM). Corre-

spondingly, {(Z—n,(’;—n)’ en is then a sequence in A which, by the result in Step 1 above,
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admits a convergent subsequence with respect to the seminorms || -, || for T € N. Since

vq' [0,T]
|| ( )’ ||vq o1 = pT ot ((z, ")), the convergence also applies to the corresponding subsequence
of {(71' , ")}, en With respect to the seminorms { p#’q }ren- Let (¢, @) be the limit of (the conver-
gent subsequence of) {(Z—n, (%n)’ M}aen- Itis then easy to see that ¢y, the product of controlled paths

(¢,¢") and (u, 1), is a cluster point of {(z", 7" )},en in AM “d(c,,) with respect to the seminorms

{P?q fren- [l

In the next auxiliary result, we establish continuity of the relative wealth of admissible portfo-
lios with respect to the market portfolio. To this end, we recall the family of seminorms { p?’q, }r>0s
defined in Equation (26), and, for a given sequence 8 = {Sy}yen With By > 0 for all N € N and
limy_, o B = o0, we introduce a metric dg on AM-4 (c,) via

do((m, ), ($,4")) == P4 () = (,¢'),

1
sup
>1 BNYN
where

1

1 1
YN = 1 +M+CM(O,N)‘1 +C#(0,N)V.

Since p;‘;q’((n, 7)) < yn, we have that dg((7r, '), (¢, ¢)) < oo for all portfolios (7, 7), (¢,¢') €
AM’q(cM). The metric dg is thus well-defined on AM’q(cM). Moreover, it is not hard to see that
the topology induced by the metric dg coincides with the topology generated by the family of

/
seminorms { p?’q }ren, so that (AM “d(c,), dg) is a compact metric space. For T > 0, we also denote

d
&= Illpgor) + 14411 o 7y + D IKIF- (30)
i=1
Lemma 4.7. Forany T > 0, we have that the estimate
llog V7 —log V| < CByyZ Erds((m, 7). (¢,4) (31)

holds for all (m,7'), (¢, ¢") € AM4(c,), for some constant C, which depends only on p,q’,r" and
the dimension d, where N = [T, and V™ denotes the relative wealth process as defined in Equation
(14). In particular, the map from AM “4(c,) — R given by (7, ) VT is continuous with respect to
the metric dg.

Proof. By Proposition 3.9 and the relation in Equation (24), we have that, for any (7, 7') €
AMA(c,),

d iJ

y / I )
0o piul

i,j=1

Tx 1
log V7 :/ Iu—sd/,ts—i
0 S
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which implies that, for (7, 7'), (¢, ¢') € AM4(c,),

/Tﬂs_¢s
0 Hs

We aim to bound the two terms on the right-hand side. Let A* be the canonical rough path lift
of u (as defined in Section A.3), namely Aﬁf [ = fs ' Usy @ dpty,. Writing N = [T, by the estimate
for rough integrals in Equation (4), we obtain

()
7

Tz —¢
LB L |
/0 HMs Hs| %
(ﬂ—gb)
7

/
spxq«nnﬂ)—o#¢@)<mmpmj]+nAﬂngmﬂ)

/’ %+%>MM?-

log V7 —log Vf| <

i,j=1

¢
R ~

el pjo.r) +
7,10,

||A'u ” g’[O’T]
q.[0.T] 2

7o
+ [|A# ||p ,[0,T]

—¢
M“Ummmﬁ

< ﬁNYNdﬁ ((7[’ 7[/)’ (¢’ ¢,)) <”:u”p,[0,T] + ”Aﬂllg,[o,ﬂ) .

For the second term, we note that

T (i iN ) J )
/ (7Ts B ¢s)(7fs + ¢s) d[,u];

d
Ll H o H 10,71 H” - ” 0,[0,T] Z[’u]T' (32)
M s i=

7[

% + (%)(’),um +R;,, and the fact that u takes values in the

It follows from the relation - =
Mt

bounded set A‘i, that

1] 00 S M+ )7 <.

n—¢

+(”—¢ bHog +RyY , that

It follows similarly from mth _ Tt
Hi

Ho
“ ” [0.7] S pff’q,((”’ ') = (¢, ¢") < Byyndp((m, '), ($, ).

Substituting back into Equation (32), we obtain

/M@—ﬂwd+d)
0 .

d
— dlpl | S Bardds((m, ), ($,¢) Y [uli.
M =

Combining the inequalities above, we deduce the desired estimate. O
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In the following, we will sometimes write simply A4 := AM-4(c,) for brevity.

For (7, 7r") € AM4, we have by definition that 7 is a u-controlled path. We also have that the
relative wealth V7 is also a u-controlled rough path—as can be seen for instance from Propo-
sition 3.9—and hence the product 7V” is also a controlled path. Let v be a fixed probability
measure on (AM4, dg). Observe that for every T > 0, the space VZ([O, T]; R?) of controlled paths
is a Banach space, and that, as we will see during the proof of Lemma 4.8 below, V7 is the unique
solution to the rough differential equation (34), which implies that the mapping 7 = V™| 1| €
vg([o, T]; R9) is continuous by the continuity of the Ito-Lyons map (see, e.g., Lejay (2012, Theo-
rem 1)). Hence, for every T > 0, we can define the Bochner integral [ M (V™) jo,r) dv(7r), which
is thus itself another controlled path defined on [0, T]. The u-controlled path

/AM~‘1 T,V dv(r)
L fAM~q VT dv(r)

€ [0, ), (33)

is then well-defined, and defines indeed a portfolio in V!, called the universal portfolio associated
to the set .AM-4 of admissible portfolios.

Lemma 4.8. Let ¥ be the universal portfolio as defined in Equation (33). Then, for all T > 0,

Vi o= / VZ dv(r).
AMg

Proof. By Proposition 3.9 and the relation in Equation (24), we have, for any portfolio 7,

rlm)
Vf:exp(/ Z/ == ”).
0 lJ 170 :us:us

Setting Z : / = du,, by Lemma B.1, we can rewrite the relation above as V7" = exp(Z — —[Z])
HUs

Thus, by Lemma A.5, Lemma A.4, and Proposition A.2, we deduce that V7 is the unique solutlon
Y to the linear rough differential equation

t
T
Y[=1+/ Y,—=du, t20. (34)
o Hs

Itis, therefore, sufficient to show that the path t — [ M V[ dv(7r) also satisfies the RDE (34) with
7 replaced by 7”. By the definition of the universal portfolio in Equation (33), we have

T ﬂ: 7TS
VZidv(n)— = — V7 dv(nm). (35)
AM.q Hs AMg Ms

Recalling that V7™ satisfies Equation (34), we know that

t
T
V;f=1+/ =V du.
0 Ms
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By the Fubini theorem for rough integration (Theorem A.6), we then have that

t t v
/ V7 dy(r) =1+ / / T ym du() dug = 1+ / / VZ dv(m) S du,,
AM.q o Jama Hs 0 JAMq Hs

where we used Equation (35) to obtain the last equality. Hence, both V7~ and / g VT dv(rr) are
the unique solution of the same RDE, and thus coincide. |

With these preparations in place, we now aim to compare the growth rates of the universal
portfolio (33) and the best retrospectively chosen portfolio. For this purpose, we fixan M > 0, and
assume that there exists a compact metric space (K, dy) together with a mapping ¢ : (K, dg) —
(AM4, dg) such that ¢ is continuous and injective (and thus a homeomorphism onto its image),
and that for every T > 0 and x,y € K, we have that

log V) —log V| < CA(T)dye(x, ), (36)

where A is a positive function of T, and C is a universal constant independent of T. Here we list
some examples of (K, dy), ¢, and A:

—d —d 1 ~ ~
1) K =CPref(aRY ={G € CPH(A4RY) 1 [[Gller <K, G 2 —} die(G.G) = [IG = Glic,
((G) = 7%, where & > 0 and ¥ is a classical functionally generated portfolio of the form (21).

.....

Lemma 4.4).
—d —d N .
(2) K =CH**KQA LR ={F € C**(A;RY  ||Fllcesa <K}, die(F,F) = |F = Fllc2, «F) =
¥, where a € (0,1] and ¥ is a functionally controlled portfolio defined as in Equation (28).
In this case one may take A(T) = (1 + ||,u||; [0 TJ)ST, where &7 is defined in Equation (30); see
Lemma 4.11 below.
(3) K =AM, dyp = dg, 1 = Id 4mq. In view of Equation (31), we have A(T) = ﬁm)/%ﬂ ér.

Given such a compact space (K, dg) equipped with an embedding : as above, we define

#,KC,
Voot = sup V’T(x) = sup V7.
xeX mel(k)

By the compactness of K and the continuity provided by the estimate in Equation (36), we have
that, for each T > 0, there exists a portfolio 77 € ((K), which can be expressed as 77 = ((x*)
for some x* € K, known as the best retrospectively chosen portfolio associated with K and ¢, such
that

*,T

V*JCJ =yr

T (37)

The following theorem provides an analog of Cuchiero et al. (2019, Theorem 4.11) in our rough
path setting.

Theorem 4.9. Let (K,dy) be a compact metric space equipped with a continuous embedding ¢ :
(K,dg) = (AM4, dg), which satisfies the bound in Equation (36) for some positive function 1. Let m
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be a probability measure on K with full support, and let v = ,(m) denote the pushforward measure
on AM4. Iflimy_ o A(T) = oo, then

. 1 #,KC,t
pm s

—log V;f]/) =0.
—d —d
In particular, if K =CPYK(QA,;RY) ={G e CP*(A,;RY) : |Gllere <K, G > %},
di(G,G) = ||IG = G||c2, (G) =n®, where 7€ is a classical functionally generated portfolio

.....

theorem obtained in Cuchiero et al. (2019, Theorem 4.11).

Proof of Theorem 4.9. As the inequality “>” is trivial, we need only show the reverse inequality.
As K is compact and m has full support, we have that, for any € (0, 1), there exists a § > 0 such
that every »-ball around a point x € K with respect to dx has m-measure bigger than §.

LetT > Obesuch that A(T) > 1,and let 77 = ((x*) be the best retrospectively chosen portfolio,
as in Equation (37). For any portfolio 7 = «(x) € «(K) C AM’q(cH) such that dg(x,x*) <7, the
estimate in Equation (36) implies that

1 #,T «
/ﬁ<logV¥ —log V7T ) > —Cdg(x,x*) > —Cn,

for some constant C. For any € > 0, we can, therefore, choose 7 small enough such that

1

T _ 7T*’T _
D <log Vi —logVy ) > —¢. (38)

Let B, (x*) denote the -ball in K around the point x* with respect to the metric dy, which has
m-measure |B,(x*)| > 6. By Lemma 4.8 and Jensen’s inequality, we have that

1

1 ﬁ 1 L
VEHD > ( / Vi dm(x)) > |B, (x| 70 / (Vi) dme).
By (x*) By (x*)

Then, using Equation (38), we have

1 L

VE \ I o Vi) \ A0 o E

. > |B,(x™)| 4D . dm(x) > |B,(x™)|¥De ¢ > MM e,

Vﬂ*,T U B, (x*) V[(x*) Ui
U T

T

Taking € > 0 arbitrarily small (which determines 7 and hence also §) and then T > 0 sufficiently
large, we deduce the desired inequality. O
4.3 | Universal portfolios based on functionally controlled portfolios

The most frequently considered classes of portfolios are those which are generated by func-
tions acting on the underlying price trajectories, such as the functionally generated portfolios
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in Lemma 4.3. In this section, we shall investigate the growth rate of universal portfolios based on
the more general class of functionally controlled portfolios, as introduced in Example 4.4. More
precisely, we fix constants & € (0,1] and K > 0, and consider the sets

—d —d
c2rak <A+;|Rd> - {F e c2+a <A+;|Rd> Pl coee < K}

—d
7:2+0c,K c= {(ﬂF,ﬂF,/) ‘Fe C2+“’K(A+;Rd)},

and

where the portfolio 77 is of the form in Equation (28). Here we recall that C**% denotes the space
of twice continuously differentiable functions whose second derivative is a-Hdélder continuous.

—d
Lemma 4.10. Forany T > 0 and any F,G € C?**K(A_; RY), we have that

PP ((xF, 7) = (2, 7°7)) < CIIF = Gllc2 (1 + ”“”;,[O,T])’ (39)

—d
where the constant C depends only on p,d, and K. Considering the map ® : C***K(A;RY) —
F2+aK given by?

F v ®F) := (', zl"),

where ¥’ is of the form in Equation (28), we thus have that ® is continuous with respect to the C>-

—d
distance on C***K(A,;R%) and each of the seminorms {p?’p Yrso on F2HeK ¢ AM’P(C#). As the
notation suggests, here p?’p is defined as in Equation (26) with q' replaced by p.

Proof. In the following, for notational simplicity, we will omit the Gubinelli derivative in the
norms ||+, -|,,» [0.7] and seminorms pg’p ((+, -)); that is, we will write, for example, ||7||,,» [0.7]
oL uots

instead of ||z, 7r’||vp (or]- Let F, G € C**%K and s < t. We have
10,

(DF — DG)(u;) — (DF — DG)(us)

1
| O = D6+ a2
0

< ID*F = D*Gll o | s |,
so that

IDF () = DGl p,jo,r) < IF = Gllczllull p jor)-

Similarly, since

1 1
F
™) = F(u) — () — DF ()t = / / D2F (st + Ay gty &2, A A,
0 0
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we have

F(u) _ pG(w) _ 2
IRFE — ROy gy < IE = Gl l? g 7
Thus, for u-controlled paths (F(u), DF(w)) and (G(w), DG(u)), we have that
IF () = Gl o1y S IF = Gllea (1411112 o) - (40)

Writing 71} /u; = F(u,) + (1 — pt, - F(up))land 7rf’ /u, = G(ug) + (1 = p; - G(;))1, we have that

7TF 77.'G
L = F(w) = G(u) — (i - (F(uy) = G()),
U t t t t t

so that

pr? (7" = 7%) SIFW) = G@Wllyp oy + 1 - F() = GEllye o7 (41)
Similarly to the proof of Lemma 4.3, noting that R/ '[(F(“ =CwW) _ Ri E“ =0 s - (F(u) —
G(u))s ¢, we have that

e (F(u)—=G(w)
Rs,t

F(u)—G 2
< Dl oy [REP%| + | | (F ) = G| S IF = Glea s

where we used the fact that u is bounded, and we deduce that
2
e (F () = Gy o1y S IF = Gllea (14 112 1) -

Combining this with Equations (40) and (41), we obtain the estimate in Equation (39), which then
implies the desired continuity of ®. O

—d
Lemma 4.11. Forany T > 0 and any F,G € C***K(A,; R%), we have that
F G
|log V" —log V| < CIF = Glica(1 + Ikl 1 1 DT (42)
where &t is defined as in Equation (30), and the constant C depends only on p,d, and K.

Proof. We recall that during the proof of Lemma 4.7, we showed that

U Ll )
logV7" —logVE |s/ = duy| + 5 2/ — drul],
o M =170 s
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and (in the current setting replacing g’ by p)

T _F G
Ty — T
—d

/0 R

By the estimate in Equation (39), we obtain

T _F G
Ty — T
/0 7 S

Since ||F||c2+« < K and ||G||c2+« < K, recalling Equation (28), we can verify that

Fi _Gi\[(_Fj , Gij
(ns’l—ﬂs’l> <7Ts ! 47 J)

< py? (75, 77) = (2%,79)) (nunp,[o,n + ||Aﬂ||§,[0,ﬂ) :

S (142 ) (uyup,[o,n + ||A#||§,[0,T]> IF = Glca.

— S IIF = Glica.
MM
Hence, we have that
o (e ) ) ¢
Y/ - alul! | < IF - Gllcs Y [uli.
i,j=170 MMy i=1
Combining the estimates above, we obtain Equation (42). O

As a special case of Theorem 4.9, we can deduce an asymptotic growth rate for the univer-
sal portfolio in the case that our portfolios are restricted to the class F2+*K of functionally
controlled portfolios.

—d

Let m be a fixed probability measure on C2+*K = c2**K(A ;R?), and define v := ®,m as
the pushforward measure on 72**K of m under the map ® given in Lemma 4.10. The universal
portfolio based on functionally controlled portfolios is then defined by

- Jrovax TV dv(m)
t = )
Jpavax VI dv()

t € [0, 00), (43)

and the wealth process of the best retrospectively chosen portfolio is defined as

% F
viK¥i= sup VZi= sup VT (44)

T reF2+aK Fe(C2+a,K
By Lemma 4.11, the mapping F — V7TTF is a continuous map on C>**X with respect to the C2-
norm. We also have that C>*®X is compact with respect to the C2-norm (see Cuchiero et al. (2019,
Lemma 4.1)). Combining these two facts, we see that, for each T > 0, there exists a function F ; €
C?*K such that
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Theorem 4.12. Let m be a probability measure on C**%K with full support. Let 7t be the universal
portfolio as defined in Equation (43), and define V;’K’a as in Equation (44).

@ Iflimp_ (1 + ||,u||12J [0 T])é'T = oo, where as usual &y is defined as in Equation (30), then

. 1 Kot v
lim <10g Vot —log V7 >= 0. (45)
O 170 | !
S . d i
(ii) With the shorthand notation & jy1 := ||l p [k +1] + ||A'“||g’[k’k+1] + 2k ;{”kﬂ for each
T]-1
ke N, iftimy_q 3,00 U+ IR ke = o0, then
1 *,K o v/
(log ViKe _logvE ) —0. (46)

—>oo T1-1
E Do A+ I gy Pien

Proof. The result of part (i) follows from Theorem 4.9 applied with K = C?*%K d,.(F,G) = ||F —
Gllc2, t =®,and A(T) = (1 + ||,u||;’[O’T])§T, noting from the result of Lemma 4.11 that the bound
in Equation (36) is indeed satisfied in this case.

The result of part (ii) follows similarly with A(T) = [Tl 1(1 + || ,u||2 [kt 1] )§k k+1- That the
bound in Equation (36) is satisfied in this case follows from a very stralghtforward adaptation of
the proofs of Lemmas 4.10 and 4.11, whereby the same estimates are applied over the subinterval
[k,k+ 1] foreach k = 0,..., [T] — 1, and the integrals over [0, T] in the proof of Lemma 4.11 are
trivially bounded by the sum of integrals over these subintervals. [l

Remark 4.13. The result of Theorem 4.12 is stated for two different “clocks,” namely (1 +

Il 1 %r and 2,00
always dominates the other, maklng one of the statements superfluous. However, this is not
the case.

On the one hand, in Section 4.4 below, we will exhibit a particular scenario, which demonstrates
the nontriviality of the growth rate established in Equation (45). In this setting, one may check
that (1 + || ,u||; ,[O,T])gT gives a strictly better asymptotic rate than if one were to use the sum over

A+ ,u||2 [kk+1] )k k+1- One may wonder whether one of these clocks

a partition of subintervals, as in part (ii) of Theorem 4.12.

On the other hand, in Section 5 below, we will consider a probabilistic model, where the market
portfolio u is given by the solution of a stochastic differential equation driven by Brownian motion.
Using the fact that Brownian motion has independent increments, and the strong law of large
numbers, in Theorem 5.4, we will use Equation (46) to improve the asymptotic growth rate to T.
That is, we will actually show that, almost surely,

K, v
lﬂof(logV* “—logVZ )=0

It is, therefore, valuable to include both parts of Theorem 4.12.

Remark 4.14. Strictly speaking, Theorems 4.9 (which also recovers the version of Cover’s theorem
established in Cuchiero et al. (2019)) and 4.12 do not say that the universal portfolio 7 performs
asymptotically as well as the best retrospectively chosen one; rather, they provide bounds on how
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large the gap can become as time increases. For instance, for classical functionally generated port-
folios of the form in Equation (21), the gap is o(max;_; [/,t]”) and for functionally controlled
portfolios of the form in Equation (28), the gap is, for example, o((1 + || ,ullp [0.7] )er).

4.4 | The nontriviality of the asymptotic growth rate

In this section, we will show that the asymptotic growth rate A(T) = (1 + || ,ulli [0 T])é’T for func-
tionally controlled portfolios, as established in part (i) of Theorem 4.12, is nontrivial, in the sense
that there exists an instance of the market portfolio u = (k;);¢[0,c0) Such that

Ko *K,a

logV logV,*™ —1lo vE
lim sup g >0 and lim g 87t =0,

o (Tl o ) & (R )

where v = ®,m for an arbitrary probability measure m on C>**K with full support.

Lemma 4.15. Let p € (2,3) as usual, and then fix A > 0 such that % <A< % Let d = 3 and let
M = (H1)refo,00) be the continuous Ai-valued path given by

1 l(1 + E(1 —cost))
My 3 3
M = ,utz = %(1 + kT sint) , t € [2n(k — 1), 27k),
3 )
My %(1 + kT(cost —1—sint))

foreachk € N. Fora € (0,1] and K > 0, letV*K“

chosen portfolio over F2+*%K at time T. Then,

be the wealth induced by the best retrospectively

log V0
lim sup > 0.

o (T 2y ) €

Proof. Recall that for any portfolio 7, it follows from Proposition 3.9 that

IOgV;f:/ Sd _ = 2/ 7TS7TS d
0 0 pip

ljl

Clearly, since u is continuous with bounded variation on every compact interval, we have that
[1] = 0, so that the second term vanishes. For any functionally controlled portfolio 7" € F2+%K,
using the relation

M

——Fl(,ut)+1—2u Fi(u,), i=1,..,d,
My
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together with the fact that Z?zl du! = 0 (since Z;.i:l ul = 1), we deduce that

T F

T
logv;" = [ Zhdu = / —dﬂt / Fiu) dud. 7
0 =170

We now choose the function F € C**%X given by

X2
F(x)=]o0

—3
for x = (x1,%,,X3)" € A,. Substituting this function into Equation (47), we have

. T .F 3 .T T
l ) .
logV 7 =/ Ed,u,:Z/ Fl(,u[)d,u;=/ ,ufd,utl.
0 i=170 0

For n € N, we compute

27n 2k n 27
1 k=4 k=
2 1 _ . .
/0 /«‘tdl«lt Z/Zﬂ(k 1)Mtd/«lt—2/ §(1+Tsmt>-Tsmtdt
k=170

k2&

n n
;2 _T 22
Z s / sin tdt—SII;k R

" s /e .
el pfo2en) S <2 k—lp> < <2 k—@) < o0
k=1 k=1

Writing Af, = [Af ’ti’j lij=123 =/, "(4y — p15) ® dp,, for the canonical rough path lift of 4, and

and note that

for every n € N.

using the monotonicity of trigonometric functions on the intervals [0, %], [g, rl, [, 37”], and

[37”, 27], one can readily check that

27n n
u w21 24,1 Z -21
1A ”E,[O,Znn] AO 27mn _/ My dlut k™=
2 0 k=1

Recalling that &7 = ||ullp o) + 1A¥] 2 [0.7] (since [u] =0), and combining the calculations
>.[o,

above, we deduce that, for T = 27zn,

#,K,a

logVy: log V27m . Yoo k2

e
(L2 o)) & (L NIR g ) 2en 1+ Dia K

— 1 as n — oo,
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where we used the fact that 24 < 1. O

The example in Lemma 4.15 thus shows that for functionally controlled portfolios 77/ generated
byafunction F € C?>*%X which is not necessarily of gradient-type, the asymptotic growth rate (1 +
I ,u||f) (0.7 J)§' r appearing in Theorem 4.12 is actually sharp, in the sense that the log-relative wealth

log V’TTF and the rate (1 + || /«tllf} [0 T])ET grow at the same rate (up to a multiplicative constant) as
T — o0. o

4.5 | Functionally controlled portfolios have better performance

Let us conclude this section by showing that classical functionally generated portfolios of form in
Equation (21), which are induced by functions of gradient type, are in general not optimal among
the class of functionally controlled portfolios of the form in Equation (28).

Let u be a continuous A‘fr-valued path which, for simplicity, we assume to have finite variation
on every bounded interval (and which, therefore, trivially satisfies Property (RIE)). For any F €

~d

C*reK(A,; R?), we know, as we saw in Equation (47) above, that for every T > 0,
T _F d T _Fi_F,j T

F T 1 T i

logVT = / duy -5 ) / ———d[ul{ = / F(ug) dus,

0 Ms 2 0 0

ij=1

since the quadratic variation [u] vanishes. Suppose now that the generating function F were of
gradient-type, so that F = V f for some suitably smooth real-valued function f. We then have that

logV7" = /0 ) s = ) — 1)
which implies together with the mean value theorem that
[l VI | < 1V fllsolr = kol = IFllclbtr = ol < 2K,
as ||F|le < K and ur, 4y € Ai. In particular, we have that

sup log V7' < 2K < o0 (48)
T>0

for every generating function F of gradient type.
Now let 1 be the market portfolio given in Lemma 4.15, and let F(x1, x5, X3) = (X,,0,0)T, which
we note is not of gradient type. In the proof of Lemma 4.15 we saw, for T = 27rn with any n € N,

T .o . .
thatlog V]’EF = /o ,ut2 d,ut1 = 811 Erklzl k=24 for some positive 1 < é We thus immediately have that

lim sup log V;F = 0. (49)

T—o0

Comparing Equation (49) with Equation (48), it is clear that the best retrospectively chosen port-
folio over the set of functionally controlled portfolios cannot be of gradient type. Indeed, we infer
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that among the class of all functionally controlled portfolios, those corresponding to gradient-type
generating functions are in general far from being optimal, demonstrating the need to go beyond
gradient-type generating functions.

5 | FUNCTIONALLY CONTROLLED PORTFOLIOS IN
PROBABILISTIC MODELS

In this section, we shall demonstrate some further links between our purely pathwise theory
and classical SPT in a probabilistic setting. In particular, this will allow us to illustrate again the
advantages of functionally controlled portfolios, as introduced in Example 4.4, compared to (path-
wise) functionally generated portfolios (see Lemma 4.3), as were previously treated in Schied et al.
(2018); Cuchiero et al. (2019) based on Féllmer integration.

5.1 | Probabilistic model for the market portfolio

Whereas in the previous sections we worked in a purely pathwise setting, we now assume that the
market portfolio (also known as the market weights process) u = (i/, ..., Mﬁi)te[o,m) is described
by a time-homogeneous Markovian It6-diffusion with values in A%, of the form

t t
te = o + / c(u)A(us) ds + / VoG dW,, L0, (50)
0 0

where p is distributed according to some measure p on A%, W is a d-dimensional Brownian
motion and \/_ denotes the matrix square root. We assume that u is the canonical process defined
on path space (Q, F, P), that is, Q = C([0, o0); A‘i), F =o(u; : t €[0,)),and P denotes the law
of u. For the moment, A is just assumed to be a Borel measurable function from A‘i to RY, Writing

—d
Si for the set of positive semi-definite symmetric matrices, ¢ € C(A,; Si) is such that
c(x)1=0 forall x e Ai.

The latter requirement is necessary to guarantee that the process u lies in Aﬁlr. For a complete char-
acterization of stochastic invariance of the closed simplex (under additional regularity conditions
on the coefficients A and c), we refer to Abi Jaber et al. (2019, Theorem 2.3) and the references
therein. To ensure that the process stays in the open simplex A?, conditions for nonattainment
of the boundary are established for instance in Filipovi¢ and Larsson (2016, Theorem 5.7). These
conditions build on versions of what is sometimes called “McKean’s argument” (see Mayerhofer
et al. (2011) for an overview and further references).
We further suppose that the so-called structure condition is satisfied, that is

T
/ AT(u)e(u)A(ug)ds < o0 P-as.,, forall T € [0, c0), (51)
0

which is equivalent to “no unbounded profit with bounded risk” (NUPBR); see, for example, The-
orem 3.4 in Hulley and Schweizer (2010).
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Remark 5.1. As (NUPBR) is satisfied due to Equation (51), the sample paths of ¢ almost surely
satisfy Property (RIE) with respect to every p € (2,3) and a suitable sequence of partitions,
compare Remark 2.8.

We further impose the following ergodicity assumption in the spirit of Eberle (2016, Section 2.2,
Theorem 2.6 and Section 2.2.3, Theorem 2.8), along with an integrability condition on 4.

Assumption 5.2. We assume that the market portfolio u, given by the dynamics in Equation
(50), is an ergodic process with stationary measure p on Ad That is, we suppose that pp, = p for
every t € [0, ), where here (p;);c[0,0) denotes the transition probability of u. Furthermore, we
suppose that 1 € L2(A%, p; R?).

Note that the assumption that p is a stationary measure implies that the shift semigroup
O;(w)=w(t+-), t €[0,00), w € Q, preserves the measure P, in the sense that Po@;l =P.
Hence, the “ergodic theorem in continuous time” (see Eberle (2016, Section 2.2, Theorem 2.6,
Theorem 2.8)) can be applied.

While on the pathwise market Q,,, the portfolios were given by u-controlled paths (7, 7") € Vg
(recall Definition 2.3), in the present semimartingale setting, we consider a portfolio 7z to be an
element of the set IT of all predictable processes 7 taking values in A%, such that the It6 integral

T 1
/ o dus = / Z f
i=1 My

is well-defined for every T € [0, c0). As established in Cuchiero et al. (2019, Section 4.2.3), for
7 € 11, the relative wealth process (recall Equation 14) can be written in the usual form, that is

V’Tf=exp</0 Sdu,—= 2 U U(,u)ds) T € [0, ). (52)

0 ij=1 :u's:us

Remark5.3. Note thatif (7, ') is an adapted process with sample paths, which are almost surely u-
controlled paths, then it is predictable, and under Property (RIE), the rough integral interpretation

of f o d,us coincides almost surely with the It6 integral interpretation. Indeed, the rough inte-

gral can be approximated by left-point Riemann sums (see Theorem 2.12), while the It6 integral
can be approximated by the same Riemann sums in probability (see, e.g., Protter (2004, Theo-
rem I1.21)). Moreover, as established in Proposition 3.9, the identity in Equation (52) holds even
in a pathwise setting.

5.2 | The log-optimal portfolio and equivalence of its asymptotic
growth rate with Cover’s universal and the best retrospectively chosen
portfolio

The results in this section will illustrate that in the presence of an appropriate probabilistic
structure, the asymptotic growth rate can be significantly improved for scenarios outside a null set.
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For a given T > 0, the log-optimal portfolio 7 is the maximizer of the optimization problem

sup E[log VT]. (53)
rell
We write
‘//\T = V;{\

for the corresponding wealth process. As shown in Cuchiero et al. (2019, Section 4.2.3), if i satisfies
the dynamics in Equation (50), then 7 = (7, ..., 7¢) can be expressed as

d
= uy (/V(uz) 1= (m)>, t €10, o), (54)

Jj=1

and, due to Equation (52), the expected value of the log-optimal portfolio satisfies

T
Ellog Py] = sup Ellog V7] = 3E l / AT(uoc(usM(us)ds]. (55)
rell 0

We suppose that the log-optimal portfolio has finite maximal expected utility and require thus
additionally to Equation (51) that

T
[E[ / AT(us)C(#s)/l(us)dSl < oo.
0

From the expression in Equation (54), we see immediately that the log-optimal portfolio 7 belongs
to the class of functionally controlled portfolios, as defined in Example 4.4, whenever A is suf-
ficiently smooth. In general, however, it does not belong to the smaller class of functionally
generated portfolios, as we will see in Section 5.3.

In Equation (53), the supremum is taken over all predictable strategies in I1. However, since the
optimizer is actually of the form in Equation (54), we can also take the supremum in Equation (53)
over a smaller set. Indeed, it is sufficient to consider (functionally controlled) portfolios of the form

. d
(nF) = u <Fi(/xz) +1-) u{Ff(m)), (56)
j=1

for functions F in the space LZ(A‘i, 05 R%).
Clearly, any portfolio 7' of the form in Equation (56) can itself be considered as a function
7l e L2(A%, p; RY), which maps x — 77 (x), where

d
[7F (%)) = xi<Fi(x) +1-— Z ijj(x)>, (57)

Jj=1

with the corresponding portfolio then being given by ¢ - 7f'(u,).
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In the current probabilistic setting, we establish the following equivalence of the asymptotic
growth rates of the log-optimal, best retrospectively chosen and the universal portfolio based
on functionally controlled portfolios of the form in Equation (56), which can be viewed as a
generalization of Cuchiero et al. (2019, Theorem 4.12) for nonfunctionally generated portfolios.

Theorem 5.4. Let u be a market weights process with the dynamics in Equation (50).

©)

(i)

(iii)

Suppose that p and A satisfy Assumption 5.2, and that c € C(Ki; Si). Let m be a probability
measure on Lz(Ad+, 0;R¥) such that A € supp(m). Define the universal portfolio ” analogously
to Equation (43) but with v being the pushforward measure of m under the mapping F + nf'
with 7" as in Equation (57), compare Cuchiero et al. (2019, Section 4.2.2). Suppose that there
exists an integrable random variable w such that, foreach T > 0, the growth rate of the universal
portfolio satisfies

1 v
TlogWTr > —w. (58)
We then have that
liminf = log V™" = lim = log ¥y =1, P-a.s (59)
Toco T gT_T—>ooT gVr =45 B
where L is given by
1 T
L:=<= A (0)e(x)A(x) p(dx).
2 Ad
¢
Suppose that

_d _d
Ae C; <A+;|Rd> , and yce CZ <A+;§d+> ) (60)

With the same notation as in Section 4.3, let m be a probability measure on C>**K with full
support, and let v = ®,m be the pushforward measure on F>*%K of m under the map ® given
in Lemma 4.10. Let ¥ be the universal portfolio as defined in Equation (43), and let V*X-% be
the wealth process of the best retrospectively chosen portfolio, as in Equation (44). We then have
that

. 1 * v
TlgIgo T <log VT’K’“ —logV7 > =0, P-a.s. (61)

Suppose that u, A, and c satisfy both Assumption 5.2 and Equation (60), and that K > 0 is suf-
ficiently large to ensure that 1 € C***K_Let m,v, 7", and V*X% be as in part (ii) above. Then,

~

s 1 v S T 1 = K,a _ qs l o _ _
lljl}l)lolc‘)lf T logVy = hTrrilorolf T logV, =" = Th_{rolo T logVr =L, P-a.s. (62)
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Remark 5.5. Note that the assumption of ergodicity in Assumption 5.2 is only needed for assertions
(i) and (iii). The equivalence of the asymptotic growth rates of the best retrospectively chosen and
Cover’s universal portfolio, as established in part (ii), holds for all Brownian-driven SDEs with
sufficiently smooth coefficients.

As preparation for the proof of Theorem 5.4, we need the following technical lemma, which is
an adaptation of Hubalek et al. (2002, Lemma 3.1).

Lemma 5.6. Let (f,),en be a sequence of non-negative measurable functions on some topological
space A, such that the map a — liminf,_ o f,(a) is continuous at some point @ € A. Let v be a
probability measure on A with @ € supp(v). Then,

ngQUM@s@gg(/fﬂwwwﬁ;
A

Proof. Let g > 0 be bounded measurable function such that [ ,8(@)v(da) = 1. By Fatou’s lemma
and Holder’s inequality,

/ liminf f,(a)g(a)v(da) < lim inf/ frn(a)g(a)v(da)
.A n—oo n—oo .A

n—1

< liminf < / fﬁ(a)v(da))z( / gﬁ(a)v(da)> " = liminf ( / fg(a)v(da)>",
n—0o0 A A n—oo A

n

where the last equality follows from the fact that lim,_, / &1 v(da) = / ' &(@)v(da) by
the dominated convergence theorem. Since g was arbitrary, @ lies in the support of v, and
liminf,_, . f, is continuous at @, we deduce the result. O

Proof of Theorem 5.4. Part(i): By the conditions on A and ¢, and the fact that we consider portfolios
of the form in Equation (56) with F € L2(A , ; RY), we see that the assumptions of Cuchiero et al.
(2019, Theorem 4.9) are satisfied. Thus, for each F € LZ(A ok Rd), we have that

. 1 F F
Th_l;lgoflogV]’f =L", P-as., (63)

where

o [ (T@Y 1 [ (7w F(x)
L F&(x)dmmmmﬁAx >U< ) e

+

Taking the supremum over F € L2(Ad . P Rd), we find that

F A

sup L =L" =1.
FeL2(ad o;Rd)
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Recalling Equations (54) and (63), it follows that, P-a.s.,
lim = log ¥y = lim ~logV™ =™ =T (64)
T T g T_T—on g T -

Note that the map

Sl

F . F
F — exp(L” )=T11_1)‘1c}0 (V;r )

is continuous with respect to the L2(A%, p; R%)-norm. Thus, applying Lemma 5.6 with f;(F) =

1
(V’TTF)?, and recalling Lemma 4.8, we deduce that

. 1 s . 1 g
jll_I}I;J T logVy < thll;lf T logVZ, P-as. (65)
On the other hand, by the definition of the log-optimal portfolio,
E [log V’T’v] <E [logVr]. (66)
By Equation (55) and the ergodicity of the process u, we have that
lim LE [log V7] =T. (67)
T-oo T

By Fatou’s lemma (which we may apply by the condition in Equation (58)), Equations (66), (67),
(64), and (65), we then have that, P-a.s.,

1 v 1 ~
<liminf L 1 < liminf L
< 11Trri10r01f T[E[logVT 1< 11Trri1°r01f T[E[log Vrl

—)(X)T

NN | v
E [1171:1’1 inf — log V7

~ 1 ~ 1 v
=L = lim = < liminf = T
L 7151;)10 T logVr < hTHllgf T logV7Z,
from which the result (59) follows.

Part (ii): The process u is assumed to satisfy the 1t6 SDE (50), but since the vector fields A(-)c(+)
and \/E(-) are in C* with bounded derivatives, u also coincides almost surely with the unique
solution of the rough differential equation

t t
e = o + / () A(s) ds + / ) AW,
0 0

driven by the standard It6-rough path lift W = (W, W) of W (see, e.g., Friz and Hairer (2020)). By
standard rough path estimates (see, e.g., Friz and Hairer (2020, (11.10))), for each k € N, we may
deduce an estimate of the form

1l i) S 1+ (Wi VIWIE )
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1
where W, k1) = IWllp, ks + ||W||p ekt , and the implied multiplicative constant is

2
independent of k and T. Using the bound in Equation (6), a similar estimate can be inferred for
the rough path lift A* of u, defined as in Equation (A.4). Writing tr(-) for the trace operator, it also
follows from Lemma B.1 and the boundedness of c that

k+1 k+1
Z[:u kk+1 (A c(lut)d[w]t> = </k tr(c(lut)) dt S 19

where we used that [W], = tI; as shown, for example, in Friz and Hairer (2020, Example 5.9).
We, therefore, deduce the existence of a polynomial g such that

(1 NRI2 ey ) ierr < @UTWlp i) (68)

for every k € N, with & ;.; defined as in Theorem 4.12.

Since Brownian motion is a Lévy process, the random variables g(||W/|, [k x+17)s k € N, are
independent and identically distributed. Moreover, by the enhanced Burkholder-Davis-Gundy
inequality® (see Friz and Victoir (2010, Theorem 14.12)) applied to each of the monomials com-
prising g, we have that E[g(||W/|,,[0,1))] < c0. Thus, by the strong law of large numbers, we have
that, almost surely,

s

7 2 8UWllppeen) — ELgUIWIp0i)]  as T — oo. (69)
k=0

From Equations (68), (69), and the result of part (ii) of Theorem 4.12, we then deduce that, almost
surely,

lim sup — <log VT —log v )

T—o0
T * v
. ;E 0 g(IIWIIP k1)) log V3% —logVZ
< limsup T T =0,
e Thco AN ek

which immediately implies Equation (61).

Part (iii): We have from part (ii) that Equation (61) holds. It is straightforward to check that
the result of part (i) also holds when we restrict to portfolios generated by functions F € C>*%X,
Thus, it suffices to verify the technical condition in Equation (58), since then part (i) implies that
Equation (59) holds, which, combined with Equation (61), gives Equation (62).

To this end, we first note that, similarly to the proof of part (ii) above, we may deduce that there
exists a polynomial g such that, for any F € C?**K,

[T]-1
llog V| < IIFlic: Y, & (1Wllprcicsny)
k=0
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for all T > 0. In particular, we have that

[T]-1

F
logV ==K Y gUIWllpiir1)-
k=0

Since, by Lemma 4.8, V7TTV =/ Corak V’TTF dm(F), and using Jensen’s inequality, we then have

[T1-1
1 Y4 1 7Z'F
= > = > W
TlogVT > T,/Cz+oc,1< logVT dm(F) > T kzzo g(ll ||p,[k,k+1]),

and, again by the strong law of large numbers, Equation (69) holds almost surely. It is also
straightforward to verify that

2
[T]-1 [T]-1
1 [T] 2
(T > g(||wup,[k,k+u>> < Y g(IWllppeks) s
k=0

k=0
so that, forall T > 1,

2

[T]-1 2

1 [T]

E (7 > g(||wup,[k,k+l])> < T EL8 (W5 01))°] < 4E[g(IWllp0,1)°] < oo.
k=0

[T]-1

ko &UIWI, kk41)) for T > 1is bounded in L?*(Q,P), and there-

T1-1
T (W gisest) = EL2UIWILyj01))] as T — oo both

almost surely and in L'(Q, P). It follows that

We deduce that the family % ¥

fore uniformly integrable. Thus, %Z

1 v
T log V’Tr > —wr,

for some random variables wy, T > 0, which converge as T — oo to an integrable random vari-
able w almost surely and in L'(Q, P). Although weaker than the condition in Equation (58), it is
straightforward to verify that this condition suffices, as it is sufficient for the application of Fatou’s
lemma in the proof of part (i). O

5.3 | Comparison of functionally controlled and functionally
generated portfolios

Recall that, as we observed from the expression in Equation (54), the log-optimal portfolio 7
belongs to the class of functionally controlled portfolios, provided that the drift characteristic A—
as introduced in the model (50)—is sufficiently smooth. In fact, the log-optimal portfolio 7 is
known to be even a (classical) functionally generated portfolio if A can be written in the gradient
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form

VG(x)
G(x)’

A(x) = Vlog G(x) = e Al

for some differentiable function G : A‘i — R, ; see Cuchiero et al. (2019, Proposition 4.7).

Considering again the stochastic model in Equation (50), we shall show in this section that
the log-optimal portfolio may genuinely not be a functionally generated portfolio, but still a func-
tionally controlled one, in cases when 4 is not of the above gradient type. We will then illustrate
numerically that the difference between the true log-optimal portfolio and an approximate “best”
portfolio based on a class of gradient type trading strategies can be substantial. This demonstrates
that such extensions beyond classical functionally generated portfolios are crucial.

Let us consider a so-called volatility stabilized market model of the form in Equation (50),
where, for some y > 0, the diffusion matrix is given by

cl‘}(#) = y:ul(alj - :uj)’ l’] =1,.., d’
where §;; is the Kronecker delta, and the drift is given by

c(u)A(u1) = Bu,
where B € R4 is defined by BV := 1JrT‘x(l §;;d) for some a >y — 1. In the context of SPT,
these models were first considered in Fernholz and Karatzas (2005). The condition o >y — 1
assures nonattainment of the boundary, as proved in Cuchiero (2019, Proposition 5.7), that is, the
process u takes values in A‘fr.
‘We can solve this linear system for 4, and find as general solution

1+«
trie i=1,..d,

2y

A =

for an arbitrary C € R. Note that this is well-defined as u always stays within the interior of the
unit simplex Ai due to the condition o > y — 1. We now define the function f* : Ri — R by

fo(x) = ! (70)

Then 3; f%(x) = (1 + a)/(2yx') + C fori = 1,...,d, so that
A(x) = Vf¥x) = VlogG(x), xeAl,

where G(x) : = exp(f*(x)). Hence, in this volatility stabilized model, the log-optimal portfolio 77
can be realized as a functionally generated portfolio. It follows from Equation (55) that

::E[E“"gvﬂ-w)( l/ ZJ‘“]‘ )
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A generalization of this model is a polynomial model with the same diffusion matrix (for some
fixed y), but a more general drift matrix B just satisfying B/ = — ¥, ” BY and B > 0 for i # j
(see Cuchiero (2019, Definition 4.9)). In this case, 1 is in general no longer of gradient type. To see
this, let d = 3, and

-p q r
B=|p —q 0 (M)
0 0 -r

for p,q,r > 0 such that 2min(p, g,r) — y > 0, where the latter condition is imposed to guarantee
nonattainment of the boundary (see Cuchiero (2019, Propostion 5.7)). We refer also to Cuchiero
(2019, Theorem 5.1) for the relation to (NUPBR) and relative arbitrages.

The solution 4 of ¢(x)A(x) = Bx is now found to be

2 3
Al -p+ x—+ )+,
(x) = y<r P+ag+r3

1 x!
2(x)=—-(r- =) +c,
(x) y<r q+px2>+
ABx) =
aal

o3
which cannot be realized as a gradient, for instance s1nce — ;é et
X

Let us now compare the log-optimal portfolio

d
@) = (/V(m) +1- D wA (m))

j=1

with the functionally generated portfolio
d .
(%) = u;(aif“(m 1=y ﬂiajf“(w),
j=1

with f as defined in Equation (70). We seek the value of ¢, which optimizes

sup E[log V7Tfa].
a

By Equations (50) and (52), we have that

T 1 T
[E[logv;f“]=[El [ v as-3 [ VTf“ws)c(uS)Vf“(us)ds]
0 0

:lg/“[El/oT<:S, #S>B d] (1+°‘)Z< l/ lz{/«Tst]_dZT)
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Since this expression is concave in a, we find the optimizer a* to be given by

T 1 1

a* = —1.

T «d 1
IE[/O Zi:l ;7; dS] —dz2T

Note that if B is the drift matrix of a volatility stabilized market model with parameter a, the right-
hand side yields exactly a, and we find the correct log-optimal portfolio. However, when we take
7% as an approximate portfolio, for instance in the case of B being of the form (71), this leads to
Figure 1. There, with the parameters p = 0.15, g = 0.3, r = 0.2, the functions t — E[log V,] (blue)

andt +— E[log V[ “ ] (orange) are plotted, where the expected value is computed via a Monte Carlo
simulation. This shows a significantly better performance of the log-optimal portfolio and, thus,
illustrates a clear benefit from going beyond functionally generated portfolios in SPT.
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ENDNOTES
'Here and throughout, we adopt the convention that E :=0.
2Note that @ plays the role of the embedding ¢ in the previous section.

3Strictly speaking, the enhanced BDG inequality was proved for geometric rough paths constructed via
Stratonovich integration. However, since [W], = t], it is easy to see that it also holds for the It lift W.
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APPENDIX A: ON THE ROUGH PATH FOUNDATION
In this appendix, we collect some results regarding rough integration, including its associativity
and a Fubini type theorem. While such elementary results are well-known for stochastic It6 inte-
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gration and other classical theories of integration, the presented results seem to be novel in the
context of rough path theory and are essential for the model-free portfolio theory developed in the
previous sections.

Throughout this section, we will consider a general p-rough path X = (X, X)—that is, we will
not impose Property (RIE)—and, as usual, we will assume that p, q, and r satisfy Assumption 3.2,
so that in particular 1 < p/2 <r < p < g < .

A.1 | Products of controlled paths

As a first step towards the associativity of rough integration, we show that the product of two
controlled paths is again a controlled path; see Friz and Hairer (2020, Corollary 7.4) for a similar
result in a Holder-rough path setting.

Lemma A.1. Let X € CPV7([0, T]; RY). The product operator II, given by

Vi(o,T];RY) x Vi([o, T1;RY) — Vi([0,T];RY),
((F,F"),(G,G")) » (FG,(FG)),

where (FG)' := F'G' and (FG)) := (F)VG! + F{(G") for every 1 <1i,j < d, is a continuous
bilinear map, and comes with the estimate

2
I, F')G, GDllya < CA+ XN ) IE, Fllya G, G My, (AD

where the constant C depends on p, q, r, and the dimension d. We call TI((F, F"), (G, G")) the product
of (F,F") and (G, G"), which we sometimes denote simply by FG.

Proof. It is clear from its definition that IT is a bilinear map. Suppose (F, F’), (G,G’) € V{. For all
1<i,j <dand(s,t) € A ), we have

IFGY lly S IF"llgGllse + IF o IGllg + IFllgG llso + IF NG
S UFlles + IFllg + 1o + IF )G o + IGlly + G o +11G"llg)  (A2)
2
S A+ XY IF, 'l G, Gl

RFG

To identify the remainder , We compute

(FG)E,I = F;'JG;' + F;'Gl + F; IG; ,

Il
~

d d
2 ENIX] + (R )i,t> Gs + F§<Z(G’)§J X, + (RGX,t) +F Gy,
=1 j=1

Il
M=

Y ()6 + FiG ) X1, + RF), Gh + FIROY,  + FL, G,

.
Il
—

s

= Y (FGY)!x!, + RFOY,,
J:
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where (RF9),, 1= (RF); G} + Fy(R%),, + F,G} . Using the fact that 2r > p, we then estimate

S,t st
IR"C1l, S IR"I-1IG o + IFllco IRl + IF 112Gl

S+ IIXllp)(IIRFIIVIIG,G’Ilvg + IIF,F'IIV;IIRGIIr) +IFIL NG, (A3)
2
S A+ XN IF, Fllyg G Gl
The estimate (A.1) then follows from Equations (A.2) and (A.3). O

A2 | Associativity of rough integration

The following proposition provides an associativity result for rough integration.

Proposition A.2. Let X = (X,X) be a p-rough path and let (Y,Y'),(F,F'),(G,G") € Vg be
controlled paths. Then, the pair (Z,Z") 1= (/0' F, dG,,FG') € Vi, and we have that

/ Y,dzZ, = / Y, F, dG,,
0 0

where on the left-hand side, we have the integral of (Y,Y") against (Z,Z"), and on the right-hand
side, we have the integral of (YF,(YF)") against (G, G"), each defined in the sense of Lemma 2.6.

Proof. The fact that (Z,2') € Vfg follows from the estimate in Equation (6) combined with the
relation Gy, = G/X,, + RY,. It also follows from Equation (6) that the function H JFdG | defined
by

[ FdG
st

t
Zsy = / F,dG, = F,G,, + F{G{X;, + H
N

for (s,t) € Ay, has finite p-variation for some p <1, and we can thus conclude that

. FdG . :
lim|p|_o Z[s,t]eP |HS/’[ | = 0. We similarly obtain

t
/ Y, dZ, = Y,Z,, +Y,ZIX,, +H 'Y,
N

[ YFdG
st ’

t
/ Y,F,dG, = Y\FGy, + (YF),GX;, + H
S

with

. Ydz . YFdG
lim Z |HS/t | = lim Z |HS/[ | =0.
PI=0er P10 er

Noting that (YF)' = YF’ + Y'F, we then calculate

t
d.
/ Y, dZ, = YoZs, + Y/ZIX,, + H. ¥
N

S,t
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dc d
= YS (FsGs,t + F;Géxs,t + Hs/,tF ) + YéFSngsJ + HS/,tY ’
d d
= Y\F\Gy, + (Y,F, + YIF)GX,, + YoH! /O e ml ¥
t .
_ / Y, F, dG, _HS{tYFdG + YSHS/’[FdG +Hs/,tYdZ'
N

Taking limp|_, Z[s (lep ON both sides, we obtain fOT Y, dZ, = /OT Y, F, dG,. O

Remark A.3. Denoting the integration operator by e, the result of Proposition A.2 may be
expressed formallyas Y « (F « G) = (YF) « G. We, therefore, refer to this result as the associativity
of rough integration.

A3 | The canonical rough path lift of a controlled path
Given a p-rough path X = (X, X) and a controlled path (Z,Z’) € V{, one can use Lemma 2.6 to
enhance Z in a canonical way to a p-rough path Z = (Z, Z), where Z is defined by

t
Lgy i= / Z,4z, - Z,Z,, for (s,t) € A1) (A4)
N

with the integral defined as in Equation (5). Indeed, we observe the following.
Lemma A.4. Let X = (X, X) be a p-rough path and (Z,7Z') € vg be a controlled path. Then, Z =
(Z,2), as defined in Equation (A.4), is a p-rough path. Moreover, if (Y,Y') € V2, then (Y,Y'Z') €
Vi and

X

T

T
/YudZuz/ Y,dZ,,
0 0

where on the left-hand side, we have the rough integral of (Y,Y") against Z, and on the right-hand
side, we have the integral of (Y,Y'Z") against (Z,Z") as defined in Equation (5).

Proof. ThatZ = (Z, Z) is a p-rough path follows immediately from Lemma 2.6. That (Y,Y’Z’) €
V; can be shown in a straightforward manner using the definition of controlled paths. Arguing
similarly as in the proof of Proposition A.2 and using the same notation, we calculate, for (s, t) €

Afo,r15

t
/ Y, dZ, = Y,Z,, +Y'Z,, + H *
S

S,t

zdz YdZ
= YsZs,t + Y; <Z;Z§XS,t + Hs/,z ) + Hs/,t
t
Ydz zZdz Ydz
= / Y, dZ, — Hs/,t + Y;HS/,[ + Hs/,t .
s

Taking limp|_o Z[ on both sides, we obtain fOT Y,dZ, = /OT Y,dz,. O

s,tleP
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A.4 | The exponential of a rough path

Based on the bracket of a rough path (recall Definition 2.9), one can introduce the rough
exponential analogously to the stochastic exponential of 1t6 calculus.

Lemma A.5. For a one-dimensional p-rough path X = (X,X) (so that in particular X is
real-valued) such that X, = 0, we introduce the rough exponential by

1
V[ Z=eXp <X[_§[X]l)’ tE[O,T].
Then ,V is the unique controlled path in Vf; satisfying the linear rough differential equation
t
Ve=1 +/ V,dX,, te[0,T], (A.5)
0

with Gubinelli derivative V! = V.

Proof. Applying the 1t6 formula of Proposition 2.10 with Y = X — %[X], Y’ =1, and f = exp,
we observe that the Young integrals cancel, so that V' does indeed satisfy Equation (A.5). The
uniqueness of solutions to Equation (A.5) follows from the stability of rough integration, provided
in this setting by Friz and Zhang (2018, Lemma 3.4). O

A.5 | A Fubini-type theorem for rough integration

In this subsection, we provide a Fubini-type theorem for Bochner and rough integrals. A result of
this type is mentioned in a Holder-rough path setting in Friz and Hairer (2020, Exercise 4.10).
Theorem A.6. Let X = (X, X) be a p-rough path, let A be a measurable subset of V., and let v be
a probability measure on A. IffA ||K,K’||v; dv < o, then

T T

//Kudvqu=// K, dX, dv.
0 J4a AJo

Proof. Due to fA IK,K'||,a dv < o0, the controlled path fA(K, Khdv e Vg exists as a well-
X
defined Bochner integral. For s < t, we have

t t
/ / K,dX,dv — / Kydv X, — / K dvX;, = / / K, dX, — KX, — K/X;, |dv
Ads A A A s

and, by the estimate in Equation (4),

t
/ Ku qu - KsXs,t - Kgxs,t
s

< CURM N s,y X N p 5.1 + IIK'IIq,[s,t]IIXIIg,[s,,])- (A.6)
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Since 1/r +1/p > 1, there existsa p > p such that1/r + 1/p = 1. By Holder’s inequality, for any
partition P of [0, T], we have

1

r P
/ D IRE N sy 1X Ml p s dv < / ( ol Kn,bt> < >l ||W> dv
Al A \[s,t]leP [s,t]leP

s,tleP
) p-p
/ RN | jo.ry d X1 on<lmax ||X||p[“>

Since fA IRE I, o) dv < /A ||K,K’||v; dv < o0, and since (s, 1) = |IX||, s, is uniformly contin-
uous, we deduce, treating the second term on the right-hand side of Equation (A.6) similarly,

that
t
| 71)i|r£10 D / < / K, dX, — KX, — K;xs,t> dv = 0.
[stlep A S

Thus, we obtain

t
// K, dX,dv = lim //Kuqudv
aJo 1P1-0 Ads

[s,t]leP
T
= lim D /stva,t+/K§deS,t=/ /Kudvqu.
P10 er /4 A 0 Ja

APPENDIX B: ROUGH PATH THEORY ASSUMING PROPERTY (RIE)
In this section, we provide additional results concerning rough path theory assuming Property
(RIE), and, in particular, we give a proof of Theorem 2.12. As usual, we adopt Assumption 3.2.

B.1 | On the bracket of a rough path

We begin with some properties of the bracket of a rough path, introduced in Definition 2.9.
Lemma B.1. Let X = (X, X) be a p-rough path and let (K,K') € V;. Recall from Proposition A.2
that(Z,7') : (/ K,dX,,K) e Vq LetZ = (Z, Z) be the canonical rough path lift of Z, as defined
in Equation (A 4), so that in parncular the bracket [Z] of Z exists. Then,

_ / (K, ® K,) d[X],.
0

where the right-hand side is defined as a Young integral.
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Proof. Since [X] has finite p/2-variation, the integral

T
[ ®ok)dx), = tim ¥ & ©K)X],
0

[s tler

exists as a Young integral. In the following, we shall abuse notation slightly by writing H; =

o(|t — s|) whenever a function H satisfies limp|_o ) [s.t]eP |Hg ;| = 0. We have

[Z]s,t =Zs QZg; — 2Sym(zs,t)
= (KsXs,t + Kéxs,z) ® (KsXs,t + K;Xs,t) - 2(Z§ ® Z;)Sym(xs,t) +o(|t —s])
= (KXi,) ® (KsXy,) — 2(Kg ® K)Sym(X,) + o([t — s|)

= (Ks ® Ks)[X]s,t + 0(|t - S|)

Taking limp o ), on both sides, we obtain [Z]; = fOT(Ku ® K,)d[X],. O

[s,t]leP
Proposition B.2. Suppose that S € C([0, T]; RY) satisfies (RIE) with respect to p and (P™),cy. Let
S = (S, S) be the associated rough path as defined in Equation (8). Let (K,K') € vg and (Z,7") =
(fo' K,dS,,K) e Vg. Let Z = (Z, Z) be the canonical rough path lift of Z as defined in Equation
(A.4), so that in particular, the bracket [Z] of Z exists. Then the following hold:

(i) The bracket [Z] has finite total variation, and is given by

N,—-1
[Z]; = lim Z Zt"/\tt" /\t® AL
n—oo

k+1

AL t e[0,T].

(ii) Let T be a continuous path of finite p/2-variation. Then, the path Y :=Z + T admits a
canonical rough path lift Y = (Y, Y), such that

N,—1

[Y], = [2]; = lim ZO Youre at®Yeone i €[0T (B.1)

Proof.

(i) Since, by Lemma 2.11, [S] has finite variation, it follows from Lemma B.1 that the same is true
of [Z]. By the estimate in Equation (4), we know that Z;, = KS;, + K|S;, + H;,, for some H
satisfying limp|_o Z[s {lep |Hj,| = 0. It follows that

N,—1 N,—1
lim ZZn r n g n —llmZ<Kn Sinppn ) (Kn Sinppn )
EALEE (AL ®Z ALY AL EALSLIALLE | AL ® EEALDEIALLL | AL

n—oo n—oo k

t
_ / (K, ® K,)d[S], = [Z],.
0
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(i) Since T has finite p/2-variation, the Young integrals / ' Zs, ®dT,, [, ! Iy, ®dZ,, and
/; ! T, ® dT,, are well-defined, and the function Y, defined by

t t t
Ysi=Zgs + / Zs, ®dI', + / I, ®dz, + / I, ®dry,
s s s

also has finite p/2-variation. It follows that Y = (Y, Y) is a p-rough path. The equality [Y], =
[Z], follows easily from the integration by parts formula for Young integrals. The second
equality in Equation (B.1) follows by a similar argument to the one in the proof of part (i).

(]

B.2 | Proof—the rough integral as a limit of Riemann sums

Proof of Theorem 2.12. Let (Y,Y') € Vg . Recalling the It6 formula for rough paths (Proposi-
tion 2.10), it follows from the associativity of Young and rough integrals (recall Proposition A.2)
that

t t 1 t
d = d = 2 d[S],-
| vusss= [ vissoas,+3 [ v,

By Perkowski and Prémel (2016, Theorem 4.19), we have

N,—1

t
/0 VuDSS.)48, = Jim 3 YgDISSgn v

the convergence being uniform in ¢ € [0, T]. By Friz and Hairer (2020, Lemma 5.11), we have the
pointwise convergence

N,—1 t
lim Z Y,2D2f(S,n)S%? = / Y, D2f(S,)d[S],,. (B.2)
n—oo = k k t 0

n n
Ik/\Z,tk+1/\

Recalling Polya’s theorem (see, e.g., Rao (1962)), which asserts that pointwise convergence of dis-
tribution functions on R to a continuous limit implies the uniformity of this convergence, we see
from the proof of Friz and Hairer (2020, Lemma 5.11) that the convergence in Equation (B.2) also
holds uniformly for ¢ € [0, T]. Thus, we obtain

t N,—1
— 1 2 ®2
/0 Y, df(S), = nh_{EO ];) <YtZDf(St£)StZAt,tZ+1AI + EY‘ZD f(StZ)SIL‘At,t,f+1At>’ (B.3)

where the convergence is uniform in ¢ € [0, T]. For every n and k, we have, by Taylor expansion,

Yt,’{' f(S)tI’('/\t,tI’c’H/\t
(B.4)

lyv D2 ®2
= Y[ZDf(StZ)StZA[,tZ+1A[ + EY[;{ID f(S[Z)St]'{'/\t,tly{’H/\t +YirRiacm ar

SUONIPUOD PUE SIS | 31 385 *[£202/90/0€] U0 AIq1T 3UIIUO AB]IM 80110 LSO YBINGUIPT 'SIN PUBI0IS 10) UOEINPI SHN A 9/€2T 1EW/TTTT'OT/I0P/W0d A8 | I AR 1pU1IUO//SANY WOAJ papeojumod ‘€ ‘€202 ‘G96629rT

fopm A

85UB017 SUOLULIOD aAeaID 3 el dde ay) Aq pausenob ae sap e O ‘8sn Jo Sa|ni Jo) Arig1auliuQ 81 Uo (Suony



ALLAN ET AL.

WILEY -2

where
1 1
Rup i= / / (D2 (Sy + F1raSue) = D2F(S)) S 1y dry dry.
0 0

Since f € CP*¢, we have that |R, | < |S,,|P*, from which we see that R has finite p/(p + €)-
variation. Since p/(p + ¢) < 1, it follows that

n—oo

N,—1
hm Z Y YIR n n = O
“ tk tkAt,tk+1At ’

where the convergence is uniformin ¢ € [0, T]. Thus, taking lim,,_, o, Zgig Yin Equation (B.4) and
substituting into Equation (B.3), we deduce the result. O
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