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Probing center vortices and deconfinement in SU(2) lattice gauge theory
with persistent homology
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We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect
and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. We
provide evidence for the sensitivity of our method to vortices by detecting a vortex explicitly inserted using
twisted boundary conditions in the deconfined phase. This inspires the definition of a new phase indicator
for the deconfinement phase transition. We also construct a phase indicator without reference to twisted
boundary conditions using a simple k-nearest-neighbors classifier. Finite-size scaling analyses of both
persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation
length ν of the deconfinement phase transition.

DOI: 10.1103/PhysRevD.107.034501

I. INTRODUCTION

Quantum chromodynamics (QCD) poses several out-
standing problems in particle physics, including the
mechanism of confinement and the deconfinement phase
transition, mass-gap generation, and chiral symmetry
breaking [1]. These phenomena are nonperturbative and
are therefore typically investigated through the framework
of lattice QCD. Supplementing this traditional approach,
there is an emerging body of work exploring the use of
machine learning and data analysis tools in extending
Monte Carlo analysis of lattice QCD toward generating
the insights required to tackle these open problems.
References include [2–4] among others. For example,
one application of machine learning is to classify phases
of the theory based on sampled configurations, learning
observables that function as order parameters for the phase
transitions undergone by QCD, following the quantitative
program outlined for spin models in [5].

Focusing on confinement, a compelling potential mecha-
nism relies on the presence of topological defects called
center vortices in confining gauge configurations [6–8].
Vortexlike configurations have been shown to exist in pure
gauge theories (e.g., [9–35]) and have recently been
observed in lattice simulations of QCD [36]. While order
parameters have been constructed for the confinement-
deconfinement phase transitions in Yang-Mills theories
that are based on the topological symmetry related to
the conservation of the number of vortices (see, e.g.,
[15,37,38]), identification of vortices proves to be a more
challenging undertaking. In fact, existing methodologies
for exposing vortices in gauge theories rely on performing
gauge fixing and projection [39]. This procedure suffers
from the problem of Gribov ambiguities [40,41], which,
even with careful choices of the gauge fixing condition (for
instance, following the prescription of [42]), can be
mitigated only in part. Motivated by the physical appeal
of a fully gauge-independent description, we investigate the
possibility of instead analyzing vortices and performing
phase classification in a gauge-invariant manner by making
use of persistent homology [43] alongside other tools from
topological data analysis, a novel approach to data (in our
case, consisting of gauge configurations) that places
emphasis on rigorous classifications of shapes of datasets
based on their topological properties. Rather than con-
sidering full QCD, in this paper we instead develop a
methodology for the pure gauge SU(2) lattice gauge theory,
which also exhibits a deconfinement transition potentially
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driven by center vortices. In the context of vortex identi-
fication, this system represents a toy model of QCD where
the quarks have been removed and the gauge group is
simplified from SU(3).
Among other previous work on the use of persistent

homology and computational topology to investigate sys-
tems from physics [44–54] (a useful survey is [55]), we
remark on two that look at QCD and lattice gauge theories
in particular. Kashiwa, Hirakida, and Kouno noted the sign
problem in simulating dense QCD and instead considered
an effective model in the form of a modified 3D Potts
model where each Z3 Potts spin corresponds to a Polyakov
loop [56], avoiding the need to construct a filtered complex
from gauge fields directly. Computing the persistence of
point clouds of lattice sites sharing the same Potts spin, they
were able to probe the phase structure of the model using
the average and maximum birth-death ratio of points in the
resulting persistence diagrams. More recently, Sehayek and
Melko investigated the 2D and 3D Z2 lattice gauge theories
[57]. Given a configuration of the model, they place a point
at the center of each spin-down lattice link and compute the
Vietoris-Rips filtered complex of the resulting point cloud.
The β1 Betti curve then provides the number of closed
strings of down spins and their sizes. These quantities and
the filtered complex are gauge variant, but by averaging the
loop count over many configurations they indirectly mea-
sure the density of vison defects which produces a clear
indicator of the phase transition in the 3D model when
plotted as a function of temperature.
Our main contributions are as follows.
(i) We introduce a gauge-invariant construction that

produces a filtered complex (for input to persistent
homology) from a field configuration for SU(2)
lattice gauge theory, and we argue that this pipeline
should see center vortices.

(ii) We demonstrate that the resulting persistent homology
is able to detect an explicitly inserted vortex in the
deconfined phase by showing that it distinguishes
configurations generated using twisted boundary con-
ditions. In particular, we show that a phase indicator
can be recovered by comparing the PH2 persistence
diagrams of configurations generated using twisted
boundary conditions and configurations sampled us-
ing the usualWilson action, similarly to thevortex free
energy order parameter. This phase indicator allows us
to estimate the critical β and critical exponent of
correlation length via finite-size scaling.

(iii) Using a k-nearest-neighbors classification of per-
sistence images, we identify the deconfinement
phase transition directly from configurations gen-
erated using the usual Wilson action. Moreover we
accurately estimate the critical β and critical ex-
ponent of correlation length via finite-size scaling.

The rest of this paper is organized as follows. In Sec. II
we introduce the SU(2) lattice gauge theory, the deconfine-
ment phase transition and the center vortex picture for

confinement. In Sec. III we review the techniques we use
including persistent homology, k-nearest-neighbors classi-
fication and finite-size scaling analysis. In Sec. IV we
introduce two different persistent homology-based phase
indicators for deconfinement, meaning statistics that are
zero in one phase and nonzero in the other, which we use to
quantitatively analyze the phase transition. Finally in
Sec. V we discuss our findings and identify potential
directions for future work. The appendixes contain more
detailed reviews of some of the tools we use.

II. SU(2) LATTICE GAUGE THEORY

A. The model

A configuration of the 4D SU(2) lattice gauge theory is
specified by SU(2)-valued variables UμðxÞ located on each
link ðx; μÞ of an Nt × N3

s lattice Λ with periodic boundary
conditions, where μ ∈ f0; 1; 2; 3g describes the direction in
which the link emanates from the lattice site x ∈ Λ. In
practice, UμðxÞ lies in the fundamental representation of
SU(2), taking the formof a2 × 2 complexmatrix. To simulate
at nonzero temperature we ensure Nt ≪ Ns. The gauge
symmetry is generated by gauge transformations ΩðxÞ ∈
SUð2ÞΛ sending each UμðxÞ ↦ Ω†ðxÞUμðxÞΩðxþ μ̂Þ,
where xþ μ̂ denotes the lattice site one step in the μ direction
from x. The observables that are invariant under these
transformations are traces of products of the link variables
along closed pathsC, also known asWilson loopsWðCÞ. The
simplest nontrivial example is theWilson loop around a 1 × 1
plaquette ðx; μ; νÞ of the lattice:

Wμ;νðxÞ ¼
1

2
tr½UμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞ�:

We use this to define theWilson action given a configuration
U ¼ fUμðxÞgðx;μÞ as

SðUÞ ¼ −
β

4

X
x;μ<ν

Wμ;νðxÞ; ð1Þ

where β ¼ 4=g2 and g is the gauge coupling parameter. This
in turn allows us to define the vacuum expectation value of
any given observable AðUÞ as

hAi ¼
R
dUAðUÞe−SðUÞR

dUe−SðUÞ
; ð2Þ

wheredU ¼ Q
x;μ dUμðxÞ is a product ofHaarmeasures over

SU(2) for each link variable. In practice we estimate expect-
ations using Monte Carlo methods, where Eq. (2) becomes a
simple mean of the observed values.

B. Deconfinement and center vortices

The model introduced above exhibits two phases—a
confined phase at low β and a deconfined phase at high β—
and the phase transition between these is known as the
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deconfinement transition. This transition occurs only in the
spatial continuum limit Ns → ∞ and while we care also
about the temporal limit Nt → ∞, it is worth noting that a
critical β is well defined for each finite Nt and it is these we
will be estimating. Confinement in the SU(2) lattice gauge
theory can be characterized in a number of ways [1],
including the following.

(i) Area law for Wilson loops.—Let WðCÞ denote the
value of a Wilson loop around a closed curve
C ¼ R × T, consisting of rectangle of edges R in
a spacelike direction and T along the temporal
direction. We consider the limit of large area
AðCÞ ¼ RT. In the confined phase at low β we
have that hWðCÞi ∝ expð−σAðCÞÞ, where σ is
known as the string tension. In the deconfined phase
at high β we have that hWðCÞi decays exponentially
instead with PðCÞ, the perimeter of C.

(ii) Vanishing Polyakov loop.—Define the Polyakov
loop at a point x in the lattice as

PðxÞ ¼ 1

2
tr½U0ðxÞU0ðxþ 0̂Þ…U0ðx − 0̂Þ�

(note this only depends on the spatial coordinates of
x). This represents a Wilson loop that has a nonzero
winding number around the time direction of the
periodic lattice. In the confined phase we have
hPðxÞi ¼ 0 whereas in the deconfined phase we
have hPðxÞi ≠ 0.

Several possible pictures of what drives the deconfine-
ment transition, in both this model and QCD, have been
proposed. Here we focus on the center vortex picture [6,7].
Fix a time slice at time t. Given two closed oriented
contours C and C0 in that three-dimensional slice with
linking number m, a loop operator BðC0; tÞ can be defined
that has the following commutation algebra with theWilson
loop WðC; tÞ:

WðC; tÞBðC0; tÞ − ð−1ÞmBðC0; tÞWðC; tÞ ¼ 0: ð3Þ

This equation defines the ’t Hoof algebra [6]. For simplic-
ity, we consider planar nonintersecting curves C and C0, for
whichm ¼ 0, 1. The operator BðC0; tÞ is called the ’t Hooft
loop. When acting on a gauge configuration, BðC0; tÞ
creates a magnetic flux with the resulting observable effect
of multiplication by −1 of all Wilson loops having support
on curves C with linking number 1 with C0. For this reason,
the ’t Hooft loop is said to be a vortex creation operator.
Since the center of the group, which in our case is
ZðSUð2ÞÞ ¼ fI;−Ig ≅ Z2, plays a role in the ’t Hooft
algebra [as exposed by the factor ð−1Þm], the vortices
created by the ’t Hooft loop operator are called center
vortices. Fixing the curve C0 for all time slices t, we see that
a vortex traces out a surface in 4-space, closed by the
periodic boundary conditions.

In the limit of weak fields, where the theory is decon-
fined, all Wilson loops are close to unity. Confining
configurations are expected to have Wilson loops that
largely deviate from unity. In particular, Wilson loops
close to −1 can be obtained from a weak field configuration
through the injection of center vortices generated with
appropriate insertions of ’t Hooft loop operators. Moving
from this observation, operationally we can define a center
vortex to be a collection of plaquettes in the dual lattice (in
the sense of the dual graph) that form a closed surface (with
the closedness being a consequence of the Bianchi iden-
tities) and that carry a nontrivial charge in Z2, correspond-
ing to the −1 element. To carry a nontrivial center charge
means that any Wilson loop in the lattice that topologically
links with this surface is multiplied by that charge.
In the confined phase center vortices are found to form

large surfaces, often wrapping around the periodic boun-
daries, that percolate throughout the lattice [58]. Therefore,
given a particular Wilson loop WðCÞ, the number of
vortices that link with C is proportional to the enclosed
area AðCÞ, leading to the area law for the suppression of
hWðCÞi. In the deconfined phase, the center vortices
become smaller and more sparse, ensuring that for suffi-
ciently large Wilson loops, only those vortices close to the
curve C have a chance of linking with it, leading to the
perimeter law. Similarly we see that only in the confined
phase, where vortices may wrap around the periodic
boundary conditions of the lattice, is there a chance they
may link with a Polyakov loop, suppressing its expectation.
For an overview of the evidence supporting the center
vortex picture see Ref. [59]. In practice, center vortices
generated by the system have some finite thickness, so that
only larger Wilson loops may fully link with them and
obtain the full center charge. Loops that partially link may
still obtain a partial charge, some factor lying between I and
−I in SU(2).
While the concepts of vorticity and creation of a vortex

through the insertion of a ’t Hooft loop are well understood
in terms of symmetry and boundary conditions in a finite
volume (see for instance [6,15,37,38]), quantum fluctua-
tions make vortex identification a much more involved
process, with currently used prescriptions not fully vali-
dated from first principles. Awidely used method to detect
and analyze these thick vortices is to transform configu-
rations to the maximal center gauge, where each matrix
UμðxÞ is as close to either I or −I as possible, and then
project the matrices onto whichever of I or −I is closer.
After projection, the Wilson loops of plaquettes take values
either 1 or −1 and the latter are identified as projected
vortices, or P-vortices. It has been shown that the locations
of these correlate with the unprojected thick vortices [60].
However, the projection means that we lose gauge invari-
ance, as well as geometric information such as the thickness
of the vortices. In this work we introduce a method
designed to look for thin vortices, but we argue that,
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through the use of persistent homology, the results may tell
us something about these thick vortices too.
There is no analytical formula for the critical value of β

for each value of Nt, but detailed various numerical studies
have shown good agreement with each other. We will
compare our results to those found in [61] which we
reproduce in Table I. We also estimate the critical exponent
of correlation length ν which, as a consequence of the
Svetitsky-Yaffe conjecture [62], is the same as for the 3D
Ising model. We therefore compare our measurement of ν
to the high-precision estimate ν ¼ 0.629971ð4Þ from [63].

C. Twisted boundary conditions

In order to test the sensitivity of our method to thin
vortices we will make use of the trick of imposing twisted
boundary conditions [64]. The idea is that we choose
some coclosed collection of plaquettes in the lattice, i.e.,
plaquettes that link with some closed surface in the dual
lattice, and negate their contribution to the action. See
Fig. 1 for an illustration of coclosed collections of pla-
quettes. In our case we choose the plaquettes

T ¼ fðx; μ; νÞ ¼ ðð0; 0; y; zÞ; 0; 1Þj0 ≤ y; z < Nsg

corresponding to a surface wrapping around the latter two
spatial dimensions of the lattice. The action with twisted
boundary conditions becomes

STðUÞ ¼ −
β

4

" X
x;μ<ν

ðx;μ;νÞ∉T

Wx;μ;ν −
X
x;μ<ν

ðx;μ;νÞ∉T

Wx;μ;ν

#
; ð4Þ

which we refer to as the twisted action.
This modification of the action allows the lattice to

support an odd number of center vortices wrapping in the
yz plane, which is prohibited by the usual periodic
boundary conditions of the Wilson action. It is important
to note that we are talking about the boundary conditions of
the gauge field on the lattice and not the lattice itself. We
are not twisting the lattice and forming any kind of Möbius
band; rather, it is the gauge field which obtains a factor of
−I as we loop around the lattice. We can alternatively think
of this twisted action as explicitly inserting a thin vortex
into the system on the surface defined by T, so that the
system is forced to generate a (thick) vortex to cancel it out.
We shall denote expectations calculated with respect to this
twisted action by hAitwist, where A is a generic observable.
Twisted boundary conditions give us an alternative way

to characterize confinement and the deconfinement tran-
sition. Magnetic and electric flux free energies can be
defined in terms of the ratio of partition functions for the
twisted and Wilson actions and the behavior of these can be
shown to imply the area law decay for the Wilson loop [65]
and therefore confinement.

III. METHODS

A. Background on persistent homology

Persistent homology is a computational topology tool
introduced in its modern form in [43] and popularized in
[66]. It is one of the main tools of topological data analysis.
We shall give a brief overview here following that in [51],
but for a more complete review of persistent homology
useful references are [67–70].
Given a topological space, such as a manifold or a

simplicial or cubical complex, homology is an algebraic
way of describing the “holes” in the space. In particular, the
spaces we consider will be cubical complexes. A very brief
technical introduction to cubical complexes and their
homology can be found in Appendix A. In general terms,
the kth homologyHkðCÞ of a cubical complexC, computed
with coefficients in a field (here Z2), is a vector space that
has a basis in 1-1 correspondence with the k-dimensional
holes in C. As an example, consider removing a unit cube
from R3. This leaves behind a two-dimensional hole since
it is enclosed by a two-dimensional surface and as such
would be recorded by H2. Given a map of cubical
complexes f∶C → C0 (e.g., an inclusion map), we obtain
induced linear maps fk∶ HkðCÞ → HkðC0Þ. The rank of fk
tells us how many of the k-dimensional holes survived after

TABLE I. Estimates for the critical value of β for the deconfine-
ment phase transition in the SU(2) lattice gauge theory for the
values of Nt we consider in this paper. Reproduced from [61].

Nt βc

4 2.2986(6)
5 2.37136(54)
6 2.4271(17)

FIG. 1. A lower-dimensional illustration of a coclosed collec-
tion of plaquettes that wraps around the periodic boundary
conditions of the lattice. Plaquettes in a 3D lattice link with
edges in the dual lattice, so the condition of being coclosed means
that the collection of those linking edges forms a closed loop. In
this case the loop is closed by the periodic boundary conditions.
Going to four dimensions, we imagine repeating the coclosed line
of plaquettes along the new dimension, forming a coclosed
surface of plaquettes.
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being mapped into C0, i.e., how many persisted. Given
some data D, the idea of (cubical) persistence then is to
construct a collection of cubical complexes indexed by the
reals

FD∶ R → CubicalComplex

using the data, so that we have inclusions

FDðsÞ ⊆ FDðtÞ

for all s ≤ t ∈ R. We call such an R-indexed collection of
complexes and inclusion maps a filtered complex. Since the
FDðsÞ are each subcomplexes of the final complex FDð∞Þ,
we can specify the filtered complex by assigning to each
cube in the final complex the index at which it first appears,
and then FDðsÞ is the subcomplex consisting of all cubes
that have appeared at or before s.
Applying homology now yields an R-indexed collection

of vector spaces

Hk∘FD∶ R → VectorSpace

and linear maps

HkðFDðsÞÞ → HkðFDðtÞÞ;

and we may use the ranks of these maps to identify when
new holes are born, how long they persist through the
filtered complex, and when they die. We summarize this
information as a multiset called a persistence diagram
PHkðFDÞ ⊂ fða; bÞ ∈ R × ðR ∪ f∞gÞja ≤ bg that con-
tains a pair ðb; dÞ every time a k-dimensional hole is born
in FDðbÞ and dies in FDðdÞ. In the case that a hole persists
even in the final complex FDð∞Þ, we write d ¼ ∞. We
shall make use of such points later. It is said that a feature is
born at b and dies at d and that its persistence is d − b. This
can also be represented as a bar code (a multiset of intervals
½b; dÞ). There are a few ways to define distances between
persistence diagrams, but those which are most commonly
used are the bottleneck and Wasserstein distances (for
details see, e.g., [71]). For many typical choices of filtered
complex a small change in the input data D leads to only a
small change in the persistence diagram PHKðFDÞ as
measured by these distances. This property of persistent
homology is known as stability and makes persistence a
useful tool for dealing with real-world, noisy data.
In this work D is a single configuration of the SU(2)

lattice gauge theory. We therefore obtain a persistence
diagram for each sampled configuration and we can
consider statistics computed from these diagrams.
In their form as multisets, persistence diagrams do not

lend themselves to use directly as inputs for many standard
machine learning models and can contain many points,
taking up a large amount of computer memory. However

there are numerous methods to represent persistence dia-
grams as fixed-size vectors. In this work we make use of a
particular vectorization called a persistence image [72]. Let
gα;β∶ R2 → R denote a 2D Gaussian of standard deviation
σ centered at ðα; βÞ:

gα;βðx; yÞ ¼
1

2πσ2
exp

�
−
ðx − αÞ2 þ ðy − βÞ2

2σ2

�
:

Given a persistence diagram PHk ¼ fðbi; diÞgi∈I, its per-
sistence surface is the function ρk∶ R2 → R obtained
by translating each point ðb; dÞ ∈ PHk with d ≠ ∞ into
birth-persistence coordinates ðb; d − bÞ and then placing
Gaussians with variance σ2 on them, weighted by the
persistence of the point:

ρkðx; yÞ ¼
X

ðb;dÞ∈PHk

ðd − bÞgb;d−bðx; yÞ:

The ðnIÞ2-dimensional persistence image PIk is obtained
by discretizing a rectangular region of the domain of ρk into
a collection of nI × nI pixels pi and integrating ρk within
each:

PIik ¼
Z Z

pi

ρkðx; yÞdxdy:

So long as we choose the same σ and discretization for
each diagram, we can compute averages and variances
componentwise. Besides emphasizing high-persistence
points, the linear weighting by the persistence ensures
the stability of the persistence image. Finally we note that,
as discussed in [72], machine learning models trained on
persistence images are generally insensitive to the reso-
lution and variance parameters nI and σ. We also found this
to be the case in our previous work [51]. Therefore in this
work, we shall fix the parameters with a resolution of 25 ×
25 and σ equal to 5% of a pixel.

B. Filtered complex

As described in the previous section, to apply persis-
tent homology we must choose how to define a filtered
complex for a given configuration U ¼ fUσðxÞg. We
present a filtered complex FU which is constructed based
on Wilson loops and which will therefore give gauge-
invariant persistence diagrams.
The idea is to explicitly construct a cubical model of

vortex surfaces, under the assumption that vortices are thin.
Note that since we have periodic boundary conditions,
spacetime in this model forms a 4-torus S1 × S1 × S1 × S1.
The lattice Λ defines a decomposition of the spacetime
manifold into a cubical complex X in which there is a vertex
for each lattice site, an edge for each link in the lattice, a
2-cube for each plaquette, etc. The dual lattice Λ� deter-
mines a dual cubical complex decompositionY of spacetime.
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The vertices of Y are the centers of the 4-cubes of X. More
generally, the d-cubes of Y are in bijection with the (4 − d)-
cubes of X, where the bijection pairs a cube in X with the
unique cube in Y for which the intersection is a single point.
Wilson loops live on the cubical complex X, while vortex

sheets live on the dual complex Y. We will construct a
filtration of Y by letting each 2-cube enter at a filtration
index given by the value of the Wilson loop around the
boundary of the dual 2-cube in X.
In more detail, denote by cAðyÞ ¼

Q
μ∈A½y; yþ μ⃗� a cube

in Y, where ½y; yþ μ⃗� is the line segment between lattice
site y ∈ Λ� and yþ μ⃗. The cube c∅ðyÞ is just the point y
itself. The dimension d of cAðyÞ is jAj and we will refer to it
as a d-cube. The boundary ∂cAðyÞ of a d-cube is the set
of its d − 1-cube faces. For example ∂cfμgðyÞ ¼ fc∅ðyÞ;
c∅ðyþ μ⃗Þg. With this notation, our observation of the
bijection between plaquettes in X and Y becomes that the
2-cube cfμ;νgðyÞ is matched with the 2-cube cfσ;τgðxÞ in X
(defined similarly) that is used to define the Wilson loop
Wσ;τðyþ μ⃗þ ν⃗Þ where fσ; τg ∩ fμ; νg ¼ ∅.
To define the filtered complex we will give a filtration

index fðcAðyÞÞ ∈ R for each cube cAðyÞ in Y specifying
when it appears. Then FUðsÞ is the subcomplex of Y
consisting of all cubes c for which fðcÞ ≤ s. That is,

FUðsÞ ¼ f−1ð−∞; s�:

Since we are attempting to model vortex surfaces, we will
initially specify when the 2-cubes are to enter the filtered
complex and then introduce the cubes of other dimensions
based on these.
Our construction of the function f is the following.
(1) We introduce each 2-cube cfμ;νgðyÞ in our filtered

complex at index

fðcfμ;νgðyÞÞ ¼ Wσ;τðyþ μ⃗þ ν⃗Þ;

where fσ; τg ∩ fμ; νg ¼ ∅, that is, at an index equal
to the value of the Wilson loop around the plaquette
in X paired with it by the bijection.

(2) Since a 2-cube is not allowed to be included before
its constituent 1-cubes and 0-cubes in a cubical
complex, we introduce these at the smallest index of
all the 2-cubes they are incident to. So

fðcAðyÞÞ ¼ minffðCÞjcAðyÞ ∈ ∂Cg

when jAj ≤ 1.
(3) For the 3-cubes and 4-cubes we follow a cliquelike

rule where we introduce a cube as soon as all of its
boundary cubes are introduced. So

fðcAðyÞÞ ¼ maxffðCÞjC ∈ ∂cAðyÞg

when jAj ≥ 3.

Thus, for s < −1, FUðsÞ is the empty complex and, for
s ≥ 1, FUðsÞ is the filled in tiling homeomorphic to a 4-
torus. Going between these values, the first cubes to enter
FU are surfaces made up of plaquettes in bijection with
Wilson loops that are close to −1. The idea therefore is that
thin vortex surfaces will enter the filtered complex early.
Moreover, since small Wilson loops like those considered
here still pick up a partial charge from thick vortices,
surfaces representing those thick vortices ought to enter the
filtered complex earlier than they otherwise would have.
We expect to detect these closed surfaces in persistent H2

(since we compute homology with Z2 coefficients, the
orientability of the surfaces does not impact this). We may
also see other topological features such as the presence of
handles or holes in H1, as well as the transient low-
persistence points in persistent H0 and H1 that arise as the
surface forms near the start of the filtration. An illustration
of the connection between Wilson loops and the inclusion
of vortices into the filtration is shown in Fig. 2. An
illustration of how to imagine what the filtered complex
is aiming to do is shown in Fig. 3.
It is worth noting the difference in approach from our

previous work using persistent homology to identify
vortices in 2D XY models [51]. Vortices there were point
defects (located at vertices of the dual lattice), which we
aimed to detect by constructing one-dimensional loops in
the original lattice that encircled them. Here, we are
modeling the vortex surfaces in the dual lattice directly.
It is straightforward to see that this filtered complex FU

is stable with respect to perturbations of the SU(2) link
variables since the Wilson loopWμ;νðyÞ is a linear map due
to the linearity of the trace and is therefore Lipschitz

(a) (b)

FIG. 2. A lower-dimension illustration of the idea behind the
filtered complex. In three dimensions, center vortices form closed
one-dimensional curves that link with two-dimensional pla-
quettes. In this setting we would include edges [dark (red)]
according to the Wilson loop around the plaquette [light (cyan)]
they intersect. (a) Early on in the filtered complex we include
edges that link with plaquettes with negative Wilson loop values.
In this way we build explicit cubical models of one-dimensional
center vortices which are then detected in PH1. (b) Later on we
eventually fill in the rest of the edges and the 2-cubes between
them, destroying the PH1 features corresponding to the vortices.
Moving from three dimensions to four, we are inserting pla-
quettes instead of edges and instead of a closed curve we obtain a
closed surface which we detect with PH2.
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continuous. The stability property of persistent homology
[73] therefore ensures that a small perturbation of the link
variables only results in a small perturbation of the resulting
persistence diagram with respect to the bottleneck distance.

C. k-nearest-neighbor classification

In Sec. IV B we will make use of k-nearest-neighbors
(kNN) classification to map the persistence images
obtained from configurations onto phases as in [51]. For
vector-valued data, a kNN classifier is a nonparametric
model that models a categorical dependent variable
yðxÞ ∈ N, where x ∈ RN . The behavior of the model is
determined by the training data fðxi; yiÞg and a choice of
the hyperparameter k ∈ N. Given a new input x, it finds the
k indices i1x;…; ikx that minimize the Euclidean distance
jjx − xijj2. It then outputs the most common label among
the yi1x ;…; yikx .
Here x will be a persistence image, yðxÞ ¼ 0 will

indicate the low β, confined phase, and yðxÞ ¼ 1 will
indicate the high β, deconfined phase. We will train the
model using data sampled from both phases close to the
critical region. In the intermediate range of couplings where
there are no training data, the kNN model will output an
estimated classification OkNN ∈ f0; 1g. We may then treat
hOkNNi as a phase indicator.
As in [51], we note that training the classifier directly on

raw configurations is not computationally feasible. Doing
so would require a vast number of samples to sufficiently
fill out the configuration space and moreover the computa-
tional cost of the classification would grow too large. The
mapping from configurations to persistence images con-
centrates the distribution near a low-dimensional subspace,

and hence kNN becomes effective with far fewer samples.
We also note that vectorizing the persistence diagrams as
persistence images is not necessary for using a kNN
classifier since this only requires a notion of distance
between samples, of which we have several for persistence
diagrams. However these distances—such as the bottleneck
distance or Wasserstein distance—are computationally
expensive, especially for the large persistence diagrams
we obtain in this application. Using the Euclidean distance
between persistence images vastly speeds up the time taken
to evaluate a kNNmodel and, as we will see later, maintains
sufficient information to capture the phase transition.

D. Finite-size scaling analysis

The deconfinement phase transition in the SU(2) lattice
gauge theory is known to be a second-order transition
(again thanks to the Svetitsky-Yaffe conjecture [62]). As
such, quantities such as the Polyakov loop susceptibility

χðβÞ ¼ hP2iβ − hPi2β
diverge at the phase transition in a predictable way as we
approach the continuum limit. On a finite lattice this
susceptibility will remain analytic, displaying a pro-
nounced peak at a pseudocritical β somewhere above or
below the true critical inverse coupling βc. Holding Nt (and
therefore βc) fixed, letting Ns → ∞ causes the peak to
narrow and move closer toward βc. The way in which the
susceptibility scales close to βc as a function of Ns
asymptotically approaches the form

χðNs; bÞ ¼ Nγ=ν
s χ̂ðN1=ν

s bÞ; ð5Þ

(a) (b) (c)

(d) (e) (f)

FIG. 3. A cartoon of a 3D slice of the filtered complex. (a) At the beginning of the filtration the complex is empty. (b) At low Wilson
loop values we begin to form vortex surfaces with transient features detected in H0 and H1. (c) The vortex surfaces close, becoming
detectable in H2. (d) At higher Wilson loop values, vortex surfaces persist while other plaquettes begin to be included in the complex.
(e) The vortex surfaces may become filled in if all plaquettes inside the surface are included, killing the corresponding H2 class.
(f) Eventually the whole 4-torus cubical complex is filled in.
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where χ̂ is a dimensionless function, b ¼ β−βc
βc

is the reduced
inverse coupling, and γ and ν are the critical exponents for
the susceptibility and correlation length, respectively. By
simulating close to the phase transition on different lattice
sizes Ns we can extract the heights and locations of the
different peaks and then fit these to Eq. (5) to estimate βc, γ
and ν.
Similarly, persistent homology-derived observables may

exhibit large variations at criticality. In Sec. IVAwe look at
the difference in expectations of the birth time of a specific
point in the persistence diagram under the normal action
and the twisted action. In Sec. IV B we look at the
fluctuations in the output OkNN of a trained kNN model,
measuring the variance

χkNNðβÞ ¼ hO2
kNNiβ − hOkNNi2β

¼ hOkNNiβð1 − hOkNNiβÞ: ð6Þ

Note that the second equation follows since OkNN takes
values in f0; 1g. We find evidence that both these quan-
tities display finite-size scaling behavior similar to Eq. (5)
which we will use to estimate the critical inverse coupling
βc and the critical exponent of correlation length ν via a
curve collapse approach, plotting the observable against
x ¼ N1=ν

s b for multiple lattice sizes simultaneously and
finding values of ν and βc that minimize the distance
between the curves using the Nelder-Mead method, as in
the procedure described in [74].
If ν is known, we estimate βc by fitting the peak

temperatures βcðNsÞ of χkNN obtained from multiple lattice
sizes to the ansatz

βcðNsÞ − βcð∞Þ ∝ 1

N1=ν
s

: ð7Þ

IV. ANALYSIS

A. Detecting twisted boundary conditions

We first investigate the ability of the persistent homology
of our filtered complex to identify an inserted thin vortex,
obtained using twisted boundary conditions, as a function
of β. For Ns ∈ f12; 16; 20g, fixing Nt ¼ 4, we generate
200 configurations using the Wilson action (1) and 200
configurations using the twisted action (4) for each
β ∈ f1.5; 1.6;…2.9g. Configurations are generated using
the HiRep software [75] with one heat bath step and four
overrelaxation steps for each Monte Carlo step and a
sample taken every 100 Monte Carlo steps.
Since the inserted vortex forms a closed surface, we

expect to observe it in the PH2 diagram. Moreover, the
surface wraps round the periodic boundary of the lattice in
the latter two spatial directions. If it is the first such surface
to wrap around those dimensions to enter the filtered
complex, then we will observe it as a point in PH2 with

infinite death index since it encloses a two-dimensional
hole which remains even in the final complex of the filtered
complex (homeomorphic to a 4-torus). Otherwise, it would
appear as a point with finite death index. In Fig. 4 we
compare the persistence diagrams of individual sampled
configurations in each phase using the Wilson action and
the twisted action. In the confined phase there is no
immediate distinction to be made between the persistence
diagrams generated using the different actions. We claim
that this is because vortices in this phase percolate
throughout the system so there are likely to be many
vortices that wrap around the periodic boundary conditions
of the lattice. Our inserted vortex may then appear as a
single point of finite persistence in PH2, but the persistence
of the system is not affected largely. However in the
deconfined phase there is a clear difference. There are
unlikely to be any system-generated vortex surfaces that
wrap around the lattice so the inserted vortex becomes the
first such surface to enter the filtered complex. We therefore
observe that one of the PH2 points with infinite death time
has a much lower birth time than the others, allowing us to
identify that this point represents our inserted vortex
surface. We provide additional evidence for this claim in
Appendix D by showing that the 2-cycle responsible for
this point spans the same plane as the surface along which
the boundary conditions are twisted. Moreover, we observe
a significant change in PH0 and PH1 with many low
persistence points appearing early on in the filtered

(a) (b)

(c) (d)

FIG. 4. Sample persistence diagrams of individual configura-
tions obtained using the following actions and values of β:
(a) Wilson, β ¼ 1.5, (b) twisted, β ¼ 1.5, (c) Wilson, β ¼ 2.9,
and (d) twisted, β ¼ 2.9. The arrow in (d) indicates the point
ðb;∞Þ ∈ PH2 with the smallest birth index b. Note the distance
between it and the others.
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complex. These arise as different plaquettes of the inserted
vortex enter the filtered complex at different indices,
forming transient connected components and holes. This
is supported by the fact that these points all die by the time
we reach the birth index of the point in PH2.
Following the discussion above, we define an observable

based on the persistence diagram of a configuration:

m2 ¼ minfbjðb;∞Þ ∈ PH2g:
The expectation value of m2 for different lattice sizes with
the Wilson action and twisted action are shown in Fig. 5.
Note that there is no difference between the expectations
estimated using the different actions well into the confined
phase (low β), but in the deconfined phase (high β) the
curves split apart. As the lattice size increases, the point at
which the curves diverge approaches the critical β of the
phase transition from below. These observations motivate
measuring the difference between the expectation values
using different actions

Om2
¼ hm2i − hm2itwist

as a phase indicator which will be zero in the confined
phase and nonzero in the deconfined phase, similar to the
definition of an order parameter but without the require-
ment to detect any symmetry breaking. A finite-size scaling
analysis of this quantity yields the curve collapse in Fig. 6
with estimates of βc and ν:

βc ¼ 2.291� 0.019;

ν ¼ 0.614� 0.079;

in agreement with the existing estimate βc ¼ 2.2986ð6Þ in
Table I. Error estimates are obtained by performing 2000
bootstraps. While the error obtained is reasonably large, it
should be stressed that these estimates were obtained using
only 200 configurations. In Appendix D we look more
closely at thedistributionofm2 asmeasuredusing the twisted
action in order to better understand the behavior of Om2

.
Note that we fixed the exponent of −2 for the scaling of

Om2
with Ns. Attempting to fit this exponent along with βc

and ν often led to the optimizer returning unrealistic large
positive values for the exponent, spoiling the error estima-
tion. The value of −2 was found by hand to give a good fit
and we offer an heuristic argument for why. First note that
N2

s is how the number of plaquettes in the inserted vortex
surface scales with Ns, since the surface wraps around the
periodic boundary conditions. In the case where it describes
the formation of the inserted vortex surface, the value ofm2

is determined by the filtration index of the last plaquette to
enter the surface. Now the larger the surface, the more
likely it is that there will be at least one plaquette in the
surface affected by noise or pierced by another vortex,
causing it to enter the filtered complex late and dragging
the value of m2 closer to its average in the Wilson action.
Assuming that this likelihood is independent for each
plaquette or at least approximately linear in the number of
plaquettes, we therefore obtain the quadratic scaling in Ns.

B. Investigating deconfinement without twisted
boundary conditions

We now investigate whether the persistent homology is
able to detect the deconfinement phase transition purely
from the Wilson action by making use of a simple machine
learning framework inspired by that in [51]. In particular,
for Nt ∈ f4; 5; 6g we attempt to estimate the critical
inverse coupling βc and the critical exponent of the
correlation length ν via a finite-size scaling analysis of
the output of a k-nearest-neighbors classifier trained on the
persistence. In each case we repeat the following procedure
for each Ns ∈ f12; 16; 20; 24g.
(1) Configurations are sampled from a range of values

of β (specific values are given in each case below)
using the HiRep software [75] with one heat bath step
and four overrelaxation steps for each Monte Carlo
step and a sample taken every 100Monte Carlo steps.

(2) For each sample we compute their PH0, PH1, PH2

and PH3 persistent homology using our filtered
complex and compute the corresponding persistence
images with a resolution of 25 × 25 and σ equal to
5% of a pixel. We concatenate the four separate
images and flatten them into a 4 × 25 × 25 ¼ 2500-
dimensional vector.

(3) We train a kNN model (k ¼ 30) to predict the phase
of a configuration based on its concatenated per-
sistence image vector by using vectors from well
into the confined and deconfined phases.

FIG. 5. The expectation value of the observable m2 as a
function of β plotted for different values of Ns and with the
Wilson and twisted actions. The difference between the values for
different lattice sizes using the Wilson action is not distinguish-
able at this scale, so they are plotted as the same points. Their
error bars are also small enough so as to not be visible.
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(4) Using the trained classification model, we define an
observable OkNN which is the predicted phase of a
given configuration.

(5) Applying multiple histogram reweighting to the
variance

χkNN ¼ hO2
kNNi − hOkNNi2

¼ hOkNNið1 − hOkNNiÞ

(where the second equality follows since OkNN ∈
f0; 1g), we obtain an interpolated curve and a more
precise estimate of the location of its peak.

By performing a finite-size scaling analysis of the locations
of the peaks obtained for each value of Ns and a curve
collapse of the different reweighted variance curves, we
obtain estimates of βc and ν for the deconfinement phase
transition at the given value of Nt.

1. Nt = 4

For lattices of size 4 × N3
s with Ns ∈ f12; 16; 20; 24g,

we train a k-nearest-neighbors classifier (k ¼ 30) on the
concatenated PH0, PH1, PH2 and PH3 persistence images
of 200 configurations sampled at each β in the confined and
deconfined regions given in Table II. The classifier is then
used to produce a predicted classification OkNN for 200

configurations sampled for each value of β from the critical
region.
The resulting estimates of the expectation hOkNNiðβÞ are

shown in Fig. 7 along with interpolating curves obtained
via histogram reweighting. The variance curves χkNN are
shown in Fig. 8.
From here we proceed with two separate analyses. In the

first we estimate βc from a linear regression assuming the
value of the critical exponent ν to be known. In the second
we estimate βc and ν concurrently via a curve collapse
procedure. In both cases we perform two separate boot-
straps to obtain 500 bootstrap samples from each. One
bootstrap is carried out by resampling the configurations
for each β used to train the k-nearest-neighbors classifier.
The other is carried out by resampling the configurations
for each β used to estimate hOkNNi. Applying the finite-size
scaling analysis to both collections of bootstraps yields two
separate distributions for βc and two for ν. The error in
these quantities is therefore estimated by combining the
standard deviation of the distributions coming from the
different bootstrap procedures under the assumption that
they are independent.

FIG. 6. The curve collapse of our phase indicator Om2
using

βc ¼ 2.291 and ν ¼ 0.614. Error bars are not shown for clarity
but are comparable to those in Fig. 5.

TABLE II. Values of β sampled at for the Nt ¼ 4 phase
transition.

Region β

Confined 2.2, 2.21, 2.22, 2.23, 2.24

Deconfined 2.36, 2.37, 2.38, 2.39, 2.4

Critical

2.25, 2.26, 2.27, 2.275, 2.28,
2.285, 2.29, 2.295, 2.298, 2.299,
2.3, 2.301, 2.302, 2.305, 2.31,

2.315, 2.32, 2.325, 2.33, 2.34, 2.35

FIG. 7. Plot showing our phase indicator hOkNNi as a function
of β for Nt ¼ 4. The points show the measured expectations
and the curve is the output of histogram reweighting these
measurements.

FIG. 8. The variance curves χkNN of OkNN for Nt ¼ 4 to which
we will apply our curve collapse procedure.
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By defining the pseudocritical inverse coupling βcðNsÞ
to be the point at which χkNN peaks, we can plot βcðNsÞ
against N−1=ν

s using a previously estimated [63] value of
ν ¼ 0.629971. The result is shown in Fig. 9. We observe
that the points plotted with error bars of 1σ support a
straight line fit. The intercept yields βc ¼ 2.2989� 0.0009,
supporting the previously obtained estimate of βc ¼
2.2986ð6Þ in Table I.
To estimate βc and ν concurrently we employ a numeri-

cal curve collapse procedure, plotting χkNN against
N1=ν

s ðβ − βcÞ and tuning βc and ν to minimize the distance
between the curves using the Nelder-Mead method.
The resulting curve collapse is shown in Fig. 10, and the

obtained estimates of βc and ν

βc ¼ 2.2988� 0.0007;

ν ¼ 0.634� 0.014

are consistent with previous estimates.
To confidently claim that this methodology identifies the

phase transition, we also tried using alternative values of β

to train the kNN classifier, chosen further away from the
transition point and so that the transition point is further
from the center point between the highest β in the confined
phase and the lowest β in the deconfined phase. The
alternative training values are shown in Table III.
Using these training values we obtain estimates from the

linear fit of

βc ¼ 2.2996� 0.0008

and the curve collapse of

βc ¼ 2.2998� 0.0007;

ν ¼ 0.638� 0.013;

close to our previous ones and still compatible with our
reference estimates.

2. Nt = 5

For lattices of size 5 × N3
s with Ns ∈ f12; 16; 20; 24g,

we train a k-nearest-neighbors classifier (k ¼ 30) on the
concatenated PH0, PH1, PH2 and PH3 persistence images
of 200 configurations sampled at each β in the confined and
deconfined regions given in Table IV. The classifier is then
used to produce a predicted classification OkNN for 200
configurations sampled for each value of β from the critical
region.
The resulting estimates of the expectation hOkNNiðβÞ are

shown in Fig. 11 along with interpolating curves obtained
via histogram reweighting.

FIG. 9. Estimating βc for Nt ¼ 4. The pseudocritical values of
β, obtained from locating the peaks of the variance curves in
Fig. 8, are fitted to the ansatz (7). Error bars are estimated by
bootstrapping.

FIG. 10. The curve collapse of χkNN for Nt ¼ 4 using βc ¼
2.2988 and ν ¼ 0.634.

TABLE III. Alternative values of β sampled at for the Nt ¼ 4
phase transition to test the sensitivity of the method to the choice
of training data.

Region β

Confined 2.21, 2.22, 2.23

Deconfined 2.38, 2.39, 2.4

Critical

2.24, 2.25, 2.26, 2.27, 2.275,
2.28, 2.285, 2.29, 2.295,
2.298, 2.299, 2.3, 2.301,

2.302, 2.305, 2.31, 2.315, 2.32,
2.325, 2.33, 2.34, 2.35, 2.36, 2.37

TABLE IV. Values of β sampled at for the Nt ¼ 5 phase
transition.

Region β

Confined 2.29, 2.3, 2.31, 2.32, 2.33

Deconfined 2.41, 2.42, 2.43, 2.44, 2.45

Critical
2.34, 2.345, 2.35, 2.355, 2.36,
2.365, 2.369, 2.37, 2.371, 2.372,

2.375, 2.38, 2.385, 2.39, 2.395, 2.4
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The plot of the pseudocritical βcðNsÞ againstN−1=ν
s using

ν ¼ 0.629971 is shown in Fig. 12. Here we fit a straight
line to the largest three lattice sizes since this gives a
better fit than including Ns ¼ 12. The intercept yields

βc ¼ 2.3696� 0.0012 which is just about compatible with
the previously obtained estimate of βc ¼ 2.37136ð54Þ in
Table I.
We also perform the curve collapse on only the highest

three lattice sizes and the result is shown in Fig. 13. The
obtained estimates of βc and ν

βc ¼ 2.3697� 0.0011;

ν ¼ 0.634� 0.028

are consistent with previous estimates.

3. Nt = 6

For lattices of size 6 × N3
s with Ns ∈ f12; 16; 20; 24g,

we train a k-nearest-neighbors classifier (k ¼ 30) on the
concatenated PH0, PH1, PH2 and PH3 persistence images
of 200 configurations sampled at each β in the confined and
deconfined regions given in Table V. The classifier is then
used to produce a predicted classification OkNN for 200
configurations sampled for each value of β from the critical
region.
The resulting estimates of the expectation hOkNNiðβÞ are

shown in Fig. 14 along with interpolating curves obtained
via histogram reweighting.

FIG. 11. Plot showing our phase indicator hOkNNi as a func-
tion of β for Nt ¼ 5. The points show the measured expectations
and the curve is the output of histogram reweighting these
measurements.

FIG. 12. Estimating βc for Nt ¼ 5. The pseudocritical values of
β of the largest three lattice sizes, obtained from locating the
peaks of the variance curves, are fitted to the ansatz (7). Error bars
are estimated by bootstrapping.

FIG. 13. The curve collapse of χkNN for Nt ¼ 5 using βc ¼
2.3697 and ν ¼ 0.634.

TABLE V. Values of β sampled at for the Nt ¼ 6 phase
transition.

Region β

Confined 2.33, 2.34, 2.35, 2.36, 2.37

Deconfined 2.49, 2.5, 2.51, 2.52, 2.53

Critical

2.38, 2.39, 2.4, 2.405, 2.41,
2.415, 2.42, 2.425, 2.426, 2.427,
2.428, 2.43, 2.435, 2.44, 2.445,
2.45, 2.455, 2.46, 2.47, 2.48

FIG. 14. Plot showing our phase indicator hOkNNi as a funct-
ion of β for Nt ¼ 6. The points show the measured expectations
and the curve is the output of histogram reweighting these
measurements.
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The plot of the pseudocritical βcðNsÞ againstN−1=ν
s using

ν ¼ 0.629971 is shown in Fig. 15. The intercept of the
straight line fit yields βc ¼ 2.4277� 0.0008, supporting
the previously obtained estimate of βc ¼ 2.4271ð17Þ in
Table I.
The result of the curve collapse is shown in Fig. 16. The

obtained estimates of βc and ν are

βc ¼ 2.4276� 0.0008;

ν ¼ 0.666� 0.016:

The estimate of βc agrees with the previous estimate;
however, the previous estimate of ν ¼ 0.629971we refer to
lies just over 2 standard deviations outside of our estimate.
We ascribe this discrepancy to the use of smaller aspect
ratios Ns=Nt as we increase Nt, remarking that the purpose
of the investigation we have performed at various Nt is to
show reasonable scaling with the lattice spacing rather than
providing a precision study of critical properties of the
system.

V. CONCLUSIONS AND DISCUSSION

In this paper we have developed a gauge-invariant
method using persistent homology, a tool from topological
data analysis, that is designed to detect center vortices in
configurations of SU(2) lattice gauge theory. We defined
two different persistence-based phase indicators for the
deconfinement phase transition—one making use of
twisted boundary conditions, and the other using simple
machine learning—and successfully used them to estimate
the critical β and exponent ν of the transition.
This method was designed to detect and capture the

behavior of vortices and we provided preliminary evidence
for this by showing it is possible to detect the use of twisted
boundary conditions in the deconfined phase. A closer look
at the relationship between the individual points in the
resulting persistence diagrams and center vortices is left to
a future analysis. In particular, it would be interesting to
compare representative cycles for points in the H2 persist-
ence diagram with the vortex surfaces obtained by gauge
fixing and projection.Moreoverwe showed that it is possible
to detect the deconfinement phase transition from the
persistent homology of samples using the original action
alone. We argue that this has the potential to lend support to
the center vortex picture of confinement once the connection
between the persistent homology of our filtration and center
vortices is fully established, at least by not ruling it out. For a
stronger argument wewould need to investigate the relation-
ship between our method and other competing pictures. For
example, looking at the monopole picture of confinement
(see Refs. [76] or [1] for a summary), one could investigate
the sensitivity of our method to monopoles. If the method
were sensitive to vortices but not tomonopoles, the fact that it
captures thephase transitionwouldbe evidence for thevortex
picture over the monopole picture. However, this is work yet
to be done, which will require nontrivial adaptations of some
of the steps used here. For instance, if the current method is
indeed sensitive to monopoles, then one might instead
attempt to devise a filtration that exposes monopolelike
singularities but not vortices.
Besides a greater degree of interpretability, another ad-

vantage of this method over machine learning approaches
based on deep learning is that we were able to obtain our
results using only a small number of sampled configurations.
This is particularly important in view of extending our
methodology to full QCD, for which numerical computa-
tions for generating gauge configurations near the physical
point are very demanding and hence the number of configu-
rations one can use is generally limited.

The data and the code used for this work are being
released, respectively, in Refs. [77,78].
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APPENDIX A: CUBICAL COMPLEXES
AND HOMOLOGY

This is a very compressed version of the exposition
found in [81]. An elementary interval is an interval of
the form ½i; iþ 1� ⊂ R (nondegenerate) or ½i; i� ¼ fng
(degenerate) for some choice of i ∈ Z. An elementary
cube is a finite product of elementary intervals Q ¼ I1×
� � � × In ⊂ Rn, where n is some fixed embedding dimen-
sion. Its dimension dimQ is the number of nondegenerate
intervals in the product. A cubical complex C is a subset
of Rn that is a union of elementary cubes. Specifying a
field F, we define F-vector spaces Ck ¼ fP αiQijQi ⊆
C; dimQi ¼ k; αi ∈ Fg for each k ∈ N, consisting of finite
formal sums of elementary cubes. The boundary of a
nondegenerate elementary interval is given by the formal
sum ∂½i; iþ 1� ¼ ½iþ 1; iþ 1� − ½i; i�. For a degenerate
elementary interval the boundary is zero. The boundary
of an elementary cube Q ¼ ðI1 ×… × InÞ is a formal sum

∂Q¼
Xn
j¼1

ð−1Þ
P

j−1
i¼1

dimQiðI1× � � �× ∂Ij× � � �× InÞ; ðA1Þ

where we consider × as distributing over the formal
summation. We can see that for dimQ ≥ 1 we have
dim ∂Q ¼ dimQ − 1. Therefore we can extend ∂ to linear
maps ∂k∶ Ck → Ck−1 via the mapping

P
αiQi ↦P

αið∂QiÞ. Since ∂∂I ¼ 0 for any elementary interval I,
we also see that ∂k∘∂kþ1 ¼ 0 for all k ∈ N, so that
im∂kþ1 ⊆ ker ∂k. A sequence of linear maps

� � � → C3⟶
∂3 C2⟶

∂2 C1⟶
∂1 C0⟶

∂0
0

with this property is called a chain complex. The kth
cubical homology of C over F is defined to be the quotient
vector space

HkðC;FÞ ¼
ker ∂k
im∂kþ1

:

This construction is functorial; i.e., given a suitable
definition of a cubical map f∶C → D between cubical
complexes, there is an induced map fk∶ HkðC;FÞ →
HkðD;FÞ for each k ∈ N. We will not introduce these,
in general, but will note that, given C ⊆ D, the inclusion
map C ↪ D is cubical and hence induces maps on
homology.

APPENDIX B: HISTOGRAM REWEIGHTING

We make use of the correspondence between Euclidean
field theory and statistical mechanics in order to apply
histogram reweighting. This allows us to express the
ensemble average of an observable O at inverse coupling
β0 in terms of averages at any other β according to the
equation

hOiβ0 ¼
hOe−ðβ0−βÞSiβ
he−ðβ0−βÞSiβ

; ðB1Þ

where S is the action of the configuration (slightly
redefined to pull the factor of β outside) [82]. However,
in practice we can only reweight so far, so that the
sampled action distributions for β and β0 have a sizable
overlap. To reliably extrapolate to a wider region we can
make use of multiple histogram reweighing [83] where we
sample at multiple inverse couplings β1;…; βR. Suppose
we sample Ni configurations at βi, and then we can iterate
the equation

e−fβ ¼
XR
i¼1

XNi

a¼1

g−1i e−βS
a
iP

R
j¼1 Njg−1j e−βjS

a
i þfj

to estimate the “free energies” fi ¼ fβi at βi up to an
additive constant, where each gi is a quantity related to the

FIG. 17. Example of how the boundary operator ∂ acts on a
simple cubical complex consisting of a single two-dimensional
cube. Note how the sum in Eq. (A1) being alternating ensures
that ∂∂ ¼ 0.
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integrated autocorrelation of the samples in run i. Given the
fi we can estimate

hOiβ0 ¼
XR
i¼1

XNi

a¼1

Oa
i g

−1
i e−βkS

a
i þfβ0P

R
j¼1Njg−1j e−βjS

a
i þfj

:

APPENDIX C: BOOTSTRAP ERROR
ESTIMATION

In order to make any reasonable conclusions from the
results of our analysis we need to be able to estimate the error
in any numerical values obtained. While the error in
ensemble averages can be directly estimated from the
sample, we also calculate various fits to the data. The way
in which error propagates here is not necessarily easy to
calculate directly. Recall that the idea of bootstrap analysis is
to sidestep these concerns by estimating the sampling
distribution of a statistic directly. Suppose we obtain N
sampled configurationsS ¼ fθ1;…; θNg and calculate some
numerical statistic fðSÞ from the data. Given some preset
integer NB, bootstrap analysis proceeds by
(1) resampling S with replacement NB times to obtain

samples S1;…; SNB
each of size N and then

(2) computing fðSiÞ for each i ∈ f1;…; NBg.
For large enough NB, the distribution of the fðSiÞ approx-
imates the sampling distribution of f andwe can estimate the
standard error

σf ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NB − 1

X
i

ðfðSiÞ − fðSjÞÞ2
s

:

APPENDIX D: DISTRIBUTION OF m2

Motivated to understand the error bars for the estimates
of hm2itwist in Fig. 5, we look at the distribution of m2 as
measured using the twisted action on a 4 × 203 lattice in
Fig. 18. We recenter the data using hm2i in order to
compare the effect on Om2

at different values of β.
We see that at lower values of β in the confined phase,

the value of m2 remains close to the average value

measured with the untwisted Wilson action. As β increases
we observe a bimodal distribution, with some configura-
tions maintaining an m2 value close to the untwisted
average and some joining a lower mode. A likely explan-
ation for this behavior is that for those configurations in the
zero mode, the H2 generator of the 4-torus responsible for
m2 does not correspond to the inserted vortex in the yz
plane, either because there is another vortex spanning a
plane which is more easily observed or because the
formation of a complete vortex surface along the twist in
the filtered complex is being impeded, perhaps by inter-
section with other vortices. By the time we are firmly in the
deconfined phase, the majority of configurations lie in the
lower mode, signalling that the inserted vortex along the yz
plane is responsible for the value of m2.
To verify this picture, we can check if the H2 generator

responsible for m2 is indeed represented by a yz plane. We
do this by recomputing the persistent homology but with
the cubical complex only being periodic in the y and z
directions and open in the t and x directions. This makes the
final complex homeomorphic to a 2-torus which has a
single H2 generator: the yz plane. Then we can simply
check whether or not the birth time of this generator is the
same as m2. Denote by Iyz the indicator function for a
configuration that is 1 if they match and 0 if they do not.
That is, Iyz tells us if m2 is determined by a H2 generator
which spans the yz plane. The mean and variance of this
indicator as a function of β are shown in Fig. 19.
We see that at low β the inserted yz vortex sheet is never

responsible for the value ofm2. There are likely to be many
vortices and those which span planes including the t
direction are smaller and likely to be picked up sooner
in the persistence. Approaching and passing the transition
point, the proportion of configurations for which m2

describes the birth time of a yz plane increases until close
to 1. There are fewer dynamically generated vortices and
instead m2 is determined by the one we inserted via the
twisted boundary conditions. We note that peak in the
variance of Iyz gives us an alternative marker for the phase
transition.

(a) (b) (c)

FIG. 18. The distribution of m2 − hm2i with the twisted action
at (a) β ¼ 2.2, (b) β ¼ 2.5, and (c) β ¼ 2.8. Note that hm2i is the
expectation as measured with the Wilson action.

FIG. 19. The mean and variance of Iyz as a function of β. The
vertical line marks the location of βc.
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