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A B ST R A CT 

The cambium is a secondary meristematic tissue in plant stems, roots and hypocotyls. Here, cell divisions occur that are required for radial 
growth. In most species that undergo secondary growth, daughters of cell divisions within the cambium differentiate into woody xylem cells 
towards the inside of the stem, or phloem towards the outside. As such, a pattern of xylem-cambium-phloem is present along the radial axis of 
all secondary vascular tissues, whether in stem, hypocotyl or root. A ligand-receptor tracheary element, trans-differentiation inhibitory factor 
(TDIF)-PHLOEM INTERCALATED WITH XYLEM (PXY) promotes cell division in the cambium, as do the phytohormones, cytokinin and 
auxin. An auxin response factor, MONOPTEROS (MP), has been proposed to initiate cambial cell divisions by promoting PXY expression, 
however, MP has also been reported to repress cambial cell divisions later in development where TDIF-PXY complexes are also reported to sup-
press MP activity. Here, we used a mathematical modelling approach to investigate how MP cell division-promoting activity and cell division-re-
pressing activity might be integrated into the same network as a negative feedback loop. In our model, this feedback loop improved the ability 
of the cambium to pattern correctly and was found to be required for normal patterning as the stability of MP was increased. The implications of 
this model in early and late cambium development are discussed.
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1.  I N T RO D U CT I O N
Most terrestrial plant biomass is derived from the cambium, 
which promotes radial, secondary growth of stems in gymno-
sperms and woody angiosperms. The cambium constitutes a 
bifacial meristem from which phloem and xylem tissues are 
derived. As stem cells in the cambium divide, their daughters 
differentiate into phloem towards the outside of the stem, or 
xylem towards the inside (Esau 1960, 1965; Evert 2006). The 
cambium represents an atypical stem cell population by virtue of 
its bifacial nature, but also because it arises post-embryonically, 
forming de novo following germination (Baum et al. 2002). As 
such, cambial stem cells are defined within a pre-patterned tissue 
that arises during embryogenesis (Scheres et al. 1994; De Rybel 
et al. 2014). In Arabidopsis roots the pre-pattern constitutes a 
central file of xylem cells with phloem poles on either side (Fig. 
1A). Each phloem pole is separated from the central xylem by a 

row of procambium cells (Dolan et al. 1993). Formation of the 
cambium at the initiation of secondary growth occurs when the 
cells of xylem identity act as ‘organiser cells’, promoting their 
neighbours to form the cambial meristem and divide (Smetana 
et al. 2019). This marks the transition from primary to secondary 
growth.

In Arabidopsis, the events that promote the transition from 
primary to secondary growth start with the formation of an 
auxin maximum in the organizer cells which have xylem iden-
tity (Smetana et al. 2019). Auxin responses are mediated by 
transcription factors in the auxin response factor (ARF) family 
(Roosjen et al. 2018), and the auxin maximum in the organiser 
cells results in activation of MONOPTEROS (MP; also known 
as ARF5) (Smetana et al. 2019). MP promotes the expression of 
auxin efflux carriers, members of the PIN family (Przemeck et al. 
1996; Hardtke and Berleth 1998; Bhatia et al. 2016; Brackmann 
et al. 2018). Thus, auxin promotes its own movement via an 
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auxin, MP, PIN pathway. Auxin, acting through MP, also acti-
vates the expression of members of the Class III homeodomain 
leucine-zipper (HD-Zip-III) family of transcription factors and 
PHLOEM INTERCALATED WITH XYLEM (PXY) recep-
tor kinase (Baima et al. 1995; Mattsson et al. 2003; Ohashi-Ito 
and Fukuda 2003; Izhaki and Bowman 2007; Zhou et al. 2007; 
Donner et al. 2009; Carlsbecker et al. 2010; Ursache et al. 2014; 
Smetana et al. 2019). PXY expression is promoted by HD-Zip-
III transcription factors (Smetana et al. 2019), thus MP sits at 
the top of a feed-forward loop in which MP activates HD-Zip-
III’s, and both MP and HD-Zip-III’s promote PXY expression. 
Activation of PXY expression promotes the first cell divisions of 
the cambium (Fig. 1A) (Smetana et al. 2019).

PXY is a central regulator of vascular proliferation in plant vas-
cular tissue (Hirakawa et al. 2008; Etchells and Turner 2010). 

In Arabidopsis, its cognate ligand, tracheary element differentia-
tion inhibitory factor (TDIF), is a dodecapeptide derived from 
two genes, CLE41 and CLE44 that are expressed in the phloem 
(Ito et al. 2006). TDIF-PXY complexes are in an active state and 
promote cell divisions, both by excluding xylem differentiation 
from the cambium stem cells and by promoting the divisions 
themselves (Hirakawa et al. 2008; Etchells and Turner 2010). 
BES1, a transcription factor that promotes xylem activity is 
degraded upon TDIF-PXY binding, thus preventing premature 
xylem differentiation (Kondo et al. 2014). TDIF-PXY signalling 
promotes cell division by activating the expression of homeodo-
main transcription factors WOX4 and WOX14 (Hirakawa et al. 
2010; Etchells et al. 2013; Smit et al. 2020).

Cytokinin (CK) is another hormone that plays an impor-
tant role in PIN regulation (Pernisová et al. 2009; Růžička et al. 

Figure 1. Diagrams showing interactions between PXY and MP in Arabidopsis secondary growth, and tissue morphology in which these 
interactions occur. (A) MP at the top of a feed-forward loop which promotes cambial cell divisions. MP activates PXY expression (PXYin), and 
PXY promotes initial cambial cell divisions upon interaction with TDIF (PXYa). Image on the right shows a root transverse section with initial 
cambial cell division. (B) MP acts as a repressor of cambium cell division in established vascular tissue. When secondary growth is established, 
MP represses cambial cell division and is repressed by TDIF-PXY (PXYa). Image shows root with an established cambium. (C) Hypothesised 
MP negative feedback loop. Combination of network diagrams in (A) and (B). TDIF-PXY (PXYa) promotes cambial cell division via 
the prevention of MP activation. (D) Schematic showing an auxin (Aux) maxima on the xylem side of the cambium and cytokinin (CK) 
concentration highest in the phloem (adapted from (Fischer et al. 2019)). Scale bars are 20 µm (A), or 50 µm (B). X is xylem, ph is phloem, red 
arrowheads point to dividing cambial cells.
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2009; Bishopp et al. 2011a; Marhavý et al. 2014; Šimášková et 
al. 2015), cambium formation, and subsequent cambium cell 
divisions (Matsumoto-Kitano et al. 2008; Hejátko et al. 2009; 
Ye et al. 2021). Indeed, mutants lacking CK biosynthesis never 
form a cambium (Matsumoto-Kitano et al. 2008). Antagonistic 
relationships between auxin and CK feature in pattern formation 
across plant vascular tissue (Schaller et al. 2015). Auxin signalling 
induces ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER 
PROTEIN 6, a pseudophosphotransfer protein which acts to 
dampen CK signalling (Suzuki et al. 1998; Mähönen et al. 2006; 
Werner et al. 2006; Moreira et al. 2013). Thus, in cells with an 
auxin maximum, such as those of xylem identity during primary 
growth, CK signalling is attenuated (Suzuki et al. 1998; Mähönen 
et al. 2006; Matsumoto-Kitano et al. 2008; Moreira et al. 2013). 
In turn, CK suppresses auxin active transport through decreasing 
the PIN levels at the post-transcriptional stage (Ioio et al. 2008; 
Pernisová et al. 2009; Bishopp et al. 2011b; Marhavý et al. 2011; 
Zhang et al. 2011; Šimášková et al. 2015). CK is bulk-transported 
down the phloem (Hirose et al. 2008; Bishopp et al. 2011b), 
reinforcing the pattern of maximal CK signalling in the phloem, 
and minimal in the xylem (Uggla et al. 1996; Tuominen et al. 
1997; Uggla et al. 1998; Immanen et al. 2016; Smetana et al. 
2019). These observations are supported by the visualisation 
of a TCSn CK response marker, which unambiguously shows 
greater expression in phloem than xylem in Arabidopsis roots 
undergoing secondary growth (Ye et al. 2021). Secondary vas-
cular tissues are thus characterised by CK on the phloem side of 
the cambium, and an auxin maximum in the cambium cells adja-
cent to the xylem (Uggla et al. 1996, 1998; Tuominen et al. 1997; 
Immanen et al. 2016; Smetana et al. 2019)(Fig. 1D), which is 
the tissue in which PXY is expressed (Fisher and Turner 2007).

As discussed above, during the transition from primary to sec-
ondary growth MP is at the top of a feed-forward loop which 
promotes cambial cell divisions (Fig. 1A). By contrast MP has 
been reported to act as a repressor of cambium cell division in 
established vascular tissue (Fig. 1B). mp mutants demonstrate 
increases in the size of cambium-derived tissues, and high MP 
levels were found to reduce cambial-derived tissue (Brackmann 
et al. 2018). Thus, the data suggest that the influence of MP 
on cambial cell divisions changes during development: MP 
promotes cambium cell division in initiating vascular tissue 
(Smetana et al. 2019, Fig. 1A), but MP represses cambium cell 
divisions in established vascular tissue (Brackmann et al. 2018, 
Fig. 1B). During the later stages of development, TDIF-PXY was 
shown to represses MP activity by preventing phosphorylation 
at a site that contributes to MP’s activation (Han et al. 2018, Fig. 
1B).

When considering the Arabidopsis data in the form of net-
work diagrams the seemingly contradictory data, where MP acts 
as a promoter (Fig. 1A) and repressor of cambial divisions (Fig. 
1B), are not contradictory at all. Rather, collectively, they sup-
port the hypothesis whereby MP directly represses cambial cell 
divisions (Brackmann et al. 2018) and MP promotes the acti-
vation of PXY, active PXY then promotes cambial cell divisions 
(Smetana et al. 2019) via the prevention of MP activation (Han 
et al. 2018). As such these interactions constitute an MP neg-
ative feedback loop (Fig. 1C), whereby MP promotes its own 
down-regulation; MP promotion of PXY, and PXY suppression 
of MP. The hypothesised MP negative feedback loop was tested 

using mathematical modelling. The model was built using the 
cellular organisation present in the Arabidopsis initiating cam-
bium, just after the transition into secondary growth (Fig. 1A). 
It was posited that if the MP feedback loop was indeed present 
in this tissue (i.e. addition of feedback to the network in Fig. 1A 
to produce the network in Fig. 1C), then its presence would 
improve the ability of the cambium to maintain CK and auxin 
concentration profiles (Fig. 1D) (Uggla et al. 1996; Tuominen 
et al. 1997; Uggla et al. 1998; Immanen et al. 2016; Smetana et 
al. 2019; Fu et al. 2021). Including MP negative feedback did 
improve the ability of the modelled tissue to pattern correctly 
and furthermore, the addition of MP negative feedback never 
hindered the modelled tissues’ ability to pattern correctly. 
Interestingly, when the stability of MP was increased by reduc-
ing its basal degradation rate, MP negative feedback was required 
for the modelled tissue to pattern correctly. One explanation of 
these findings is that the MP-PXY-MP feedback loop is present 
both in initiating and established cambium. Other factors, such 
as differences in tissue topology, or molecular actors, may then 
influence the feedback loop to favour MP activation of PXY early 
in development, but PXY repression of MP in established tissue, 
interesting avenues for future study.

2.  M AT E R I A L S  A N D  M ET H O D S
2.1 Model formulation

A one-dimensional reaction-diffusion model was built to inves-
tigate the consequence of MP negative feedback on vascular tis-
sue patterning. The model contained three, well-mixed, spatial 
domains; the phloem, cambium and xylem. The lengths of the 
domains were set to; 2.6 µm for the phloem, 1.2 µm for the cam-
bium and 10.8 µm for the xylem, which were derived from previ-
ously described in planta measurements (Wang et al. 2019). The 
model contained components which have been shown to impact 
vascular tissue patterning. Namely, the hormones CK and auxin, 
the PIN proteins, the activator of PIN proteins MP, the recep-
tor-kinase PXY and its ligand TDIF.

Both hormones, CK and auxin, move between the modelled 
spatial domains. CK was the only component of the model which 
moved between the domains via diffusion. CK is rapidly trans-
ported down the phloem from the shoot to the root (Hirose et 
al. 2008) and is thus modelled as a constant CK source. CK dif-
fuses between the phloem and the cambium. CK moving back 
into the phloem from the cambium is subsumed by the shoot-
to-root flow. CK also diffuses between the cambium and xylem. 
Once in the xylem, CK diffusing from the xylem to the central 
tissues, rather than back into the cambium, is lost as there is no 
data to suggest that CK re-enters the xylem during secondary 
growth. The diffusion coefficient of CK was set to 220 µm2/s 
(Moore et al. 2015). The phloem was modelled to be a constant 
source of auxin as that too is transported down the phloem 
(Goldsmith 1977; Swarup et al. 2001; Friml et al. 2002; Friml 
et al. 2002; Blakeslee et al. 2005; Blilou et al. 2005; Kepinski and 
Leyser 2005; Ljung et al. 2005; Vieten et al. 2005; Michniewicz 
et al. 2007; Adamowski and Friml 2015; Zhou and Luo 2018). 
However, as auxin moves between cells via PINs, auxin move-
ment was described as a reaction in the model. Any hormone 
moving from the cambium back into the phloem was consid-
ered to be transported out via bulk transport (Michniewicz et 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/5/1/diad003/7047094 by U

niversity of D
urham

 user on 12 April 2023



4  •  Bagdassarian et al.

al. 2007; Hirose et al. 2008; Bishopp et al. 2011b; Adamowski 
and Friml 2015), leaving the phloem hormone concentration 
constant. Any hormone moving from the xylem on the opposing 
side to the cambium was removed from the model.

PXY’s peptide ligand, TDIF, is cleaved from CLE41 and 
CLE44 peptides which are transcribed and translated in the 
phloem. Following excretion from phloem cells, TDIF moves 
to the cambium (Ito et al. 2006; Hirakawa et al. 2008; Etchells 
and Turner 2010). As TDIF is continuously produced in the 
phloem, the concentration of TDIF is modelled as a constant 
(Ito et al. 2006; Hirakawa et al. 2008; Etchells and Turner 2010).

Reactions included in the model were; the suppression of CK 
by auxin (Nordström et al. 2004; Mähönen et al. 2006; Werner et 
al. 2006; Müller and Sheen 2008; Bishopp et al. 2011a; Moreira 
et al. 2013), the release of MP inhibition by auxin (Chen et al. 
2015), the suppression of PINs by CK (Ioio et al. 2008; Müller 
and Sheen 2008; Pernisová et al. 2009; Růžička et al. 2009; 

Bishopp et al. 2011b; Šimášková et al. 2015), the activation of 
PINs by MP (Przemeck et al. 1996; Hardtke and Berleth 1998; 
Bhatia et al. 2016; Krogan et al. 2016), the induction of PXY 
transcription by MP, the activation of PXY by TDIF (Ito et al. 
2006; Fisher and Turner 2007; Hirakawa et al. 2008; Etchells and 
Turner 2010), and the repression of MP by activated PXY (Han 
et al. 2018). Transcription and translation were not separated in 
the model and were modelled as one reaction. Reactions were 
modelled using mass action kinetics. The reactions included in 
the model are illustrated in Fig. 2A and summarised in Table 1.

Equations (1)–(10) describe the model. 
[
AUXp

]
, [AUXc] and 

[AUXx] denote the concentrations of auxin in the phloem, cam-
bium and xylem, respectively. The concentration of PINs and MP 
in the cambium and xylem are denoted, [PINc], [MPc] and [PINx]
, [MPx], respectively. The concentration of TDIF in the phloem 
is denoted, 

[
TDIFp

]
. The concentration of inactive PXY (not 

bound to TDIF) and active PXY (TDIF-PXY) in the cambium 

Figure 2. Modelled interactions and numerical results. (A) Diagram showing modelled interactions. Links represent interactions. Arrows 
represent promotion, barbed ended links represent repression. The dotted arrows show CK diffusion. The dashed arrows show auxin 
movement via the PIN proteins. Red link highlights the hypothesised MP negative feedback. (B) The mean percentage of parameter sets 
that achieve cambium auxin maximum in the presence (M1) or absence (M0) of MP negative feedback. Mean calculated from 15 repeat 
experiments, each containing 500 parameter sets. P-value = 2 × 10−14 calculated using Welch’s two-sample t-test. (C) Concentration 
comparisons of the hormones cytokinin and auxin within different tissues. A total of 7500 data points in each graph. Each data point is the 
steady-state solution for an individual parameter set. Black line represents the boundary when concentrations are equal.
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are denoted, [PXYin] and [PXYa], respectively. d∗ denotes the rate 
of basal degradation of the component ∗. ri denotes the reac-
tion rate of reaction i . The concentration of CK in the phloem, 
cambium and xylem are denoted, 

[
CKp

]
, [CKc] and [CKx], respec-

tively. CK moves between tissues via diffusion. DCK denotes 
the diffusion coefficient of CK. As the concentration 

[
CKp

]
 is a 

constant and CK moving from the phloem to central tissues is 
lost, CK movement is not described by the Laplacian operator. 
Let ∇̃ () denote the function describing the diffusive movement 
of CK across the tissues. The explicit definition of ∇̃ () can be 
found in the Supporting Information in the form of the finite 
difference scheme used to calculate the changes in CK concen-
tration resulting from diffusion, DCK ∇̃ (). Changes in concen-
trations due to reaction dynamics, for all modelled components, 
were calculated using Euler’s method. The initial concentrations 
for components whose dynamics were described by equations 
(1)–(10) were zero, for all numerical solutions.

In order to investigate the hypothesis that MP negative feed-
back could improve the ability of the modelled tissue to pattern 
auxin and CK correctly (Fig. 1D), the model was solved and 
analysed, with and without MP negative feedback. The model 
with MP negative feedback was described by equations (1)–
(10) with all parameter values greater than zero. The model 
without MP negative feedback was also described by equations 
(1)–(10) but with a number of parameters set to zero. r9 is the 
rate at which active PXY represses MP (red link Figs. 1B, C, 2A) 
as this reaction does not exist in the model without MP nega-
tive feedback r9 was set to zero. With r9 = 0 the parameters [
TDIFp

]
, r7, r8, dPXYin and dPXYa have no effect on the auxin 

and CK concentrations as they are downstream of MP (Figs. 
1A and 2A). Thus, in the model without MP negative feedback 
parameters 

[
TDIFp

]
, r7, r8, dPXYin and dPXYa were also set to 

zero. All numerical solutions presented in the Results section, 
and all codes used to solve and analyse the numerical solutions, 
can be found on GitHub (Bagdassarian 2021c, 2021a, 2021b). 
Steady-state analysis can be found in the Results section and the 
Supporting Information.

d
dt

[Auxc] = r1[Auxp] +
r2
2
[PINx] [Auxx]

−r2[Auxc] [PINc]− dAux[Auxc] (1)

d
dt

[Auxx] =
r2
2
[PINc] [Auxc]− r2 [Auxx] [PINx]− dAux [Auxx]

(2)

∂

∂t
[CKc] = DCK ∇̃

([
CKp

]
, [CKc] , [CKx]

)

−r3 [Auxc] [CKc]− dCK [CKc] (3)

∂

∂t
[CKx] = DCK ∇̃ ([CKc] , [CKx])

−r3 [Auxx] [CKx]− dCK [CKx] (4)

d
dt

[MPc] = r4[Auxc]− r9 [PXYa] [MPc]− dMP[MPc]
(5)

d
dt

[MPx] = r4[Auxx]− dMP [MPx]
(6)

d
dt

[PINc] = r6 [MPc]− r5 [CKc] [PINc]− dPIN [PINc]
(7)

d
dt

[PINx] = r6[MPx ]−r5[CKx] [PINx]− dPIN [PINx]
(8)

d
dt

[PXYin] = r7 [MPc]− r8 [PXYin]
[
TDIFp

]
− dPXYin [PXYin]

(9)

d
dt

[PXYa] = r8 [PXYin]
[
TDIFp

]
− dPXYa [PXYa]

(10)

2.2 Plant tissue section preparation
Arabidopsis plants were grown for 14 days on MS media without 
sucrose, or on potting compost for 30 days. In both cases, the 
upper 0.5  cm of the root adjacent to the hypocotyl was taken 
for imaging the cambium. For imaging, plants were fixed in a 
formalin-acetic-alcohol solution and dehydrated through an eth-
anol series. Samples were infiltrated and embedded in JB4 (pol-
ysciences) according to the manufacturer’s instructions. 4 µm 
sections were taken using a glass blade on a rotary microtome 
prior to transfer to microscope slides. Sections were stained for 
30  s in 0.05% aqueous toluidine blue (14-day samples), or in 
0.05% aqueous ruthenium red for 10 s, then toluidine blue for 
10 seconds (30-day samples). Sections were mounted in histo-
mount prior to visualisation on a Zeiss Axioskop.

3.  R E SU LTS
For each of the models, with and without MP negative feedback, 
7500 parameter sets were chosen at random from the arbitrary 
interval (0, 20]. A steady-state solution was obtained numerically 
(Methods). The steady state solutions where then compared to 
the observed concentration profiles of CK and auxin in the root 
(Fig. 1D). Steady-state solutions were used because while the 
absolute levels of the hormone in each tissue may fluctuate, CK 
concentration is greatest in the phloem and least in the xylem, 
and auxin concentration is greatest in the cambium throughout 
the developmental stage being modelled (Fischer et al. 2019). 
Note, the spatial domains within the model are well mixed giving 
one concentration of hormone for each tissue. A match between 
steady-state solution and data was defined as a CK maximum 
in the phloem and minimum in the xylem, and an auxin maxi-
mum in the cambium. Statistical analysis was performed on the 
numerical data by sampling the 7500 solutions for each model. 
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As numerical solutions sample small areas of parameter space 
steady-state analysis was also performed. Relationships derived 
using steady-state analysis were verified numerically using the 
numerical solutions.

3.1 Numerical solutions suggest that MP negative feedback 
improves the ability of the modelled root to achieve a cambial 

auxin maximum
As the CK concentration profile did not distinguish between 
models with and without MP negative feedback, the ability of 
MP negative feedback to improve the observed auxin maximum 
in the cambial tissue was tested (Fig. 1D). In the model without 
MP negative feedback (referred to as model M0), 1406 parame-
ter sets (18.75%) had a cambial auxin maximum at steady state, 
compared to 2172 parameter sets (28.96%) for the model with 
MP negative feedback (referred to as model M1). To calculate 
the statistical significance of these results, the data for models 
M0 and M1 were divided up to produce repeat experiments. 
Figure 2B shows the mean percentage of parameter sets which 
achieved a cambial auxin maximum for the data divided into 
15 repeat experiments, each containing 500 parameter sets. The 
mean percentages for the divided data were 18.75% for model 
M0 and 28.96% for model M1. The normal distribution of the 
percentage data was confirmed using the Shapiro–Wilk test. 
Welch’s two-sample t-test was performed on the percentage 
data, giving a P-value of 2 × 10−14. Statistical analysis on the data 
divided in numerous ways can be found in the Supplement. For 
all data divisions tested, the P-values were less than 0.05, indi-
cating the difference between the data produced by models 
with and without MP negative feedback was significantly dif-
ferent. Thus the inclusion of MP negative feedback significantly 
increased the ability of the model to reproduce observed biolog-
ical data by 10.21% (Fig. 2B).

3.2 Auxin concentrations in the cambium and phloem 
determine whether or not the models reproduce the 

biological data
To understand how the models which did not reproduce bio-
logical data differed from the biological data the steady-state 
concentrations were investigated further. The CK concentration 
profile was considered first. For all of the 15,000 parameter sets, 
7500 for each model, the concentration of CK in the phloem, [
CKp

]
, was greater than the concentration of CK in the cambium, 

[CKc] (Fig. 2C), and the concentration of CK in the cambium 
was greater than the concentration of CK in the xylem, [CKx] 
(Fig. 2C). Thus, both models, with and without MP negative 
feedback, reproduced the CK concentration profile observed 
in planta. Analysis on the numerical scheme used to solve the 
models confirmed that the steady-state concentration of CK 
would always be greatest in the phloem and least in the xylem 
(Supporting Information). The result held for all CK diffusion 
coefficients and reaction rates greater than zero. Furthermore, 
the result held if the reaction rates and diffusion coefficients were 
different in each tissue.

The ability of the models to reproduce the CK concentra-
tion profile observed in plants is unsurprising. CK movement is 
modelled by diffusion (Hirose et al. 2008). The phloem contains 
the only source of CK within the models. CK diffuses from the 

phloem through the cambium and xylem tissues (Fig. 2A). Thus, 
the only way for CK to be present in the cambium or xylem is 
via diffusive movement. As such, the concentration of CK in 
the cambium will be lower than the concentration of CK in 
the phloem, and the concentration of CK in the xylem will be 
lower than the concentration of CK in the cambium. There is 
one reaction affecting the concentrations of CK in the cambium 
and xylem, the suppression of CK by auxin. Here, auxin nega-
tively regulates CK concentration and signalling (Nordström et 
al. 2004; Mähönen et al. 2006; Werner et al. 2006; Müller and 
Sheen 2008; Bishopp et al. 2011a; Moreira et al. 2013). The 
suppression of CK by auxin acts to reduce the concentrations of 
active CK in the cambium and xylem. Therefore, it would be pos-
sible for there to be a transient phase in which auxin in the cam-
bium suppressed cambial CK to produce a CK concentration 
which was lower than the xylem CK concentration. However, 
as CK in the xylem must be replenished from the cambial CK, 
via diffusion, over time the xylem CK concentration would drop 
below the concentration of cambial CK.

Next, the steady-state concentrations of auxin were com-
pared. For all 15000 parameter sets the concentration of auxin in 
the cambium, [Auxc], was greater than the concentration of auxin 
in the xylem, [Auxx] (Fig. 2C). Steady state analysis confirmed 
that the concentration of auxin in the cambium was always 
greater than the concentration of auxin in the xylem, for both 
models (Supporting Information). Thus, the only relationship 
which determined the ability of the models to reproduce bio-
logical data was the comparison of auxin concentrations in the 
cambium and phloem, 

[
Auxp

]
 (Fig. 2C).

3.3 Necessary but not sufficient conditions for cambium 
auxin concentration to be greater than phloem auxin 

concentration
Using steady state analysis, an inequality was derived which 
gave a relationship to be satisfied for the auxin concentration in 
the cambium to be greater than the auxin concentration in the 
phloem, inequality (11) (Supporting Information). Note that 
for the model without MP negative feedback [PXYa] = r9 = 0 
giving inequality (12) (Fig. 1, Methods). Thus, the inequalities 
defining the ability of each model to achieve a cambial auxin 
maximum differ only by the presence, or not, of MP negative 
feedback terms, r9 [PXYa].

r1 > α+ β
1

(dMP + r9 [PXYa]) (11)

r1 > α+ β
1

(dMP) (12)

Where, dAux = α, and 
Å

r4r6r2[Auxp]
2(r5[CKp]+dPIN)

ã
= β .

The relationships defining the ability of each model to achieve 
a cambial auxin maximum were tested numerically. For model 
M0, all 1406 parameter sets which had a cambial auxin maxi-
mum satisfied inequality (12). Similarly, for model M1, all 2172 
parameter sets which had a cambial auxin maximum satisfied 
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inequality (11). For both of the models, all parameter sets which 
did not satisfy either inequality (11) or (12), did not have a cam-
bial auxin maximum at steady state.

For model M0, 766 parameter sets which did not achieve a 
cambial auxin maximum satisfied inequality (12). For model 
M1, 731 parameter sets which did not achieve a cambial 
auxin maximum satisfied inequality (11). Thus, the relation-
ships given by inequalities (11) and (12) are necessary for 
the models to achieve a cambial auxin maximum (top row, 
Table 2), but they are not sufficient to guarantee a cambial 
auxin maximum (first column, Table 2), i.e. if there is a cam-
bial auxin maximum, the parameters will satisfy inequalities 
(11) or (12), but inequalities (11) or (12) cannot be used to 
generate successful parameter sets.

3.4 MP negative feedback always improved the modelled 
tissues’ ability to obtain a cambial auxin maximum

As all parameter sets which achieve a cambial auxin maximum 
satisfy inequalities (11) or (12), inequalities (11) or (12) were 
used to ask if MP negative feedback always improved the root’s 
ability to obtain a cambial auxin maximum. If MP negative feed-
back improves the ability of the root model to achieve a cam-
bial auxin maximum, then two things would be expected to be 
true. One, the addition of MP negative feedback does not pre-
vent a cambial auxin maximum forming. Two, there should be 
parameter sets for which MP negative feedback is required for 
the formation of a cambial auxin maximum. Each of these was 
addressed in turn.

One, does the addition of MP negative feedback ever prevent 
a cambial auxin maximum from forming? All parameter values 
and concentrations are non-negative. Note also, if the concentra-
tion of active PXY, [PXYa], was equal to zero in model M1, then 
the negative feedback loop in model M1 would be broken (Figs. 
1C and 2A, equation (5)). The aim here is to ascertain if MP 
negative feedback can prevent a cambial auxin maximum from 
forming, so the negative feedback loop must be present. Thus, 
for the analysis below, concentrations of active PXY greater than 
zero were considered. Thus, the down-regulation of MP in the 

cambium (see equation (5)) is stronger in model M1 than it is 
in model M0,

dMP < dMP + r9 [PXYa] (13)

It follows that,

1
dMP

>
1

(dMP + r9 [PXYa]) (14)

Because all parameter values and concentrations are 
non-negative α  and β are also non-negative. Considering non-
trivial values of α  and β, which are greater than zero, gives the 
relationship,

α+ β
1
dMP

> α+ β
1

(dMP + r9 [PXYa]) (15)

The left-hand side of inequality (15) is equal to the right-
hand side of inequality (12). Thus, if the model without MP 
negative feedback achieves a cambial auxin maximum, the 
parameters of that model will satisfy inequality (12) and ine-
qualities (15) and (12) can be combined to get inequality 
(16).

r1 > α+ β
1
dMP

> α+ β
1

(dMP + r9 [PXYa]) (16)

Inequality (16) states that if model M0 achieves a cambial 
auxin maximum, then adding MP negative feedback to that 
model will satisfy inequality (11), and have a cambial auxin 
maximum.

The analysis states that MP negative feedback does not pre-
vent a cambial auxin maximum forming. This analysis was 
tested numerically. For model M0, 1406 parameter sets had 
a cambial auxin maximum at steady state. MP negative feed-
back was added to these 1406 parameter sets by choosing val-
ues, greater than zero, for MP negative feedback parameters 
(
[
TDIFp

]
, r7, r8, r9, dPXYin , dPXYa). Ten sets of MP negative 

feedback parameters were chosen uniformly at random from 
the interval (0, 20], for each of the 1406 parameter sets, result-
ing in 14,060 parameter sets. Model M1 was solved numerically 
for each of the 14,060 parameter sets. All 14,060 parameter sets 
achieved a cambial auxin maximum at steady state confirming 
the analytical results.

Two, are there parameter sets for which MP negative feed-
back is required for the formation of a cambial auxin maximum? 
As there are no parameter sets which do not satisfy inequalities 
(11) or (12) and achieve a cambial auxin maximum (Table 2), 
parameter sets which do not satisfy inequality (12) will be con-
sidered in the following analysis. For MP negative feedback to be 
required there must be a set of parameters for which the model 
without MP negative feedback does not achieve a cambial auxin 
maximum but the model with MP negative feedback does. For 
model M0, parameter sets which do not satisfy inequality (12) 
do not obtain a cambial auxin maximum. Those parameters sat-
isfy inequality (17),

Table 2. Analytical relationships necessary but not sufficient. 
Percentage of 15,000 parameter sets, rounded to two significant 
figures. ‘Y’ represents yes. ‘N’ represents no. Top row: If a parameter 
set achieves a cambial auxin maximum then it will satisfy ether 
inequalities (11) or (12). Bottom row: If a parameter set does 
not achieve a cambial auxin maximum then it may satisfy either 
inequalities (11) or (12). Left column: If a parameter set satisfies 
ether inequalities (11) or (12) it may not achieve a cambial auxin 
maximum. Right column: If a parameter set does not satisfy 
ether inequalities (11) or (12) it will not achieve a cambial auxin 
maximum.

 Satisfy 
inequality 11 
or 12

Y N 

Cambial auxin maximum Y 24% 0
N 10% 66%
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Cambium development   •  9

α+ β
1

(dMP)
≥ r1

(17)

For model M1 to obtain a cambial auxin maximum, the 
parameters must satisfy inequality (11). Merge inequalities (17) 
and (11) to get,

α+ β
1

(dMP)
> α+ β

1
(dMP + r9 [PXYa]) (18)

Inequality (18) does not contradict inequality (15), which 
is always true. Inequality (18) states that there are values of r9 
and [PXYa] for which model M1 will obtain a cambial auxin 
maximum, but the cambial auxin maximum would be lost if 
the MP negative feedback loop were removed, i.e. there are a 
set of parameters for which MP negative feedback is required 
to obtain a cambial auxin maximum (Fig. 3). This analysis 
was tested numerically. There were 2172 parameter sets for 
model M1 which enabled the model to achieve a cambial auxin 
maximum. For each of the 2172 parameter sets, the MP neg-
ative feedback parameters (

[
TDIFp

]
, r7, r8, r9, dPXYin , dPXYa

) were set to zero. Model M0 was then solved using the 2172 
adjusted parameter sets. 801 of the adjusted parameter sets did 
not achieve a cambial auxin maximum. Thus, for 10.68% of 
the 7500 parameter sets chosen at random, from the interval 
(0, 20], MP negative feedback was required to achieve a cam-
bial auxin maximum. The numerical result confirmed the anal-
ysis, that there were areas of parameter space for which model 
M1 obtained a cambial auxin maximum, but the cambial auxin 
maximum would be lost if the MP negative feedback loop were 
removed (Fig. 3).

The analysis and numerical results show that MP nega-
tive feedback always improved the model’s ability to achieve a 

cambial auxin maximum, as the addition of MP negative feed-
back did not prevent a cambial auxin maximum forming and 
there were parameter sets for which MP negative feedback was 
required for the formation of a cambial auxin maximum.

3.5 As the stability of MP increases MP negative feedback 
becomes a requirement for the modelled root to form a 

cambial auxin maximum
Inequality (18) states that the MP negative feedback loop is 
required for parameter sets which lie within the space bounded 
by inequality (18). It was hypothesised that an increase, or 
decrease, in the size of the space bounded by inequality (18) 
would increase, or decrease, the number of parameter sets for 
which the negative feedback loop was required. To find the 
parameters which had an effect on the size of the space bounded 
by inequality (18) the distance between the upper and lower 
bounds, denoted γ , was calculated (equation 19) and rearranged 
(equation 20).

γ = α+ β
1
dMP

−
Å
α+ β

1
(dMP + r9 [PXYa])

ã

(19)

γ = β
1
dMP

r9 [PXYa]
(dMP + r9 [PXYa]) (20)

Equation (20) states that the size of the space bounded by 
inequality (18), γ , approaches infinity as the basal degradation 
of MP, dMP , approaches zero, i.e. as MP becomes more stable 
the number of parameter sets for which MP negative feedback 
is required would increase. Conversely, γ  approaches zero as 
dMP  approaches infinity, as MP becomes more unstable. The 
hypothesis, that an increase/decrease in γ  would lead to an 
increase/decrease in the number of parameter sets for which 
the negative feedback loop was required, was tested numer-
ically. All parameters, apart from dMP , were chosen at random 
from the interval (0, 20], as before. The value of dMP  was cho-
sen, at random, from five different intervals, (0, 1000], (0, 100]
, (0, 10], (0, 1] and (0, 0.1]. For each of the dMP  intervals, for 
each of the models, with and without MP negative feedback, 
7500 random parameter sets were chosen. First, a steady-state 
solution was obtained numerically for each parameter set 
(Methods). Next, to determine the number of parameter sets for 
which the MP negative feedback loop was required, model M1 
parameter sets which obtained a cambial auxin maximum were 
adjusted to remove the negative feedback loop (i.e. parameters [
TDIFp

]
, r7, r8, r9, dPXYin , dPXYa  were set to zero). Model 

M0 was then solved using the adjusted parameter sets. In order 
to perform statistical analysis on the steady-state solutions the 
7500 parameter sets, for each model, were divided into 15 repeat 
experiments, each containing 500 parameter sets. The nor-
mality of each data set was tested using the Shapiro–Wilk test. 
Significance measures between two normally distributed data 
sets were generated using Welch’s two-sample t-test, otherwise, 
the Mann–Whitney U test was used (Table 3).

The numerical results confirmed the hypothesis, the per-
centage of parameter sets for which MP negative feedback was 
required increased as the upper bound of the interval from 

Figure 3. MP negative feedback becomes required as MP becomes 
more stable. Median percentage of parameter sets that achieve 
cambium auxin maximum for models M0 and M1. Hashing on M1 
data shows the percentage of parameter sets for which MP negative 
feedback was required. Parameter space for MP degradation is 
increased by an order of magnitude for each of the 7500 parameter 
sets. All other parameters were chosen from the interval (0, 20].
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which dMP  was chosen decreased (Fig. 3, Table 3). Indeed, for 
the smallest interval of dMP  tested, (0, 0.1] , there was no signifi-
cant difference between the percentage of parameter sets which 
achieved a cambial auxin maximum for model M1 and the per-
centage of parameter sets for which the MP negative feedback 
loop was required (Table 3). Thus, as the basal degradation 
of MP is reduced, MP negative feedback becomes a stronger 
requirement for the modelled tissue to achieve a cambial auxin 
maximum.

4.  D I S C U S S I O N
4.1 Modelled interactions can replicate hormone patterns in 

the cambium
Auxin was first observed to influence vascular development in 
the 1950s via exogenous applications (Torrey 1953). During 
secondary vascular development, an auxin concentration max-
imum in the cambium was first observed in pine trees (Uggla et 
al. 1996), a pattern conserved in Arabidopsis (Brackmann et al. 
2018), the focus species of this study. In Arabidopsis, MP is a key 
component of the auxin response (Roosjen et al. 2018). Recent 
studies in Arabidopsis have dissected the role of MP in the cam-
bium, both early in development during cambium formation in 
roots, and later in development in established cambium in the 
stem. Surprisingly, MP was reported to have opposing functions 
at these two stages of development. During cambium initiation 
in seedlings, MP promoted cambial divisions via activation 
of the PXY receptor kinase (Smetana et al. 2019) (Fig. 1A). In 
established tissue, MP repressed cell division in the cambium, 
and PXY was found to repress MP activation (Brackmann et al. 
2018; Han et al. 2018; Fig. 1B). One explanation for both MP 

activities (promotion and repression of cambial cell division) is 
that MP and PXY form a negative feedback loop (Fig. 1C; addi-
tion of PXY repression of MP to Fig. 1A). A mathematical model 
was generated to understand if MP negative feedback had conse-
quences for the robustness of the system.

The model was characterized by reactions in three domains, 
phloem, cambium and xylem, with each domain sized to match 
measured cell sizes in Arabidopsis hypocotyls. None of the 
parameters in the model had been measured, therefore param-
eters were sampled from an interval. Model solutions were 
calculated to steady state. The steady-state solutions were then 
compared to biological data (Fig. 1D). Steady-state solutions 
were used because while the absolute levels of the hormone in 
each tissue may fluctuate, the relationships between the hor-
mone concentrations in different tissues remain unchanged 
throughout the developmental stage being modelled. The 
consequences of MP negative feedback were gauged by deter-
mining the number of parameter sets in which auxin was cor-
rectly patterned, with an auxin maxima in the cambium, in the 
presence of MP negative feedback, compared to its absence. 
The modelled CK concentration profile always matched the 
biological data. The presence of MP negative feedback resulted 
in a higher proportion of parameter sets generating an auxin 
maximum in the cambium, 28.96% relative to 18.75% with-
out (Fig. 2B). As such, the inclusion of MP negative feedback 
increased the ability of the model to reproduce the auxin max-
ima. Analysis was undertaken which showed that the conclu-
sions drawn using the numerical solutions would be preserved 
regardless of how the parameters were chosen. Analysis and 
numerical solutions were then used to provide further sup-
port for the MP negative feedback loop. Firstly, for parameter 

Table 3. MP negative feedback becomes required as MP becomes more stable. Mean and median percentage of parameter sets that achieve 
cambium auxin maximum for models M0 and M1. ‘MP NF required’ is the percentage of parameter sets for which MP negative feedback was 
required. Parameter space for MP degradation is increased by an order of magnitude for each of the 7500 parameter sets. All other parameters 
were chosen from the interval (0, 20]. Normalcy was established using the Shapiro–Wilk test. The P-value of the Shapiro–Wilk test is shown, 
if the P-value is greater than 0.05 the distribution is normal. P-values less than 2 × 10−16 are shown as 0. The P-value of data with a normal 
distribution has been underlined. Mann–Whitney U test, performed to compare data when one or both data sets were not normal, Welch’s 
two-sample t-test was used otherwise.

15 repeats
500 samples 

dMP

(0, 0.1] (0, 1] (0, 10] (0, 100] (0, 1000] 

Mean
 � M0 0.53 4.24 14.08 31.03 45.07
 � M1 26.97 27.44 27.11 33.84 44.28
MP NF required 25.96 22.71 13.69 4.15 0.51
Median
 � M0 0.40 4.40 14.60 31.40 44.60
 � M1 27 27.80 27.40 34 44.40
MP NF required 26 23 13.4 4 0.4
Normal
 � M0 0.04 0.94 0.014 0.55 0.64
 � M1 0.96 0.86 0.54 0.08 0.54
MP NF required 0.68 0.83 0.020 0.81 0.013
Significance comparing M1 and MP NF required
Mann–Whitney NA NA 3 × 10−6 NA 3 × 10−6

Welch 0.068 1 × 10−7 NA 0 NA
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sets that generated the cambial auxin maxima in the absence 
of MP negative feedback, the subsequent addition of the feed-
back loop never disrupted the system such that the auxin max-
imum was lost. Thus, MP negative feedback did not impede 
auxin maximum formation in the model. Secondly, for those 
parameter sets that generated the cambial auxin maximum in 
the presence of MP negative feedback, for 10.68% of those 
tested, removal of the MP feedback loop resulted in the loss of 
the cambium auxin maximum showing that there were areas of 
parameter space for which MP negative feedback is required. 
As such, the theoretical evidence described here, supports the 
notion that the MP negative feedback loop increases the ability 
of the system to pattern correctly.

4.2 Comparison of models of vascular development
Previously described models have captured elements of vascu-
lar development in Arabidopsis. By contrast to the model pre-
sented here, most models assess how primary pattern arises in 
Arabidopsis tissues (Benítez and Hejátko 2013; Cartenì et al. 
2014; De Rybel et al. 2014; Muraro et al. 2014; el-Showk et al. 
2015; Moore et al. 2015; Mellor et al. 2017). Primary vascular 
tissue first arises during embryogenesis, with formative divisions 
occurring at globular and heart stages of Arabidopsis develop-
ment. De Rybel et al. (2014) generated a mathematical model 
with four provascular cells to assess how the interplay between 
auxin, MP and CK, among others might occur (De Rybel et al. 
2014). This was an important question as at this developmen-
tal stage, no phloem exists to deliver CK. During embryogen-
esis, model performance depended on parameters connected 
to CK biosynthesis downstream of MP in the xylem axis (De 
Rybel et al. 2014). Comparisons between the model in De 
Rybel et al. (2014) and the model presented here are challeng-
ing as during embryogenesis there is no phloem to transport 
CK. Nevertheless, interactions such as CK repression of PINs, 
remain throughout primary development and on into second-
ary development. Following embryogenesis, the expression of 
LOG4, the CK biosynthesis gene downstream of MP that acts in 
the embryo persists in the root tip. Here, a CK response reporter, 
TCS, is also active in a LOG-dependent manner. During the 
setup of the primary pattern in the root, the presence of CK 
is essential in the xylem axis (De Rybel et al. 2014; Smet et al. 
2019; Yang et al. 2021). However, shootward from the root tip, 
LOG4 expression and xylem TCS marker signal are depleted (De 
Rybel et al. 2014). Notably, during secondary growth TCS sig-
nal is highest in phloem cells and absent from the xylem (Ye et 
al. 2021). This observation is consistent with the outputs of the 
model presented here (Fig. 2).

Further differences between primary and secondary growth 
underly differences between previous vascular development 
models and the model presented here (Benítez and Hejátko 
2013; Cartenì et al. 2014; De Rybel et al. 2014; Muraro et 
al. 2014; el-Showk et al. 2015; Moore et al. 2015; Mellor et 
al. 2017). HD-Zip III transcription factors regulate vascular 
development (Ramachandran et al. 2016). Both their action 
and their negative regulation by microRNAs have been found 
to maintain a stable bisymmetric pattern using mathematical 
modelling approaches (Muraro et al. 2014). Secondary growth 
is not characterised by a bisymmetric pattern, but rather by 

radial symmetry. Furthermore, the site of microRNA produc-
tion in primary root tissue, the endodermis (Carlsbecker et al. 
2010), transdifferentiates to periderm during secondary growth 
(Wunderling et al. 2017). The effect on microRNA production 
through this process is not known. HD-ZIP III genes do have 
a function downstream of MP in secondary growth. MP acts at 
the top of a feedforward loop activating both PXY and HD-Zip 
III. HD-Zip III also promote PXY expression. Consequently, 
the output of HD-Zip III activation on PXY can be incorporated 
into MP activation of PXY (Smetana et al. 2019). Perhaps the 
model that bares the most similarity to that presented here is one 
in which vascular bundle pattern was modelled in Arabidopsis 
stems (Benítez and Hejátko 2013). This ‘dynamic model’ by con-
trast to those described in the primary root, includes TDIF and 
PXY and is modelled in three domains, xylem, procambium and 
phloem. It is nevertheless a primary growth model, and interac-
tions between PXY and MP during secondary growth have sub-
sequently been added to the biology literature (Brackmann et al. 
2018; Smetana et al. 2019).

4.3 Auxin acts with receptor kinases to balance stem cell fate
The PXY signalling mechanism is closely related to others that 
regulate stem cell fate in plant meristems. Among the best char-
acterized of these is the CLAVATA (CLV) system, which reg-
ulates the shoot apical meristem. Here CLV3 ligand (related 
to TDIF), signals to CLV1 (related to PXY) and regulates the 
expression of WUSCHEL (WUS), a homeodomain transcrip-
tion factor (Fletcher et al. 1999; Brand et al. 2000; Ogawa et al. 
2008). ChIP-seq data suggests that WUS directly controls the 
expression of components of auxin transport and response. 
Auxin is essential at low levels to maintain the shoot apical mer-
istem stems cells (Ma and Li 2019). However, its presence at 
higher levels is also necessary for organ formation and the flanks 
of the stem cells in the shoot meristem (Reinhardt et al. 2000; 
Vernoux et al. 2000). Thus, the shoot apical meristem represents 
another system in which the auxin response must be balanced 
to facilitate differing outcomes, and in this stem cell population, 
peptide-receptor signalling appears to contribute to balancing 
these outcomes (Ma and Li 2019). The relationship between 
auxin and peptide-receptor signalling is likely to be ancient, as 
in the moss Physcomitrium, stem cells are regulated PpRPK2, a 
PXY/CLV relative, that regulates auxin homeostasis (Nemec‐
Venza et al. 2022).

4.4 Future directions
A striking feature of homeostatic mechanisms in plant mer-
istems, both vascular and apical, is that they must be effective 
across developmental time. In the case of the cambium, that 
also must include efficacy across scales. The cambium initiates 
as cell divisions in xylem adjacent cells, but it can increase in 
size to multiple cells within a single cell file. While some such 
variability is present in Arabidopsis, in species such as poplar, in 
which TDIF-PXY and auxin have both been shown to act in the 
cambium (Nilsson et al. 2008; Etchells et al. 2015; Kucukoglu et 
al. 2017; Xu et al. 2019), the number of cambium cells fluctuates 
further, with rapid cambial expansion occurring in early sum-
mer prior to cessation of division prior to the onset of winter. 
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Thus, manipulation of the feedback mechanisms proposed here, 
possibly by other factors, may influence cambium cell number. 
These factors could include alterations to feedback caused by 
differences in tissue topology. For example, high numbers of 
cambium cells in a cell file (as is seen in established, actively 
growing cambium) would likely induce changes to CK and 
auxin gradients due to greater physical distances between the 
source of hormone and at least a subset of the dividing cells in 
the cambium. Furthermore, the work here has focussed on the 
cambium arrangement found in Arabidopsis. Complex vascu-
lar arrangements are present in other species, thus it is also an 
open question as to how the model described here could be 
adapted to explain such differing morphologies. These include 
species that form phloem wedges, including members of the 
Bignoniaceae (Pace et al. 2009; Spicer and Groover 2010) plants 
with compound or successive cambia such as species within the 
Sapindaceae (Chery et al. 2020) or those with included phloem 
such as Heimerliodendron which form phloem surrounded by 
cambium on all sides (Studholme and Philipson 1966). The 
work described here thus acts as a framework to test how the out-
comes might differ in two-dimensional space in morphologically 
accurate tissues at differing stages of cambium development or 
with differing cambium organisations in future.

Future work also represents an opportunity to refine aspects 
of the model. For example, one limitation includes the well-
mixed assumption. The summative PIN lacking positioning 
restricts the ability to observe the details of auxin transport 
under the influence of PXY and MP interactions.

Regarding the perceived change in MP activity throughout 
development, we hypothesise that other molecular factors 
have an effect on MP activation of PXY or TDIF-PXY repres-
sion of MP to control cambium size during development. It 
remains an open question for further research, what these fac-
tors might be. The requirement for MP negative feedback was 
high in parameter sets in which basal degradation of MP was 
reduced (Fig. 3). As such, it might also be interesting to deter-
mine MP turnover rates in the vascular cambium at different 
developmental stages.
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