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a b s t r a c t

We address the Unsupervised Domain Adaptation (UDA) problem in image classification from a new
perspective. In contrast to most existing works which either align the data distributions or learn
domain-invariant features, we directly learn a unified classifier for both the source and target domains
in the high-dimensional homogeneous feature space without explicit domain alignment. To this end,
we employ the effective Selective Pseudo-Labelling (SPL) technique to take advantage of the unlabelled
samples in the target domain. Surprisingly, data distribution discrepancy across the source and target
domains can be well handled by a computationally simple classifier (e.g., a shallow Multi-Layer
Perceptron) trained in the original feature space. Besides, we propose a novel generative model norm-
AE to generate synthetic features for the target domain as a data augmentation strategy to enhance
the classifier training. Experimental results on several benchmark datasets demonstrate the pseudo-
labelling strategy itself can lead to comparable performance to many state-of-the-art methods whilst
the use of norm-AE for feature augmentation can further improve the performance in most cases. As
a result, our proposed methods (i.e. naive-SPL and norm-AE-SPL) can achieve comparable performance
with state-of-the-art methods with the average accuracy of 93.4% and 90.4% on Office-Caltech and
ImageCLEF-DA datasets, and achieve competitive performance on Digits, Office31 and Office-Home
datasets with the average accuracy of 97.2%, 87.6% and 68.6% respectively.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the last decade, impressive progress has been made in
upervised image classification with the advancement of deep
earning (Goodfellow, Bengio, & Courville, 2016) and the avail-
bility of large scale image datasets such as ImageNet (Deng
t al., 2009). One key to the success of deep neural networks in
mage classification is the access of sufficient annotated images
hich are usually unavailable in many real-world applications
uch as image classification in the invisible spectrum, medical
mage classification, etc. To address the issues of training data
carcity in practice, a variety of techniques (e.g., semi-supervised
earning Zhu & Goldberg, 2009, zero-shot learning Keshari, Singh,
Vatsa, 2020; Schonfeld, Ebrahimi, Sinha, Darrell, & Akata, 2019;
ang & Chen, 2017, 2020, domain adaptation Kim, Cho, Han,
anda, & Hong, 2021; Liang, Hu, & Feng, 2020; Wang & Breckon,
020b; Wang & Deng, 2018; Zhang, Tang, Jia, & Tan, 2019) can
e employed based on the availability of varied training data
esources. Among these, Unsupervised Domain Adaptation (UDA)

∗ Corresponding author.
E-mail address: qian.wang173@hotmail.com (Q. Wang).
 p

ttps://doi.org/10.1016/j.neunet.2023.02.006
893-6080/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
assumes the access of labelled data only from the source domain
where the labelled data are easier to obtain but the data distri-
bution is different from that of the target domain in which the
ask of interest resides. As a result, a classifier trained on the la-
elled source domain suffers from a significant performance drop
hen directly applied to the target domain. Unsupervised domain
daptation problems are common in real-world applications. For
xample, recognizing objects in X-ray baggage screening im-
gery (Wang & Breckon, 2020a) can be a challenging task due
o the difficulty of data collection in this domain but regular
mages are much easier to obtain. In this case, domain adaptation
echniques can play a crucial role in making the most of large-
cale regular images from the source domain and limited X-ray
mages from the target domain.

Existing UDA approaches try to align the source and domain
ata distributions by feature transformation (e.g., projecting fea-
ures into a subspace) (Chen, Xie, et al., 2019; Wang & Breckon,
020b; Wang, Bu, & Breckon, 2019) or learning domain-invariant
eatures from images via specially designed deep neural net-
orks (Kang, Jiang, Yang, & Hauptmann, 2019; Long, Cao, Wang,
Jordan, 2015). Subsequently, simple classifiers such as Nearest
eighbours (NN) or Support Vector Machines (SVM) can be em-

loyed in the learned domain-invariant feature space. Although
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Fig. 1. An illustration of how data augmentation by synthesizing source and target domain data can benefit unsupervised domain adaptation. Left: classifier trained
ith labelled source-domain data only; Right: classifier trained with real and synthetic data from both domains.
,

mpressive performance has been achieved in prior works by
ligning source and target domains in a learned feature space, we
nstead attempt to pave a novel way to solving the UDA problems
y learning a unified classifier for both source and target do-
ain data in the original high-dimensional homogeneous feature
pace. From this perspective, the key challenge of UDA problems
s the lack of labelled data in the target domain for supervised
earning.

In this paper, we fight off the aforementioned challenge of
acking labelled target-domain data by revisiting the pseudo-
abelling techniques and the advanced generative models. On one
and, we investigate the effectiveness of pseudo labelling tech-
iques without any explicit source and target data distribution
lignment. Pseudo labelling techniques have been employed in
rior work (Chen, Xie, et al., 2019; Wang & Breckon, 2020b;
ang, Bu, & Breckon, 2019) but its effectiveness has been un-
erestimated. Our experiments demonstrate surprisingly strong
lassification performance on UDA benchmark datasets with a
imple classifier (i.e. a linear two-layer Multi-Layer Perceptron for
mage features or a Convolutional Neural Network for digit im-
ges) trained on labelled source data and pseudo-labelled target
ata. On the other hand, inspired by the idea of style trans-
er (Gatys, Ecker, & Bethge, 2016), we employ generative models
o generate synthetic data for the target domain. Specifically,
e propose a novel L2-normalization regularized Autoencoder
i.e. norm-AE) to generate synthetic labelled target samples for
raining the classifier. The proposed norm-AE is characterized by
2-normalized parameters (i.e. mean and variance) of latent code
istribution as the substitute of the KL-Divergence regularization
n the vanilla VAE. With this data augmentation strategy, the
erformance of UDA can be enhanced as illustrated in Fig. 1.
The contributions of our work can be summarized as follows:

– we demonstrate that a specially designed pseudo-labelling
strategy can achieve surprisingly strong performance on
commonly used benchmark datasets for unsupervised do-
main adaptation; the performance is even comparable with
or better than many more complex methods on Digits (97.2%)
Office-Caltech (92.8%) and ImageCLEF-DA (89.4%).

– we demonstrate the proposed pseudo-labelling strategy is
superior to those in Chen, Xie, et al. (2019) and Wang and
Breckon (2020b) within our proposed framework.
615
– we propose a generative model adapted from VAE to further
improve the performance of unsupervised domain adapta-
tion by generating synthetic features for the target domain;
the average accuracy is improved by 0.6%, 1.7%, 1% and 2.9%
on Office-Caltech, Office31, ImageCLEF-DA and Office-Home
datasets respectively.

– we present a thorough set of comparative experiments
and ablation studies to demonstrate the proposed methods
can achieve competitive performance on several benchmark
datasets (i.e. Digits, Office-Caltech, Office31, ImageCLEF-DA
and Office-Home).

2. Related work

In this section, we review existing work related to ours. We
first review existing approaches to UDA problems which fall
into two main categories: feature transformation approaches (Ghi-
fary, Balduzzi, Kleijn, & Zhang, 2016; Long, Wang, Ding, Sun, &
Yu, 2013, 2014; Sun, Feng, & Saenko, 2016, 2017; Wang et al.,
2018; Zhang, Li, & Ogunbona, 2017) and deep feature learning ap-
proaches (Chen, Chen, Jiang, & Jin, 2019; Ganin & Lempitsky, 2015;
Ganin et al., 2016; Long et al., 2015; Long, Cao, Wang, & Jordan,
2018; Long, Zhu, Wang, & Jordan, 2016, 2017; Pei, Cao, Long,
& Wang, 2018; Zhang, Ouyang, Li, & Xu, 2018). Subsequently,
we discuss the use of pseudo-labelling and data augmentation
techniques in UDA for image classification.

2.1. Unsupervised domain adaptation

Feature transformation approaches aim to transform the source
domain and/or target domain features such that transformed
source and target domain data can be aligned. As such the
classifier learned from labelled source data can be directly ap-
plied to target data. Usually, linear transformations are used
by learning the projection matrices with different optimization
objectives and a kernel trick can help to explore the non-linear
relations between source and target domain data if necessary. The
most commonly employed objective for unsupervised domain
adaptation is to align data distributions in source and target do-
mains (Long et al., 2013, 2014). For this purpose, Maximum Mean
Discrepancy (MMD) based distribution matching has been used
to reduce differences of the marginal distributions (Long et al.,
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014), conditional distributions or both (Long et al., 2013; Wang
t al., 2018). Correlation alignment (CORAL) (Sun et al., 2016)
ransforms source domain features to minimize domain shift by
ligning the second-order statistics of source and target distribu-
ions. Manifold Embedded Distribution Alignment (MEDA) (Wang
t al., 2018) learns a domain-invariant classifier based on the
ransformed features where the transformation aims to align
oth the marginal and conditional distributions with quantitative
ccount for their relative importance.
In contrast to the above-mentioned approaches that learn

ne feature transformation matrix for either source domain or
oth domains, Joint Geometrical and Statistical Alignment (JGSA)
Zhang et al., 2017) learns two coupled projections that project
he source and target domain data into a joint subspace where the
eometrical and distribution shifts are reduced simultaneously.
part from the distribution alignment, recent feature transfor-
ation based approaches also promote the discriminative prop-
rties in the transformed features. Scatter Component Analysis
SCA) (Ghifary, Balduzzi, et al., 2016) aims to learn a feature trans-
ormation such that the transformed data from different domains
ave similar scattering and the labelled data are well separated.
Linear Discriminant Analysis (LDA) framework was proposed

n Lu, Shen, Cao, Xiao, and van den Hengel (2018) by learning
lass-specific projections. Similarly, Li, Song, Huang, Ding, and Wu
2018) proposed an approach to feature transformation towards
omain Invariant and Class Discriminative (DICD) features.
Deep feature learning approaches to domain adaptation were

nspired by the success of deep Convolutional Neural Networks
CNN) in visual recognition (LeCun, Bengio, & Hinton, 2015).
ttempts have been made to take advantage of the powerful rep-
esentation learning capability of CNN combined with a variety
f feature learning objectives. Most deep feature learning ap-
roaches aim to learn domain-invariant features from raw image
ata in source and target domains in an end-to-end framework.
pecifically, the objectives of feature transformation approaches
ave been incorporated in the deep learning models. To learn
he domain-invariant features through a deep CNN, the gradient
eversal layer was proposed in Ganin and Lempitsky (2015) and
sed in other deep feature learning approaches (Ganin et al.,
016; Pei et al., 2018; Zhang et al., 2018) as well. The gradient re-
ersal layer connects the feature extraction layers and the domain
lassifier layers. During backpropagation, the gradients of this
ayer multiply a certain negative constant to ensure the feature
istributions over two domains are made similar (as indistin-
uishable as possible for the domain classifier). Deep Adaptation
etworks (DAN) (Long et al., 2015) and Residual Transfer Net-
ork (RTN) (Long et al., 2016) aim to learn transferable features

rom two domains by matching the domain distributions of mul-
iple hidden layer features based on MMD. Deep CORAL (Sun &
aenko, 2016) integrates the idea of CORAL (Sun et al., 2016) into
deep CNN framework to learn features with favoured properties
i.e. aligned correlations over source and target distributions for
ultiple layer activations). These approaches only consider the
lignment of marginal distributions and cannot ensure the sepa-
ability of target data. Deep Reconstruction Classification Network
DRCN) (Ghifary, Kleijn, Zhang, Balduzzi, & Li, 2016) trains a
eature learning model using labelled source data and unlabelled
arget data in the supervised and unsupervised learning manners
espectively. More recently, the prevalent Generative Adversarial
etwork (GAN) loss has been employed in Adversarial Discrim-
native Domain Adaption (ADDA) (Tzeng, Hoffman, Saenko, &

arrell, 2017) with promising results.

616
2.2. UDA with pseudo-labelling

To address the issue of lack of labelled data in the target
domain, pseudo-labelling has been used by many existing ap-
proaches. Pseudo-labels are assigned to unlabelled samples in the
target domain by a classifier. Hard labelling assigns a pseudo-
label ŷ to each unlabelled sample without considering the con-
fidence (Long et al., 2013; Wang et al., 2018; Zhang et al., 2017).
The pseudo-labelled target samples together with labelled source
samples are used to learn an improved classifier. By repeating
these two steps, the classifier and accuracy of pseudo-labels
can be improved gradually. Hard pseudo-labelling relies heavily
on good initialization otherwise it is likely to be stuck in local
optima. To address this issue, soft labelling was employed in Pei
et al. (2018). Instead of assigning a hard label to a sample, soft
labelling assigns the probability of belonging to each class to
a sample. In the Multi-Adversarial Domain Adaptation (MADA)
approach (Pei et al., 2018), the soft pseudo-label of a target
sample is used to determine how much this sample should be
attended to different class-specific domain discriminators.

Selective pseudo-labelling is the other way to alleviate the
mislabelling issue (Chen, Xie, et al., 2019; Wang, Bu, & Breckon,
2019; Zhang et al., 2018). Similar to the soft labelling strategy,
selective pseudo-labelling also takes into consideration the confi-
dence in target sample labelling but a different manner. Selective
pseudo-labelling picks up a subset of target samples and assigns
them with pseudo labels with high confidence to avoid potential
mislabelling. The idea is that at the beginning the classifier is
weak so that only a small fraction of the target samples can
be correctly classified. When the classifier gets stronger after
each iteration of learning, more target samples can be correctly
classified hence should be pseudo-labelled and participate in the
learning process. An easy-to-hard strategy was employed in Chen,
Xie, et al. (2019). Target samples whose similarity scores are
higher than a threshold are selected for pseudo-labelling and this
threshold is updated after each iteration of learning so that more
unlabelled target samples can be selected. A class-wise sample
selection strategy was proposed in Wang and Breckon (2020b)
and Wang, Bu, and Breckon (2019). Samples are selected for each
class independently so that pseudo-labelled target samples will
contribute to the alignment of conditional distribution for each
class during learning. In this paper, we propose a novel pseudo-
label selection strategy that is superior to those used in Wang and
Breckon (2020b) within the proposed framework.

2.3. UDA with data augmentation

Data augmentation has drawn attention in existing works for
UDA. For example, Hsu, Zhang, and Glass (2017) proposed a novel
augmentation-based method to generate labelled data with a
similar distribution to the target domain for robust speech recog-
nition. A vanilla VAE was trained in an unsupervised way to learn
a disentangled latent representation of speech which can be mod-
ified for generating expected target domain data. However, the
disentangled image attributes in the latent space are a challeng-
ing goal to achieve. Instead, we employ a conditional AutoEncoder
(AE) and the domain information can be incorporated and fed into
the decoder for target domain sample generation. Volpi, Morerio,
Savarese, and Murino (2018) performed data augmentation in the
feature space by devising a feature generator trained with a Con-
ditional Generative Adversarial Network (CGAN). Our approach is
similar to this in the sense of feature augmentation whilst we aim
to augment data by feature transformation across domains rather
than from random noises. Huang et al. (2018) proposed GAN
based models for image-to-image translation and evaluated the
performance in object detection rather than image classification
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hich is our focus in this work. Lv, Zhu, Yang, and Duan (2019)
lso utilized GAN to generate target domain data given class
abels to improve the classifier training. Following these studies,
n our work, a novel norm-AE is proposed to generate target
domain samples by feature transformation across domains and its
effectiveness is demonstrated through comparative experiments.

Variational Autoencoder (VAE) has been a prevalent generative
model for data generation and it has been used for UDA in
literature (Chen, Chen, Jin, Liu, & Cheng, 2019; Hou, Ding, Deng,
& Cranefield, 2019; Hsu et al., 2017; Ilse, Tomczak, Louizos, &
Welling, 2020; Wang, Li, & Wang, 2019; Xu et al., 2020). Hou et al.
(2019) aim to generate synthetic target-domain data with VAEs
trained domain-wisely. Subsequently, the higher-level and lower-
level layers of the decoders for source and target domains are
cross-stacked to form new VAEs which can be used to transform
images from one domain to the other. However, the effectiveness
of the idea was only validated on digits data in Hou et al. (2019)
and is questionable for more complicated image classification
tasks. In contrast to pixel-level image generation, a more reliable
alternative is employed in our work which aims to generate
image features with a simplified VAE model. Wang, Li, and Wang
(2019) also used VAE in the feature space for speech signal rep-
resentation learning. However, their work focused on the latent
code vectors z generated by the encoder of VAE whilst our goal
is to generate synthetic features in the original feature space. We
also investigated the effect of latent code vectors in our prelim-
inary experiments but did not observe favourable performance
enhancement in the image classification tasks. Chen, Chen, Jin,
et al. (2019) utilized two-stream Wasserstein Autoencoders to
map the data from four domains (i.e. real source, real target,
synthetic source and synthetic target) into a common subspace
towards better classification performance. By contrast, our work
also concern data from these four domains whilst the classifica-
tion is carried out in the original feature space without the need
of learning a latent space.

3. Problem formulation

Before presenting our method, we describe the standard prob-
lem formulation of UDA for image classification. Given a labelled
dataset Ds

= {(xsi , y
s
i )}, i = 1, 2, . . . , ns from the source domain S ,

s
i ∈ Rdx represents the feature vector of ith labelled sample in the
ource domain, dx is the feature dimension and ysi ∈ Ys denotes
he corresponding label. UDA aims to classify an unlabelled data
et Dt

= {xti }, i = 1, 2, . . . , nt from the target domain T , where
t
i ∈ Rdx represents the feature vector in the target domain. The
arget label space Y t is equal to the source label space Ys. It is
ssumed that both the labelled source domain data Ds and the
nlabelled target domain data Dt are available for model learning.
s a result, most existing UDA approaches are evaluated in the
ransductive learning setting. Cases of inductive learning settings
here evaluation on new target data that are not accessed during
raining are also considered in the literature (Chen, Xie, et al.,
019; Long et al., 2018; Saito, Watanabe, Ushiku, & Harada, 2018;
zeng et al., 2017). Our proposed methods apply to both settings.

. Proposed method

In this section, we first present a computationally simple ap-
roach to UDA for classification problems. The approach is based
n the hypothesis a unified classifier for both source and target
omains can be trained in the original homogeneous feature space
espite the domain shift across domains by supervised learning.
seudo-labelled target domain data are combined with labelled
ource domain data to train the unified classifier for both source
nd target domains. Subsequently, we describe our proposed
enerative model norm-AE which is used to generate synthetic
eatures to augment the training data for classifier training.
 F

617
.1. Revisiting selective Pseudo-Labelling

We aim to learn a unified classifier y = f (x) for both source
nd target domains. The classifier f (x) can be implemented as a
hallow CNN model for image classification when the input x are
aw images or a linear two-layer Multi-Layer Perceptron (MLP,
ontaining an input layer and an output layer) when the input x
re image features. As the first step, we train the classifier with
abelled source domain data. The trained classifier is subsequently
sed to classify unlabelled target domain samples and get their
seudo labels ŷti , i = 1, 2, . . . , nt . The confidence score s(ŷti )
f the pseudo label ŷti can also be obtained from the softmax
ayer of the classifier. The pseudo-labelled target domain samples
re combined with the labelled source domain samples to re-
rain the classifier so that the classifier can gain the capability
f separating target domain samples. The updated classifier is
gain used to update the pseudo-labels of target domain samples.
his process can be repeated for multiple iterations towards an
ptimal classifier and better classification performance.
One key to the above pseudo-labelling strategy is the selection

f pseudo-labelled target domain samples for training in each it-
ration. Instead of using all the pseudo-labelled target samples for
lassifier training, it has been proved that progressively selecting
fraction of the target domain samples for training is benefi-

ial (Chen, Xie, et al., 2019; Wang & Breckon, 2020b). Following
he previous works in Wang and Breckon (2020b) and Wang,
u, and Breckon (2019), we select pseudo-labelled target samples
ith top confidence scores class-wisely and add them to the
raining data set in each iteration. Specifically, we consider the
seudo-labels class-wisely and select top-K confident pseudo-
abelled target domain samples for each class.

Distinct from existing selective pseudo-labelling in Wang and
reckon (2020b) and Wang, Bu, and Breckon (2019), the number
f selected pseudo-labelled target domain samples N(c, k) for cth

class in kth iteration is determined as follows:

N(c, k) = min{
k
T
nt

C
, n̂t (c, k)} (1)

where T is the number of iterations empirically set as 10 in
our experiments; nt is the number of target domain samples;
C is the number of classes and n̂t (c, k) denotes the number of
target domain samples predicted to be from cth classes in kth
iteration. In contrast, N(c, k) is set as (kn̂t (c, k))/T in previous
work (Wang & Breckon, 2020b). That is, the number of selected
pseudo-labelled samples N(c, k) is proportional to the number of
predicted pseudo-labels n̂t (c, k) for a specific class. In practice,
he quantities of predicted pseudo-labels for different classes can
ary significantly. This can be caused by the class imbalance
f the dataset itself or the biases of the classifier. Such a class
mbalance of the pseudo-labels will harm the iterative learning
f the classifier as well as the training of generative models. To
itigate such potential class imbalance of pseudo labels, we use
q. (1) to force the number of selected pseudo labels per class no
reater than the average quantity k

T
nt
C in the kth iteration. Our

pproaches can benefit from such a simple trick for pseudo-label
election as shown in the experiment section.
This naive UDA approach with Selective Pseudo-Labelling (naiv

PL) for the unified classifier training is summarized in Algorithm
.

.2. Data augmentation using norm-AE

As opposed to the existing methods of UDA, our proposed
aive-SPL does not aim to explicitly address the distribution dis-
repancy. Instead, it focuses on the issue of training data scarcity.
ollowing this direction, we propose a novel norm-AE model
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Algorithm 1 The method of naive Selective Pseudo-Labelling
(naive-SPL)
Input: Labelled source data set Ds

= {(xsi , y
s
i )}, i = 1, 2, ..., ns and

unlabelled target data set Dt
= {xti }, i = 1, 2, ..., nt , number

of iteration T .
utput: A unified classifier f (x) and predicted labels {ŷt} for
target domain samples.

1: initialize k = 0;
2: Training the classifier f (x) using only source data Ds;
3: Assign pseudo labels for all target data;
4: while k < T do
5: k← k+ 1;
6: Select a subset of pseudo-labelled target data Sk ∈ D̂t using

Eq. (1);
7: Re-training the classifier using Ds and Sk;
8: Update pseudo labels for all target data.
9: end while

to further address the training data scarcity issue in the tar-
get domain by generating synthetic target domain features from
labelled source domain ones.

Our proposed generative model is inspired by conditional VAE
CVAE) (Sohn, Lee, & Yan, 2015) and is conditioned on domain
abels rather than class labels. As illustrated in Fig. 2, given an
nput sample x from the source or target domain, the encoder
ims to learn a posterior distribution qΦ (z|x, d) from which the
atent encoding vector z can be sampled and subsequently fed
nto the decoder to reconstruct the input feature x̂, where d
enotes the domain label condition (i.e. d ∈ {s, t}). The decoder
an be parameterized by pθ (x|z, d). As a result, the model is
xpected to generate synthetic target domain samples from those
n the source domain and vice versa. To this end, we make some
ssential modifications to the traditional CVAE in two aspects:
eplacing the Kullback–Leibler divergence regularization by L2 nor-
alization and training the model using paired source and target
omain samples.
In traditional CVAE, the loss function is composed of two

omponents as follows:

CVAE(Φ, θ; x) =Lrecon(x, x̂)
+ DKL

(
N (µx, σx)||N (0, I)

) (2)

here the first terms represents the reconstruction error(
ˆ
)

ˆ 2

recon x, x = ∥x− x∥2 and the second term is the KL-divergence

618
between the learned posterior distribution and the standard
Normal distribution. The KL-divergence is a regularization term
forcing the learned latent codes z to follow the standard Normal
distribution. This regularization enables the learned model to
gain the capability of generating meaningful data from a random
latent code z sampled from the standard Normal distribution.

One limitation of VAE is the approximation of the posterior
to a Gaussian prior (Davidson, Falorsi, De Cao, Kipf, & Tomczak,
2018). Although convenient, the Gaussian prior encourages points
to cluster close to the origin. This is particularly problematic
when the data are from multiple classes (Davidson et al., 2018).
An ideal prior would only stimulate the variance of the posterior
without forcing its mean to be close to the origin. For this pur-
pose, we can simply remove the KL-divergence loss from Eq. (2)
and the model degrades into an AutoEncoder with deterministic
latent code (i.e. the variance tends to be zero for good recon-
struction of x). To promote the discriminative property of the
learned latent code, we apply L2 normalization to the outputs of
the encoder µ and log(σ 2).

Applying L2 to the latent code of AutoEncoder has been proved
to be beneficial to the clustering accuracy (Aytekin, Ni, Cricri, &
Aksu, 2018). On the other hand, to avoid learning deterministic la-
tent code, we also need to constrain the variance of the posterior.
There exist various options for constraints on the variances. For
example, we can force the variance close to 1 for each dimension
in the latent space. We choose to apply L2 normalization to the log
f variance vectors to allow for more flexibility. As a result, the
ariance of each dimension in the latent space is forced within
he range [1/e, e]. In practice, however, there might be little
ifference between these two choices of constraints on variances
s shown in our ablation study in Section 5.4.
To summarize, the encoder learns a posterior probability dis-

ribution qΦ (z|x, d) = N (µx, σx). From the posterior distribution,
e can sample a latent code z given a sample x and the de-
oder try to reconstruct the sample by learning the probability
istribution pθ (x|z, d). During training, the objective of our gen-
rative model is to maximize the probability of the training data
(Doersch, 2016):

log p(X) = Ez∼q[log pθ (x|z, d)] (3)

n practice, pθ (x|z) is chosen depending on the modelling of the
nput data but is often taken as a simple distribution (e.g., fixed
ariance Gaussian) (Chadebec & Allassonnière, 2022). In the case
f fixed variance Gaussian, we have

= ∥x− µ (z)∥2 = ∥x− x̂∥2 (4)
recon θ 2 2
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Algorithm 2 The method of SPL with data augmentation by
norm-AE (norm-AE-SPL)
Input: Labelled source data set Ds

= {(xsi , y
s
i )}, i = 1, 2, ..., ns and

unlabelled target data set Dt
= {xti }, i = 1, 2, ..., nt , number

of iteration T .
utput: A unified classifier f (x) and predicted labels {ŷt} for
target domain samples.

1: initialize k = 0;
2: Training the classifier f (x) using only source data Ds;
3: Assign pseudo labels for all target data;
4: while k < T do
5: k← k+ 1;
6: Select a subset of pseudo-labelled target data Sk ∈ D̂t using

Eq. (1);
7: Training the norm-AE model using Ds and Sk by

minimizing the loss in Eq. (5);
8: Re-training the classifier using real data from Ds and Sk,

and their corresponding synthetic data generated by
norm-AE;

9: Update pseudo labels for all target data.
0: end while

To enable the capability of generating synthetic data across
omains, we train the norm-AE in a novel way. Specifically, we
se paired data {xs, xt} from source and target domains that be-

long to the same class. The class information for unlabelled target
domain data can be obtained by pseudo-labelling as described in
the previous section. The paired data are fed into the norm-AE
and a set of reconstructions are generated as {x̂s, x̂st , x̂t , x̂ts} (c.f.
ig. 2). The loss function is formulated as:

norm−AE(Φ, θ; x) = (Lrecon
(
xs, x̂s)+ Lrecon(xt , x̂t )

)
+

(
Lcross_recon(xs, x̂ts)+ Lcross_recon(xt , x̂st )

) (5)

The first two terms measure the reconstruction errors for
ource and target domain samples respectively. The last two
erms are cross-domain reconstruction errors, i.e., Lcross_recon(x, x̂)
∥x−x̂∥22. Although the samples in the pair of {xs, x̂ts} or {xt , x̂st}

re from the same class, they are not necessarily two views of the
ame image. To reduce the cross-domain reconstruction errors,
he encoder has to preserve class information in the latent code
pace. As a result, the use of cross-domain reconstruction loss
cross_recon facilitates the model to generate class discriminative
ynthetic data across domains.
The norm-AE model is incorporated into the selective pseudo-

abelling framework described in the previous section so that the
lassifier training can be enhanced by combining the real training
ata and synthetic data generated by norm-AE. The norm-AE is
rained with labelled source domain data and pseudo-labelled
arget domain data in each iteration. The method of our proposed
orm-AE-SPL is summarized in Algorithm 2 where the differences
rom Algorithm 1 are highlighted in bold.

.3. Model architectures and computational complexity

The computational cost of Algorithm 1 depends on the clas-
ifier training itself and the number of iterations T . In our ex-
eriments, we use a CNN architecture from (Saito et al., 2018)
s the classifier which consists of two convolutional layers and
hree fully connected layers for digit classification. For image
lassification datasets, we use deep features (i.e. ResNet50) and
linear MLP consisting of only the input and output layers which
re computationally efficient.
The method norm-AE-SPL in Algorithm 2 involves one ad-

itional step of training the norm-AE model. The encoder and
619
ecoder are implemented as 3-layer MLP (i.e. dx → 512 → dz

nd dz → 512 → dx) with ReLU layers and a dropout rate of
.5 applied on the intermediate activations. dx and dz are the
imensionality of input x and latent code z respectively. The value
f dz is set as 64 in our experiments.

. Experiments and results

In this section, we describe our experiments on commonly
sed datasets for unsupervised domain adaptation for image clas-
ification (i.e. Digits, Office-Caltech Gong, Shi, Sha, & Grauman,
012, Office31 Saenko, Kulis, Fritz, & Darrell, 2010, ImageCLEF-
A Caputo et al., 2014 and Office-Home Venkateswara et al.,
017). Our approach is firstly compared with state-of-the-art
DA approaches to evaluate its effectiveness. An ablation study
s conducted to demonstrate the effects of different components
nd hyper-parameters in our approach. Finally, we investigate
ow different hyper-parameters affect performance.

.1. Datasets

To make a thorough evaluation, we conduct experiments on
ive commonly used datasets including one digit classification
ataset and four image classification datasets. Exemplar images
rom different domains are shown in Fig. 3 for four datasets.
he Office-Caltech dataset is not shown since it consists of the
ame 3 domains as those in Office31 and the Caltech domain in
mageCLEF-DA. More details of these datasets are described as
ollows.

Digit classification is a commonly used benchmark for unsu-
ervised domain adaptation. We follow existing works (Chen, Xie,
t al., 2019; Long et al., 2018; Saito et al., 2018; Tzeng et al., 2017)
nd consider three domain adaptation tasks (i.e. MNIST→ USPS,
SPS → MNIST and MNIST → SVHN) on three digit datasets:
NIST, USPS and SVHN. There are 60,000/10,000 images for train-

ng/testing in MNIST, 7,291/2,007 in USPS, and 73,257/26,032 in
VHN. In each dataset, there are 10 classes of digit 0-9.
Office-Caltech (Gong et al., 2012) consists of four domains:

mazon (A, images downloaded from online merchants), We-
cam (W, low-resolution images by a web camera), DSLR (D,
igh-resolution images by a digital SLR camera) and Caltech-256
C). Ten common classes from all four domains are used: back-
ack, bike, calculator, headphone, computer-keyboard, laptop-
01, computer-monitor, computer-mouse, coffee-mug, and
ideo-projector. There are 2533 images in total with 8 to 151
mages per category per domain.

Office31 (Saenko et al., 2010) consists of three domains: Ama-
on (A), Webcam (W) and DSLR (D). There are 31 common classes
or all three domains containing 4,110 images in total.

ImageCLEF-DA (Caputo et al., 2014) consists of four domains.
e follow the existing works (Zhang et al., 2019) using three of

hem in our experiments: Caltech-256 (C), ImageNet ILSVRC 2012
I), and Pascal VOC 2012 (P). There are 12 classes and 50 images
or each class in each domain.

Office-Home (Venkateswara et al., 2017) is another dataset
ecently released for evaluation of domain adaptation algorithms.
t consists of four different domains: Artistic images (A), Clipart
C), Product images (P) and Real-World images (R). There are
5 object classes in each domain with a total number of 15,588
mages.
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Fig. 3. Exemplar images from different domains of four datasets used in our experiments (The Office-Caltech dataset consists of the same domains as Office31 and
one additional Caltech domain; exemplar images for the Office-Home dataset (d) originate from Venkateswara, Eusebio, Chakraborty, & Panchanathan, 2017; best
viewed in colour).
Table 1
Classification accuracy (%) of UDA on Digits dataset (M: MNIST, U: USPS, S: SVHN).
Method M→ U U → M M → S Average

ADDA (Tzeng et al., 2017) 89.4 90.1 76.0 85.2
GTA (Sankaranarayanan, Balaji, Castillo, & Chellappa, 2018) 95.3 90.8 92.4 92.8
MCD (Saito et al., 2018) 96.5 94.1 96.2 95.6
MCD+CAT (Deng, Luo, & Zhu, 2019) 96.3 95.2 97.1 96.3
rRevGrad+CAT (Deng et al., 2019) 94.0 96.0 98.8 96.3
CTSN (Zuo et al., 2021) 96.1 97.3 – –
CAN (Zhou et al., 2021) 95.8 94.6 – –
SHOT (Liang et al., 2020) 98.0 98.4 98.9 98.4
Baseline (w/o selection) 30.1 51.3 83.1 54.8
naive-SPL* (overall selection) 88.2 91.7 90.7 90.2
naive-SPL (Ours) 95.8 97.7 98.0 97.2
norm-AE-SPL (Ours) 95.8 97.7 98.0 97.2
Table 2
Classification accuracy (%) on Office-Caltech dataset using Decaf6 features. Each column displays the results of a pair of source → target setting.
Method C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Average

DDC (Tzeng, Hoffman, Zhang, Saenko, & Darrell, 2014) 91.9 85.4 88.8 85.0 86.1 89.0 78.0 84.9 100.0 81.1 89.5 98.2 88.2
DAN (Long et al., 2015) 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100.0 80.3 90.0 98.5 90.1
DCORAL (Sun & Saenko, 2016) 92.4 91.1 91.4 84.7 – – 79.3 – – 82.8 – – –
CORAL (Sun et al., 2017) 92.0 80.0 84.7 83.2 74.6 84.1 75.5 81.2 100.0 76.8 85.5 99.3 84.7
SCA (Ghifary, Balduzzi, et al., 2016) 89.5 85.4 87.9 78.8 75.9 85.4 74.8 86.1 100.0 78.1 90.0 98.6 85.9
JGSA (Zhang et al., 2017) 91.4 86.8 93.6 84.9 81.0 88.5 85.0 90.7 100.0 86.2 92.0 99.7 90.0
MEDA (Wang et al., 2018) 93.4 95.6 91.1 87.4 88.1 88.1 93.2 99.4 99.4 87.5 93.2 97.6 92.8
CAPLS (Wang, Bu, & Breckon, 2019) 90.8 85.4 95.5 86.1 87.1 94.9 88.2 92.3 100.0 88.8 93.0 100.0 91.8
SPL (Wang & Breckon, 2020b) 92.7 93.2 98.7 87.4 95.3 89.2 87.0 92.0 100.0 88.6 92.9 98.6 93.0
Han, Lei, Xie, Zhou, and Gong (2020) 90.8 87.5 89.8 87.4 81.0 86.6 85.0 91.3 99.4 85.8 90.4 99.0 89.5
DS-c (Han, Lei, Xie, Zhou, & Gong, 2021) 92.5 81.0 89.8 85.3 81.7 87.3 81.4 78.0 97.5 85.0 90.6 99.0 87.4

Baseline (w/o selection) 91.8 80.5 87.5 84.7 76.1 84.3 74.1 78.3 100.0 77.3 85.3 98.3 84.9
naive-SPL* (overall selection) 92.6 89.2 95.4 87.5 89.5 93.0 87.9 91.9 100.0 89.1 92.9 99.3 92.4
naive-SPL (Ours) 94.1 92.9 88.5 86.9 95.6 91.3 87.5 94.1 100.0 88.7 94.1 99.3 92.8
norm-AE-SPL (Ours) 94.0 97.6 90.8 88.1 97.3 92.0 88.4 93.0 99.4 87.9 93.0 99.3 93.4
5.2. Experimental setting

The algorithm is implemented in PyTorch.1 For digit classi-
ication, we use the same CNN model designed by Saito et al.
2018). In each domain adaptation task, the labelled training
ata from the source domain and the unlabelled training data

1 Code is available: https://github.com/hellowangqian/UDA-norm-VAE
620
from the target domain are used to train the classifier which is
subsequently evaluated on the test data from the target domain.
As a result, the evaluation on this dataset is done in an induc-
tive learning setting. For the Office-Caltech dataset, we use deep
features Decaf6 (Donahue et al., 2014) (activations of the 6th
fully connected layer of a convolutional neural network trained
on ImageNet, d = 4096) which were commonly used in existing
works for a fair comparison with the state of the arts. For the

https://github.com/hellowangqian/UDA-norm-VAE
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Table 3
Classification accuracy (%) on Office31 dataset using either ResNet50 features or ResNet50 based deep models.
Method A→W D→W W→D A→D D→A W→A Avg

RTN (Long et al., 2016) 84.5 96.8 99.4 77.5 66.2 64.8 81.6
MADA (Pei et al., 2018) 90.0 97.4 99.6 87.8 70.3 66.4 85.2
MEDA (Wang et al., 2018) 86.2 97.2 99.4 85.3 72.4 74.0 85.7
GTA (Sankaranarayanan et al., 2018) 89.5 97.9 99.8 87.7 72.8 71.4 86.5
iCAN (Zhang et al., 2018) 92.5 98.8 100.0 90.1 72.1 69.9 87.2
CDAN-E (Long et al., 2018) 94.1 98.6 100.0 92.9 71.0 69.3 87.7
JDDA (Chen, Chen, Jiang, & Jin, 2019) 82.6 95.2 99.7 79.8 57.4 66.7 80.2
SymNets (Zhang et al., 2019) 90.8 98.8 100.0 93.9 74.6 72.5 88.4
TADA (Wang, Li, Ye, Long, & Wang, 2019) 94.3 98.7 99.8 91.6 72.9 73.0 88.4
CAPLS (Wang, Bu, & Breckon, 2019) 90.6 98.6 99.6 88.6 75.4 76.3 88.2
SPL (Wang & Breckon, 2020b) 92.7 98.7 99.8 93.0 76.4 76.8 89.6
CTSN (Zuo et al., 2021) 90.6 98.6 99.9 89.3 73.7 74.1 81.9
Han et al. (2020) 77.0 92.1 95.8 81.1 62.7 63.6 78.7
DS-c (Han et al., 2021) 71.6 95.7 99.6 76.9 67.8 67.3 79.8

Baseline (w/o selection) 73.3 97.5 99.6 75.8 68.0 67.6 80.3
naive-SPL* (overall selection) 84.6 98.9 99.8 81.4 70.4 70.6 84.3
naive-SPL (Ours) 88.6 98.1 99.9 82.0 73.6 73.4 85.9
norm-AE-SPL (Ours) 88.6 98.7 97.1 93.0 73.8 74.2 87.6
Table 4
Classification accuracy (%) on ImageCLEF-DA dataset using either ResNet50 features or ResNet50 based deep models.
Method I→P P→I I→C C→I C→P P→C Avg

RTN (Long et al., 2016) 75.6 86.8 95.3 86.9 72.7 92.2 84.9
MADA (Pei et al., 2018) 75.0 87.9 96.0 88.8 75.2 92.2 85.8
iCAN (Zhang et al., 2018) 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN-E (Long et al., 2018) 77.7 90.7 97.7 91.3 74.2 94.3 87.7
SymNets (Zhang et al., 2019) 80.2 93.6 97.0 93.4 78.7 96.4 89.9
MEDA (Wang et al., 2018) 79.7 92.5 95.7 92.2 78.5 95.5 89.0
SPL (Wang & Breckon, 2020b) 78.3 94.5 96.7 95.7 80.5 96.3 90.3
Han et al. (2020) 76.8 80.8 93.2 89.8 72.8 85.3 83.1
DS-c (Han et al., 2021) 78.7 86.7 92.8 87.3 70.4 91.3 84.5
CAN (Zhou et al., 2021) 78.5 91.8 95.5 91.6 76.4 95.2 88.2

Baseline (w/o selection) 79.1 89.2 94.0 86.0 69.9 92.4 85.1
naive-SPL* (overall selection) 77.0 90.7 95.9 92.1 73.4 93.7 87.1
naive-SPL (Ours) 80.0 91.5 96.2 94.3 79.1 95.6 89.4
norm-AE-SPL (Ours) 80.3 93.9 96.9 94.6 80.4 96.3 90.4
Table 5
Classification accuracy (%) on Office-Home dataset using either ResNet50 features or ResNet50 based deep models.
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Average

JAN (Long et al., 2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN-E (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MEDA (Wang et al., 2018) 54.6 75.2 77.0 56.5 72.8 72.3 59.0 51.9 78.2 67.7 57.2 81.8 67.0
SymNets (Zhang et al., 2019) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
TADA (Wang, Li, Ye, et al., 2019) 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
CAPLS (Wang, Bu, & Breckon, 2019) 56.2 78.3 80.2 66.0 75.4 78.4 66.4 53.2 81.1 71.6 56.1 84.3 70.6
SPL (Wang & Breckon, 2020b) 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
CAN (Zhou et al., 2021) 50.4 69.8 75.9 58.7 70.4 69.8 57.8 47.6 76.0 70.2 54.5 79.9 65.2

Baseline (w/o selection) 43.1 65.1 73.7 50.7 64.4 64.6 53.8 41.6 73.8 62.7 44.3 77.4 59.6
naive-SPL* (overall selection) 44.1 72.5 77.7 52.0 70.0 70.5 52.4 39.4 77.3 62.3 44.3 79.4 61.8
naive-SPL (Ours) 52.0 74.2 79.1 56.1 74.4 74.1 56.8 49.0 78.1 61.4 52.4 80.5 65.7
norm-AE-SPL (Ours) 51.6 76.0 80.6 63.0 77.0 78.4 62.9 50.7 81.2 66.3 52.8 82.9 68.6
other three datasets, ResNet50 (He, Zhang, Ren, & Sun, 2016)
features (d = 2048) are used in our experiments to allow a direct
comparison with other methods.

5.3. Comparison with State-of-the-Art approaches

We compare our approaches with the most competitive meth-
ds including those based on deep features (extracted using deep
odels such as ResNet50 pre-trained on ImageNet) and deep

earning models using pre-trained ResNet50 as the backbones.
he classification accuracy of our approaches and the comparative
nes are shown in Tables 1–5 in terms of each combination of
‘source’’ → ‘‘target’’ domains and the average accuracy over all
ifferent combinations. The classification accuracy is calculated as
he number of correctly predicted samples over the total number
621
of test samples (i.e. per-image accuracy). For all experiments
in this section, each task is repeated five times with random
seeds set as 0-4 to calculate the mean accuracy for this task.
We use bold and underlined fonts to indicate the best and the
second-best results respectively in each column of the tables.

Our approaches without and with data augmentation are de-
noted as naive-SPL and norm-AE-SPL, respectively. Besides, we
conduct an ablation study to investigate the effect of different
pseudo-label selection strategies. For this purpose, we consider
two more related methods in our experiments. One is denoted
as Baseline (w/o selection) which uses all pseudo-labelled tar-
get domain samples without selection for classifier training. The
other dubbed as naive-SPL* (overall selection) is adapted from
our proposed naive-SPL by replacing the pseudo-label selection
strategy in Eq. (1) with that used in Wang, Bu, and Breckon
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2019). This pseudo label selection strategy selects the most
onfident pseudo-labelled target samples without considering the
alance across different classes hence may lead to sub-optimal
elf-training performance.
Table 1 shows the performance of different UDA approaches

n the Digits dataset. The classifier is implemented by a shallow
NN model (c.f. Section 4.3) and is trained on raw images. Our
roposed naive-SPL achieves an average accuracy of 97.2% over
hree commonly used domain adaptation tasks which is better
han all the comparative methods except SHOT (Liang et al., 2020)
ith an average accuracy of 98.4%. The method norm-AE-SPL in
his experiment is based on the features extracted by the classifier
rained for naive-SPL. As we can see, there is no performance im-
rovement when data augmentation by norm-AE is employed in
his case. This is because our selective pseudo-labelling strategy
escribed in Section 4.1 enables the CNN model to learn domain-
nvariant features from source and target domains. As a result,
he domain shift between the source- and target-domain features
sed to train the norm-AE model is negligible hence the syn-
hetic features generated by norm-AE cannot provide additional
nformation for classifier training.

In many real-world applications, however, much deeper and
ore complicated CNN models than the one used for digit classi-

ication are required to extract image features. Training large CNN
odels on both source and target domain data can be computa-

ionally expensive and unnecessary (Wang & Breckon, 2020b). In
he following experiments on real-world image datasets, we use
re-trained (on ImageNet only) ResNet50 as the feature extractor
o extract features of source and target domain images. As shown
n Fig. 5, a data distribution shift can be observed between source
nd target domain data. In these cases, our proposed approach
ncluding the data augmentation model norm-AE demonstrates its
ffectiveness in improving the classification accuracy as described
n the following paragraphs.

Tables 2–5 demonstrate the results on image classification
atasets. Our proposed naive-SPL can already achieve quite good
erformance with the average accuracy of 92.8% on Office-Caltech,
5.9% on Office31, 89.4% on ImageCLEF-DA and 65.7% on Office-
ome. These results are comparable with many more complex
DA approaches, especially on Office-Caltech and ImageCLEF-
A datasets. This validates the effectiveness of our proposed
elective pseudo-labelling strategy since naive-SPL is no more
han a simple classifier trained with labelled source and pseudo-
abelled target domain samples iteratively. With the use of our
roposed data augmentation method, norm-AE-SPL improves the
erformance consistently on all four image classification datasets.
s a result, our proposed norm-AE-SPL achieves the best average
ccuracy of 93.4% and 90.4% on Office-Caltech and ImageCLEF-
A datasets, respectively. On the other two datasets, norm-AE-SPL
lso performs comparably well with most approaches except
APLS (Wang, Bu, & Breckon, 2019) and SPL (Wang & Breckon,
020b). It is noteworthy that both of them employ the dimension-
lity reduction algorithm Locality Preserving Projection (LPP) to
earn a latent subspace where source- and target-domain data can
e well aligned. These methods require to solve the eigenvalue
roblems and the computational cost is subject to the number
f samples in both domains. As a result, they are not suitable
or large-scale applications whilst our proposed method does
ot have such constraints. Besides, our method is intrinsically
ifferent from those based on the domain alignment in that
e assume a unified classifier can be learned in the original
omogeneous feature space despite the existence of the domain
hift across the source and target domains.
We conduct an ablation study by comparing the performance

f Baseline (w/o selection), naive-SPL* (overall selection) and naive-

PL and some consistent conclusions can be drawn from this s

622
blation study. Firstly, the Baseline method using all pseudo-
abelled target-domain data without selection is always inferior
o the other two methods with selective pseudo-labelling. Specif-
cally, the performance gaps between the Baseline (w/o selection)
nd naive-SPL* (overall selection) methods in terms of the av-
rage classification accuracy are 7.5%, 4.0%, 2.0% and 2.2% on
ffice-Caltech, Office31, ImageCLEF-DA and Office-Home datasets
espectively. These results demonstrate that selecting the most
onfident pseudo-labels progressively is of vital importance to
lassifier training. On the other hand, the pseudo-label selection
trategy used in Wang and Breckon (2020b) is inferior to the
roposed alternative described in Section 4.1 as naive-SPL outper-
orms naive-SPL* (overall selection) by margins of 0.4%, 1.6%, 2.3%
nd 3.9% on four image classification datasets respectively.

.4. Ablation studies on model architecture

We conduct additional ablation studies to validate the ef-
ectiveness of the proposed norm-AE architecture. To this end,
e investigate following variants of our proposed method. They
hare the architecture (i.e. an encoder–decoder architecture with
ross-domain and within-domain reconstruction flows) but differ
n the forms of latent code regularization. They also employ
he same selective pseudo labelling strategy as the proposed
orm-AE-SPL does.

• AE: a vanilla AutoEncoder is employed together with the
selective pseudo labelling. The latent code output by the
encoder µx (concatenated with the domain label d ∈ {s, t})
is directly fed into the decoder for the reconstructed input
x̂.
• AE w/ L2-norm: inspired by Aytekin et al. (2018), we apply

L2 normalization to the latent code of the AutoEncoder in
this method and keep other settings the same as AE.
• AE w/ noises: we add random noise to the latent code of the

AutoEncoder and keep other settings the same as AE.
• VAE: a VAE is employed together with the selective pseudo

labelling. Particularly, we use the same flow to generate syn-
thetic data as our proposed norm-AE, i.e., the latent code z is
sampled from a Normal distribution N (µx, σx) for any given
input x. The difference between this VAE method and norm-
AE lies in how the posterior distribution N (µx, σx) is con-
strained during training. Note that we do not sample z from
a standard normal distribution for data generation since the
data generated in this way has no labels for subsequent
supervised classifier training.
• mean-Norm-AE: this is a variant of norm-AE with the L2

normalization applied only to the mean µx and the variances
σx are not constrained during training.
• mean-Norm-AE w/ variance loss: this is a variant of norm-

AE with the mean µx L2 normalized and the variances σx
forced to be close to ones.

The results of the ablation studies are shown in Table 6. In
eneral, all the investigated variants of our norm-AE method
an achieve reasonably good performance thanks to the selective
seudo-labelling strategy. By a closer look at the results in Ta-
le 6, we can draw some interesting conclusions. Firstly, AE and
ts variants (i.e. AE w/ L2-norm and AE w/ noises) perform consis-
ently worse than our norm-AE. It is likely to be that AE learns
eterministic latent codes, hence the cross-domain reconstruc-
ion is restricted. In contrast, our norm-AE learns the posterior
istribution for the latent codes and has higher capacity of mod-
lling domain invariant latent codes for each class. Secondly, by
omparing VAE with norm-AE, we can see that norm-AE performs

lightly better on two out of four datasets. As we have discussed
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Fig. 4. Effect of the number of iterations T .
Table 6
Results of the ablation study on the norm-AE architecture.
Method L2 mean L2 log(σ 2) z sampling Others Office-Caltech Office31 Image-CLEF Office-Home

AE ✘ ✘ ✘ – 92.6 ± 0.3 87.2 ± 0.2 89.9 ± 0.1 67.4 ± 0.1
AE w/ L2-norm ✔ ✘ ✘ – 92.6 ± 0.2 87.4 ± 0.3 89.9 ± 0.2 67.5 ± 0.1
AE w/ noises ✘ ✘ ✘ noised z 92.2 ± 0.1 84.2 ± 0.2 87.1 ± 0.1 62.6 ± 0.1
VAE ✘ ✘ ✔ KLD loss 93.0 ± 0.5 87.3 ± 0.1 90.4 ± 0.1 68.7 ± 0.1
mean-Norm-AE ✔ ✘ ✔ – 92.6 ± 0.2 86.7 ± 0.2 89.8 ± 0.1 68.6 ± 0.1
mean-Norm-AE w/ variance loss ✔ ✘ ✔ log(σ 2) loss 92.8 ± 0.2 87.7 ± 0.3 90.4 ± 0.1 68.7 ± 0.1

norm-AE ✔ ✔ ✔ – 93.4 ± 0.1 87.6 ± 0.1 90.4 ± 0.1 68.6 ± 0.1
in Section 4.2, VAE has the limitation of forcing latent codes of all
classes close to the origin whilst our norm-AE projects them onto
the sphere for better separability. Finally, we can see that apply-
ing regularization on the variances of the learned posterior distri-
bution is necessary. Without regularization on the variances, the
method mean-Norm-AE performs worse than norm-AE on three
out of four datasets. This is because the model tends to learn near
zero variance for good reconstruction and degrades into a vanilla
AE. Besides, an alternative regularization term (e.g., log(σ 2)→ 0)
an lead to comparably good performance with norm-AE which
pplies the L2 normalization on variances.

5.5. Effects of the Hyper-parameter T

In Algorithms 1 and 2, the number of iterations T is a hyper-
parameter which was set as 10 throughout our main experiments.
In this experiment, we investigate how the value of T affects the
performance of naive-SPL and norm-AE-SPL. To this end, we set the
value of T to be 1, 3, 5, 10, 15, 20 respectively and calculate the
average accuracy over some representative domain adaptation
tasks. Specifically, we consider all three tasks for Digits, three
tasks C → A/D/W for Office-Caltech, two tasks A → W/D for
Office31, two tasks P → I/C for ImageCLEF-DA and three tasks
A → C/P/R for Office-Home. Each task is repeated three times
with random seeds set as 0, 1 and 2.

The results are shown in Fig. 4 in which the average accuracy
over considered tasks are reported for five datasets. As we can
623
see, the number of iterations T has a negligible effect on the
performance when it is greater than 5 for both naive-SPL and
norm-AE-SPL. For the Digits dataset, significant performance im-
provement can be observed when T increases from 1 to 5 whilst
for other image classification datasets, the optimal value of T
varies from 1, 3 to 5 with subtle differences. To summarize, our
approaches are not sensitive to hyper-parameters and perform
well enough with a relatively small number of iterations.

5.6. Data visualization

For qualitative evaluation, we use the t-SNE technique (Maaten
& Hinton, 2008) to visualize the real and synthetic features in
Fig. 5. The domain adaptation task C → W in the Office-Caltech
dataset is taken as an exemplar. The 4096-dimensional features
of real and synthetic data from both domains are mapped into
2-dimensional projections in an unsupervised way by preserving
data distributions (Maaten & Hinton, 2008).

Firstly, we visualize real data points from the source (red
circles) and target (blue squares) domains in Fig. 5(a). It is clear
data from source and target domains are distributed in different
regions. In the same plot, we also visualize the synthetic features
generated by our proposed model for the source (cyan crosses)
and target (green +) domains. We can see the synthetic data points
generated for the source/target domain are well aligned with
the real data points in the corresponding domain thanks to the
domain conditions of the decoder in our norm-AE model.
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Fig. 5. Visualization of real and synthetic features using t-SNE (best viewed in colour). (a) data distribution of four domains (i.e. real source, real target, synthetic
source, synthetic target); (b) real and synthetic data distribution in the source domain (colours represent different classes); (c) real and synthetic data distribution
in the target domain (colours represent different classes).
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Secondly, we examine the class discriminative property of
synthetic data in the source and target domains in Fig. 5(b) and (c)
respectively. In the source domain, we use circles and crosses to
represent the real and synthetic data points respectively whilst
different colours are used for ten classes. Similarly, squares and
crosses are used for real and synthetic data points and colours
represent different classes in the target domain. We can see that
real data points from the same class are distributed in a cluster
thanks to the discriminative features extracted by deep CNN
models pre-trained on ImageNet. The synthetic data generated by
our proposed model are also distributed in clusters of different
classes. This demonstrates our proposed method can generate
synthetic data which are both domain and class discriminative.

Finally, a closer inspection of Fig. 5(b) and (c) also tells us
that the synthetic data clusters are not perfectly aligned with
their corresponding clusters of real data (i.e. circles/squares and
crosses of the same colour are not well aligned). Such misalign-
ment is more severe in the target domain due to the fact there
is no labelled data in this domain. We believe slight misalign-
ment leads to over-complete data distribution (Keshari et al.,
2020) and is beneficial to learning a more robust classifier. How-
ever, significant distribution shifts can hurt the performance. This
demonstrates the limitation of our proposed method in gener-
ating reliable class-discriminative synthetic data and leads us to
improve the model in our future work.

6. Conclusion

In this paper, we proposed novel approaches to the unsu-
pervised domain adaptation problem from a novel perspective
and achieved impressive experimental results with the average
classification accuracy of 97.2%, 93.4%, 87.6%, 90.4% and 68.6% on
Digits, Office-Caltech, Office31, ImageCLEF-DA and Office-Home
datasets, respectively. Instead of pursuing explicit domain align-
ment, we train a unified classifier for both source and target
domain data in a high-dimensional feature space despite the
existence of distribution discrepancy across domains. We pro-
posed a novel pseudo-label selection strategy outperforming the
existing ones in the literature (Chen, Xie, et al., 2019; Wang
& Breckon, 2020b; Wang, Bu, & Breckon, 2019). With this spe-
cially designed pseudo-labelling strategy, our method naive-SPL
can achieve strong performance which is impressive given that
it only uses a typical shallow CNN for digit classification and
a linear two-layer MLP for image classification. Moreover, our
proposed norm-AE-SPL can improve the performance by gener-
ating synthetic features for training data augmentation. To con-
clude, our work provides fresh insights into unsupervised domain
adaptation for the community.
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