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Abstract For systems with complicated structures, reliability analysis based on survival signature 

has been carried out by modelling time-to-failure data with specific distributions. However, for highly 

reliable systems, only little or no failure data may be available. To enable reliability analysis without 

failure data, a new generalised reliability method is proposed for complex systems, based on the survival 

signature and using stochastic processes to model degradation. The combination of the survival signature 

and stochastic processes enables the proposed method to be applied to complex systems with different 

structures and stochastically degrading components. First, system reliability is analysed based on the 

survival signature and a generalised stochastic process. Then, component reliability analysis based on 

the generalised stochastic process is introduced using Wiener and Gamma processes. Finally, the 

approach presented in this paper is illustrated using two numerical examples, and the estimation results 

are compared with those calculated using failure time distribution functions.  
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1. Introduction 

Reliability analysis is essential to ensure the proper operation and functionality of systems and 

infrastructures. The accurate estimation of system reliability enables timely maintenance and reduces 

the likelihood of severe accidents (Zio, 2016). The reliability of systems with simple structures, such as 

series, parallel, and series-parallel systems, can be easily calculated after obtaining the reliability of the 

components (Xiao, Zhang, & Gao, 2020). For systems with more complex structures (Patelli et al., 2017), 

such as bridge structures (Behrensdorf, Regenhardt, Broggi, & Beer, 2021) or network structures (Da, 

Chan, & Xu, 2018), which cannot be simplified by alternative series and parallel subsystems, it is 
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difficult to analyse the system reliability using the traditional approach. Therefore, a new reliability 

model for complex systems is proposed which combines the survival signature and degradation 

processes.  

In recent research, system reliability analysis has been widely carried out by modelling degradation 

data with various stochastic processes, such as the Wiener (Zhang, Si, Hu, & Lei, 2018), Gamma (Wang, 

Wang, Hong, & Jiang, 2021), and inverse Gaussian processes (Kong, Yang, & Li, 2022). Kong, Yang, 

& Li (2022) used factor analysis for degradation interactions and proposed a general system reliability 

model based on diverse stochastic processes. Li, Sadoughi, Hu, & Hu (2020) proposed a hybrid Gaussian 

reliability model for systems with series and parallel structures by measuring the dependency among the 

components with a randomized dependence coefficient. Gao, Cui, & Qiu (2019) proposed a system 

reliability model with competing failure modes, using novel interaction patterns based on the Wiener 

process. Dong, Cui, & Si (2020) proposed a two-stage system reliability model with two performance 

characteristics based on bivariate Wiener processes. However, the systems in Gao et al. (2019) and Dong 

et al. (2020) were considered to function as one component, and the system structures were neglected. 

Xu, Liang, Li, & Wang (2021) proposed an optimal condition-based maintenance strategy for systems 

with degradation interactions and imperfect maintenance, based on multiple stochastic processes. 

Yousefi, Coit, & Song (2020) proposed a new reliability model for series and parallel systems by 

separating the components into different clusters, with the degradation dependency between the 

components modelled using a Gamma process. Dong, Liu, Bae, & Cao (2021) proposed a reliability 

model for series and parallel systems with three different shock damage patterns based on the Gamma 

process. In the above research on system reliability, the reliability at the system level has been mainly 

analysed based on stochastic degradation processes. However, the systems are mainly considered to be 

composed of series and parallel subsystems, or just to function as a single component. To the best of our 

knowledge, degradation-based reliability analyses for complex systems with complicated structures 

have not yet been performed. However, many practical systems, such as aerospace and energy supply 

systems, are designed with complicated bridge and network structures. This paper proposes a new 

reliability method for such complex systems, based on stochastic degradation processes and the survival 

signature. 

The survival signature, proposed by Coolen & Coolen-Maturi (2013), enables reliability 

quantification for large systems with multiple types of components by efficient structure analysis. If a 

system consists of K types of components and mk components for type k, where k = 1, 2, …, K, then 

there are ( )1 2 ...2 Km m m+ + +  entries of the structure function of the system, so computation of reliability for 

large systems is very challenging. However, the survival signature requires only ( )
1

1
K

k
k

m
=

+∏  entries 

making the calculations substantially more efficient, in particular for large systems with relatively few 

component types. More details about structural analysis using the survival signature are given in Section 
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2.  

Computation of the survival signature also requires substantial effort for large systems. Reed (2017) 

proposed an efficient method for calculating the survival signature for large systems, based on binary 

decision diagrams. Xu et al. (2019) presented a new method to compute the survival signature using the 

universal generating function. Behrensdorf, Regenhardt, Broggi, & Beer (2021) developed an efficient 

numerical method to calculate the survival signature based on percolation theory and Monte Carlo 

simulation, and the proposed method was applied to large practical systems with hundreds of 

components. In addition to overcoming the computational limitations, extensive studies have been 

conducted to extend the application of the survival signatures to various types of systems. Coolen & 

Coolen-Maturi (2016) combined an imprecise structure function with the survival signature. Their 

method enables simplification of the system structure and reliability analysis by focusing on a subset of 

all components. Qin & Coolen (2022) proposed the survival signature for multistate systems with multi-

state components. Due to its efficient calculation and extended application, the survival signature has 

become an important tool for practical reliability analysis of large systems and networks. 

Research on reliability of complex systems based on the survival signature has been widely 

conducted by modelling the component time-to-failure data with probability distributions, such as the 

normal (Su et al., 2018), Weibull (Walter & Flapper, 2017), and gamma distributions (Salomon, 

Winnewisser, Wei, Broggi, & Beer, 2021). Based on multiple lifetime distributions, Salomon et al. (2021) 

studied an imprecise system reliability model by combining the survival signature and fuzzy probability 

theory. Walter & Flapper (2017) proposed a system reliability evaluation method based on the Weibull 

distribution and a novel condition-based maintenance strategy, using the survival signature and Bayesian 

updating. Hashemi, Asadi, & Zarezadeh (2020) assumed several probability distributions for the 

lifetimes of components and studied corresponding maintenance strategies for complex coherent 

systems based on the survival signature. The reliability of complex systems with multiple components 

can be quantified based on the survival signature, the main challenge is the choice of lifetime 

distributions to model the reliability of the components, as failure time data may be sparse. Indeed, for 

complex systems with high reliability, such as aerospace systems and nuclear systems, failures are costly 

and potentially disastrous. Hence, it may not be easy to obtain sufficient failure data of every type of 

component through life tests, even with the help of accelerating life testing, because few failures or even 

no failures may occur within a reasonable experimental time (Freitas, de Toledo, Colosimo, & Pires, 

2009; Ye, & Xie, 2015). In such cases, to complete the system reliability analysis, a new general 

reliability model for complex systems is proposed based on the theory of stochastic degradation 

processes combined with the survival signature.  

In contrast to the existing reliability methods for complex systems based on survival signature and 

time-to-failure data, a new reliability method for complex systems is proposed based on the survival 

signature in combination with degradation data modelled by stochastic processes. In addition, compared 

to the existing degradation-based reliability methods for series and parallel systems, the new reliability 
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method is proposed by employing the survival signature, which enables the proposed method to be 

applied to complex systems consisting of multiple components with general structures, including series, 

parallel, bridge, and network structures. 

This paper is organised as follows. In Section 2, a new generalised reliability model for complex 

systems based on the survival signature and a general stochastic process is proposed. Section 3 

completes the parameter estimation for the general stochastic process based on the expectation-

maximization (EM) algorithm. This section also introduces dynamic reliability models for different 

types of components by modelling the degradation data using the Wiener and Gamma processes. In 

Section 4, the proposed method is illustrated by numerical examples to verify its validity and accuracy. 

Section 5 concludes the study and discusses future work. 

2. Dynamic system reliability analysis based on the survival signature and stochastic processes  

In previous research on system reliability based on the survival signature, the quantification of 

reliability of components and systems is mainly based on assumed probability distributions for time-to-

failure data (Aslett, Coolen, & Wilson, 2015). But as an increasing number of products are designed 

with highly reliable performance characteristics, it is becoming increasingly difficult to obtain sufficient 

failure data due to constraints on time and budgets for experiments. For example, components of 

aeronautical devices and nuclear plants are of crucial importance and they are designed with high 

reliability to avoid catastrophic accidents, making it difficult to obtain substantial sets of failure data. 

However, degradation data, which contains large amounts of information on health or status of 

components before actual failure, could be collected by monitoring components under normal working 

conditions, or by experiments in which these components are exposed to accelerated stress (Zhang, Si, 

Hu, & Lei, 2018; Shahraki, Yadav, & Liao, 2017). Therefore, in this section, dynamic system reliability 

(Liu et al., 2015; Liu & Zio, 2016), defined as the reliability calculated based on stochastic degradation 

data of components and systems, is considered by modelling component degradation with a general 

stochastic process, and a new generalised dynamic system reliability model is proposed based on the 

survival signature and the stochastic processes.  

Consider a system composed of K types of components. It is assumed that components of the same 

type operate under the same operating conditions and follow an identical and independent degradation 

process. If the components are similar but operate under different operating conditions, such as different 

stress levels, then the degradation processes of the components are different, and the components should 

be considered as different types. Let mk represent the number of components of type k and lk be the 

number of working components of type k, where k = 1, 2, …, K. Let vector Y = (Y1, Y2, …, Yk, …, YK) 

represent the operational status of the system, where ( )1 2, , , , ,Y
k k k kk i my y y y=   .  

 
if the th component  works
if the th component  fails 

1     
=

0       k

k

k
iy

i
i





 (1) 
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where ik the index of the component, ik = 1k, 2k, …, mk. The structure function of the system is denoted 

as ϕ(Y), such that ϕ(Y) = 1 denoted that the system functions and ϕ(Y) = 0 denotes that the system does 

not function. The survival signature of the system with K types of components can be derived as follows 

(Eryilmaz, Coolen, & Coolen-Maturi, 2018): 

 ( ) ( )
1

S 1 2
1

, , ,
Y S

Y
lk

K
k

K
k k

m
l l l

l
φ

−

∈=

  
Φ = ×  

  
∑∏

 (2) 

where S
kl

 denotes the set of all possible state vectors of the system when the number of working 

components of the k-th type is lk.  

The reliability of the system can be derived as: 

 ( ) ( ) ( )
1 2

1 2

S 1 2 ,
0 0 0 1

( ) , , ,
K

K

m m m K

s s K t k k
l l l k

R t P T t l l l P C l
= = = =

 
= > = Φ = 

 
∑∑ ∑ ∏ 

 (3) 

where P(Ct, k = lk) is the probability that the number of working components of the k-th type is lk at 

time t, which can be expressed as: 

 ( ) ( ) ( ), 1k k kl m lk
t k k k k

k

m
P C l R t R t

l
− 

= =    −      
 

 (4) 

where Rk(t) is the reliability of a component of type k. 

The system reliability, based on the survival signature in Eq. (3), can be expressed as: 

 ( ) ( ) ( ) ( )
1 2

1 2

S 1 2
0 0 0 1

, , , 1
K

k k k

K

m m m K l m lk
s K k k

l l l k k

m
R t l l l R t R t

l
−

= = = =

  
= Φ    −       

  
∑∑ ∑ ∏ 

 (5) 

To illustrate the system reliability analysis based on the survival signature, the reliability analysis of 

a multi-component system with a bridge structure is shown in Appendix A. In previous system 

reliability research based on the survival signature, Rk(t) is derived by modelling the time-to-failure data 

with probability distributions. In this paper, the reliability Rk(t) is calculated by modelling the 

degradation data with a generalised stochastic process. 

Let ( )
ki

X t  denote the degradation value of the i-th component of type k, which is supposed to follow 

a stochastic process, expressed as ( )( ) ; ,
k ki k iX t H t ′Θ Θ , where H(⋅) is the degradation function and kΘ  

is the matrix of the deterministic parameters representing the common characteristics of the components of 

type k. The value of kΘ   is obtained by parameter estimation based on degradation data. Θ
ki
′   is the 

matrix of the random parameters that represents the heterogeneous characteristics of components of type 

k. The random parameters are assumed to follow known distributions with deterministic parameters. 

The reliability of the ik-th component, given Θ
ki
′ , can be calculated by two methods. One is calculated 

as the probability that the degradation value of the ik-th component is less than the failure threshold Dk, 

which is expressed as:  
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 ( ) ( )( ) ( )Θ Θ Θ
k k k k i kki i i k i X k iR t P X t D F D′ ′ ′= ≤ =  (6) 

where Dk is the failure threshold of the k-th type of component, and ( )Θ
i kkX k iF D ′ is the conditional 

cumulative distribution function (CDF) of ( )
ki

X t  when ( )
ki kX t D= . Alternatively, the reliability of the 

ik-th component can also be defined as the probability for the event that the first time the degradation of 

the ik-th component reaches the failure threshold is greater than the designed lifetime t. Then, ( )Θ
k ki iR t ′

 

can be expressed as:  

 ( ) ( ) ( )1Θ Θ Θ
k k k k k ki i i i i iR t P T t F t′ ′ ′= ≥ = −   (7) 

where 
ki

T  is the first time that the degradation of the ik-th component reaches the failure threshold Dk 

and ( )Θ
k ki iF t ′  is the conditional first passage time (FPT) of the ik-th component.  

These two methods enable calculation of ( )Θ
k ki iR t ′ . However, the computational complexity of the 

implementation of these two methods depends on the stochastic processes. For example, if the 

component degradation follows the Wiener process, the theoretical equation for calculating the 

reliability based on CDF cannot be easily obtained by Eq. (6), but the FPT is commonly considered to 

follow the inverse Gaussian process, and the reliability in Eq. (7) can be derived easily. When the 

degradation follows the Gamma process, the reliability can be approximately calculated by Eq. (7) based 

on the Birnbaum-Saunders distribution (Pan & Balakrishnan, 2011), but Eq. (6) is more often applied to 

calculate the reliability theoretically. For other stochastic processes, such as the inverse Gaussian process, 

more details can be found in Li et al. (2020) and Xu et al. (2021). 

After obtaining ( )Θ
k ki iR t ′ , the reliability of the ik-th component can be derived as follows: 

 ( ) ( ) ( )Θ
Θ G

Θ Θ Θ
k k k i k kk

ik

i i i i iR t R t f d′
′ ∈

′ ′ ′= ∫  (8) 

where ( )Θ Θ
i kk if ′ ′   is the joint probability density function of the random parameters and G is the 

integration region composed of the range of the random parameters in the matrix Θ
ki
′ . As shown in Eq. 

(8), the reliability of the ik-th component ( )
ki

R t  is calculated by the integral over the random parameters 

Θ
ki
′ . Hence, ( )

ki
R t  is a function of t, and it is independent of the random parameters Θ

ki
′ . Let Rk(t) 

represent the dynamic reliability of a component of type k, then Eq. (8) can be expressed as: 

 
( ) ( ) ( )

( )

Θ
Θ G

Θ

Θ Θ Θ

Θ

k k i k kk

ik

i k kk

k i i i i

i i

R t R t f d

E R t

′
′ ∈

′

′ ′ ′=

 ′=  

∫
 (9) 

Finally, by substituting Eq. (9) into Eq. (5), a new generalised dynamic reliability model for complex 
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systems with multiple components can be obtained, based on the survival signature and stochastic 

processes.  

  

 
( ) ( ) ( ) ( )

( ) ( ){ } ( ){ }

1 2

1 2

1 2

1 2

S 1 2
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S 1 2
0 0 0 1
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K
k k k

K

K k k k

i k k i k kk k
K

m m m K l m lk
S K k k

l l l k k

m m m K l m l
k

K i i i i
l l l k k

m
R t l l l R t R t

l

m
l l l E R t E R t

l

−

= = = =

−

′ ′
= = = =

  
= Φ    −       

  
      ′ ′= Φ −         

∑∑ ∑ ∏

∑∑ ∑ ∏ Θ ΘΘ Θ

 

 

 (10) 

Using the survival signature enables the proposed model to be applied to systems with complex 

structures (e.g., bridge and network structures), and degradation of components of different types can 

be modelled by different stochastic processes. Section 3 presents reliability estimation based on the 

Wiener and Gamma degradation processes in detail. 

3. Dynamic component reliability analysis based on stochastic processes  

To apply the proposed dynamic system reliability method, the parameters of the degradation 

processes of components need to be estimated based on degradation data. In this section, the EM 

algorithm (Mazzarisi, Barucca, Lillo, & Tantari, 2020), which can deal with censored and truncated data, 

is introduced for parameter estimation. Then the reliability of each type of component is derived based 

on the degradation processes of the components. 

3.1 Parameter estimation for stochastic processes based on the EM algorithm 

Before introducing the EM algorithm, a short overview of the parameter estimation methods is 

provided. There are three main methods for parameter estimation: traditional methods based on statistics, 

such as the maximum likelihood estimation (MLE) method (Zhang et al., 2021); methods based on 

Bayesian theory, such as the EM method (Zhao, Chen, Gaudoin, & Doyen, 2021), the Kalman filtering 

(KF) method (Si, Wang, Hu, & Zhou, 2011), and the particle filtering (PF) method (Li, Lei, Lin, & Ding, 

2015); and methods based on the artificial neural network (ANN), such as the back-propagation (BP) 

network (Zhou et al., 2021) and the convolutional neural network (CNN) (Vasconcelos, Kijanka, & 

Urban, 2021). Different methods are suitable for estimating the parameters of models with different 

characteristics. For models with explicit expressions of likelihood functions and complete data, it is 

convenient to estimate the parameters by the MLE method. But if there are missing or latent data, then 

the EM algorithm needs to be utilized. Furthermore, if the data are obtained with measuring errors, then 

it is better to use stochastic filtering methods such as the KF and PF methods. For models established 

with big data, the ANN-based methods are more often used. 

In this paper, possible measurement errors are neglected, degradation data of components, ( )
ki

X t , 

are assumed to be available, and the values of random parameters are unknown. Hence, the EM method 
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is selected to estimate the parameters of the degradation process based on possibly incomplete data. The 

two steps of the EM algorithm can be expressed as follows: 

1) E-step: Calculate the conditional expectation of the complete log-likelihood function at iteration 

q, named the Q-function, which can be described as: 

 

( )( ) ( )( ) ( )

( )( ) ( )

( ) ( )

( ) ( )

obs miss

miss

obs

obs

| obs miss obs

miss obs

ln ,

ln ,

ln ( , ) ,

ln ( ) ,

Z

Z Z

Z

Θ Θ Θ Z Z Θ

Z Θ Z Θ

Z Z Θ Z Θ

Z Θ Z Θ

k

k k

k

q q
k k k k k k

q
k k k k

q
k k k k k

q
k k k k

Q E L

E f

E f

E f

 =  
 =  
 =  
 +  

 (11) 

where q is the index of iteration, Θk is the matrix of deterministic parameters to estimate, and Zk 

represents the complete data, which includes the observed data and missing data, that is, Zk = [Zkobs, 

Zkmiss]. The observed dataset is obtained from the measured degradation data, denoted as 

1 2, , ,Z X X X X
k k k

T

k k m = =  obs Δ Δ Δ Δ , 1 2, , , , ,X
k k k k k k k k ki i i i j i nX X X X = ∆ ∆ ∆ ∆  Δ , ik = 1k, 2k, …, mk. 

( ) ( )1k k k k k ki j i j i jX X t X t −∆ = −   is the jk-th degradation increment of the ik-th component. The random 

parameters are unknown and are denoted as miss 1 2[ , , , ]Z Θ Θ Θ Θ
k k kk k m′ ′ ′ ′= =   . For example, if the 

degradation of the ik-th component follows the Wiener process, that is, ( ) ( )2
k k ki i i kX t t B tθ η σ= + +  , 

where 
ki

θ  and 
ki

η  are random parameters, and they are supposed to follow the normal distributions with 

deterministic parameters, that is, ( )2,
k k ki N θ θθ µ σ and ( )2,

k k ki N η ηη µ σ , where 2 2, , ,
k k k kθ η θ ηµ µ σ σ , and 

σk are deterministic parameters. The random parameter matrix is ,Θ
k k ki i iθ η ′ =   , and the deterministic 

parameter matrix is 2 2 2, , , ,Θ
k k k kk kθ η θ ηµ µ σ σ σ =   . 

2) M-Step: Update ( )1Θ q
k

+  as ( )arg max ( | )
Θ

Θ Θ
k

q
k kQ∂ . Let ( )( | ) / 0Θ Θ Θq

k k kQ∂ ∂ = , and the estimation 

of deterministic parameters for step q+1 step can be obtained. Additional application details are 

introduced based on the Wiener and Gamma processes in Section 3.2 and Section 3.3.  

3.2 Component reliability analysis based on the Wiener process 

The exponential Wiener process is often applied to describe nonlinear degradation processes with 

increasing degradation rates, such as bearing degradation and reduction of light-emitting diode (LED) 

lighting (Wang, Balakrishnan, & Guo, et al., 2014; Si et al., 2013). More details about the Wiener 

processes can be found in the review papers of Zhang, Si, Hu, & Lei (2018) and Shahraki, Yadav, & 

Liao (2017). If the degradation of components of type k is supposed to follow the exponential Wiener 

process, then the degradation value of the i-th component of type k, ( )
ki

X t′ , can be expressed as: 
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 ( ) ( )
2

exp
2k k k k

k
i i i i kX t t B t tσ

ϕ θ η σ
 

′ ′ ′= + + − 
 

 (12) 

where 
ki

ϕ  is a known constant, which is usually considered to be 0; 
ki

θ ′  and 
ki

η′  are random parameters 

representing the heterogeneous characteristics of components of type k; σk is a deterministic parameter 

representing the increasing random error; B(t) is a standard Brownian motion, k = 1, 2, …, K; K is the 

number of component types; ik represents the i-th component of type k, ik = 1k, 2k, …mk, where mk is the 

number of components of type k. 

To facilitate the calculation, the exponential model can be expressed as follows: 

 

( ) ( )

( )

( )

2
2

2

ln

ln
2

k k k

k k

k k

i i i

k
i i k

i i k

X t X t

t B t

t B t

ϕ

σ
θ η σ

θ η σ

 ′= − 
 

′ ′= + − + 
 

= + +

 (13) 

where = ln
k ki iθ θ ′  and 2= 2

k ki i kη η σ′ − .The random parameters 
ki

θ  and 
ki

η are usually assumed to follow 

independent Gaussian distributions, ( )2,
k k ki N θ θθ µ σ  , and ( )2,

k k ki N η ηη µ σ   (Hashemi et al. 2020; 

Eryilmaz et al., 2018). Hence, for the exponential Wiener process, the matrix of deterministic parameters 

is 2 2 2
_ W , , , ,

k k k kk k kθ η θ ηµ µ σ σ σ = =  Θ Θ , and the matrix of random parameters is ,
k k ki i iθ η ′ =  Θ . The jk-

th degradation increment of the ik-th component can be expressed as: 

 ( ) ( )1k k k k k ki j i j i jX X t X t −∆ = −  (14) 

where ( )k ki jX t  is the degradation value of the ik-th component at the jk-th measuring time, jk is the j-th 

degradation state of components of type k, jk = 1k, 2k, …, nk, where nk is the number of degradation states 

of components of type k, nk = 1, 2, …, 
kj

t  is the j-th measuring time for components of type k, where 

components of the same type are assumed to have the same measuring times. The time increments 

1k kj jt t −−   are assumed to be constant and expressed as Δt (Si, et al., 2013). The distributions of the 

degradation increments of the ik-th component are as follows: 

 ( )2
1 ,

k k k ki i i kX N t tθ η σ∆ + ∆ ∆

 (15) 

 ( )2, , 2 ,3 , ,
k k ki j i k k k k kX N t t j nη σ∆ ∆ ∆ = 

 (16) 

The conditional probability density function (PDF) of the jk-th degradation increment is: 
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Θ
Θ
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The joint PDF of the random parameters ki
θ  and ki

η is: 
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Let Dk denote the failure threshold of components of type k, for the exponential Wiener process,

1

1 ln( )
k

k

k

m

k k i
ik

D D
m

ϕ
=

′= −∑ , where D′k is the original value of the failure threshold for components of type 

k before the logarithmic transformation. When the degradation of the components follows the Wiener 

process, the PDF and CDF of the FPT follow the inverse Gaussian distribution (Li, Pan, & Chen, 2014; 

Si, et al., 2013; Wang, Balakrishnan, & Guo, 2014), which can be expressed as: 
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The conditional reliability of the ik-th component can be derived by Eq. (7), leading to 
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 (21) 

The unconditional reliability of a component of type k can be derived by Eq. (9), leading to 
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Eq. (22) makes clear that it is difficult to obtain the analytical expression of the primitive function of 

the integrable function. Hence, a numerical integration method is employed to calculate Rk(t) based on 

a Monte Carlo simulation, which can be derived as: 
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 (23) 

where, ( )2
_ ,

k k ki g N θ θθ µ σ

 , and ( )2
_ ,

k k ki h N η ηη µ σ

 , Ng and Nh are the sampling sizes of 
ki

θ   and 
ki

η  , 

which are set to 10,000 for the Monte Carlo simulation in this paper. The sampling sizes can also be 

larger for higher calculation accuracy, but the calculation time could become much longer. 

To calculate Rk(t), the deterministic parameters of the stochastic model based on the Wiener process,
2 2 2

_ W , , , ,Θ Θ
k k k kk k kθ η θ ηµ µ σ σ σ = =    , need to be obtained. Based on the observed degradation data 

( )
ki

X t , the EM algorithm is applied for the parameter estimation. The calculation details are introduced 

in Appendix B and the parameter estimation results are as follows:  
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 (24) 

The M-step is repeated until the difference between the last two values of the Q-function is less 

than 10-6, that is, ( )( ) ( )( )1 6
_ W _ W _ W _ W 10Θ Θ Θ Θq q

k k k kQ Q+ −− <  . Then, the parameters converge, and the 

values of the deterministic parameters, ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 1 2 1 2
_ W , , , ,Θ

k k k k

q q q q q q
k kθ η θ ηµ µ σ σ σ+ + + + + + =   , can be obtained by 

Eq. (24). Finally, the reliability of components of type k, based on the Wiener process, can be obtained 

by substituting the estimated parameters into Eq. (23). 

3.3 Component reliability analysis based on the Gamma process 

The Gamma process is suitable for describing monotonic degradation processes such as abrasion and 

erosion (Yousefi et al., 2020; Dong et al., 2021). More details about Gamma processes can be found in 

the reviews by Si, Wang, Hu, & Zhou (2011) and Ye & Xie (2015). If the degradation of components of 

type k follows a Gamma process, that is, ( ) ( ); ,
k ki k iX t Ga t α β  , where ( )0 0

ki
X =  , αk is the 

deterministic shape parameter and 
ki

β  is the random scale parameter of this process for components of 

type k, with the latter representing the heterogeneous characteristics of components of type k. The shape 

parameter is assumed to be a linear function of time, that is, αk = akt, where ak is a deterministic parameter. 

To describe the randomness among the components, the scale parameters for components of type k are 

assumed to be independent and identically gamma-distributed, that is, ( ),
ki k kGaβ δ λ

. Hence, for the 

Gamma process, the matrix of deterministic parameters is [ ]_ G , ,k k k k ka δ λ= =Θ Θ , and the matrix of 

the random parameter matrix is 
k ki iβ ′ =  Θ  . Then, the jk-th degradation increment for the ik-th 

component can be expressed as: 

 ( ) ( )1k k k k k ki j i j i jX X t X t −∆ = −  (25) 
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 ( )( )1 ,
k k k k ki j k j j iX Ga a t t β−∆ −

 (26) 

where ik and jk are the same as those of the Wiener model described in Section 3.2.  

The conditional PDF of degradation increments, 
k ki jX∆ , is: 
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( ) ( )
1

exp
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Θ
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Γ ∆
 (27) 

where the Γ(⋅) is the gamma function, ( ) ( )1

2

1
1 2, expx

x
x x t t dt

∞ −Γ = −∫ .  

The PDF of the random scale parameter, 
ki

β , is: 
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 (28) 

The conditional reliability of the ik-th component, calculated by Eq. (6) is: 
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where γ(⋅) is the lower incomplete gamma function, ( ) ( )2
1 1

1 2 0
, exp

x xx x t t dtγ −= −∫ .  

The reliability of a component of type k, as given by Eq. (9) and based on the Gamma process, can 

be derived as: 
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Similar to the calculation of Rk(t) based on the Wiener process, as described in Section 3.2, the 

reliability Rk(t) in Eq. (30) can be calculated using the Monte Carlo method, which can be derived as: 
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 (31) 

where ( )_ ,
ki r k kGaβ δ λ

and Nr is the sampling size of 
ki

β . As before, the sampling size in the Monte 

Carlo simulation is set at 10,000. 

To calculate the reliability of the k-th type of components Rk(t), the deterministic parameters
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[ ]_ G , ,Θ Θk k k k ka δ λ= =   need to be estimated. The EM method is used to complete the parameter 

estimation based on the observed degradation data ( )
ki

X t  . The calculation details are provided in 

Appendix C, and the parameter estimation results are as follows: 
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 (32) 

The updating process in Eq. (32) is repeated until the difference between the last two values of the 

Q-function is less than 10-6, that is, ( )( ) ( )( )1 6
_ G _ G _ G _ G 10Θ Θ Θ Θq q

k k k kQ Q+ −− <  . Then, the parameters 

converge, and the values of the deterministic parameters ( ) ( ) ( ) ( )1 1 1
_ G , ,Θ q q q q

k k k ka δ λ+ + + =    can be obtained by 

Eq. (32). Finally, the reliability of the k-th type of component based on the Gamma process can be 

obtained by substituting the parameter estimates into Eq. (31). 

4. Numerical Examples  

In this section, the method proposed in this paper is illustrated by two numerical examples. In the 

first example, the dynamic reliability is analyzed at the component level and compared with the results 

of the existing method based on the widely used Weibull distribution. In the second example, the 

dynamic reliability at the complex system level is analysed and compared with the results of the existing 

methods based on different distributions. 

4.1 Example 1: dynamic reliability analysis at the component level. 

In this example, the proposed and existing methods are compared in terms of three aspects: reliability 

analysis, life prediction, and degradation path modelling. The parameters for the simulation are shown 

in Table 1, which are estimated by the proposed method with the experimental data obtained from the 

work of Meeker and Escobar (1998). Two sets of data are simulated based on the parameters in Table 1 

and the results are shown in Figs. 1-2. Because only a few components failed in the experiments and the 

failure data are not sufficient to complete the comparison. The first set is the fatigue crack growth data, 
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and the second set is the operating current growth data of lasers. The components in Fig. 1 fail when the 

crack size reaches 1.6 inches (Wang, Balakrishnan, & Guo, et al., 2014). Lasers in Fig. 2 fail when the 

increase in operating current reaches 10% (Tsai et al., 2012). Note that the time units of the two types 

of components are different in this section, which does not affect the reliability analysis at the component 

level. But for reliability analysis at the system level, as shown in Section 4.2, it is better to use the same 

time unit for types of components in one system. 

 

Table 1 The parameters for sampling 

 The parameters of the Wiener process The parameters of the Gamma process 

Name μθ1 μη1 σ2 
θ1 σ2 

η1 σ2 
1

 a2 λ2 δ2 

Value -0.0068 4.21×10-6 2.63×10-5 6.53×10-20 3.40×10-9 0.0374 29.73 1.74 

Note: the subscripts 1 and 2 are the indices of types of components 

 

Fig. 1 The fatigue crack growth Fig. 2 The percent increase in operating currents

 

The fatigue crack develops with a nonlinear degradation rate, hence the data in Fig. 1 are analysed 

with the exponential Wiener process. The operating currents increase steadily and monotonously, hence 

the degradation data in Fig. 2 are modelled with the Gamma process. The parameter estimation 

processes are omitted here, and the results are shown in Appendix D. After 247 iterations, the estimates 

for the five deterministic parameters of the Wiener process calculated by Eq. (24) have converged, with 

the difference between the last two values of the Q-function less than 10-6, that is, 

( )( ) ( )( )1 6
1_ W 1_ W 1_ W 1_ W 10Θ Θ Θ Θq qQ Q+ −− < . After 230 iterations, the estimates for the three parameters of 

the Gamma process calculated by Eq. (32) have converged, as ( )( ) ( )( )1 6
2 _ G 2 _ G 2 _ G 2 _ G 10Θ Θ Θ Θq qQ Q+ −− < .  

The prediction accuracy of the mean degradation value of a type of component is an important index 

to check the validity of the proposed method (Wang, Balakrishnan, & Guo, et al., 2014). In Figs. 3-4, 

the solid blue lines represent the means of the predicted degradation paths, which are calculated by Eqs. 
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(12-14) and Eqs. (25-26) with the parameter estimates given in Appendix D. The dashed purple lines 

represent the means of the empirical degradation paths (the grey background lines). It can be seen from 

Figs. 3-4 that the proposed models based on stochastic processes seem to predict the empirical 

degradation paths well. 

 
Fig. 3 Comparison of the predicted and 

empirical fatigue crack growth paths 

Fig. 4 Comparison of the predicted and 

empirical operating currents growth paths 

 

Fig. 5 The lifetimes of components with 

growing fatigue crack 

Fig. 6 The lifetimes of components with 

increasing operating currents 

 

To compare the reliability calculated by the proposed method based on stochastic processes, with the 

existing method based on the Weibull distribution, firstly, the failure time of the components needs to 

be obtained by the intersecting point coordinates of the black and red lines shown in Figs. 1-2. The 

results are shown in Figs. 5-6. Then, the commonly used Weibull distribution, given in Eq. (33), is 

employed to model the PDF of the failure time. The MLE (maximum likelihood estimation) method is 

used to estimate the parameters, and the results are shown in Table 2. 

 ( )
1

; , exp ( ) , 0
k

k

v
vk

k k
k k k

v t tf t u v t
u u u

−
   

= − ≥   
   

 (33) 

where k is the type of component, in this section k = 1, 2. 
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Table 2 The parameter estimation results of the Weibull distribution 

The fatigue crack data The operating currents data 

u1 v1 u2 v2 

131347.00 22.17 5155.24 8.12 

 

 
(a) Fatigue crack data (b) Operating current data 

Fig. 7 The comparison of the empirical and predicted reliabilities of the components 

 

Table 3 The MREs and the MAEs between the predicted and the empirical reliabilities 

 Wiener process Weibull distribution Gamma process Weibull distribution 

MRE 2.34% 2.82% 4.66% 7.74% 

MAE 0.0050 0.0060 0.0098 0.0127 

 

The reliability evaluation results of the proposed stochastic processes and Weibull distribution are 

compared with the empirical reliability, and the results are shown in Fig. 7 and Table 3. In Fig. 7, the 

solid red lines represent the empirical reliabilities, which are calculated as the ratio of the number of 

reliable components to the total number of components. The dot-dashed blue lines in Fig. 7 are the 

reliabilities calculated by Eqs. (23) and (31), based on the stochastic processes. The dashed green lines 

in Fig. 7 represent the reliabilities based on the Weibull distribution. As shown in Fig. 7, both the 

estimated reliabilities based on the stochastic processes and the Weibull distribution fit well with the 

empirical reliabilities. However, as shown in Table 3, both the mean relative errors (MREs) and mean 

absolute errors (MAEs) of the reliabilities predicted by the proposed stochastic processes are smaller 

than those predicted by the Weibull distribution, and the MREs of the reliabilities predicted by the 

proposed stochastic processes are less than 5%. Therefore, the calculation results indicate that the 

reliabilities of the two types of components can be evaluated more accurately by the proposed stochastic 

processes than by the Weibull distribution. 

 



18 
 

Table 4 Comparison of the empirical and predicted mean lifetime 

 Mean lifetime Relative error 

Empirical  0.1284 (millions of cycles) - 

Wiener process  0.1276 (millions of cycles) -0.62% 

Weibull distribution 0.1282 (millions of cycles) -0.16% 

Empirical 4780.57 (h) - 

Gamma process 4843.20 (h) 1.31% 

Weibull distribution 4858.54 (h) 1.63% 

 

Table 4 shows the comparison of the mean lifetimes predicted by the stochastic processes and the 

Weibull distribution, where the empirical mean lifetimes are obtained by the intersection point 

coordinates of the dashed purple lines and the solid red lines in Figs. 3-4, the mean lifetimes predicted 

by the stochastic processes are obtained by the intersection point coordinates of the solid blue lines and 

the solid red lines in Figs. 3-4, and the mean lifetimes predicted by the Weibull distribution are equal to 

E(t)=ukΓ(1+1/vk), where k is the type of the components, k = 1, 2, and Γ(⋅) is the gamma function. The 

relative errors are also shown in Table 4, and the results indicate that the lifetimes of the components 

can be accurately predicted by both models, so either based on the proposed stochastic processes or on 

the Weibull distribution.  

However, the Weibull distribution is usually applied to evaluate the component reliability and 

lifetime by using sufficient failure data, which may need to be obtained by destructive experiments. As 

shown in Fig. 7, Table 3, and Table 4, compared with the existing method, the proposed models can 

complete the reliability analysis and life prediction at the same, or even higher accuracy level, by using 

the degradation data, which can be obtained by non-destructive monitoring. 

To better address the advantages of the proposed model based on stochastic processes, reliability 

analysis, life prediction, and degradation modelling are conducted by using fewer degradation data. 

Compared with the method based on the Weibull distribution, failure data are not necessarily required, 

and the results in Figs. 8-9 and Table 5 show that the reliabilities, lifetimes, and degradation paths can 

still be accurately predicted with only 50% or 25% data (the data obtained from the start to 50% or 25% 

of the experimental time). Therefore, the time and budget required for experiments, to enable reliability 

analysis, life prediction, and degradation modelling can be substantially reduced using stochastic 

processes instead of probability distributions for the lifetimes. 
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(a) Fatigue crack data (b) Operating current data 

Fig. 8 Comparison of reliabilities based on different amounts of degradation data  

 

Table 5 Comparison of mean predicted lifetime based on different amounts of degradation data 

 
Mean lifetime - Wiener 

process (millions of cycles) 

Relative 

error 

Mean lifetime - 

Gamma process (h) 

Relative 

error 

Empirical 0.1284 - 4780.57 - 

Predicted with 

100% data 
0.1276 0.62% 4843.20 1.31% 

Predicted with 

50% data 
0.1278 0.47% 4812.84 0.68% 

Predicted with 

25% data 
0.1296 0.93% 4788.24 0.16% 

 

 
(a) Fatigue crack data (b) Operating current data 

Fig. 9 Comparison of the empirical and predicted degradation path (mean)  

4.2 Example 2: dynamic reliability analysis at the system level 
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To address the advantages of the proposed method, the system reliability estimated by modelling the 

degradation data with the proposed stochastic processes is compared with that obtained by analysing the 

failure data with several commonly used distributions. The system reliabilities calculated with different 

amounts of degradation data are compared to illustrate the possible reduction of time needed for 

experiments. 

 

 
(a) System one: an automotive braking   (b) System two: a system with 15 components 

system. (Tavangar, & Hashemi, 2022)               of four types. (Huang et al., 2019) 

Fig. 10 The reliability block diagrams of complex systems with multiple components of four types. 

 

In this example, two complex systems are considered to illustrate the application of the proposed 

method. As shown in Fig. 10, the first system is an automotive braking system with 10 components. The 

second system consists of 15 components. Both systems are composed of four types of components. The 

degradation data and failure threshold of each type of components are shown in Fig. 11. 

As shown in Table 6, the parameters of the four types of components are obtained by analysing the 

degradation data in Fig. 11 with Eqs. (24) and (32). Then, by substituting the parameters in Table 6 into 

Eqs. (23) and (31), the reliability of each component type can be calculated. To compare the system 

reliability calculated by the proposed and existing methods, the sets of time-to-failure data for applying 

the commonly used distributions are obtained by the intersecting point coordinates of the solid and 

dashed lines in Fig. 11, and the results are shown in Fig. 12. Based on the time-to-failure data, the 

parameters of three types of distributions are estimated by applying the MLE method and the results are 

shown in Table 7. By substituting these parameter estimates into the reliability equations in Table 7, the 

reliabilities of the four types of components based on the lifetime distributions are estimated. 
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              (a) Components of type one (b) Components of type two 

 
              (c) Components of type three (d) Components of type four 

(Solid lines: degradation paths;    dashed lines: failure thresholds) 

Fig. 11 The degradation paths of four types of components 

 

Table 6 The parameter estimation results  

Compon

ent type 

Stochastic 

processes 
Values of parameters 

1 Wiener 1_ WΘ = [2.26e-4, 2.01e-4, 2.78e-9, 6.82e-11, 9.77e-11] 

2 Gamma 2 _ GΘ = [68.79, 0.03, 1.99] 

3 Wiener 3_ WΘ = [3.63e-4, 4.01e-4, 6.81e-15, 9.55e-11, 2.38e-10] 

4 Gamma 4 _ GΘ = [65.58, 0.02, 1.68] 
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Fig. 12 The time-to-failure data of the four types of components 

 

Table 7 The estimated parameters of different distributions based on the time-to-failure data 

Distribution Rk(t) Component type Values of parameters 

Weibull 

distribution 
_ Norm ( ) 1 k

k
k

tR t υ
ω

 −
= −Φ 

 
 

1 [u1, v1] = [5592.03, 24.14] 

2 [u2, v2] = [4759.57, 7.92] 

3 [u3, v3] = [5813.31, 44.43] 

4 [u4, v4] = [4365.31, 5.95] 

Gamma 

distribution 
( ) ( ) ( )_ Gam

11 ,k k k
k

R t tγ ε ξ
ε

= −
Γ

 

1 [ε1, ξ1] = [585.95, 9.35] 

2 [ε2, ξ2] = [55.38, 81.08] 

3 [ε3, ξ3] = [585.95, 9.35] 

4 [ε4, ξ4] = [30.25, 134.07] 

Normal 

distribution 
( )_ Weib exp

kv

k
k

tR t
u

  
 = −    

 

1 [υ1, ω1] = [5480.72, 230.96] 

2 [υ2, ω2] = [4490.82, 615.31] 

3 [υ3, ω3] = [585.95, 9.35] 

4 [υ4, ω4] = [4056.08, 746.50] 

Note:ωk, υk, uk, vk, and εk are the parameters of the lifetime distribution for components of type k, Φ(⋅) 

is the standard normal cumulative distribution function. 

 

To calculate the reliability of the systems, the survival signatures of the systems are calculated by Eq. 

(2), and the results are shown in Table 8. For the systems in Fig. 10, there are respectively 2×2×5×5=100 

and 5×7×3×4=420 entries for the survival signatures, hence, only parts of the results are shown in Table 

8. Then, substituting the reliabilities of the four types of components calculated by Eqs. (23) and (31) 

and the survival signature results in Table 8 into Eq. (10), the reliabilities of the two complex systems 

are obtained by the proposed method, and the results are shown in Fig. 14. 
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Table 8 The survival signature of the two systems  

System one System two 

l1 l2 l3 l4 ΦS(l1, l2, l3, l4) l1 l2 l3 l4 ΦS(l1, l2, l3, l4) 

0 1 0 1 0.5 1 1 1 2 0.0069 

0 1 0 2 0.83 1 1 1 3 0.0208 

0 1 0 3 1 1 1 2 2 0.0139 

0 1 0 4 1 1 1 2 3 0.0417 

0 1 1 1 0.5 1 2 1 1 0.0056 

                    

1 1 4 0 1 4 6 1 2 0.8333 

1 1 4 1 1 4 6 1 3 1 

1 1 4 2 1 4 6 2 1 0.6667 

1 1 4 3 1 4 6 2 2 1 

1 1 4 4 1 4 6 2 3 1 

Note: The full survival signatures of these two systems are available from the authors. 

 

 
                     (a) Components of type one  (b) Components of type two

 
                    (c) Components of type three  (d) Components of type four 

Fig. 13 The prediction of degradation of the four types of components 

 

As shown in Figs. 13, the degradation paths of the four types of components are predicted by 
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substituting the estimated parameters in Table 6 into Eqs. (12-14) and Eqs. (25-26). After obtaining the 

values of the parameters in Table 6 and the survival signature in Table 8, the reliabilities of the four 

types of components and of the two systems can be calculated by Eqs. (10), (23), and (31), the results 

are shown in Fig. 14. Compared with existing reliability estimation methods based on the survival 

signature and distributions, in this paper the system reliability analysis method is improved by modelling 

the degradation data with stochastic processes. In this way, not only can the reliability of the systems 

and components be analysed, but also the degradation levels of each type of component can be predicted, 

which may enable engineers to check the health conditions of systems at suitable times. In particular, 

for some complex systems with high-reliability requirements, time-to-failure data are not easy to collect, 

and failures may cause catastrophic disasters, such as the nuclear systems and building systems. In these 

cases, it is better to analyse the reliability and degradation level by the proposed method based on the 

degradation data instead of only analysing the reliability based on the failure data. 

 

 
        (a) system one (b) system two 

Fig. 14 The reliability of the components and two systems 

 

The solid red lines shown in Fig. 15 represent the empirical reliabilities of the two systems, which 

are calculated by the ratio of the number of functioning components to the total number of components. 

The blue lines are the system reliabilities calculated by the proposed method based on the survival 

signature and stochastic processes. The green, yellow, and black lines represent the system reliabilities 

obtained by modelling the time-to-failure data with the existing methods, based on three commonly used 

distributions. It can be seen from Fig. 15 that all the system reliability curves, calculated based on 

regardless of the stochastic processes or the distributions, fit well with the empirical system reliability 

curves. The MAEs between the empirical and predicted system reliabilities are shown in Table 9. As 

shown in Fig. 15 and Table 9, for system one in Fig. 10(a), the MAE of the predicted system reliability 

based on the proposed stochastic processes is the smallest, which means that the accuracy of the 

proposed method is the highest. For system two in Fig. 10(b), the MAE of the reliability predicted by 

the proposed method is slightly larger than the corresponding MAE of the reliability based on the gamma 
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distribution, but the accuracy of the system reliability predicted by the proposed method is still at a high 

level.  

 

 
              (a) reliability of system one (b) reliability of system two 

Fig. 15 The reliabilities of systems estimated by the proposed and existing methos 

 

Table 9 The errors of the system reliabilities estimated by different methods  

 
The proposed 

method 

Tavangar & Hashemi 

(2022)’s method 

(Weibull) 

Salomon et al. 

(2021)’s method 

(Gamma) 

Behrensdorf et al. 

(2021)’s method 

(Normal)  

Reliability MAE 

(system one) 
0.0032 0.0075 0.0041 0.0042 

Reliability MAE 

(system two) 
0.0054 0.0098 0.0045 0.0059 

 

As shown in Fig. 15 and Table 9, the errors of the system reliabilities predicted based on the 

proposed stochastic processes are not always the smallest, but the accuracy of the proposed method is 

still at a high level. It is important that the system reliability predicted by the existing method based on 

the survival signature and distributions requires considerable amounts of failure data, which probably 

need to be obtained through destructive experiments. However, the system reliabilities evaluated by the 

survival signature and stochastic processes can be estimated based on the degradation data of the 

performance characteristics, such as changes in operation currents, voltages, temperatures, and vibration 

signals, which can be collected by sensors when the components are functioning. As shown in Fig. 16, 

the system reliability can still be predicted accurately even with only 50% degradation data available, 

in particular, for the first system, the system reliability can be accurately evaluated even with only 25% 

degradation data. Compared with the existing methods based on the survival signature and distributions, 

the results in Fig. 16 show that the experiment time and expense can be greatly reduced by 50%. For 

less complicated systems, such as the first system in Fig. 10(a), the experiment time can be reduced to 
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25%. 

 

 
                   (a) reliability of system one (b) reliability of system two 

Fig. 16 The comparison of the system reliability estimated with different amount of degradation data 

5. Conclusion 

System reliability research based on stochastic processes has been widely conducted, but existing 

methods are proposed for systems with simple structures. Therefore, a new generalised reliability model 

for complex systems based on stochastic processes and survival signature is proposed. The systems are 

not limited to simple systems, but complex systems with complicated bridge and network structures can 

be as easily studied, as long as the survival signature is available. In addition, in contrast to the existing 

system reliability analysis based on the survival signature and time-to-failure data, the proposed method 

based on the survival signature and degradation data can not only estimate the survival probability of 

the systems but also estimate the degradation level of the constituent components. The proposed method 

can help monitor the health conditions of systems and reduce the likelihood of disaster accidents, 

especially for systems whose component failures can cause catastrophic events, such as nuclear systems.  

The proposed system reliability method can be widely used for complex systems with various 

structures, but there are still some limitations. It is applicable for components whose degradation process 

can be described by one key performance characteristic. However, in many practical cases, more than 

one performance characteristic needs to be considered when estimating reliability, such as the 

operational currents, temperatures, and vibration magnitudes. In addition, the measuring errors are 

neglected, and the systems are assumed to be unrepairable. Hence, multiple degradation processes 

should be taken into account for future research to improve the system reliability model based on 

survival signature and stochastic processes. To solve real engineering problems better, models that 

consider more relevant details, such as the random noise of the obtained degradation data and the repair 

of the components, are worthy of further exploration. 
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Appendix A 

 
Fig. 17 A bridge system with two types of components 

A bridge system with two types of components is shown in Fig. 17, and the survival signature of this 

system can be obtained by Eqs. (1-2). For the system in Fig. 17, there are 4×3=12 kinds of survival 

signatures, which are shown in Table 10. To better illustrate Eqs. (1-2), an example for the calculation 

of the vector Y and the structure function φ(Y) is provided, and the results are shown in Table 11. 

 
Table 10 The survival signature of the bridge 

system 
Table 11 The vector Y and φ(Y) when l1 = l2 = 1

l1 l2 ΦS(l1, l2) l1 l2 ΦS(l1, l2) 

0 0 0 2 0 0 

0 1 0 2 1 1 

0 2 0 2 2 1 

1 0 0 3 0 0 

1 1 1/3 3 1 1 

1 2 2/3 3 2 1 

 

l1 l2 Y φ(Y) ΦS(l1, l2) 

1 1 

(0,0,1,0,1) 0 

1/3 

(0,1,0,0,1) 1 

(1,0,0,0,1) 0 

(0,0,1,1,0) 0 

(0,1,0,1,0) 0 

(1,0,0,1,0) 1 

Let R1(t) and R2(t) represent the reliability of the two types of components. Substituting the survival 

signatures in Table 11 into Eq. (5), the system reliability can be expressed as: 

 ( ) ( ) ( ) ( ) ( )1 21 2

1 2

3 2 3 2
S 1 2 1 1 2 2

0 0 1 2

3 2
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l ll l
s

l l
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l l
− −

= =
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∑∑  (34) 

Appendix B 

The parameter estimation procedure based on the Wiener process is as follows: 

1) E-step: calculate the Q-function of by Eq. (11), which can be described as: 
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where 1 2[ , , , ]Θ Θ Θ Θ
k k kk m′ ′ ′ ′= 

, [ , ]Θ
k k ki i iθ η′ = , ik = 1k, 2k, …, mk. 

Substituting Eqs. (17-18) into Eq. (35), then the Q-function can be derived as: 

 

( )( ) ( )

( )( )( ) ( )( )
( )( ) ( )( )

2 2
_ W _ W 2

1 1

1 _ W _ W
1 1 1

2
_ W _ W

1 1

2 2

1ln 2 ln ln
2 2

2 , 2 ,

, 2 ,

Θ Θ

X Θ X Θ

X Θ X Θ

X

k k

k k

k k

k k k

k k k k k k

k k k

k k

k k k

k k

k

m n
q k k

k k k i j
i jk

m m n
q q

i i k k i k k i j
i i j

m m
q q

i k k i i k k
i i

k i k

m nQ t X
t

X E t E X

E t E

n t E

π σ
σ

θ η

θ θ η

η

= =

= = =

= =


= − + + ∆ − ∆∆ 

 
− ∆ − ∆ ∆  

 

+ + ∆

+ ∆

∑∑

∑ ∑ ∑

∑ ∑

Δ Δ

Δ Δ

Δ ( )( ) ( )

( )( ) ( )( )( )
( )( ) ( )( )( )

2 2
_ W

1

2 2
_ W _ W2

1

2 2
_ W _ W2

1

, 2ln 2 ln ln
2

1 , 2 ,
2

1 , 2 ,
2

Θ

X Θ X Θ

X Θ X Θ

k

k

k

k k

k

k

k k

k

m
q k

k k k
i

m
q q

i k k k i k k k
ik

m
q q

i k k k i k k k
ik

m

E E

E E

θ η

θ θ
θ

η η
η

π σ σ

θ µ θ µ
σ

η µ η µ
σ

=

=

=


− + +



− − +

− − +

∑

∑

∑

Δ Δ

Δ Δ

 (36) 

 

where the conditional expectations of the parameters, 2 2, , , ,
k k k k k ki i i i i iθ η θ η θ η , can be obtained according to 

Si et al. (2013). 

 

( )( )
( )( )
( )( )
( )( )

( )( )

_ W

_ W

2 2 2
_ W

2 2 2
_ W

_ W

,

,

,

,

,

X Θ

X Θ

X Θ

X Θ

X Θ

k k

k k

k k k

k k k

k k k k k k k

q
i k k i

q
i k k i

q
i k k i i

q
i k k i i

q
i i k k i i i i i

E

E

E

E

E

θ

η

θ θ

η η

θ η θ η

θ µ

η µ

θ µ σ

η µ σ

θ η ρ σ σ µ µ

 ′=

 ′=
 ′ ′= +

 ′ ′= +

 ′ ′ ′ ′= +

Δ

Δ

Δ

Δ

Δ

 (37) 

 

( )( ) ( )( )
( )( )

( )
( )

( )2 ( ) ( )2 ( )2 ( )2 ( )2 ( )2 ( ) ( )2
1

( )2 ( )2 ( )2 ( )2 ( )2 ( )2

( )2 ( )2 ( )2 ( )2
2

( )2 ( )2 ( )

k k k k k

k

k

k

k

q q q q q q q q q
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i q q q q q q
k k k n k k k

q q q q
k k k k n

i q q q
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X t t t t X t

t t t

t t

t

θ θ η θ η η

θ
θ η θ η
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θ

θ η

σ µ σ σ σ σ σ µ σ
µ

σ σ σ σ σ σ

σ σ σ σ
σ

σ σ σ

∆ + ∆ + ∆ − ∆ +
′ =

+ ∆ + − ∆

∆ +
′ =

+ ∆ ( )
( )( )( ) ( )

( )( )
( )

2 ( )2 ( )2 ( )2

( )2 ( ) ( )2 ( )2 ( )2 ( )2 ( )2 ( ) ( )2
1

( )2 ( )2 ( )2 ( )2 ( )2 ( )2

( )2 ( )2 ( )2 ( )2
2

k

k k k k

k

k

k

q q q
n k k k

q q q q q q q q q
i n k k k k k k k i k k

i q q q q q q
k k k n k k k

q q q q
k k k k

i

t t

X t t X t

t t t

t

θ η

η η θ η θ θ

η
θ η θ η

η θ
η

θ

σ σ σ

σ µ σ σ σ σ σ µ σ
µ

σ σ σ σ σ σ

σ σ σ σ
σ

σ

+ − ∆

+ + ∆ − ∆ + ∆
′ =

+ ∆ + − ∆

+ ∆
′ =

( )( )

( )( )

( )2 ( )2 ( )2 ( )2 ( )2 ( )2

( ) ( )

( )2 ( )2 ( )2 ( )2

k

k

k

q q q q q q
k k k n k k k

q q
k k
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q q q q
k k k n k

t t t

t

t t

η θ η

θ η

θ η

σ σ σ σ σ

σ σ
ρ

σ σ σ σ

















+ ∆ + − ∆


− ∆
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2) M-Step: update ( )1
_ WΘ q

k
+  as ( )

_ W

_ W _ Warg max ( | )
Θ

Θ Θ
k

q
k kQ∂ . 

Let ( )
_ W _ W _ W( | ) / 0Θ Θ Θq

k k kQ∂ ∂ = , and the estimation of deterministic parameters in the q+1 step 

can be expressed as Eq. (24). 

Appendix C 

The parameter estimation procedure based on the Gamma process is as follows: 

1) E-step: the Q-function calculated by Eq. (10) can be described as: 

 
( )( ) ( )( ) ( )

( )( ) ( )

_ G _ G _ G _ G

_ G _ G

ln , ,

ln ,

X Θ

Θ

Θ Θ X Θ Θ X Θ

Θ Θ X Θ

k k

k

q q
k k k k k k k

q
k k k k

Q E f

E f

′

′

 ′=  
 ′+   

Δ Δ Δ

Δ
 (39) 

where 1 2 1 2[ , , , ] [ , , , ]Θ Θ Θ Θ
k k k k k kk m mβ β β′ ′ ′ ′= = 

. 

Substituting Eqs. (27-28) into Eq. (39), then the Q-function can be derived as: 

 

( )( ) ( ) ( ) ( )( )
( )( ) ( )

( )( ) ( )

_ G _ G _ G
1 1 1

_ G
1 1

_ G
1

1 ln 1 ln ,

, ln ln

, ln

Θ Θ X Θ
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X Θ

k k k

k k k

k k k

k k

k k k

k k

k

k

k

m n m
q q

k k k i j k k k i k k
i j i

m n
q

i j i k k k k k k k k
i j

m
q

k i k k k k
i

Q a t X n a t E

X E m n a t m

E m

δ β

β δ λ

λ β δ

= = =

= =

=

= ∆ − ∆ + ∆ + −

− ∆ − Γ ∆ +

− − Γ

∑∑ ∑

∑∑

∑

Δ

Δ

Δ

 (40) 

The conditional expectations of the parameters, 
ki

β  and ln
ki

β , can be obtained according to Ye et 

al. (2014) and Tsai et al. (2012): 

 
( )

( ) ( )

( )
_ G

1

,X Θ
k k

k k

k

q q
q k k k

i k k n
q

k j k
j

n a tE
X

δ
β

λ
=

∆ +  = 
∆ +∑

Δ  (41) 

 ( ) ( ) ( )( ) ( )
_ G

1
ln , lnX Θ

k

k k k

k

n
q q q q

i k k k k k i j k
j

E n a t Xβ δ λ
=

   = Ψ ∆ + − ∆ +     
∑Δ  (42) 

where, Ψ(x) is the digamma function, Ψ(x)=Γ′(x)/ Γ(x). 

2) M-Step: update ( )1
_ GΘ q

k
+  as ( )

_ G

_ G _ Garg max ( | )
Θ

Θ Θ
k

q
k kQ∂ . 

Let ( )
_ G _ _ G( | ) / 0Θ Θ Θq

k k G kQ∂ ∂ =  , and the estimation of deterministic parameters of the Gamma 

process in the q+1 step can be expressed as Eq. (32). 

Appendix D 
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Fig. 18 The parameter estimation results of the Wiener process based on the fatigue crack data  

 

 
Fig. 19 The parameter estimation results of the Gamma process based on the operating currents data  
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