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a b s t r a c t

In this paper, we consider the numerical inverse Laplace transform for distributed order
time-fractional equations, where a discontinuous Galerkin scheme is used to discretize
the problem in space. The success of Talbot’s approach for the computation of the
inverse Laplace transform depends critically on the problem’s spectral properties and we
present a method to numerically enclose the spectrum and compute resolvent estimates
independent of the problem size. The new results are applied to time-fractional wave
and diffusion-wave equations of distributed order.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Time-fractional equations are used to model anomalous phenomena in various fields, including diffusion and wave
ropagation [1,2]. Numerical methods for diffusion equations with a constant fractional order 0 < β < 1 have

been studied by many authors and common approaches include methods based on convolution quadrature [3] and the
numerical inverse Laplace transform [4].

In recent years, wave equations with a constant fractional order 1 < β < 2 [5,6] and distributed order fractional
equations with β ∈ [0, 2] have attracted great attention [5,7–11]. Distributed order fractional equations can be seen as a
generalization of equations with a constant fractional order (or more generally a multi-term fractional order) in the sense
that a constant order corresponds to a Dirac measure.

The Laplace transform is an important tool in the study of constant and distributed order fractional equations. The
representation of the solution in terms of the inverse Laplace transform depends on a contour integration of the underlying
operator function T . The spectrum of T is for 0 < β < 1 easily enclosed and avoided in the contour integration. This is
important since the common Talbot’s approach for the numerical Laplace transform depends critically on the location
of the spectrum and on the magnitude of the resolvent norm ∥T (s)−1

∥ over the contour. In [12] the authors developed
an approach to localize the spectrum and bound the resolvent norm for a (constant order) fractional viscoelastic beam
equation.

In this paper, we study equations where the spectrum of the underlying operator function T is not easily enclosed. The
approach to obtain spectral properties of T is based on numerical computations of an enclosure of the numerical range and
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resolvent estimates for finite and infinite dimensional operator functions [13]. This knowledge is used to characterize the
behavior of the inverse Laplace transform used to compute the solution of distributed-order time-fractional diffusion-wave
equations at a given time t .

Assume that f (n) is an absolutely continuous function. Then, we define for β > 0 the Caputo fractional derivative as

CDβ
t f (t) =

1
Γ (n − β)

∫ t

0

f (n)(τ )
(t − τ )β−n+1 dτ , (n − 1) < β < n.

he Caputo fractional derivative can be extended continuously to an operator mapping between larger function spaces
nd we refer to [14] for further details about CDβ

t . In this paper, we consider distributed order time-fractional equations
n the form∫ 2

0
W(β) CDβ

t u(x, t)dβ + Au(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ] (1.1)

where W is a real non-negative weight function and (A, dom A) is a self-adjoint operator in the separable Hilbert space
H. In the numerical examples, we focus on the case when A : L2(Ω) → L2(Ω) for Ω ⊂ R2 and Au = ux1x1 + ux2x2 .

R. Gorenflo, Y. Luchko, and M. Stojanović studied in [15] the Cauchy problem for a spatially one-dimensional distributed
rder time-fractional diffusion-wave equation with fractional order β ∈ [0, 2]. We consider numerical methods for the
orresponding boundary problem in several spatial dimensions. The following three cases are studied:

he time-fractional diffusion equation
Assume that suppW ⊂ [0, 1]. Then, the corresponding time-dependent problem is⎧⎪⎨⎪⎩

∫ 1
0 W(β) CDβ

t u(x, t)dβ + Au(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ]

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ].

(1.2)

he time-fractional wave equation of distributed order
Assume that suppW ⊂ [1, 2]. Then, the corresponding time-dependent problem is⎧⎪⎨⎪⎩

∫ 2
1 W(β) CDβ

t u(x, t)dβ + Au(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ]

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ].

(1.3)

The time-fractional diffusion-wave equation of distributed order
Assume that suppW∩[0, 1] and suppW∩[1, 2] are both non-empty. Then, the corresponding time-dependent problem

s ⎧⎪⎨⎪⎩
∫ 2
0 W(β) CDβ

t u(x, t)dβ + Au(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ]

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ].

(1.4)

Let f̂ (s) denote the Laplace transform of f (t). Then

L{
CDβ

t f }(s) = sβ f̂ (s) −

n−1∑
k=0

sβ−k−1f (k)(0) (n − 1) < β < n.

The Laplace transform of (1.3) with respect to t is then∫ 2

1
W(β)(sβ û(x, s) − sβ−1u0(x) − sβ−2u1(x))dβ + Aû(x, s) = f̂ (x, s)

Set

mp(s) =

∫ 2

1
W(β)sβ−pdβ, p = 0, 1, 2 .

With this notation, the problem after applying the Laplace transform with respect to time is

T̂ (s)û(x, s) = m1(s)u0 + m2(s)u1 + f̂ (x, s), T̂ (s) = m0(s) + A.

The remainder of this paper is structured as follows. In Section 2, we study properties of the operator function T̂ and the
corresponding operator functions for (1.2) and (1.4). In Section 3, we outline the used discontinuous Galerkin scheme and
in Section 4, we consider the numerical computation of resolvent estimates. Lastly, in Section 5, several numerical test

cases illustrate the theoretical results in the presiding sections.

2



C. Engström, S. Giani and L. Grubišić Journal of Computational and Applied Mathematics 425 (2023) 115035

f

2

2. Properties of the operator function

In this section, we study the operator function obtained after formally applying the Laplace transform to (1.1). Then

T̂ (s)û(x, s) = F̂ (x, s), T̂ (s) = m0(s) + A,

where

m0(s) =

∫ 2

0
W(β)sβdβ

and F̂ is given by the source term and the initial condition(s) at time t = 0.
Let L(H) denote the collection of linear operators in the Hilbert space H and take dom T̂ = dom A as the domain,

independently of λ ∈ D. The operator function T̂ : D → L(H), with D ⊂ C, is then closed and the spectrum is defined as

σ (T̂ ) = {s ∈ D : 0 ∈ σ (T̂ (s))}.

The spectral properties are together with estimates of ∥T̂ (s)−1
∥ of fundamental importance for determining the existence

and behavior of the solution operator

T (t) =
1

2π i

∫
Γ

est T̂ (s)−1ds (2.1)

or the time-dependent problem, [16].

.1. An enclosure of the numerical range

The numerical range of T̂ : D → L(H) is the set

W (T̂ ) = {λ ∈ D : ∃u ∈ dom T̂ , ∥u∥ = 1, so that (T̂ (λ)u, u) = 0},

where (·, ·) and ∥ · ∥ denote the inner product and norm in H, respectively. The numerical range of an operator function
contains in general several components that can be bounded or unbounded. However, it is difficult to directly determine
the properties of the numerical range. We will in this section consider a natural enclosure of the numerical range.

Take u ∈ dom T̂ , with ∥u∥ = 1 and set αu = (Au, u). Then, s ∈ W (T̂ ) if there exists a normalized vector u ∈ dom T̂ \ {0}
such that

tαu (s) := m0(s) + αu = 0.

One possible enclosure of W (T̂ ) is then

Wα(T̂ ) := {s ∈ D : tα(s) = 0, α ∈ W (A)}, tα(s) := m0(s) + α = 0.

In the following, we assume that D ⊂ C is the maximal domain. As a convention we always use the principal value of
the logarithmic function in all formulae.

Theorem 2.1. Assume that W ∈ L∞((0, 2)) is a non-negative function with positive support, µ(supp W) > c > 0.
Furthermore, the self-adjoint operator A is positive A > a, with a > 0. Then

1. Wα(T̂ ) is symmetric with respect to R.
2. Wα(T̂ ) ⊂ {s ∈ C : Re s < 0}.
3. Wα(T̂ ) is empty if supp W ⊂ [0, 1]
4. Assume that supp W ⊂ [β1, β2] ⊂ (1, 2). Then Wα(T̂ ) ∩ Sβ2 is empty, where

Sβ2 = {s = reiβ : −π/β2 < ϕ < π/β2, r > 0}.

5. Assume that supp W ⊂ [β1, β2] ⊂ (1, 2) with β1 > β2/2. Then Wα(T̂ ) ∩ Sβ1 is empty, where

Sβ1 = {s = reiβ : π/β1 < |ϕ| ⩽ π, r > 0}.

Proof. (1) By taking the real and imaginary parts, we conclude that s is a zero of tα if and only if tα(s̄) = 0.
(2) Assume that tα(s) = 0 for s = reiϕ , 0 ⩽ ϕ ⩽ π . The imaginary and real parts of tα(s) = 0 are then

0 =

∫ 2

0
W(β)eβ ln r sin(βϕ)dµ(β), 0 =

∫ 2

0
W(β)eβ ln r cos(βϕ)dµ(β) + α.

Assume that suppW ∩ [0, 1] or suppW ∩ [1, 2] are non-empty. Take ϕ = 0. Then∫ 2

W(β)eβ ln rdµ(β) + α > a > 0.

0

3
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0
W(β)eβ ln r sin(βϕ)dµ(β) > 0, 0 < ϕ ⩽ π/2.

(3) Assume supp W ⊂ [0, 1]. Take 0 < ϕ ⩽ π . Then∫ 1

0
W(β)eβ ln r sin(βϕ)dµ(β) > 0.

Hence, Wα(T̂ ) is empty.
(4) Assume supp W ⊂ [β1, β2] with 1 ⩽ β1 < β2 ⩽ 2. Then,∫ β2

β1

W(β)eβ ln r sin(βϕ)dµ(β) > 0, 0 < ϕ ⩽ π/β2.

Hence, Wα(T̂ ) in the upper half-plane belongs to the sector π/β2 < ϕ ⩽ π .
(5) As in the proof of (4), but the integral is negative. □

2.1.1. Approximation of the enclosure of the numerical range
Results of Theorem 2.1 provide enclosures of the spectrum, which are essential for the numerical Laplace transform.

In this subsection, we use numerical computations to obtain significantly tighter enclosures of the spectrum.
We base our method on classical results on the dependence of zeros of polynomials on perturbations in the coefficients

of the polynomial. Such results have been used by Kato in his approach to the perturbation theory of eigenvalues of finite
matrices [17]. A more modern treatment, particularly suited to the setting of this paper, can be found in the book [18,
Section 6.3].

Let us recall the main result from complex analysis, which will be the basis of our algorithm for the localization of the
spectrum. Two roots of a function of a complex variable are called geometrically distinct if they are distinct points of C.
The dependence of roots of a collection of functions formally denoted by z ↦→ f (z ′, z), z ′

∈ U ′
⊂ Cn−1 on the parameter

z ′ from the domain U ′ is described by the following result [18, Proposition 6.3.2], which, for completeness, we state in
Theorem 2.2.

Theorem 2.2. Let D ⊂ C and U ′
⊂ Cn−1 be domains and let f be holomorphic on U ′

× D. Assume that for given m ∈ N
each of the functions z ↦→ f (z ′, z), z ′

∈ U ′ has precisely m geometrically unique zeros. Then for each z ′
∈ U ′ there exists a

neighborhood of z ′ in U ′ and m functions si(·), i = 1, · · · ,m that are holomorphic in the neighborhood such that

f (z ′, z) = u(z ′, z)
m∏
j=1

(z − si(z ′))kj ,

where ki, i = 1, · · · ,m are positive integers and u is a non-vanishing holomorphic function.

We apply this result on our setting by recalling that α ∈ D ⊂ C, and that f (α, s) := tα(s) is holomorphic in D × C.
To turn this result into a practical algorithm, we will numerically approximate the enclosure of the numerical range by

the generalized argument principle and continuation. The computation of zeros of complex functions by the evaluation
of contour integrals is well known and we refer to [19] for details. The algorithm described above was implemented
in the open-source software Chebfun [20] and it approximates the values of the contour integrals along the closed
contour by expanding the integrand in a periodic Chebyshev series and then using the Clenshaw–Curtis rapidly converging
quadrature.

Assume that tα is holomorphic inside and on the closed contour γ and tα has no zeros on γ . Then the argument
principle implies

c0(α) :=
1

2π i

∫
γ

tα(s)
t ′α(s)

ds = number of zeros inside γ (2.2)

urthermore, if tα has zeros s1(α), s2(α), . . . , sn(α) inside γ , then the generalized argument principle implies

cn(α) :=
1

2π i

∫
γ

sk
tα(s)
t ′α(s)

ds = s1(α)k + s2(α)k + · · · + sn(α)k (2.3)

or higher moments of tα .
In the numerical computations, we first fix α ∈ W (A) and use (2.2) to determine the number of zeros inside a circle.

hen (2.3) is used to obtain all zeros, e.g. if there are two zeros then they are the roots of the polynomial

pα(z) = z2 − c1(α)z +
c1(α)2 − c2(α)

2
.

The roots can then be determined numerically.
4
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Fig. 1. The enclosure of the numerical range Wα(T̂ ) when W (A) ⊂ [2π2, ∞) truncated to a box in C. The constants in (2.4) are b1 = 0.89/(β2 −β1),
b2 = 0.1/(β4 − β3), b3 = 0.01/(β6 − β5) with β1 = 1, β2 = 1.05, β3 = 1.2, β4 = 1.5, β5 = 1.8, β6 = 2.

We note that the final procedure is a posteriori and heuristical, in that we first assess the number of geometrically
unique zeros inside a contour using a quadrature, rather than exact integration. We then proceed and sample the
parameter space D in order to approximately localize the spectrum.

2.1.2. A case study of the piece-wise constant weight function
Given the fact that our algorithm provides an indicator for the enclosure of the numerical range, rather than a

localization bound, we will now perform a more detailed analysis for the case of a piece-wise constant weight function
W . We note that several different weight functions have been considered in the literature [11,15].

Let first 1 ⩽ β1 < β2 < . . . βN ⩽ 2 and

W(β) =

N−1∑
j=1

bjχj(β), χj(β) =

{
1, βj < β < βj+1,

0, otherwise.
(2.4)

Assume s /∈ {0, 1}. Then∫ β2

β1

sβdβ =
sβ2 − sβ1

log s
,

here log s := ln |s| + i arg s with −π < arg s ⩽ π . Then follows

m0(s) :=

N−1∑
j=1

bj

∫ βj+1

βj

sβdβ =

N−1∑
j=1

bj
sβj+1 − sβj

log s
. (2.5)

ote that,

m0(0) = 0, m0(1) =

N−1∑
j=1

bjLj,

where Lj denotes the length of the interval (βj, βj+1). Fig. 1 presents numerical computations of Wα(T̂ ) for a case with
three terms in the weight function (2.4). Below, we derive further properties of Wα(T̂ ) in the case when N = 2.

Let

m0(s) = b1
sβ2 − sβ1

log s
, (2.6)

nd assume that 1 < β1 < β2 < 2, where β1 > β2/2. Then tα(s) = 0 only if

b1(sβ2 − sβ1 ) + α log s = 0, s = reiϕ, r > 0, π/β2 < ϕ < π/β1.

hen we have a solution if{
b1(rβ2 cosβ2ϕ − rβ1 cosβ1ϕ) + α ln r = 0, (i)

β2 β1
(2.7)
b1(r sinβ2ϕ + r sinβ1ϕ) + αϕ = 0. (ii)

5
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Fig. 2. The enclosure of the numerical range when W (A) ⊂ [2π2, ∞) and b1 = 1/(β2 − β1). Left: β1 = 1, β2 = 1.05, r0 = 1.44. Middle: β1 = 1.2,
β2 = 1.5, r0 = 3.37. Right: β1 = 1.8, β2 = 2, r0 = 1.76.

Assume that r ⩽ 1 and α > 2b1β2/π : Then, the left hand side in (ii) is positive. Hence, Wα(T̂ ) does not intersect the unit
disc |s| < 1. Moreover, Wα(T̂ ) does not intersect the disc with radius r0 if

α

b1
>

2β2r
β2
0

π
. (2.8)

Furthermore, the left side in (i) is positive if
α

b1

ln r
r

> 2.

Numerical computations indicate that we have one geometrically unique zero in quadrant 2 and one in quadrant 3.
ccording to Theorem 2.2, the zeros should therefore change holomorphically (they will never come together).
Fig. 2 illustrates the bounds for N = 2 in three different cases. In all sub-figures, the dotted disc contains no part of

he numerical range. Moreover, the two dotted rays in the second quadrant bound one part of the numerical range and
he two rays in the third quadrant bound the other part of the numerical range. The solid lines are numerically computed
nclosures of the numerical range.
The support of W is in the left figure close to one (almost diffusion). A more wave-like equation is illustrated in the

iddle figure and the result for a wave-like equation (β close to two) is depicted in the right figure.

. Discretization of the Laplace operator and Fredholm functions

Assume that the positive self-adjoint operator A has a compact inverse and that m0 is analytic. We consider then the
perator function

T̃ (s) := A−1/2T̂ (s)A−1/2
= m0(s)S + I, S = A−1, (3.1)

hich is an analytic Fredholm function of index zero. Hence, there can only be eigenvalue sequences with finite
ccumulation points at the boundary of D [21, Theorem 8.92]. Note that the results in Section 2.1.1 imply that σ (T̂ )
ith (2.6) and domain D = C \ {0, 1} cannot include branches of eigenvalues that accumulate to zero or one.
We will numerically consider the case when A is the Laplace operator. The spectral problem can then be reduced to

n eigenvalue problem for the analytic Fredholm function (3.1).

.1. Discontinuous Galerkin approximations for the Laplace operator

In the following, we outline the basic form of the symmetric interior penalty method (SIP) [22] for the Laplace
igenvalue problem [23] on a bounded and regular domain Ω ⊂ R2. Let Vp

h denote the space of piece-wise polynomials
f degree p on a conforming shape-regular triangulation T of Ω .
h

6
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Moreover, E and EI denote the set of all edges of Th and the set of just the internal edges, respectively. Assume that
K1, K2 ∈ Th share an edge e ⊂ ∂K1 ∩ ∂K2 and let n1, n2 denote the outward pointing normals on the edge. The averages
{·} and jumps [·] of a piece-wise smooth function w on K1 ∪ K2 are then defined as

{{w}} =
1
2
(w1 + w2), [[w]] = w1n1 + w2n2 ,

{{∇w}} =
1
2
(∇w1 + ∇w2), [[∇w]] = ∇w1 · n1 + ∇w2 · n2 ,

y wi, we denote the traces of w on e taken from within the interior of Ki, respectively.
On boundary edges, we set {{∇w}} = ∇w and [[w]] = wn, with n denoting the unit outward normal vector on the

oundary ∂Ω .
The symmetric interior penalty bilinear form ah : Vp

h × Vp
h → R is given by

ah[uh, vh
] = (∇uh, ∇vh)Th − ({{∇uh

}}, [[vh
]])E − ({{∇vh

}}, [[uh
]])E

+

∑
e∈E

ζ
p2

he
([[uh

]], [[vh
]])e , (3.2)

where he is the length of the edge e and where ζ is the penalty parameter. The bilinear form ah is continuous and coercive
for a value of ζ large enough [24].

The discrete eigenvalue problem for the Laplace operator then reads: find (µh, uh) ∈ R × Vp
h such that

ah[uh, vh
] = µh(uh, vh)

olds for all vh
∈ Vp

h .

.2. Discontinuous Galerkin approximations for the source problems

We solve the equation T̂ (s)û = h numerically for s ∈ Γ . Consider the case in Fig. 2 (left) when t = 1. Note that Fig. 2
hows that the inverse T̂ (s)−1 exists inside the circle. Take 32 quadrature nodes on Γ and compute m0(s) for those nodes.
he function-values m0(s) with the largest positive real parts and the largest negative real parts are then 0.2381±0.1832i
nd −38.5372± 1.0422i, respectively. Since m0(s) ∈ C, the source problem is posed on the complex plane and it has the
orm:

ah[uh, vh
] + m0(s)(uh, vh)Th = (h, vh)Th , (3.3)

n contrast to Eq. (3.2), here, the inner products in the definition of the problem and inside the bilinear form ah are the
nner product of the space L2(Ω) on C, i.e.

(u, v)S :=

∫
S
uv dx .

By definition, problem (3.3) is elliptic and Hermitian and can be solved with similar methods used for real and symmetric
elliptic problems.

4. Computation of resolvent estimates

Let σ ϵ(T̂ ) denote the ϵ-pseudospectrum

σ ϵ(T̂ ) := {s ∈ D : ∃u ∈ dom T̂ , ∥u∥ = 1, so that ∥T̂ (s)u∥ < ϵ}. (4.1)

ssume that s ∈ σ ϵ(T̂ ) \ σ (T̂ ). Then there is a vector u ∈ dom T̂ , ∥u∥ = 1 such that

ϵ > ∥T̂ (s)u∥ ≥ |(T̂ (s)u, u)| = |tαu (s)|.

ence, the set

W ϵ
α (T̂ ) = Wα(T̂ ) ∪ {s ∈ D \ Wα(T̂ ) : ∃α ∈ W (A) so that tα(s) < ϵ}.

s an enclosure of σ ϵ(T ). Importantly, W ϵ
α (T̂ ) is explicitly computable. The enclosure of the ϵ- numerical range W ϵ

α (T̂ ) was
ntroduced in [13] and applied to rational operator functions in [25,26].

Assume that the positive self-adjoint operator A has compact resolvent and that m0 is analytic. Then, we consider the
perator function (3.1) and the corresponding matrix-valued function

T̃ (s) := A−1/2T̂ (s)A−1/2
= m (s)S + I , S = A−1/2M A−1/2

.
h h h h 0 h h h h h

7
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Fig. 3. Upper estimation of the resolvent norm and computation based on FE matrices. Left: p = 1 (dofs = 108). Right: p = 8 (dofs = 1620).

he solution operator (2.1) depends on the integration curve Γ . We will compute W ϵ
α (T̃ ) and (4.1) along the integration

urve used to solve the time-dependent problems, where the enclosure is obtained from the zeros of

tα(s) = m0(s)α + 1, α ∈ W (S).

ig. 3 depicts the upper bound on ∥T̃h(s)−1
∥, s ∈ Γ h

0.4 when β1 = 1.8, β2 = 2, b1 = 1/(β2 − β1) α ∈ [0, 1/λ1], where
1 = 2π2 is the lowest eigenvalue of the Dirichlet Laplace operator when Ω is the unit square (the values at the quadrature
odes are marked by red circles). Moreover, an estimate of the resolvent norm for two Galerkin approximations of the
roblem ∥T̃ (s)−1

∥, s ∈ Γ h
0.4, α ∈ [1/λh

max, 1/λ
h
1] is depicted in the same figures (the values at the quadrature nodes are

arked by black stares).

. Numerical solution of distributed-order time-fractional equations

Under suitable conditions on Γ and the data, a classical solution of (1.2), (1.3), or (1.4) can be represented in the form

u(t) =
1

2π i

∫
Γ

est T̂ (s)−1h(s)ds, h(s) = h0(s) + f̂ (s),

or

u(t) =
1

2π i

∫
Γ

est T̂ (s)−1h0(s)ds +
1

2π i

∫
Γ

T̂ (s)−1
∫ t

0
es(t−τ )f (τ )dτds. (5.1)

The function h0 is for the time-fractional diffusion equation of distributed order in (1.2) given by

h0(s) = m1(s)u0, m1(s) =

∫ 1

0
W(β)sβ−1dβ.

This case is extensively studied [2,7] and therefore not the focus of this paper. The function h0 is for the time-fractional
wave equation of distributed order in (1.4) given by

h0(s) = m1(s)u0 + m2(s)u1, mp(s) =

∫ 2

1
W(β)sβ−pdβ, p = 1, 2.

Previous studies of this problem include [5,7,9].
The function h0 is for the time-fractional diffusion-wave equation of distributed order in (1.4) given by

h0(s) = m1(s)u0 + m2(s)u1, mp(s) =

∫ 2

0
W(β)sβ−pdβ, p = 1, 2.

The mathematical analysis for this problem has started but is still in its infancy [15].
The optimal constants in several different contours Γ have been determined for a few parabolic problems [27]. The

optimal contour will in our cases depend on the used weight function W . Another common approach for computing
contour integrals is to use higher than double precision [28]. However, optimization of the contour for a given W or
using high precision computations is beyond the scope of this paper.

In the following, we focus on illustrating the theoretical results in the previous sections. It is then sufficient to use the
contour in [27] and standard double precision.
8
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w

Consider Talbot’s contour parameterized by

s(α) = σ0 + µ(α cotα + νiα), −π < α < π,

here σ0 + µ > maxRe σ (T̂h) and u can be represented as

u(t) =
1

2π i

∫ π

−π

es(α)ts′(α)T̂−1
h (s(α))h(s(α)) dα. (5.2)

The representation (5.1) is the same but we also need to evaluate the integration in the second term numerically.

5.1. Test cases with the discontinuous Galerkin approximation

For simplicity, we restrict the numerical computations to Ω = (0, 1)2. The solution is based on (5.1) and the vectorized
adaptive quadrature implemented in the MATLAB function integral.

In all test cases, we used a course mesh and p = 8, which result in finite element matrices of size 1620. Furthermore,
128 quadrature nodes are used in the approximation of the inverse Laplace transform. The source term f is chosen such
the exact solution can be written in the form

u(x1, x2, t) = sin(πx1) sin(πx2)(t3 + 1), (5.3)

or

u(x1, x2, t) = arctan(x1) sin(πx1) sin(2πx2)(t3 + 1). (5.4)

The solution in (5.4) oscillates more rapidly compared to (5.4) and it decreases fast when x1 → 0. Hence, with the
considered uniform h and p distribution, we expect a considerably larger error for the problem with the solution (5.4)
compared to (5.3). The main focus of the numerical simulations is to further illustrate the enclosure of the numerical
range and a scaled Talbot’s contour for different cases.

A polynomial dependence on time t is often used in test cases for distributed time-fractional equations [5,7,9]. Only
small values on time (t < 1) are usually considered since the solutions grow with t . However, we will for illustration
purposes also consider larger values of t . The weight function W is in all test cases

W(β) = b1χ1(β), χ1(β) =

{
1, β1 < β < β2,

0, otherwise
(5.5)

and we consider test cases of time-fractional wave Eqs. (1.3) and diffusion-wave Eqs. (1.4) of distributed order. In the
computation of the source term

f (x, t) =

∫ 2

0
W(β) CDβ

t u(x, t)dβ + Au(x, t)

we use that

CDβ
t t

α
=

Γ (α + 1)
Γ (α − β + 1)

tα−β , n − 1 < β < n, α > n − 1,

and
CDβ

t t
α

= 0, n − 1 < β < n, α ⩽ n − 1, α ∈ N.

The integral in the definition of f is then computed using the MATLAB function integral. A numerical evaluation of f
is necessary in most cases, except for some special cases with e.g. a Gamma function as a weight function (since the
fractional derivative of a polynomial contains the Gamma function). In this paper, we:

1. Compute the smallest and largest eigenvalue of Ah.
2. Compute the enclosure of the numerical range of T̂h.
3. Check if the standard contour crosses the enclosure.
4. Compute the resolvent estimate for the considered values of t .
5. Check the error in the solution for two test cases (5.3) and (5.4).

Note that we only need an estimate of the numerical range of the matrix Ah. The use of these estimates does not
depend on the quality of the approximation of the eigenvalues of the Dirichlet Laplace operator by the eigenvalues of Ah.
Moreover, tα depends for large α smoothly on α. Therefore, for fine discretizations we can use ∞ as an upper estimate
on W (A ).
h

9
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Fig. 4. The constants in (5.5) are b1 = 1/(β2 − β1), β1 = 1, β2 = 1.05. The two solid black lines depict the enclosure of the numerical range. The
remaining curves are, counting from the right to left, Γ1 , Γ5 , and Γ10 .

Table 1
β1 = 1, β2 = 1.05, b1 = 1/(β2 − β1).
L2-error (5.3) (5.4)

t = 1 1.3e−05 1.5e−03
t = 5 8.2e−06 9.0e−03
t = 10 1.5e−05 4.5e−02

5.2. Almost diffusion equation

Consider the time-fractional wave Eq. (1.3) with β1 = 1 and β2 = 1.05. Let −Ah denote the discretization of the
Laplace operator and compute numerically its lowest and largest eigenvalues. Then, we obtain the numerical range
W (Ah) = [19.73, 4.27 · 105

]. The enclosure of the numerical range Wα(T̂h) is for the given W (Ah) computed numerically
using the approach in Section 2.1.1. The two solid black lines in Fig. 4 depict the numerically computed enclosure of the
numerical range. The remaining curves in the figure are, counting from right to left, Γ1, Γ5, and Γ10. The contour Γt will
for larger values of t cross the enclosure of the numerical range.

It is for the computation of the inverse Laplace transform also important that the norm of the resolvent is not too
large. The resolvent estimates are computed along Γt using the approach in Section 4. For given Γt this results in the set

Ŵ ϵ
α (T̃h) = {s ∈ Γt : ∃α ∈ W (Ah) so that tα(s) < ϵ}.

Finally, we take the maximum over the considered contours and obtain

max
t∈{1,5,10}

max
s∈Γt (s)

∥T̃h(s)−1
∥ ⩽ 0.42 .

Note that this computation only requires the lowest and largest eigenvalue of Ah and the same approach can be used
in the infinite-dimensional case [13].

In Table 1, we present relative L2-errors when the exact solutions are (5.3) and (5.4). The errors are, as expected,
considerably larger for the problem with the less smooth solution (5.4) compared to (5.3).

5.3. Wavelike equation I

Consider the time-fractional wave Eq. (1.3) with β1 = 1.2 and β2 = 1.5, which is a more wavelike equation compared
to the problem in Section 5.2. We use the same discretization as in the previous test case and compute the enclosure of
the numerical range Wα(T̂h) numerically using the approach in Section 2.1.1. The two solid black lines in Fig. 5 depict the
numerically computed enclosure of the numerical range and the remaining curves in the figure are, counting from right
to left, Γ0.125, Γ0.25, and Γ0.4. The contour Γt will for larger values of t cross the enclosure of the numerical range. Hence, a
different contour should in general be used for larger values of t . However, note that the term es(α)t in the inverse Laplace
transform is very small when −Re s(α) ≫ 1. Hence, the accuracy in the solution may be good also for larger values of t .
Moreover, the accuracy of the solution will depend on the oscillations in the data [29].

The resolvent estimates are as in Section 2.1.1 computed along Γt using the approach from Section 4. The maximum
of the norm of the resolvent is

max
t∈{0.125,0.25,0.4}

max
s∈Γt (s)

∥T̃h(s)−1
∥ ⩽ 0.049

In Table 2, we present relative L2-errors when the exact solutions are solution are (5.3) and (5.4). The errors are, as
expected considerably larger for the problem with the less smooth solution (5.4) compared to (5.3).
10
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o

Fig. 5. The constants in (5.5) are b1 = 1/(β2 − β1), β1 = 1.2, β2 = 1.5. The two solid black lines depict the enclosure of the numerical range. The
remaining curves are, counting from the right to left, Γ0.125 , Γ0.25 , and Γ0.4 .

Fig. 6. The constants in (5.5) are b1 = 1/(β2 − β1), β1 = 1.8, β2 = 2. The two solid black lines depict the enclosure of the numerical range. The
remaining curves are, counting from the right to left, Γ0.05 , Γ0.1 , and Γ0.2 .

Table 2
β1 = 1.2, β2 = 1.5, b1 = 1/(β2 − β1).
L2-error (5.3) (5.4)

t = 0.125 6.4e−07 1.1e−04
t = 0.25 5.3e−07 4.3e−04
t = 0.4 1.1e−06 1.0e−03

Table 3
β1 = 1.8, β2 = 2, b1 = 1/(β2 − β1).
L2-error (5.3) (5.4)

t = 0.05 8.3e−08 9.3e−08
t = 0.1 7.1e−08 7.3e−06
t = 0.2 2.6e−07 2.4e−05

5.4. Wavelike equation II

Consider the time-fractional wave Eq. (1.3) with β1 = 1.8 and β2 = 2, which is a wave-like equation. Hence, we
expect that the spectrum of T is close to the imaginary axis. We use the same discretization as in the previous test cases
and compute the enclosure of the numerical range Wα(T̂h) numerically using the approach in Section 2.1.1. The two solid
black lines in Fig. 6 depict the numerically computed enclosure of the numerical range and the remaining curves in the
figure are, counting from right to left, Γ0.05, Γ0.1, and Γ0.2.

The resolvent estimates are as in Section 2.1.1 computed along Γt using the approach from Section 4. The maximum
f the norm of the resolvent is

max
t∈{0.05,0.1,0.2}

max
s∈Γt (s)

∥T̃h(s)−1
∥ ⩽ 0.0026 .

In Table 3, we present relative L -errors when the exact solutions are (5.3) and (5.4).
2
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Fig. 7. The constants in (5.5) are b1 = 1/(β2 − β1), β1 = 0.9, β2 = 1.2. The two solid black lines depict the enclosure of the numerical range. The
remaining curves are, counting from the right to left, Γ0.5 , Γ1 , and Γ2 .

Table 4
β̂1 = 0.9, β̂2 = 1, β1 = 1, β2 = 1.2, b1 = 1/(β2 − β̂1).
L2-error (5.3) (5.4)

t = 0.5 5.0e−07 1.7e−03
t = 1 4.3e−06 3.7e−03
t = 2 8.0e−06 1.1e−02

5.5. Diffusion-wave equation

In the last example, we consider the time-fractional diffusion-wave equation of distributed order (1.4). Assume that

suppW ∩ [0, 1] ⊂ [β̂1, β̂2], suppW ∩ [1, 2] ⊂ [β1, β2]

are both non-empty with respect to the Lebesgue measure. Then it follows from Theorem 2.1(3) and (4) that Wα(T̂ )∩ Sβ2
is empty, where

Sβ2 = {s = reiβ : −π/β2 < ϕ ⩽ π/β2, r > 0}.

Take β̂1 = 0.9, β̂2 = 1, β1 = 1, β2 = 1.2, b1 = 1/(β2 − β̂1). We use the same discretization as in the previous test cases
nd compute the enclosure of the numerical range Wα(T̂h) numerically using the approach in Section 2.1.1. The two solid
lack lines in Fig. 7 depict the numerically computed enclosure of the numerical range and the remaining curves in the
igure are, counting from right to left, Γ0.5, Γ1, and Γ2.

The resolvent estimates are as in Section 2.1.1 computed along Γt using the approach 4. The maximum of the norm
f the resolvent is

max
t∈{0.5,1,2}

max
s∈Γt (s)

∥T̃h(s)−1
∥ ⩽ 0.26 .

In Table 4, we present relative L2-errors when the exact solutions are solution are (5.3) and (5.4). The errors are, as in
revious test cases, considerably larger for the problem with the less smooth solution (5.4) compared to (5.3).

. Conclusions

We have presented a numerical method to approximate an enclosure of the numerical range of a class of operator
unctions. The new results are applied to distributed-order time-fractional equations and we use an approach based on
he numerical inverse Laplace transform and a discontinuous Galerkin scheme to numerically approximate the solution.
he symmetric interior penalty method is used to illustrate the results but the proposed method is independent of the
cheme used to discretize the operator A.
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Data will be made available on request.
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