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Abstract—To improve both sensing and communication perfor-
mances, this paper proposes a coordinated multi-point (CoMP)
transmission design for a dual-functional radar-communication
(DFRC) system. In the proposed CoMP-DFRC system, the
central processor (CP) coordinates multiple base stations (BSs)
to transmit both the communication signal and the dedicated
probing signal. The communication performance and the sensing
performance are both evaluated by the signal-to-interference-
plus-noise ratio (SINR). Given the limited backhaul capacity,
we study the waveform and clustering design from both the
radar-centric perspective and the communication-centric per-
spective. Dinkelbach’s transform is adopted to handle the single-
ratio fractional objective for the radar-centric problem. For the
communication-centric problem, we adopt quadratic transform
to convexitify the multi-ratio fractional objective. Then, the rank-
one constraint of communication beamforming vector is relaxed
by semidefinite relaxation (SDR), and the tightness of SDR is
further proved to guarantee the optimal waveform design with
fixed clustering. For dynamic clustering, equivalent continuous
functions are used to represent the non-continuous clustering
variables. Successive convex approximation (SCA) is further
utilized to convexitify the equivalent functions. Simulation results
are provided to verify the effectiveness of all proposed designs.

Index Terms—Beamforming, clustering, coordinated transmis-
sion, DFRC, SINR, waveform.

I. INTRODUCTION

Next-generation wireless networks will provide both sensing
and communication functionalities to enable various novel
applications, e.g., area imaging [1], drone monitoring [2],
activity recognition [3], and vehicle platooning [4]. This
motivates the research of dual-functional radar-communication
(DFRC) by implementing both sensing and communication in
the same system. Nevertheless, the realization of DFRC leads
to a number of challenges, including information-theoretical
limits [5], full-duplex operation [6], multiple access scheme
[7], transceiver design [8], resource allocation [9] and so on.

A straightforward DFRC realization is to embed commu-
nication signals into radar waveforms. In [10], the authors
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proposed radar waveform design allowing information delivery
to a single or multiple communication directions using the
sidelobes of the radar waveform. Designing the radar wave-
form associated with different constellations, other works have
embedded information symbols into the radar pulses based on
phase-modulation [11], code shift keying [12] and frequency-
hopping code [13]. Using sparse antenna array configurations,
the work in [14] embedded communication information into
the emission of multiple-input multiple-output (MIMO) radar.
The authors in [15] developed a generalized framework for
performing information embedding in DFRC systems by ac-
commodating a variety of existing signaling strategies. Al-
though embedding information into radar pulse does not affect
the radar performance, its communication rate is limited by the
pulse frequency.

To achieve the performance tradeoff between sensing and
communication, other works have applied multiple access
schemes to the DFRC design. In [16], pseudo-random se-
quences were adopted to realize both spread-spectrum com-
munication and auto-correlation detection. The authors in
[17] and [18] dynamically allocated time slots for radar
and communication to achieve their performance tradeoff. A
time-division integrated sensing and communication system
was proposed in [19] for raw sensing data sharing among
connected automated vehicles. The work in [20] proposed
a novel multiple access scheme named radar-aware carrier
sense multiple access (RA-CSMA) to enable dual functions,
which outperformed the above time division multiple access
(TDMA) scheme. Based on orthogonal frequency-division
multiplexing (OFDM) scheme, the author in [21] studied the
DFRC waveform to realize both high data transmission rate
and low range sidelobes. Reference [22] studied the use of
different multiple access schemes for DFRC systems using
signals from multiplexed communications users (CUs).

Beamforming design provides another efficient way for
DFRC realization based on the spatial degrees of freedom.
The work in [23] proposed a series of transmit beamforming
approaches for both separated and shared antenna deploy-
ments. In [24], a joint transmit beamforming model was
studied for a dual-function MIMO radar and multiuser MIMO
communication transmitter. Exploiting the inherent spatial and
spectral randomness, a DFRC scheme based on the carrier
agile phased array radar was provided by [25]. Regarding the
radar targets as potential eavesdroppers, beamforming with
artificial noise was designed to enable communication-radar
functions in [26]. Integrating reconfigurable intelligent surface
(RIS), the beamforming of RIS and radar was jointly optimized
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to maximize communication performance while maintaining
radar detection performance [27]. The work in [28] further
studied a RIS-assisted DFRC system, where the base sta-
tion (BS) simultaneously performs both MIMO radar sensing
and multi-user MIMO communication. A space-time coding
scheme was developed in [29] for transmit beamforming of
DFRC to embed communication information. Fixed covariance
for MIMO radar to guarantee the radar performance, signal-
to-interference-plus-noise ratio (SINR) balancing problem was
solved by multiuser transmit beamforming in [30]. The authors
in [31] studied the hybrid beamforming designs for an OFDM-
DFRC system.

Most of these existing works on DFRC designs have focused
on single-BS scenario. To improve the performance of sensing
and communication, coordinated multi-point (CoMP) trans-
mission provides a promising architecture. From the communi-
cation perspective, CoMP transmission could exploit inter-cell
interference by allowing the user data to be jointly processed
by multiple interfering BSs [32]. For example, the work in [33]
improved the performance of CoMP communication through
joint resource allocation. Considering limited backhaul ca-
pacity, the transmission strategy has been studied in [34].
The CoMP architecture was also intended to the networks of
unmanned aerial vehicle (UAV) [35], simultaneous wireless
information and power transfer (SWIPT) [36] and caching
[37] for the benefits of interference mitigation. From the radar
perspective, CoMP transsmission could offer improved sensing
capability due to enhanced spatial spread as widely sepa-
rated antennas [38]. Various distributed MIMO radar systems
were designed to improve the localization accuracy based on
Cramer-Rao bound (CRB) in [39]. With imperfect waveform
separation, the target detection problem was modeled and
optimized for distributed MIMO radar system in [40]. In
presence of time synchronization errors, a closed-form solution
to estimate the target position was provided in [41].

However, the above mentioned CoMP designs cannot be
applied to the DFRC system, since there exists inherent
conflict and tradeoff to improve the performance of radar and
communication simultaneously. Also, the complexity of CoMP
design for the DFRC system will greatly increase, since the
CoMP waveform and clustering should be jointly optimized
for both communication and sensing. Recently, an overview
of system architecture that enables various types of sensing
was first proposed for coordinated mobile networks in [42].
For a multi-UAV DFRC network, the power control problem
was studied in [43] to optimize the network utility under the
constraint of localization accuracy. The authors in [44] also
discussed a CoMP power control problem to minimize the total
transmit power while ensuring the SINR of the communication
and the CRB of the localization. None of these works has
considered the joint waveform and clustering design for the
CoMP DFRC system to the best of our knowledge.

Motivated by the above observations, in this paper, the joint
waveform and clustering design for CoMP DFRC systems is
studied. Specifically, the central processor (CP) coordinates
multiple BSs to transmit both the communication signal and
the dedicated probing signal for the multi-user communication
and the target sensing. We first define the clustering variables

of both communication and radar based on the communication
beamforming vector and the radar covariance matrix. Then,
the signal-to-interference-plus-noise ratio (SINR) is derived
for both communication and sensing to evaluate their perfor-
mance. Given the limited backhaul capacity, we further formu-
late the waveform and clustering design problems from both
the radar-centric perspective and the communication-centric
perspective. For fixed clustering, the problems degenerate to
the the waveform design problem. Dinkelbach’s transform
is adopted to simplify the single-ratio fractional objective
function in the radar-centric problem. Quadratic transform is
adopted to solve the multi-ratio fractional objective function
in the communication-centric problem. Further, the rank-one
constraint of communication beamforming vector is relaxed
by semidefinite relaxation (SDR) with its tightness proved for
both problems. For dynamic clustering, equivalent continuous
functions are used to express the non-continuous clustering
variables of both communication and radar. To convexitify
the corresponding problem, successive convex approximation
(SCA) is further adopted. The final waveform and clustering
designs are provided for both problems with polynomial com-
plexity. The main contributions of this work are summarized
as follows.

• The SINR performances of the CoMP DFRC system
are derived for both communication and sensing. The
corresponding backhaul cost due to the clustering of both
communication and radar is modeled. Then, the CoMP
waveform and clustering design problem is formulated
form both the communication-centric and radar-centric
perspectives.

• For the CoMP waveform design, Dinkelbach’s transform
is used for the radar-centric problem and quadratic trans-
form is used for the communication-centric problem due
to the fractional objective functions. SDR is used to relax
the rank-one constraint of communication beamforming
vector with the tightness proved. Thus, the optimal wave-
form design can be achieved with fixed clustering.

• For the CoMP clustering design, equivalent continuous
functions are adopted to express the non-continuous vari-
ables of both the communication clustering and the radar
clustering. In order to further convexitify the equivalent
constraints, we adopt SCA to approximate the corre-
sponding non-convex constraints. A sub-optimal cluster-
ing solution can be given based on the algorithms with
polynomial complexity.

The remainder of the paper is organized as follows. Section
II presents the system model. Section III gives the performance
analysis of the CoMP DFRC system and formulates the CoMP
design problem from both radar-centric and communication-
centric points of view. The corresponding solutions of the
waveform and clustering designs are provided in Section IV.
Simulation results are provided in Section V, followed by
concluding remarks in Section VI.

Notation: We use boldface lowercase letter to denote col-
umn vectors, and boldface uppercase letters to denote matrices.
Superscripts (·)H and (·)T stand for Hermitian transpose and
transpose, respectively. tr(·), diag(·), and rank(·) represent the
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Figure 1. CoMP transmission for a DFRC system with a CP, L multi-antenna
BSs, K single-antenna CUs and a point-like target.

trace operation, the vector formed by the diagonal elements
and the rank operator, respectively. det(·) is the determinant
of a matrix. Cm×n is the set of complex-valued m × n
matrices. C ⪰ 0 denotes the matrix C is positive semi-definite.
x ∼ CN (a, b) means that x obeys a complex Gaussian
distribution with mean a and covariance b. E(·) denotes the
statistical expectation. ∥x∥ denotes the Euclidean norm of a
complex vector x.

II. SYSTEM MODEL

As illustrated in Fig.1, consider the CoMP transmission for
a DFRC system composed of a CP, L dual-functional BSs in-
dexed by l ∈ {1, · · · , L}, K CUs indexed by k ∈ {1, · · · ,K},
and a point-like target. Each BS is equipped with N transmit
antennas and M receive antennas. The CP coordinates multiple
BSs to serve the CUs and detect the target simultaneously.

Given the coordinated transmit signal of the BSs, i.e., x ∈
CNL×1, the received signal at the CU k is

yk = hH
k x+ zk, (1)

where hk ∈ CNL×1 is the channel between all BSs and the
CU k, zk ∼ CN

(
0, σ2

k

)
is the additive white Gaussian noise

(AWGN) at the CU k, and the time instance is omitted for
conciseness.

The dual-functional BSs also work as a colocated monos-
tatic MIMO radar. Assuming I signal-dependent interferences
indexed by i ∈ {1, · · · , I}, the received signal at the BSs
aligned to the target delay can be expressed as

y0 = α0A (θ0)x+

I∑
i=1

αiA (θi)x+ z0, (2)

where αjA (θj) is the response matrix of a target (j = 0) or
an interference (j = 1, · · · , I) with αj being the radar cross
section (RCS) and θj = {θj,1, · · · , θj,L} being the azimuth
angle of the BSs,

A (θj)=[1,· · ·, e−j2π(N−1)∆tsin θj,1 ,· · ·,1,· · ·, e−j2π(N−1)∆tsin θj,L ]T

[1,· · ·, e−j2π(M−1)∆rsin θj,1 ,· · ·,1,· · ·, e−j2π(M−1)∆rsin θj,L ]
(3)

with ∆t and ∆r being the spacing between the adjacent
transmit and receive antennas normalized by the wavelength,
and z0 ∈ CNr×1 is the AWGN at the radar receiver with each
element subjects to CN

(
0, σ2

0

)
. This assumes the presence of

target.
For dual-functional realization, the coordinated transmit

signal of all BSs in (1) and (2) is

x =

K∑
k=1

bkdk + v, (4)

where bk ∈ CNL×1 is the beamforming vector of all BSs
to the CU k, dk is the data symbol of the CU k satisfying
CN

(
0, σ2

k

)
without loss of generality, and v ∈ CNL×1 is the

dedicated probing signal of all BSs for the target sensing. The
dedicated probing signal is assumed to be uncorrelated with
the data signal. Thus, the covariance matrix of the transmit
signal can be calculated as

C =

K∑
k=1

Bk +V, (5)

where Bk = bkb
H
k is the covariance matrix of the communi-

cation signal for the CU k satisfying rank (Bk) = 1, and V
is the covariance matrix of the dedicated probing signal. This
assumes E[|dk|2] = 1 without loss of generality.

The type of CoMP discussed in this paper is joint transmis-
sion (JT). Specifically, for the JT CoMP, multiple points trans-
mit simultaneously in a coherent manner. And the coordinated
transmission of the DFRC system is designed at the CP. Using
the channel state information (CSI) of the communication
and the response matrix of the sensing, the CP designs the
clustering policy for both the radar and the communication.
Then, it broadcasts the designed policy and the data symbols
to the BSs via backhaul links.

In order to evaluate the corresponding backhaul cost, the
beamforming vector of all BSs to the CU k can be further
decomposed as

bk =
[
bH
k,1b

H
k,2 · · ·bH

k,L

]H
, (6)

where bk,l ∈ CN×1 is the beamforming vector of the BS l to
the CU k. Also, the dedicated probing signal of the BSs can
be further expressed as

v =
[
vH
1 vH

2 · · ·vH
L

]H
(7)

where vl ∈ CN×1 is the dedicated probing signal of the BS l.
Unlike existing CoMP systems, both the communication

clustering and the radar clustering should be considered in
the DFRC system. We define the communication clustering
variables and the radar clustering variables as

sk,l =

{
1, ∥bk,l∥2 > 0

0, ∥bk,l∥2 = 0
,∀k, l (8)
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and

cl =

{
1, ∥vl∥2 > 0

0, ∥vl∥2 = 0
,∀l (9)

respectively, where sk,l = 1 indicates that the l-th BS belongs
to the communication cluster serving the k-th CU, and sk,l = 0
otherwise, vl = 1 indicates that the l-th BS belongs to the radar
cluster detecting the target, and vl = 0 otherwise.

Note that if a BS transmits the communication signal
and the dedicated radar signal simultaneously, it belongs to
both clusters at the same time. If a BS only transmits the
communication signal or the dedicated radar signal, it belongs
to the communication cluster or the radar cluster. Specifically,
the coordinated transmit signal of BS l can be given by
xl =

∑K
k=1 bk,ldk + vl. If the communication clustering

variables sk,l = 1, i.e., ∥bk,l∥2 > 0, the BS l belongs to the
communication cluster. And if the radar clustering variables
vl = 1, i.e., ∥vl∥2 > 0, the BS l belongs to the radar cluster.

According to (6) and (7), the transmit power of the BS l
can be calculated by

pl =

K∑
k=1

∥bk,l∥2 + ∥vl∥2

=

K∑
k=1

tr (JlBk) + tr (JlV)

= tr (JlC)

(10)

where Jl is a selection matrix of the BS l given by Jl =

diag
{
0H
(l−1)M , IM ,0H

(L−l)M

}
.

To reduce the overhead, smaller size cooperation clusters
are required where coordination only takes place within the
cluster. And the total backhaul cost of the whole system can
be derived as

b =

K∑
k=1

L∑
l=1

sk,lβk,l +

L∑
l=1

clβl
′, (11)

where βk,l is the communication backhaul cost of the BS
l serving the CU k, and βl

′ is the radar backhaul cost of
the BS l detecting the target. The communication backhaul
delivers the CSI of the communication, the data symbols and
the designed beamforming vector, while the radar backhaul
delivers the response matrix of the radar and the designed
dedicated probing signal. Thus, the backhaul costs of the
communication and the radar are generally different.

III. PERFORMANCE ANALYSIS AND PROBLEM
FORMULATION

In this section, we analyze the performance of the CoMP
transmission for the DFRC system. In order to jointly design
the transmit waveform and the clustering, two optimization
problems are formulated from the radar-centric perspective and
the communication-centric perspective, respectively.
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Figure 2. The illustration of the location performance of the target versus the
sensing SINR of the target.

A. Performance Analysis

In this work, we adopt SINR as the performance metric of
the DFRC system for both communication and sensing. For the
communication, the received SINR at the CUs determines the
communication rate. It is assumed that we consider a quasi-
static channel for both the communication and the radar, where
the CSI and the response matrix are constant during the design.

Given the coordinated transmit signal in (4), the received
signal at the CU k in (1) can be rewritten as

yk = hH
k bkdk + hH

k

K∑
i=1,i̸=k

bidi + hH
k v + zk. (12)

Thus, the received SINR of the CU k can be calculated by

γk =

∣∣hH
k bk

∣∣2
K∑

i=1,i̸=k

∣∣hH
k bi

∣∣2 + ∣∣hH
k v

∣∣2 + σ2
k

=
tr (HkBk)

K∑
i=1,i̸=k

tr (HkBi) + tr (HkV) + σ2
k

=
tr (HkBk)

tr (HkC)− tr (HkBk) + σ2
k

.

, (13)

where Hk = hkh
H
k , and the covariance matrices {Bk}, V are

defined in (5).
For the sensing, the received SINR for the target sensing

determines both the detection performance and the localization
performance of the target. For example, the distance estimation
accuracy versus different SINR for the target sensing is shown
in Fig. 2 with different effective signal bandwidth [45].

Using the receive beamforming vector w ∈ CML, the
received signal for the probing target in (2) can be further
expressed as

r0 = α0w
HA (θ0)x+wH

I∑
i=1

αiA (θi)x+wHz0. (14)

Thus, the received SINR for the target sensing can be calcu-
lated as
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γ0 =
E
[∣∣α0w

HA (θ0)x
∣∣2]

E

[∣∣∣∣wH
I∑

i=1

αiA (θi)x

∣∣∣∣2
]
+ σ2

0

=
|α0|2tr (R0C)

I∑
i=1

|αi|2tr (RiC) + σ2
0

,

(15)

where wHw = 1 without loss of generality, and Ri is the
constant matrix with fixed receive beamforming vector, which
is defined by

Rj = AH (θj)wwHA (θj) ,∀j = 0, 1, · · · , I. (16)

The optimal w to maximize the SINR for the target sensing
can be derived by solving the equivalent minimum variance
distortionless response (MVDR) problem in [46]. Thus, we
focus on the design with fixed w in the following discussion.

B. Problem Formulation

The joint waveform and clustering designs for coordinated
multi-point DFRC systems have two distinct goals. One is to
maximize the communication performance, i.e., the minimum
SINR of all CUs. The other is to maximize the radar perfor-
mance, i.e., the sensing SINR of the target. Thus, two problems
are formulated in this work. First, we consider a radar-centric
problem, which aims to maximize the received SINR for the
target sensing subject to the constraints of each CU’s SINR.
The CoMP waveform and clustering design is expected to
optimize the sensing performance with fixed communication
performance guaranteed. The corresponding problem can be
formulated by

(P1) max
{Bk},C
{sk,l},{cl}

|α0|2tr (R0C)
I∑

i=1

|αi|2tr (RiC) + σ2
0

s.t. C1 :
tr (HkBk)

tr (HkC)− tr (HkBk) + σ2
k

≥ Γk,∀k

C2 : tr (JlC) ≤ Pl,∀l

C3 :
K∑

k=1

L∑
l=1

sk,lβk,l +
L∑

l=1

clβl
′ ≤ B

C4 : C ⪰ 0,Bk ⪰ 0,∀k

C5 : C−
K∑

k=1

Bk ⪰ 0

C6 : rank (Bk) = 1,∀k

C7 : sk,l ∈ {0, 1} , cl ∈ {0, 1} ,∀k, l

C8 : tr (JlBk) ≤ sk,lPl,∀k, l

C9 : tr

[
Jl

(
C−

K∑
k=1

Bk

)]
≤ vlPl,∀l

,

(17)

where Γk in the constraint (C1) is the SINR threshold of the
CU k, Pl in the constraint (C2) is the maximum transmit
power of the BS l, B in the constraint (C3) is the maximum
backhaul capacity, the constraints (C4) and (C5) guarantee
the positive semidefinite of the covariance matrices of the
communication signal and the dedicated probing signal, the
constraint (C6) is the rank-one constraint of the communica-
tion beamforming vector, the constraint (C7) denotes the non-
continuous clustering variables of both communication and
radar, the constraint (C8) restricts the transmit power of the
BS l for the communication signal when the BS l is not in
the communication cluster, and the constraint (C9) imposes a
similar restriction on the transmit power of the BS l when the
BS l is not in the radar cluster.

Also, consider a communication-centric problem, which
aims to maximize the minimum SINR of the CUs with
constraints on the target sensing. The CoMP waveform and
clustering design is expected to optimize the communication
performance with the constant sensing performance guaran-
teed. The corresponding problem can be formulated by

(P2) max
{Bk},C,
{sk,l},{cl}

min
k

tr (HkBk)

tr (HkC)− tr (HkBk) + σ2
k

s.t. C0 :
|α0|2tr (R (θ0)C)

I∑
i=1

|αi|2tr (R (θi)C) + σ2
0

≥ Γ0

C2 : tr (JlC) ≤ Pl,∀l

C3 :
K∑

k=1

L∑
l=1

sk,lβk,l +
L∑

l=1

clβl
′ ≤ B

C4 : C ⪰ 0,Bk ⪰ 0,∀k

C5 : C−
K∑

k=1

Bk ⪰ 0,

C6 : rank (Bk) = 1,∀k

C7 : sk,l ∈ {0, 1} , cl ∈ {0, 1} ,∀k, l

C8 : tr (JlBk) ≤ sk,lPl,∀k, l

C9 : tr

[
Jl

(
C−

K∑
k=1

Bk

)]
≤ vlPl,∀l

,

(18)
where Γ0 in the constraint (C0) is the received SINR threshold
for the target sensing, and the other constraints are the same
as the constraints (C2-C9) of the problem (P1).

Theoretically, there exists inherent conflict and tradeoffs
for the joint design to optimize the multiple objectives si-
multaneously. And the optimal performance tradeoff between
the MIMO radar and the MU-MIMO communication can
be characterized by the Pareto boundary of the achievable
performance region. Considering the practical implementation,
the radar-centric joint waveform and clustering designs fo-
cus to improve the radar performance as much as possible.
Thus, it is suitable to the scenarios where radar functionality
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needs to be prioritized, such as unmanned positioning, lane
marking detection, obstacle detection, and so on. Further, the
communication-centric joint waveform and clustering designs
focus to improve the communication performance as much as
possible. Thus, it is suitable to the scenarios where commu-
nication functionality needs to be prioritized, such as V2V
communication, V2I communication, and so on.

IV. PROPOSED SOLUTIONS FOR COMP DFRC
In this section, we will solve the radar-centric problem

(P1) and the communication-centric problem (P2) to provide
optimal CoMP waveform and clustering designs for the DFRC
system. And we jointly design the transmit waveform and
the cluster association based on the same performance metric.
Specifically, from the radar-centric viewpoint, the joint design
is optimized to maximize the received SINR for the target
sensing subject to the constraints of each CU’s SINR. And
from the communication-centric viewpoint, the joint design is
optimized to optimize the communication performance with
the constant sensing performance guaranteed.

A. Radar-centric Problem

The radar-centric problem (P1) in (17) is non-convex for the
following reasons. First, the objective function of the problem
(P1) is a fractional function. Also, the rank-one constraint
(C6) of the beamforming vector is non-convex. Finally, the
clustering variables of both communication and radar are
non-continuous. In order to avoid brute-force searching, we
propose the following two-step design.

1) Waveform optimization: We first consider the radar-
centric problem with fixed clustering. Thus, the constraints
(C3) and (C7) of clustering variables can be relaxed. The
original problem (P1) can be simplified as the waveform
optimization problem, i.e.,

(P1.1) max
{Bk},C

|α0|2tr (R0C)
I∑

i=1

|αi|2tr (RiC) + σ2
0

s.t. C1,C2,C4,C5,C6,C8,C9

, (19)

which optimizes the beamforming vector of the communica-
tion signal and the covariance matrix of the dedicated probing
signal.

The waveform problem (P1.1) is still non-convex due to
the fractional objective function and the non-convex rank-
one constraint (C6). For the single-ratio objective function,
Dinkelbach’s transform can be introduced, where the wave-
form optimization problem (P1.1) can be converted to the
following problem.

(P1.2) max
{Bk},C

|α0|2tr (R0C)−τ
I∑

i=1

|αi|2tr (RiC)−τσ2
0

s.t. C1,C2,C4,C5,C6,C8,C9

,

(20)
where τ is an auxiliary variable. Then, we have the following
lemma of Dinkelbach’s transform.

Lemma 1. (Optimality of Dinkelbach’s transform) By
alternatively optimizing the problem (P1.2) with fixed τ and
updating the auxiliary variable τ as

τ =
|α0|2tr (R0C)

I∑
i=1

|αi|2tr (RiC) + σ2
0

, (21)

the optimal solution to the problem (P1.2) converges to the
global optimal solution to the problem (P1.1).

Proof. Because τ is non-decreasing after each iteration, the
convergence can be guaranteed by alternatively updating τ
according to (21) and solving the problem (P1.2). Further,
because the problem (P1.1) is a concave-convex fractional
problem, the optimal solution to the problem (P1.2) by alter-
natively updating τ converges to the global optimal solution
to the problem (P1.1) according to [47, Proposition 3.1].

Note that the problem (P1.2) is still non-convex due to the
rank-one constraint (C6). Thus, SDR can be adopted to relax
this constraint, and the problem (P1.2) can be relaxed as

(P1.3) max
{Bk},C

|α0|2tr (R0C)−τ
I∑

i=1

|αi|2tr (RiC)−τσ2
0

s.t. C1,C2,C4,C5,C8,C9

,

(22)
which is a semidefinite programming (SDP) problem and can
be solved using a generic SDP solver.

Generally, SDR will not generate a rank-one solution. Thus,
approximating methods such as randomization and scaling
[48] should be applied to generate a sub-optimal rank-one
solution. The tightness of SDR for the problem (P1.2) can
be guaranteed according to the following lemma.

Lemma 2. (Tightness of SDR) After applying SDR to the
problem (P1.2), the problem (P1.3) is convex and the corre-
sponding global optimal solution can be denoted by Ĉ, {B̃k}.
Although {B̃k} may not satisfy rank-one constraint, we can
obtain a rank-one optimal solution for the problem (P1.3)
based on {B̃k} as

B̂k =
B̃khkh

H
k B̃

H

k

hH
k B̃khk

,∀k (23)

satisfying rank(B̂k) = 1,∀k.

Proof. The tightness of SDR for the problem (P1.2) can be
proved following [24]. Given the optimal solution Ĉ and {B̃k}
of the problem (P1.3), it can be verified that {B̂k} in (23) is
also a global optimal solution to the problem (P1.3). Since the
covariance matrix of the transmit signal C does not have rank
constraint, and the objective function of the problem (P1.3)
is only determined by C, we only need to prove that the
covariance matrix of the communication signal {B̂k} in (23)
satisfies all constraints of the problem (P1.3). Specifically, it
can be verified that
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tr
(
HkB̂k

)
tr
(
HkĈ

)
− tr

(
HkB̂k

)
+ σ2

k

≥ Γk, (24)

when B̂k ⪰ 0, tr
(
JlB̂k

)
≤ sk,lPl,

tr[Jl(Ĉ−
∑K

k=1 B̂k)] ≤ vlPl ∀k, l. This shows that {B̂k} in
(23) is also an optimal solution to the problem (P1.3), which
completes the proof. We refer readers to [24, Theorem 1] for
a detailed proof.

Finally, the waveform optimization problem with fixed
clustering, i.e., the problem (P1.1), can be solved according to
the following proposition.

Proposition 1. (Solution to waveform optimization) With
fixed clustering, the waveform optimization problem (P1.1)
can be solved by optimizing the convex SDR problem (P1.3)
and updating the auxiliary variable according to (21).

Proof. According to Lemma 2, we can always obtain a rank-
one optimal solution after SDR for the problem (P1.3), which
is also the optimal solution to the problem (P1.2). Further,
according to Lemma 1, the optimal solution to the problem
(P1.2) converges to the global optimal solution of the prob-
lem (P1.1) by alternatively updating τ according to (21). It
completes the proof.

2) Clustering optimization: Next, we consider the radar-
centric problem with dynamic clustering. Then, the waveform
design problem (P1.3) can be reformulated with dynamic
clustering variables as

(P1.4) max
{Bk},C,
{sk,l},{cl}

|α0|2tr (R0C)−τ
I∑

i=1

|αi|2tr (RiC)−τσ2
0

s.t. C1 ∼ C5,C7 ∼ C9
(25)

with the constraints of clustering variables (C3) and (C7)
added. The problem (P1.4) becomes non-convex due to the
non-continuous clustering variables, i.e., the constraint (C7).
Thus, we first adopt equivalent continuous functions to express
the non-continuous variables [49]. For the communication
clustering variables sk,l ∈ {0, 1},∀k, l, they have the follow-
ing equivalent expression.

0 ≤ sk,l ≤ 1, (26)

and
L∑

l=1

K∑
k=1

sk,l −
L∑

l=1

K∑
k=1

s2k,l ≤ 0. (27)

For the radar clustering variables vl ∈ {0, 1},∀l, they can be
expressed by

0 ≤ vl ≤ 1, (28)

and
L∑

l=1

vl −
L∑

l=1

v2l ≤ 0. (29)

According to (26-29), by rewriting the constraint (C7), the
problem (P1.4) becomes

(P1.5) max
{Bk},C,
{sk,l},{cl}

|α0|2tr (R0C)−τ
I∑

i=1

|αi|2tr (RiC)−τσ2
0

s.t. C1 ∼ C5,C8,C9

C10 : 0 ≤ sk,l ≤ 1, 0 ≤ vl ≤ 1,∀k, l

C11 :
L∑

l=1

K∑
k=1

sk,l −
L∑

l=1

K∑
k=1

s2k,l ≤ 0

C12 :
L∑

l=1

vl −
L∑

l=1

v2l ≤ 0

(30)
where the constraint (C10) is linear, but the constraints (C11)
and (C12) are both difference functions of convex functions.
To convexify the constraints (C11) and (C12), we adopt the
SCA method, where the concave parts of the constraints (C11)
and (C12) can be lower-bounded by their Taylor series expan-
sions. Specifically, using the first-order Taylor series expansion
at x̃, x2 can be lower-bounded by the linear function.

g (x, x̃) = x̃2 + 2x̃ (x− x̃) . (31)

Thus, one has

L∑
l=1

K∑
k=1

sk,l−
L∑

l=1

K∑
k=1

s2k,l ≤
L∑

l=1

K∑
k=1

sk,l−
L∑

l=1

K∑
k=1

g (sk,l, s̃k,l),

(32)
and

L∑
l=1

vl −
L∑

l=1

v2l ≤
L∑

l=1

vl −
L∑

l=1

g (vl, ṽl), (33)

where {s̃k,l} {ṽl} are Taylor-expansion constants and g(·, ·)
is given by (31). By approximating the non-convex constraints
with linear functions in (32) and (33), the problem (P1.5)
can be solved iteratively. The problem during each iteration
is given by

(P1.6) max
{Bk},C,
{sk,l},{cl}

|α0|2tr (R0C)−τ
I∑

i=1

|αi|2tr (RiC)−τσ2
0

s.t. C1 ∼ C5,C8,C9

C10 : 0 ≤ sk,l ≤ 1, 0 ≤ vl ≤ 1,∀k, l

C13 :
L∑

l=1

K∑
k=1

sk,l −
L∑

l=1

K∑
k=1

g (sk,l, s̃k,l) ≤ 0

C14 :
L∑

l=1

vl −
L∑

l=1

g (vl, ṽl) ≤ 0

,

(34)
where the constraints (C13) and (C14) are linear constraints.
Thus, the problem (P1.6) is a SDP problem, which can be
solved using a generic SDP solver.
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A sub-optimal solution to the problem (P1.5) can be ob-
tained by solving the problem (P1.6) iteratively. The Taylor-
expansion constants {s̃k,l} {ṽl} are updated by the solution
to the problem (P1.6). The convergence can be guaranteed,
because the objective function of the problem (P1.6) is upper-
bounded and non-decreasing in each iteration .

3) Algorithm of radar-centric design: Combing the above
steps, the algorithm to solve the radar-centric problem (P1) in
(17) can be summarized in Algorithm 1. The initial point of the
iteration can be provided by the following feasible problem,
i.e.,

(P1.7) max
{Bk},C,
{sk,l},{cl}

K∑
k=1

L∑
l=1

sk,lβk,l +
L∑

l=1

vlβl
′

s.t.
tr (HkBk)

tr (HkC)− tr (HkBk) + σ2
k

≥ Γk,∀k

tr (JlC) ≤ Pl,∀l

C ⪰ 0,Bk ⪰ 0,∀k

C−
K∑

k=1

Bk ⪰ 0

0 ≤ sk,l ≤ 1, 0 ≤ vl ≤ 1,∀k, l

tr (JlBk) ≤ sk,lPl,∀k, l

tr

[
Jl

(
C−

K∑
k=1

Bk

)]
≤ vlPl,∀l

(35)
where the backhaul cost is minimized subject to the commu-
nication performance constraint. Because l1-norm relaxation
of the clustering variables is adopted, the problem (P1.7) is
convex.

Remark 1. (Complexity of Algorithm 1) The complex-
ity to solve the problem (P1.6) is O((NL)

7/2
log(1/ε))

for ε-tolerance in the solution of the interior-point method.
Thus, the complexity of Algorithm 1 can be given by
O((NL)

7/2
log(1/ε1)) log(1/ε2)).

B. Communication-centric Problem

Compared to the radar-centric problem (P1), the
communication-centric problem (P2) in (18) is more complex.
Besides the rank-one constraint (C6) of the beamforming
vector and the non-continuous clustering variables of both
communication and radar, the max-min objective function is
a multi-ratio fractional function.

1) Waveform optimization: Similar to the radar-centric
problem, we also first consider the communication-centric
problem with fixed clustering. After relaxing the constraints
(C3) and (C7) on the clustering variables, the original problem
(P2) can be simplified to a waveform optimization problem,
i.e.,

Algorithm 1 Algorithm of radar-centric waveform and clus-
tering design

1: Initialize the convergence precision ε1 and ε2;
2: Solve the feasible problem (P1.7) and obtain the initial

clustering variables s∗k,l, v∗l and the initial waveform
matrix {B∗

k},C∗;
3: Compute the initial SINR for the target sensing γ∗

0 ac-
cording to (15);

4: Calculate τ∗ based on the initial waveform matrix C∗

according to (21)
5: repeat
6: Set τ = τ∗

7: repeat
8: Set s̃k,l = s∗k,l, ṽl = s∗l , ∀k, l, and γ0 = γ∗

0

9: Solve the problem (P1.6) given g (sk,l, s̃k,l) and
g (vl, ṽl) according to (31) and obtain the optimal
{B∗

k},C∗,{s∗k,l}, {c∗l };
10: Calculate the received SINR for the target sensing γ∗

0

according to (15);
11: until |γ∗

0 − γ0| ≤ ε1
12: Calculate τ∗ based on C∗ according to (21);
13: until |τ∗ − τ | ≤ ε2
14: if rank (B∗

k) ̸= 1
15: Update B∗

k according to (23).
16: end if

(P2.1) max
{Bk},C

min
k

tr (HkBk)

tr (HkC)− tr (HkBk) + σ2
k

s.t. C0,C2,C4 ∼ C6,C8,C9
,

(36)
which optimizes the beamforming vector of the communica-
tion signal and the covariance matrix of the dedicated probing
signal.

Note that the relaxed problem (P2.1) is also non-convex
due to both the objective function and the rank-one constraint
(C6). To avoid the multi-ratio fractional function, quadratic
transform can be introduced, where the problem (P2.1) can be
converted to

(P2.2) max
{Bk},C,τ

τ

s.t. C0,C2,C4 ∼ C6,C8,C9

q (κk,Bk,C,) ≥ τ,∀k

, (37)

where τ , {κk} are the auxiliary variables and

q (κk,Bk,C,) = 2κk

√
tr (HkBk)− κ2

ktr (HkC)

+ κ2
ktr (HkBk)− κ2

kσ
2
k

. (38)

Then, we have the following lemma on the optimality of the
quadratic transform.

Lemma 3. (Optimality of quadratic transform) By alterna-
tively optimizing the problem (P1.2) with fixed {κk} and
updating the auxiliary variables {κk} as



9

κk =

√
tr (HkBk)

tr (HkC)− tr (HkBk) + σ2
k

,∀k, (39)

the optimal solution to the problem (P2.2) converges to the
global optimal solution to the problem (P2.1).

Proof. According to [50, Corollary 3], the problem (P2.1) is
equivalent to the following problem (P2.2)

(P2.3) max
{Bk},C,τ,{κk}

τ

s.t. C0,C2,C4 ∼ C6,C8,C9

q (κk,Bk,C,) ≥ τ,∀k

, (40)

To solve the problem (P2.3), {κk} and the other variables
can be updated iteratively. Because the problem (P2.1) is a
max-min-ratio concave-convex fractional problem, the solution
to the problem (P2.2) convergences to the globally optimal
solution to the problem (P2.3) by updating {κk} according to
(39) iteratively [50, Theorem 4]. It completes the proof.

The problem (P2.2) is still non-convex due the rank-one
constraint (C6). Thus, SDR can be also adopted for the
problem (P2.2) and the relaxed problem is given by

(P2.4) max
{Bk},C,τ

τ

s.t. C0,C2,C4,C5,C8,C9

q (κk,Bk,C,) ≥ τ,∀k

, (41)

which is convex with fixed {κk}. We can also prove the
tightness after SDR according to the following lemma.

Lemma 4. (Tightness of SDR ) After SDR of the problem
(P2.2), the problem (P2.4) is convex and the corresponding
global optimal solution can be denoted by Ĉ, {B̃k}. Although
{B̃k} may not satisfy rank-one constraint, we can obtain a
rank-one optimal solution for the problem (P2.4) based on
{B̃k}. That is

B̂k =
B̃khkh

H
k B̃

H

k

hH
k B̃khk

,∀k (42)

satisfying rank(B̂k) = 1,∀k.

Proof. The proof is similar to that of Lemma 2, which is
omitted for the conciseness.

Also, the waveform optimization problem with fixed clus-
tering, i.e., the problem (P2.1), can be solved according to the
following proposition.

Proposition 2. (Solution to waveform optimization) With
fixed clustering, the waveform optimization problem (P2.1)
can be solved by optimizing the convex SDR problem (P2.4)
and updating the auxiliary variable according to (39).

Proof. According to Lemma 4, we can always obtain a rank-
one optimal solution after SDR for the problem (P2.4), which
is also the optimal solution to the problem (P2.2). Further,

according to Lemma 3, the optimal solution to the problem
(P2.2) converges to the global optimal solution of the problem
(P2.1) by alternatively updating {κk} according to (39). It
completes the proof.

2) Clustering optimization: In the next step, we consider
the radar-centric problem with dynamic clustering. Then, the
waveform design problem (P2.4) can be reformulated with the
constraints (C3) and (C7) considered, i.e.,

(P2.5) max
{Bk},C,τ,{sk,l},{cl}

τ

s.t. C0,C2 ∼ C5,C7 ∼ C9

q (κk,Bk,C,) ≥ τ,∀k

(43)
which is also non-convex due to the clustering variables, i.e.,
the constraint (C7).

Using the equivalent continuous functions to express the
non-continuous clustering variables in (26-29), the problem
(2.5) is equivalent to

(P2.6) max
{Bk},C,τ,{sk,l},{cl}

τ

s.t. C0,C2 ∼ C5,C8,C9

q (κk,Bk,C,) ≥ τ,∀k

C10 : 0 ≤ sk,l ≤ 1, 0 ≤ vl ≤ 1,∀k, l

C11 :
L∑

l=1

K∑
k=1

sk,l −
L∑

l=1

K∑
k=1

s2k,l ≤ 0

C12 :
L∑

l=1

vl −
L∑

l=1

v2l ≤ 0

,

(44)
where the non-convex constraints (C11) and (C12) are differ-
ence functions of convex functions. SCA can be also adopted
to convexify the constraints by their Taylor series expansions.
Specifically, the problem (P2.6) can be solved iteratively, and
the problem during each iteration can be given by

(P2.7) max
{Bk},C,τ
{sk,l},{cl}

τ

s.t. C0,C2 ∼ C5,C8,C9

q (κk,Bk,C,) ≥ τ,∀k

C10 : 0 ≤ sk,l ≤ 1, 0 ≤ vl ≤ 1,∀k, l

C13 :
L∑

l=1

K∑
k=1

sk,l −
L∑

l=1

K∑
k=1

g (sk,l, s̃k,l) ≤ 0

C14 :
L∑

l=1

vl −
L∑

l=1

g (vl, ṽl) ≤ 0

,

(45)
where g(·, ·) is given by (31). Thus, the constraints (C13) and
(C14) are linear functions. And the problem (P2.7) is an SDP
problem, which can be solved using a generic SDP solver.
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Also, a sub-optimal solution to the problem (P2.6) can be
obtained by solving the problem (P2.7) iteratively. The Taylor-
expansion constants {s̃k,l} {ṽl} are updated by the solution to
the problem (P2.7). And the convergence can be guaranteed,
because the objective function of the problem (P2.7) is upper-
bounded and non-decreasing in each iteration .

3) Algorithm of radar-centric design: The algorithm to
solve the radar-centric problem (P2) can be summarized in
Algorithm 2. The initial point of the iteration can be provided
by the following feasible problem, i.e.,

(P2.8) max
{Bk},C
{sk,l},{cl}

K∑
k=1

L∑
l=1

sk,lβk,l +
L∑

l=1

vlβl
′

s.t.
|α0|2tr (R (θ0)C)

I∑
i=1

|αi|2tr (R (θi)C) + σ2
0

≥ Γ0

tr (JlC) ≤ Pl,∀l

C ⪰ 0,Bk ⪰ 0,∀k

C−
K∑

k=1

Bk ⪰ 0

0 ≤ sk,l ≤ 1, 0 ≤ vl ≤ 1,∀k, l

tr (JlBk) ≤ sk,lPl,∀k, l

tr

[
Jl

(
C−

K∑
k=1

Bk

)]
≤ vlPl,∀l

(46)
where l1-norm relaxation of the clustering variables is adopted
and the backhaul cost is minimized subject to the radar
performance constraint. Thus, the feasible problem (P2.8) is
also convex.

Remark 2. (Complexity of Algorithm 2) The complex-
ity to solve the problem (P2.7) is O((NL)

7/2
log(1/ε))

for ε-tolerance in the solution of the interior-point method.
Thus, the complexity of Algorithm 2 is also given by
O((NL)

7/2
log(1/ε1)) log(1/ε2)).

V. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of our proposed
design for the DFRC system via simulation. The parameter
settings are provided as follows unless specified otherwise. We
consider a hexagonal multi-cell network as illustrated in Fig.
3, where each BS is located at the center of the cell. The CUs
and the target are uniformly and independently distributed in
the network, excluding an inner circle of 50m around each BS.
The path loss is modeled as PL (dB) = 148.1+37.6 log10(d),
where d is the distance in kilometers. The small-scale fading
is the normalized Rayleigh fading. The parameters are set as
Table I unless specified otherwise. All simulation results are
obtained using 103 Monte-Carlo simulations.

Generally, the target and the clutter will be located at
different spatial angles for different BSs. In the simulation,
we align the spatial angle of the target to θ0 = 0◦ and the

Algorithm 2 Algorithm of communication-centric waveform
and clustering design

1: Initialize the convergence precision ε1 and ε2;
2: Solve the feasible problem (P2.8) and obtain the initial

clustering variables s∗k,l, v∗l and the initial waveform
matrix {B∗

k},C∗;
3: Compute the initial SINR of the CUs {γ∗

k} according to
(13);

4: Calculate τ∗ as τ = mink {q (κk,Bk,C,)} according to
q (κk,Bk,C,) in (38) and κk in (39).

5: repeat
6: Set τ = τ∗

7: repeat
8: Set s̃k,l = s∗k,l, ṽl = s∗l , and γk = γ∗

k , ∀k, l
9: Solve the problem (P2.7) given g (sk,l, s̃k,l) and

g (vl, ṽl) according to (31) and obtain the optimal
{B∗

k},C∗, τ∗,{s∗k,l}, {c∗l };
10: Calculate the received SINR of the CUs γ∗

k according
to (13);

11: until |min {γ∗
k} −min {γk}| ≤ ε1

12: until |τ∗ − τ | ≤ ε2
13: if rank (B∗

k) ̸= 1
14: Update B∗

k according to (42).
15: end if

BS

UE

Target

500m

Figure 3. The simulation model of 7 BSs, multiple UEs and a target.

spatial angles of two fixed clutter signals to θ1 = −30◦ and
θ2 = 30◦. The maximum backhaul capacity determines the
maximum numbers of coordinated BSs. Thus, we adopt dif-
ferent maximum numbers of coordinated BSs LM to evaluate
the impact of backhaul cost.

In Fig. 4, the optimized beampatterns for different max-
imum numbers of coordinated BSs LM = 3, 5, 7 is shown
for radar-centric design. The number of the CU is K = 6,
and the SINR constraint of the communication is set as
Γk = 20 dB. We define the optimized beampattern as
P (θ) = |w∗HA (θ)x|2, where w∗ is the optimal receive
beamforming vector based on MVDR optimization. The main
beam is located at the target’s spatial angle θ0 = 0◦, and the
nulls are placed at the clutters’ spatial angles θ1 = −30◦

and θ2 = 30◦. When the number of the coordinated BSs
increases, the performance of beampattern becomes better
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Table I
SIMULATION PARAMETERS

Parameter Value
The number of BSs in the network L = 7
The number of transmit antennas for each BS N = 4
The number of receive antennas for each BS M = 4
The maximum transmit power of each BS Pl = 40W
The maximum transmit power of each BS Pl = 40W
The noise power spectral density -172 dBm/Hz
The available channel bandwidth 10 MHz
The RCS power to noise ratio of the target α2

0/σ
2
0 = −30 dB

The RCS power to noise ratio of the clutter α2
i /σ

2
0 = −10 dB
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Figure 4. The optimized beampatterns for different maximum numbers of the
coordinated BSs ,LM = 3, 5, 7, K = 6, Γk = 20 dB.

from the radar’s viewpoint. Specifically, the maximum peak
to sidelobe ratio decreases with the increase of the number of
the coordinated BSs. The beam width of the main lobe also
decreases with the increase of the number of the coordinated
BSs. The performance gain is at the cost of increased backhaul
cost.

The impacts of the communication constraints on the opti-
mized beampatterns are evaluated in Fig. 5 and Fig. 6 with the
maximum number of coordinated BSs LM = 4. In Fig. 5, the
optimized beammpattern is provided for different numbers of
CUs, i.e., K = 0, 3, 6, under the SINR constraint Γk = 20 dB.
In Fig. 6, the optimized beammpattern is provided for different
communication SINR requirements, i.e, Γk = 10, 20 dB with
K = 3. The radar-only case is provided as a benchmark
when K = 0, where there is no communication constraint.
It provides the best beampatterns from the radar’s viewpoint.
When the number of the CUs and the SINR constraint of the
communication increase, the optimized beampatterns deterio-
rate. Specifically, the peak-to-sidelobe ratio decreases slightly
while the main beam width remains unchanged. This illustrates
that the system can still deliver information with an ideal radar
beampattern.

We evaluate the convergence performances of the proposed
algorithm for different maximum numbers of the coordinated
BSs and the CUs in Fig. 7 and Fig. 8, respectively. Based
on the proposed Algorithm 1, the received SINR of the
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Figure 5. The optimized beampatterns for different numbers of the CUs
,K = 0, 3, 6, LM = 4, Γk = 20 dB.
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Figure 6. The optimized beampatterns for different SINR constraints of the
communication ,Γk = 10, 30 dB, LM = 4, K = 3 dB.

radar versus the number of iterations is provided. First, the
received SINR of the radar increases during the iteration. This
guarantees the convergence of the proposed iterative algorithm.
Then, the algorithm requires about 5 iterations to converge for
different maximum numbers of the coordinated BSs in Fig. 7.
The number of iterations is not affected by the number of the
coordinated BSs. The number of iterations increases with the
increase of the number of the CUs, as illustrated in Fig. 8. This
is because the searching space of the optimization becomes
larger when the number of the CUs increases.

In Fig. 9, we compare the proposed clustering scheme with
the static clustering scheme with fixed coordinated BSs, and
the optimal clustering scheme through exhaustive search. Be-
cause the clustering problem belongs to integer programming,
which is NP-hard. The optimal clustering has to enumerates
all possible candidates for the solution and checking whether
each candidate satisfies the problem’s statement. The received
SINR of the radar is shown for different SINR constraints of
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Figure 7. Convergence performance of the proposed radar-centric algorithm
for different maximum numbers of the coordinated BSs, LM = 3, 4, 5, 6,
K = 3, Γk = 20 dB.
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Figure 8. Convergence performance of the proposed radar-centric algorithm
for different numbers of the CUs, K = 0, 3, 6, 9, LM = 4, Γk = 20 dB.

the communication, where the number of the CUs is K = 3
and the maximum number of the coordinated BSs is LM = 4.
It actually provides the achievable performance region of the
CoMP DFRC system, and the curve depicts the boundary of
the region with different clustering schemes. The performance
of the proposed clustering scheme is almost the same as that
of the exhaustive searching. The slight performance loss is due
to the fact that SCA can only provide a sub-optimal solution.
Compared with the static clustering scheme, the proposed
clustering scheme can achieve a performance gain through the
diversity of the coordinated BSs.

The performance region of the coordinated DFRC system
is evaluated for the proposed algorithm for different numbers
of the CUs in Fig. 10, where the maximum number of the
coordinated BSs is LM = 4. First, the received SINR for
the radar decreases with the increase of the SINR constraint
of the communication. Then, the decreasing rate increases
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Figure 9. Performance region of the proposed clustering scheme, the static
clustering scheme and the optimal clustering scheme, LM = 4, K = 3,
Γk = 20 dB.
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Figure 10. Performance region of the proposed scheme with different numbers
of CUs, K = 0, 3, 6, 9, LM = 4, Γk = 20 dB.

with the increase of the number of CUs. Specifially, the
increasing rate of K = 9 is much larger than that of K = 3.
This is because more communication users lead to more
communication constraints. Finally, when the SINR constraint
of the communication is below -5 dB, the received SINR of
the radar is almost unchanged and equals to the radar-only
case. This means that the communication constraints have no
effect.

VI. CONCLUSION

In this paper, we have extended the DFRC designs to a
CoMP transmission scenario, where communication cluster
and radar cluster could be formed to improve the perfor-
mance of both communication and sensing. We have de-
rived the SINRs of the CUs and the target sensing. Both
radar-centric and communication-centric problems have been
formulated to optimize the waveform and the clustering for
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both communication and radar. We have adopted Dinkelbach’s
transform and quadratic transform to simplify the fractional
objective function for both problems. For the communication
beamforming vector with rank-one constraint, SDR has been
applied with its tightness proved. Thus, an optimal waveform
design has been provided with fixed clustering. When the
clustering are dynamic, we have used equivalent continuous
functions to express the non-continuous clustering variables
of both communication and radar. SCA have been adopted to
convexitify the equivalent continuous functions. Thus, a sub-
optimal solution has been provided to design the clustering for
the CoMP DFRC system. The simulation results have verified
the performance gain from the CoMP transmission and the
effectiveness of our design.
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