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Abstract

Three constitutive laws, that is the Skalak, neo-Hookean and Yeoh laws, commonly employed for describing
the erythrocyte membrane mechanics are theoretically analyzed and numerically investigated to assess their
accuracy for capturing erythrocyte deformation characteristics and morphology. Particular emphasis is given
to the nonlinear deformation regime, where it is known that the discrepancies between constitutive laws are
most prominent. Hence, the experiments of optical tweezers and micropipette aspiration are considered
here, for which relationships between the individual shear elastic moduli of the constitutive laws can also
be established through analysis of the tension-deformation relationship. All constitutive laws were found to
adequately predict the axial and transverse deformations of a red blood cell subjected to stretching with
optical tweezers for a constant shear elastic modulus value. As opposed to Skalak law, the neo-Hookean
and Yeoh laws replicated the erythrocyte membrane folding, that has been experimentally observed, with
the trade-off of sustaining significant area variations. For the micropipette aspiration, the suction pressure-
aspiration length relationship could be excellently predicted for a fixed shear elastic modulus value only
when Yeoh law was considered. Importantly, the neo-Hookean and Yeoh laws reproduced the membrane
wrinkling at suction pressures close to those experimentally measured. None of the constitutive laws suffered
from membrane area compressibility in the micropipette aspiration case.

Keywords: Red blood cell; Large deformations; Constitutive law; Optical tweezers; Micropipette
aspiration; Lattice Boltzmann method; Finite element method; Immersed boundary method

1. Introduction

The dynamics of single red blood cells (RBCs) – commonly modelled as capsules of biconcave resting
shape, composed of an infinitely thin membrane accounting for the mechanical properties of the lipid bilayer
and elastic cytoskeleton, and an internal fluid, the cytoplasm – have been extensively studied for over
half a century. Yet, theoretical, computational, and experimental works are further shedding light on how
various physical and mechanical properties of the capsule, such as the shape [1, 2, 3, 4, 5, 6, 7, 8, 9], the
membrane constitutive law [8, 9, 10, 11], the rheology of the internal and suspending mediums [4, 12, 13,
14, 15, 16, 17], and the membrane viscosity [18, 19, 20, 21, 22, 23, 24], affect the deformation and motion
of single erythrocytes. Among these properties, the study of the effects of the constitutive law, governing
the mechanical response of the erythrocyte membrane to the external applied stresses, has received less
attention despite its paramount importance on the accurate modelling of red blood cells. Not only does
the choice of the constitutive law affect the capsule behaviour, but it also influences the evaluation of the
membrane mechanical properties, for example the shear elastic modulus, from experimental measurements
[11, 25].

Even though few studies have dealt with the effect of constitutive law on the response of the almost
area-incompressible red blood cells to the surrounding flow, a multitude of works have explored the impact
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of constitutive laws on the dynamics of area-compressible, spherical and ellipsoidal capsules in various flow
conditions. Theoretically, different constitutive laws have been compared for capsules undergoing uniaxial
extension and isotropic dilatation [25]. The influence of constitutive laws on the capsule behaviour has
been computationally examined in diverse flow situations, for instance in shear flow [25, 26, 27, 28], planar
hyperbolic flow [27, 29], axisymmetric elongational flow [27], capillary flow [30], and radially oscillatory flow
[31]. Theoretical predictions have been compared with experimental data to identify plausible constitutive
laws for the membrane material of bioartificial capsules [32]. The previous work has been extended to
compare numerical results of several constitutive laws with experiments [33, 34]. Simulations have also been
employed in conjunction with experiments to determine the membrane mechanical properties of capsules
circulating in a square-section microfluidic channel [35], capsules in elongation flow [36], and cells undergoing
compression [37]. For comprehensive reviews regarding the effect of constitutive laws on the dynamics of
area-compressible, spherical and ellipsoidal capsules, the reader is referred to the works of Pozrikidis [38]
and Barthès-Biesel [39]. This plethora of literature articulates the importance of understanding the impact
that the choice of constitutive law has on the capsule response and the determination of its mechanical
properties. The aforementioned studies have, however, focused on area-compressible capsules of initially
spherical or ellipsoidal shape, and their findings cannot thus be straightforwardly extended to the case of
red blood cells, whose response to the surrounding flow will be further affected by their membrane surface
incompressibility and complex shape.

With respect to red blood cells, Mills et al. [10] have performed optical tweezers experiments, and
compared the experimental results for the axial and transverse diameters of the stretched erythrocytes
with computational ones considering the neo-Hookean and Yeoh laws. Dimitrakopoulos [11] has reviewed
numerous studies in the literature so as to analyze the variation in the evaluation of the shear elastic modulus
of the erythrocyte membrane obtained from fitting different constitutive laws to measurements of various
experiments, namely experiments of optical tweezers, micropipette aspiration, low-viscosity ektacytometry,
electrically-induced deformation, and capillary flow. To validate their numerical framework, Sinha & Graham
[8] have performed simulations of the optical tweezers experiment for three different constitutive laws, that is
the Skalak, neo-Hookean and Yeoh laws. Finally, Sigüenza et al. [9] have compared in detail computational
results for the axial and transverse diameters, in-plane and folding lengths, area variation, and resulting
shape of RBCs subjected to optical tweezers stretching, when either Skalak or Yeoh law is employed for the
modelling of the erythrocyte membrane.

However, a careful comparison between the values of shear elastic modulus selected for the different
constitutive laws has in general been omitted in the aforementioned studies. The purpose of the present work
is to meticulously compare constitutive laws, whose chosen elastic parameters follow theoretical relations,
by means of simulations in scenarios for which experimental data exist. Further, we are interested in cases
where the erythrocyte undergoes moderate and large deformations, as it has been shown that all constitutive
laws produce identical behaviour for the same value of shear elastic modulus in the small deformation
regime, corresponding to extensions of less than 15% [11, 25]. The focus on this deformation regime is also
physiologically relevant. RBCs are subjected to large deformations when flowing within capillaries [38] or
passing through slits of the venous sinuses, such as in the spleen [40].

Here, we have chosen to computationally realize the optical tweezers [4, 10, 41, 42] and micropipette
aspiration [43, 44, 45, 46, 47] experiments, which have been widely used to measure the mechanical prop-
erties of the erythrocyte membrane. In both experiments, the red blood cell sustains moderate and large
deformations, specifically up to 100% extension in the axial and lateral directions for the optical tweez-
ers and micropipette aspiration experiments, respectively. Moreover, correlations between the shear elastic
moduli of different constitutive laws can be deduced through theoretical analysis in both cases. The follow-
ing constitutive laws have been considered in the present work: Skalak, neo-Hookean, and Yeoh laws. The
strain-hardening Skalak law is typically employed for modelling cellular-scale blood flow [48]. The strain-
softening neo-Hookean model has also been considered in earlier studies due to its simplicity [49, 50, 51, 52].
Through the optical tweezers studies of Mills et al. [10] and Sigüenza et al. [9], Yeoh law, whose nature
varies with the deformation, has emerged as an alternative owing to its capability of capturing the RBC’s
deformation characteristics and morphology. Balogh & Bagchi [53] have also reported that Yeoh law predicts
the experimental results of micropipette aspiration better than Skalak law, without, however, exploring the
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effect of different constitutive laws as it was not within the scope of their work. It is worth mentioning
that the erythrocyte membrane nature coincides with that of Skalak and Yeoh laws at large strains, namely
being strain-hardening [11]. Despite the difference in nature, the neo-Hookean model is considered here also
for comparison purposes with Yeoh law, which constitutes an extension of it.

To facilitate our study on the effect of constitutive laws, certain assumptions have been made allowing
us to restrict the parameter space. Although the erythrocyte properties, such as the shape, dimensions,
and cytoplasmic viscosity, may vary considerably with cell age [46, 54], temperature [55], and disease [56],
their variation poses an additional modelling challenge as it consequently alters the RBC’s mechanical
properties. For this reason, only healthy human RBCs have been considered here, with the aforementioned
properties being kept invariant. The effect of the erythrocyte membrane viscosity has been omitted in the
current study, as it has been shown that the membrane viscosity does not influence significantly the steady-
state deformation of a RBC subjected to optical tweezers stretching [4, 20]. Lastly, the bending elastic
modulus of the erythrocyte membrane has been kept constant throughout our simulations, since it has been
demonstrated that, for the optical tweezers experiment, its variation has a negligible effect on the RBC
deformation [8].

The article is organized as follows. In Section 2, the in-house massively parallel computational fluid
dynamics solver, HARVEY [57], used to perform simulations is presented. HARVEY is based on the lattice
Boltzmann method (LBM), described in Section 2.1, to solve the fluid flow governing equations on a uniform,
Cartesian grid. Details of the erythrocyte model considered here are given in Section 2.2. The finite element
method (FEM), employed for evolving the RBC’s membrane equations of motion in a Lagrangian description,
is discussed in Section 2.3. Lastly, the immersed boundary method (IBM), coupling the fluid and structure
solvers, is presented in Section 2.4. (For the readers interested in HARVEY’s computational performance,
we refer them to the works of Randles et al. [57, 58, 59] for bulk blood flow simulations, and the works of
Roychowdhury et al. [60] and Ames et al. [61] for blood flow simulations at the cellular level.) In Section
3, theoretical relations between the shear elastic moduli of the constitutive laws examined here are derived.
In particular, the case of uniaxial extension, the theoretical equivalent of the optical tweezers experiment, is
treated in Section 3.1, and the micropipette aspiration case is analyzed in Section 3.2. The computational
results of the optical tweezers and micropipette aspiration are, respectively, presented in Sections 4.1 and
4.2. Finally, the key contributions of the present work are summarized in Section 5.

2. Computational framework: HARVEY

2.1. Lattice Boltzmann method

To resolve the flow field in the cytoplasm within the erythrocyte membrane and its surrounding fluid,
which are both assumed to be incompressible and Newtonian, we employ the lattice Boltzmann method. In
the LBM framework, distribution functions fi (x, t) representing the density of particles at position x and
time t with velocity ci along the ith lattice direction are tracked. The evolution of the distribution functions
is governed by the lattice Boltzmann equation, where the Bhatnagar-Gross-Krook collision operator [62]
and the forcing scheme of Guo et al. [63] are used

fi (x + ci∆t, t+ ∆t) = fi (x, t)− ∆t

τ
[fi (x, t)− f eq

i (ρ,u)] + ∆tFi. (1)

The relaxation time τ is related to the kinematic viscosity ν by

ν = c2s

(
τ − ∆t

2

)
, (2)

where cs = ∆x/
(√

3∆t
)

is the speed of sound, and ∆x, ∆t are the lattice spacing and time step, respectively.
To allow for the ambient fluid and cytoplasm to have different viscosities, we follow the approach of Zhang
et al. [64]. For the fluid component at position x, its kinematic viscosity is given by

ν (x) = νamb + (νcyto − νamb) H (d (x,X)) , (3)
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where νamb and νcyto denote respectively the ambient and cytoplasmic viscosities. The Heaviside function
H is defined as

H (d) =


0, d < −2∆x
1
2

[
1 + d

2∆x + 1
π sin

(
πd

2∆x

)]
, −2∆x ≤ d ≤ 2∆x

1, d > 2∆x.

(4)

The variable d (x,X) denotes the shortest distance from the fluid component at position x to the erythrocyte
membrane located at X. This distance is assigned to be positive for the cytoplasm, and negative for the
ambient fluid.

The equilibrium distribution function f eq
i is expressed as

f eq
i (ρ,u) = wiρ

[
1 +

ci·u
c2s

+
(u⊗ u) :

(
ci ⊗ ci − c2sI

)
2c4s

]
, (5)

where wi are weight coefficients depending on the chosen lattice arrangement for the velocity discretization,
and I is the identity tensor. Guo’s forcing Fi takes the form

Fi =

(
1− 1

2τ

)
wi

[
ci − u

c2s
+

(ci·u) ci
c4s

]
·f . (6)

The force term f is the sum of two contributions: f ext accounting for external forces, and f IB taking into
account the interaction between the erythrocyte membrane and its ambient and enclosed fluid components

f = f ext + f IB. (7)

The form of the force f IB is discussed in §2.4.
The fluid density ρ and velocity u are defined as the 0th and 1st moments of the distribution function

ρ (x, t) =
∑
i

fi (x, t) , (8a)

u (x, t) =

[∑
i

cifi (x, t) +
∆t

2
f (x, t)

]
/ρ (x, t) . (8b)

For simplicity, the lattice spacing is set here equal to the time step as ∆x = ∆t = 1 in lattice units,
resulting in cs = 1/

√
3. We employ the D3Q19 lattice arrangement, for which the lattice velocities (in

columns) are defined as

ci =

 0 1 −1 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 0 0 1 −1 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 −1 1 −1 1

 ,
and the weight coefficients are given by

w0 = 1/3, w1−6 = 1/18, w7−18 = 1/36.

2.2. Erythrocyte model

The red blood cell is modelled as a capsule of biconcave shape containing the cytoplasm enclosed by
the cell’s infinitely thin membrane. Its stress-free biconcave shape is described by the following parametric
equation, similarly to the one in the work of Pivkin & Karniadakis [65]

z = R

√
1− x2 + y2

R2

[
C0 + C1

x2 + y2

R2
+ C2

(
x2 + y2

)2
R4

]
, (9)
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where (R,C0, C1, C2) = (3.90 µm, 0.1035805, 1.001279,−0.561381). This results in a cell of diameter D0 =
7.80 µm and maximum thickness W0 = 2.56 µm with surface area and volume of A0 = 133 µm2 and
V0 = 93 µm3, respectively. These measurements fall well within the range of those reported for healthy
human RBCs [66]. As mentioned earlier, the cytoplasm is considered to be an incompressible and Newtonian
fluid with kinematic viscosity about five times that of the blood plasma [48], that is νcyto = 6.0×10−6 m2/s.

The erythrocyte membrane is composed of an isotropic and elastic material. As discussed in §1, several
constitutive laws have been proposed throughout the years to model the response of such membranes. Here,
we focus the discussion on the Skalak, neo-Hookean and Yeoh laws.

In Skalak (SK) law [67], the strain energy function Ws is given by

W SK
s =

GSK
s

4

(
I2
1 + 2I1 − 2I2 + CSKI2

2

)
, (10)

where GSK
s denotes the surface shear elastic modulus associated with this law, and CSK is a dimensionless

parameter representing area incompressibility. Large values of CSK ensure that the erythrocyte membrane
is almost area-incompressible. I1 and I2 are the strain invariants of the Green-Lagrange strain tensor, and
further details are provided in the Appendix.

For the neo-Hookean (NH) law, the strain energy function takes the form [27]

WNH
s =

GNH
s

2

(
I1 − 1 +

1

I2 + 1

)
. (11)

This law does not restrict the area dilatation.
Yeoh (YE) law [68] is a cubic extension of the neo-Hookean model, for which the strain energy function

is expressed as

WYE
s =

GYE
s

2

(
I1 − 1 +

1

I2 + 1

)
+ CYE

(
I1 − 1 +

1

I2 + 1

)3

, (12)

where CYE is a parameter taken equal to GYE
s /30. This value of CYE corresponds to the one found by Mills

et al. [10] that best matches force-extension data from the optical tweezers experiment. Likewise to the
neo-Hookean model, the area dilatation is unrestricted in Yeoh law.

The bending resistance of the erythrocyte membrane is described by the Helfrich bending energy [69] as
follows

Eb =
kb

2

∫
S

(2κ− c0)
2

dS, (13)

where kb denotes the bending elastic modulus, and κ, c0 are the mean and spontaneous curvatures, re-
spectively. The bending modulus takes the value kb = 1.8 × 10−19 N ·m, as measured by Evans [70] via
micropipette aspiration experiments. Here, the spontaneous curvature is set equal to 0. It is worth not-
ing that the bending energy proposed by Helfrich [69] includes also a Gaussian curvature term, which can
however be omitted here as its integral over a closed surface is a topological invariant according to the
Gauss-Bonnet theorem.

Finally, in order to conserve the RBC volume, we consider the following volume conservation energy [71]

Ev =
kv

2

(V − V0)
2

V0
, (14)

where kv is a volume penalty coefficient, V0 and V represent respectively the RBC volume at time t = 0
and subsequent times t. The volume penalty coefficient is set here equal to kv = 0.1, resulting in volume
variations of less than 1%.

2.3. Finite element method

The erythrocyte membrane surface is discretized using Loop subdivision elements [72, 73], composed of
linear triangles refined by a subdivision process. Here, we consider successive refinements of an icosahedron,
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known as the control mesh or level 0 of the subdivision, and project them onto the initial RBC biconcave
shape, resulting in a triangular mesh of high homogeneity and isotropy [74]. After Nref refinements, the
mesh is composed of Nelem = 20× 4Nref triangular elements, and Nver = Nelem/2 + 2 nodes, also known as
vertices. The Loop subdivision surfaces offer improved numerical stability and accuracy due to their higher
regularity compared to the standard linear or quadratic Lagrange C0 elements. In the limit of infinite
subdivisions, the triangular mesh, referred to as the limit surface, is C2 continuous everywhere except at the
so-called irregular vertices, namely the vertices that are not linked to exactly 6 elements, where it is only
C1. In the case of an icosahedron as the control mesh, there are 12 irregular vertices that are linked to only
5 elements. Any vertex introduced during the Loop subdivision process is by default regular. The surface
force density F l

m exerted by the lth vertex located at X l onto the surrounding fluids can be computed as
discussed in the Appendix.

2.4. Immersed boundary method

To reproduce the effect of F l
m on the fluid flow, denoted here by f IB, the following spreading operation

is used

f IB (x, t) = S
[
F l
m

]
(x) =

Nver∑
l=1

F l
mδh (x−X l) ∆s, (15)

where δh denotes the discretized Dirac delta function, and ∆s represents the initial distance between two
neighboring vertices. For the discretized Dirac delta function, the following formulation is considered here
[75]

δh (r) =

{
1
4

[
1 + cos

(
πr
2

)]
, |r| ≤ 2,

0, |r| > 2.
(16)

In the case of r being a vector, r = (rx, ry, rz), the multidimensional δh is then given by δh (r) =
δh (rx/∆x) δh (ry/∆x) δh (rz/∆x) /∆x3. Once the force f IB (x, t) is known, the flow field, Eq. (8), can
be obtained at the next time step t + ∆t by solving the lattice Boltzmann equation, Eq. (1). The known
velocity field u (x, t+ ∆t) is then interpolated at the vertices as

U (X l, t+ ∆t) = I [u] (X l) =
∑
x

uδh (x−X l) (∆x)
d
, (17)

with d being the domain dimensionality, here d = 3. The updated vertices position can be subsequently
found by Euler’s rule

X l (t+ ∆t) = X l (t) + U (X l, t+ ∆t) ∆t. (18)

This concludes one simulation time step.

3. Comparison of constitutive laws

3.1. Uniaxial extension

We consider here the case of an erythrocyte membrane subjected to uniaxial extension, where the prin-
cipal tensions satisfy the conditions: T1 6= 0 and T2 = 0. As mentioned earlier, the uniaxial extension
can be considered as the theoretical equivalent of the optical tweezers experiment. The following analysis
provides relationships between the shear elastic moduli of the constitutive laws considered here, which will
be employed in Section 4.1 to determine the appropriate values of GSK

s , GNH
s , and GYE

s , allowing for a direct
comparison between them.

It can readily be shown that the principal tension T1 takes, respectively, the following form when the
Skalak, neo-Hookean or Yeoh law is considered [11, 34]
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TSK
1 =

GSK
s

λ1λ2

{
λ2

1

(
λ2

1 − 1
)

+ CSK (λ1λ2)
2
[
(λ1λ2)

2 − 1
]}

, (19a)

TNH
1 =

GNH
s

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
, (19b)

TYE
1 =

GYE
s

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
×

1 + 3CYE

[
λ2

1 + λ2
2 +

1

(λ1λ2)
2 − 3

]2
 . (19c)

Since the erythrocyte membrane is commonly modelled as an area-incompressible elastic material, the below
area-incompressibility constraint should be considered: λ1λ2 = 1 [76]. Taking this constraint into account,
Eqs. (19) can be simplified as

TSK
1 = GSK

s λ2
1

(
λ2

1 − 1
)
, (20a)

TNH
1 = GNH

s

(
λ2

1 − 1
)
, (20b)

TYE
1 = GYE

s

(
λ2

1 − 1
) [

1 + 3CYE

(
λ2

1 +
1

λ2
1

− 2

)2
]
. (20c)

It should be mentioned that, under uniaxial extension, the Skalak law is strain-hardening, that is its
tension grows superlinearly with the strain, whereas the neo-Hookean law is strain-softening, i.e. its tension
increases sublinearly with the strain [25]. The Yeoh law exhibits a more complicated behaviour. At small
deformations, it performs similarly to the neo-Hookean law. However, at moderate and large deformations,
its nature, i.e. strain-softening or strain-hardening, varies due to the cubic term in Eq. (12) [68].

To correlate the shear elastic moduli of the neo-Hookean and Yeoh laws with respect to GSK
s , the principal

tensions TNH
1 and TYE

1 , Eqs. (20b) and (20c), can be equated to TSK
1 , Eq. (20a). This equating results in

the following relations

GNH
s = λ2

1G
SK
s , and (21a)

GYE
s =

λ2
1G

SK
s

1 + 3CYE
(
λ2

1 + λ−2
1 − 2

)2 . (21b)

The dependence of the shear elastic modulus ratios GNH
s /GSK

s and GYE
s /GSK

s in Eqs. (21) on the principal
extension ratio λ1 is depicted in Fig. 1. As seen, the shear elastic modulus ratio for the neo-Hookean law
increases monotonically with regard to λ1. The ratio GYE

s /GSK
s performs similarly to GNH

s /GSK
s up to

λ1 ≈ 1.3, with differences being notable for λ1 ≥ 1.4. It subsequently displays an increase up to λ1 ≈ 1.7,
with its degree of strain-softening, however, being less than that of the neo-Hookean law. After this point, a
decrease in the dependence of GYE

s /GSK
s on λ1 can be observed. This trend variation physically represents

the change in the nature of Yeoh law, from strain-softening to strain-hardening material. It should be noted
that the threshold value of λ1 for the change in Yeoh law’s nature to occur depends on the particular choice
of the dimensionless parameter CYE in Eq. (12). As we are interested in the regime of moderate and large
deformations, that is λ1 ≥ 1.4, the following relations can be deduced from Fig. 1

GNH
s ≈ 2GSK

s , GYE
s ≈ 1.90GSK

s for λ1 ≈ 1.4, (22a)

GNH
s ≈ 4GSK

s , GYE
s ≈ 1.99GSK

s for λ1 = 2. (22b)

7



Figure 1: Variation of the shear elastic modulus Gs of the neo-Hookean (NH) and Yeoh (YE) laws, normalized with the shear
elastic modulus of Skalak law

(
GSK

s

)
, with respect to the principal extension ratio λ1, so that all constitutive laws produce the

same principal tension T1.

3.2. Micropipette aspiration analysis

Through the following micropipette aspiration analysis, relationships between the shear elastic moduli
of the constitutive laws are established, which will later be used in Section 4.2 to choose the GSK

s , GNH
s and

GYE
s values. It is worth noting that micropipette aspiration allows us to additionally compare the effect of

constitutive law on the erythrocyte membrane response to deformations in the lateral plane, as opposed to
the optical tweezers experiment where RBCs are subjected to axial and transverse deformations.

Evans [76, 77] proposed the following homonymous constitutive law, which has been extensively employed
for fitting data in micropipette aspiration experiments

WEV
s =

GEV
s

2

[
I1 + 2√
I2 − 1

− 1 + CEV
(√

I2 − 1− 1
)2
]
. (23)

GEV
s is the shear elastic modulus associated with this law, and the dimensionless parameter CEV represents

the area dilatation modulus. The principal tension can be found as [11, 34]

TEV
1 = GEV

s

[
λ2

1 − λ2
2

2 (λ1λ2)
2 + CEV (λ1λ2 − 1)

]
, (24)

which, under the constraint of area-incompressibility [76], reduces to

TEV
1 = GEV

s

λ2
1 + 1

2λ2
1

(
λ2

1 − 1
)
. (25)

It has been shown that, under uniaxial tension, the Evans law is strain-softening [34].
Following the analysis of Waugh & Evans [45], the principal extension ratio λ1 at a point on the ery-

throcyte membrane outside the micropipette entrance is given by

λ2
1 = 1 +

(
Rpip

r

)2(
2Lasp

Rpip
− 1

)
for Lasp ≥ Rpip, (26)
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with Rpip being the inner radius of the micropipette, and Lasp the length of the RBC’s aspirated part. For
the desired resultant λ1, the micropipette suction pressure ∆P can be found by integrating in the plane of
the membrane from the micropipette tip outward as

∆P =
4

Rpip

∫ ∞
Rpip

Ts
r

dr. (27)

The maximum membrane shear resultant Ts is given by the deviator of the principal tensions, namely Ts =
(T1 − T2) /2. The principal tension T2 for each law can be readily determined by substituting λ2 = 1/λ1,
owing to the area-incompressibility constraint, into the corresponding formulation of T1. Therefore, as
shown in the work of Waugh & Evans [45], the maximum membrane shear resultant for Evans law can be
expressed as

TEV
s =

GEV
s

2

(
λ2

1 − λ−2
1

)
, (28)

with the resulting suction pressure taking the form

∆P =
GEV

s

Rpip

[
2Lasp

Rpip
− 1 + ln

(
2Lasp

Rpip

)]
. (29)

To establish the relations of the shear elastic moduli of the Skalak, neo-Hookean and Yeoh laws with
respect to GEV

s , we follow the same procedure as above. The maximum membrane shear resultants for the
Skalak, neo-Hookean and Yeoh laws are found, respectively, to be

TSK
s =

GSK
s

2

(
λ2

1 − λ−2
1

) (
λ2

1 + λ−2
1 − 1

)
, (30a)

TNH
s =

GNH
s

2

(
λ2

1 − λ−2
1

)
, (30b)

TYE
s =

GYE
s

2

(
λ2

1 − λ−2
1

) [
1 + 3CYE

(
λ2

1 + λ−2
1 − 2

)2]
, (30c)

with the corresponding suction pressure being formulated as

∆P =
GSK

s

Rpip

(
2Lasp

Rpip
− 1

)(
Lasp

Rpip
+

Rpip

2Lasp
+

1

2

)
, (31a)

∆P =
GNH

s

Rpip

[
2Lasp

Rpip
− 1 + ln

(
2Lasp

Rpip

)]
, (31b)

∆P =
GYE

s

Rpip

{
2Lasp

Rpip
− 1 + ln 2 + CYE

[
8

(
Lasp

Rpip

)3

− 18

(
Lasp

Rpip

)2

+ 12
Lasp

Rpip
+

9

2

Rpip

Lasp
− 3

8

(
Rpip

Lasp

)2

− 10 + ln 64] +
(
1 + 6CYE

)
ln

(
Lasp

Rpip

)}
. (31c)

By combining Eqs. (31) with Eq. (29), the ratios GSK
s /GEV

s , GNH
s /GEV

s and GYE
s /GEV

s can be deduced,
which, for simplicity, are illustrated in Fig. 2. For Skalak law, its shear elastic modulus, GSK

s , drops for
increasing dimensionless aspiration length. For neo-Hookean law, its shear elastic modulus does not change
with varying Lasp/Rpip, remaining constant to GEV

s . Yeoh law performs similarly to the neo-Hookean law
for Lasp/Rpip ≤ 1.5, when the differences between the estimated GNH

s and GYE
s are less than 10%. At

Lasp/Rpip ≈ 2.25, a change in the curvature of the ratio GYE
s /GEV

s line can be noted, from concave to
convex, coinciding with the shift in Yeoh law’s nature, from strain-softening to strain-hardening. Yeoh law
becomes more and more strain-hardening as the aspiration length increases, and, for Lasp/Rpip ≥ 4.85, it
has a higher degree of strain-hardening than Skalak law.
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Figure 2: Variation of the shear elastic modulus Gs of the Skalak (SK), neo-Hookean (NH) and Yeoh (YE) laws, scaled with
the shear elastic modulus of Evans law

(
GEV

s

)
, with regard to the dimensionless aspiration length Lasp/Rpip, so that all

constitutive laws result the same micropipette suction pressure ∆P .

4. Results

4.1. Optical tweezers

4.1.1. Computational setup

In the optical tweezers experiment of Mills et al. [10], two silica microbeads of diameter 4.12 µm are
attached to diametrically opposite ends of a RBC. One microbead is optically trapped by a laser beam,
thus remaining stationary, while the other one is binded to the surface of a glass slide allowing for motion
and consequently stretching of the RBC. To computationally reproduce the physics of this experimental
setup, a force FOT is applied to N+ = εNver vertices, denoted by black square symbols in Fig. 3(a), of
the erythrocyte membrane with the largest x-coordinates in the positive x-direction, and a force −FOT is
correspondingly acting on N− = N+ vertices with the smallest x-coordinates in the negative x-direction.
Hence, the force F l

OT = ±FOT/ (εNver) is exerted on each vertex l in N+ or N−, with N+ and N− denoting
the sets of the N+ and N− vertices with the largest and smallest x-coordinates respectively, and it is simply
added to Eq. (40) when the vertex l ∈ N+ ∪ N−. The vertex fraction ε is related to the diameter dc of the
contact area between the microbeads and the RBC. When the RBC reaches mechanical equilibrium with
the ambient fluid, its deformed shape can be characterized by an axial DA and transverse DT diameter,
as shown in Fig. 3(b). The axial diameter is computed as DA = |xmax − xmin|, where xmax and xmin are
the maximum and minimum x-coordinates among the N+ and N− vertices, respectively. The transverse

diameter is calculated as DT = 2×maxl=1,...,Nver

√
(yl − cy)

2
+ (zl − cz)2

, with cy and cz being the y- and

z-coordinates of the RBC’s center of mass. Following Sigüenza et al. [9], the in-plane LP and folding LF

lengths, as defined in Fig. 3(c), are also measured at the deformed state.
In our simulations, a RBC of diameter D0 is immersed at the center of a rectangular domain of size

[−2D0, 2D0] × [−D0, D0] × [−D0/2, D0/2], as in the work of Sigüenza et al. [9]. A domain resolution of
D0/39 is found to result in grid-independent solutions. In the experiment of Mills et al. [10], the ambient
fluid is a phosphate-buffered saline (PBS) solution with bovine serum albumin (BSA) addition. Although
the fluid dynamic viscosity is measured to be 1.3 × 10−3 Pa · s, no value is reported for the fluid density,
which varies depending on the room temperature and the BSA percentage in the PBS solution between
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Figure 3: (a) Illustration of the computational setup used to simulate the optical tweezers experiment [10]. A stretching force
is applied to N+ and N− vertices, depicted by black square markers, representing physically the contact area of diameter dc
between the silica microbeads and the RBC. (b, c) The axial DA and transverse DT diameters along with the in-plane LP and
folding LF lengths characterize the deformation of the RBC, once the latter reaches mechanical equilibrium.

1000 to 1100 kg/m3 [78]. Due to this uncertainty, the ambient fluid is considered to be blood plasma in our
simulations, whose density and kinematic viscosity values are close to those of the fluid used in experiments.
It should be noted that, although the choice of the fluid properties may have an effect on the transient
phase, it does not affect the deformation of the RBC when the latter reaches mechanical equilibrium with
the ambient fluid [8, 9]. A relaxation time of 1 is chosen for the ambient fluid, resulting in a value of 3 in
the cytoplasmic region following the approach of Zhang et al. [64]. To accurately capture the deformation
of the RBC, 5 successive refinements of an icosahedron are considered in the discretization process of the
erythrocyte membrane. The ensuing mesh resolution of the RBC, ∆s ≈ 0.12 µm, is comparable to that
employed by Mills et al. [10] in their simulations performed with the commercial software ABAQUS and
finer than the one used in the work of Sigüenza et al. [9]. The resulting mesh resolution ratio, ∆s/∆x′ = 0.6,
lies within the suggested IBM range, that is 0.5 ≤ ∆s/∆x′ ≤ 1.5 [74]. Finally, the vertex fraction is taken
equal to 0.02, corresponding to a contact area diameter of 2.0 µm [79].

4.1.2. Choice of the shear elastic modulus value

Hénon et al. [41] measured the shear elastic modulus to be Gs = 2.5 ± 0.4 µN/m. However, this value
was obtained by performing optical tweezers experiments in the linear, small strain regime (|FOT| ≤ 15 pN).
Yoon et al. [42] found experimentally the shear modulus to be Gs = 3−6 µN/m in the moderate deformation
regime (|FOT| < 50 pN). Mills et al. [10] predicted a value of Gs = 5.5 µN/m by fitting the experimental
mean values for the axial and transverse diameters considering |FOT| ≤ 88 pN to the strain-softening Evans
law [76] under a constant area constraint. Here, GSK

s = {4.0, 5.0}µN/m is chosen to perform simulations
with Skalak law, and these values lie well within the aforementioned experimental ranges. The parameter
CSK in Eq. (10) is set equal to 100, which has been shown to ensure area incompressibility [9, 25]. Taking
into account Eqs. (22a) and (22b), the shear elastic moduli for the neo-Hookean and Yeoh laws should be in
the range of [8.0, 20.0] and [7.6, 10.0] µN/m, respectively. The shear elastic moduli considered here for the
neo-Hookean and Yeoh laws take respectively the values: GNH

s = {10.0, 12.0}µN/m and GYE
s = 10.0 µN/m.

These values are within the expected theoretical range and the numerical limits found by Dao et al. [4] and

Mills et al. [10] - GNH
s ∈ [11.1, 17.7] µN/m and G

NH/YE
s ∈ [5.3, 11.3] µN/m in the corresponding works. The

simulation parameters are finally summarized in Table 1.

4.1.3. Effect on the axial and transverse diameters

Figure 4(a) shows the results for the axial and and transverse diameters as obtained by the different
constitutive laws. For Skalak law with GSK

s = 4 µN/m, the results for both DA and DT fall within the
experimental limits of Mills et al. [10]. When GSK

s = 5 µN/m, the axial diameter is captured perfectly,
while small discrepancies from the upper limit of the experimental range can be observed for the transverse
diameter at |FOT| ≤ 108 pN. These discrepancies are, however, less than 1.5%. This data indicates that
the range of [4.0, 5.0] µN/m is the recommended one for Skalak law. It is clear from Fig. 4(a) that lower
values of GSK

s may result in an overprediction of DA, while higher values may cause an overprediction of
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Parameter Value
Computational domain size, L×H ×W [−2D0, 2D0]× [−D0, D0]× [−D0/2, D0/2]
Domain resolution, ∆x′ D0/39
Fluid density, ρ = ρplasma 1025 kg/m3

Plasma kinematic viscosity, νamb = νplasma 1.2× 10−6 m2/s
Cytoplasm kinematic viscosity, νcyto 6.0× 10−6 m2/s
Kinematic viscosity ratio, λ = νcyto/νamb 5.0
Relaxation time, τ 1 for the plasma and 3 for the cytoplasm
RBC’s center of mass, (cx, cy, cz) (0, 0, 0)
RBC discretization, (Nref , Nelem, Nver) (5, 20480, 10242)
Shear elastic modulus, Gs GSK

s = {4.0, 5.0}µN/m
(
CSK = 100

)
GNH

s = {10.0, 12.0}µN/m
GYE

s = 10.0 µN/m
Bending elastic modulus, kb 1.8× 10−19 N ·m
Volume penalty coefficient, kv 0.1
Vertex fraction, ε 0.02
Contact area diameter, dc 2.0 µm

Table 1: Summary of the parameters for the optical tweezers simulation.

DT. For the neo-Hookean model with GNH
s = 10 µN/m, deviations from the experimental results occur

for the axial diameter at |FOT| > 150 pN, while the transverse diameter is consistently overpredicted with
an average relative error of ∼ 8%. A similar trend can be noted for DT in the simulations performed with
the neo-Hookean and Yeoh laws by Mills et al. [10]. It is noteworthy that the axial diameter of a RBC
undergoing large deformations can be adequately captured at a higher value of GNH

s , without the latter
having a significant effect, however, on the transverse diameter. For Yeoh law, the axial diameter is resolved
well, while the transverse one is overestimated, as expected. It is worth mentioning that the neo-Hookean
with GNH

s = 10 µN/m and Yeoh laws produce identical results for both DA and DT at |FOT| ≤ 48 pN when
the RBC stretches up to ∼ 40% of its original size. Notable differences in DA between the two models occur
at |FOT| > 88 pN when the RBC deforms up to ∼ 65% of its initial size. The variations in DT are visible
only after |FOT| > 130 pN. Finally, the results for DA of Yeoh law can be seen to tend to those of Skalak
law with GSK

s = 5 µN/m for high values of the stretching force.

4.1.4. Effect on the in-plane and folding lengths

The results for the in-plane and folding lengths are presented in Fig. 4(b) and compared qualitatively
with those of Sigüenza et al. [9] due to the differences in Gs. For Skalak law, the in-plane length does not
experience initially significant changes, while the folding length increases considerably with |FOT|. At a
certain stretching force magnitude, depending on the stiffness of the erythrocyte membrane, the in-plane
and folding lengths become identical, indicating that the RBC transitions from a biconcave to a rounded
shape. This is clearly demonstrated in Fig. 5. After this transition point, a further increase in |FOT| results
in a more circular RBC shape. It is worth noting that this transition occurs at |FOT| = {150, 172} pN
when GSK

s = {4.0, 5.0}µN/m, respectively. For the neo-Hookean and Yeoh laws, the in-plane and folding
lengths evolve in parallel, suggesting that the RBC retains its biconcave shape, as illustrated in Fig. 5. The
in-plane length varies slightly with |FOT|. The following mean and deviation values for LP are reported:
LP ± L′P = {2.60± 0.08, 2.67± 0.06, 2.61± 0.07}µm for the neo-Hookean with GNH

s = {10.0, 12.0}µN/m
and Yeoh laws, respectively. The folding length initially experiences a modest increase, with a relative
difference of less than 3.5% in all cases, and then gradually decreases to ∼ 18 − 26% of its initial folding
length. It is worth noting that the neo-Hookean and Yeoh laws predict almost identical values of LP, with
the mean relative discrepancy being 0.1%, for the same shear elastic modulus Gs = 10.0 µN/m. For the
increased GNH

s = 12.0 µN/m, the results of the in-plane length deviate from those of GNH
s = 10.0 µN/m
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GYE

s = 7.30 µN/m (Sigüenza et al. [9])
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Figure 4: (a) Comparison of the axial (DA) and transverse (DT) diameters obtained for the different constitutive laws with
the experimental results of Mills et al. [10]. (b) Evolution of the in-plane (LP) and folding (LF) lengths with the stretching
force magnitude, and comparison with the numerical results of Sigüenza et al. [9]. (c) Variation of the erythrocyte membrane
area with |FOT|.
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Figure 5: Visualization of the deformed red blood cell shape at: (a) |FOT| = 67 pN, (b) |FOT| = 130 pN, and (c) |FOT| =
193 pN. Due to symmetry, only half of the erythrocyte membrane is presented.

at |FOT| ≥ 48 pN. The above observations indicate that differences in the predicted in-plane length occur
due to a variation in Gs rather the cubic extension term in Yeoh law. Interestingly, Skalak law with

GSK
s = 4.0 and 5.0 µN/m predicts similar values of LP to those corresponding to G

NH/YE
s = 10.0 µN/m and

GNH
s = 12.0 µN/m at |FOT| ≤ 108 and 150 pN, respectively. Regarding the folding length, the results for

the neo-Hookean model overlap, while those of Yeoh increasingly deviate when |FOT| > 108 pN. Finally,
the results of both LP and LF considering Yeoh law are close to the reference ones of Sigüenza et al. [9]
despite the difference in GYE

s .

4.1.5. Effect on the erythrocyte membrane area

The area variation, defined as: |A − A0|/A0 × 100 (%), with |FOT| is shown in Fig. 4(c). It is obvious
that Skalak law causes negligible variations in the erythrocyte membrane area when C = 100. The results
at GSK

s = 4.0 and 5.0 µN/m are superimposed, and a maximum area variation of 0.35% and 0.25% is
respectively found for each case. This agrees well with the value of 0.30% reported by Sigüenza et al. [9]
where GSK

s = 3.65 µN/m and C = 100 are considered. For the neo-Hookean model, the area dilatation
increases linearly with the stretching force magnitude, and reaches a maximum value of 32.5% and 27.0% at
GNH

s = 10.0 and 12.0 µN/m, correspondingly. Similarly to the observations made for DA, Yeoh law results
in the same area dilatation as in the case of GNH

s = 10.0 µN/m at |FOT| ≤ 67 pN. It is worth noting that
the results curve follows a similar trend to that of Sigüenza et al. [9]. The maximum area dilatation is,
however, lower than the reference one, 25.0% as opposed to 28.0%, due to the stiffer erythrocyte membrane
considered in the current work.

4.1.6. Effect on the erythrocyte morphology

Finally, the red blood cell shapes are depicted for different magnitudes of the stretching force and
constitutive laws in Fig. 5. The most important feature to note here is the transition of the erythrocyte
membrane from a biconcave to a rounded shape in the case of Skalak law, and the conservation of the
RBC’s biconcave shape when the neo-Hookean or Yeoh model is considered, as mentioned earlier. Sigüenza
et al. [9] reported that the same shape transition as for Skalak law could be observed when simulations were
performed with Yeoh law while imposing an area conservation constraint at the same time. This implies
that the shape transition occurs due to the area incompressibility, rather than Skalak law itself. Although
the erythrocyte membrane is known to be area incompressible, with an area increase of 3 to 4% resulting
in cell lysis [80], the current constitutive laws are unable to capture accurately the shape of a red blood

14



cell undergoing moderate/large deformations under the physically correct area incompressibility constraint.
The rounded shape found numerically does not correspond to reality, as Mills et al. [10] reported that
a similar folding to the one occuring for the neo-Hookean or Yeoh law, when the area dilatation is not
restrained, in Fig. 5 could be experimentally observed. Lastly, it would be worth exploring in future studies
whether a non-zero spontaneous curvature affects the erythrocyte morphology. Sinha & Graham [8] studied
the effect of spatially-varying spontaneous curvature, that is biconcave discoid, oblate spheroid, and sphere
spontaneous shapes, on the axial and transverse diameters of a red blood cell subjected to optical tweezers
stretching, when the Skalak law is considered, and they found that its effect is negligible. However, it is
not mentioned whether the different spontaneous curvatures influenced the morphology of the deformed red
blood cell.

4.2. Micropipette aspiration

4.2.1. Computational setup

In the experiment of Waugh & Evans [45], flaccid red blood cells are aspirated into a pipette by a suction
pressure ∆P . This pressure difference is computationally realized by implementing the Zou-He boundary
scheme adapted to the D3Q19 lattice arrangement [81] at the faces perpendicular to the pipette axis. Once
the RBC is in mechanical equilibrium with the surrounding fluid for a given ∆P , the length Lasp of its
aspirated part, shown in Fig. 6(a), is computed as the distance from the tip of the pipette to the vertex of
the erythrocyte membrane located along the pipette axis with the largest x-coordinate [3].

In the simulations, the RBC and micropipette are immersed inside a rectangular domain of dimensions
L × H ×W = 8.6 µm × 11.5 µm × 11.5 µm, similarly to the work of Balogh & Bagchi [53]. The pipette
is modelled as a rigid, solid cylinder with rounded inlet end and thickness Wpip = 0.8 µm. Its inner radius
Rpip and length Lpip are 0.9 and 4.3 µm, respectively. The pipette dimensions considered here are the same
as those in Balogh & Bagchi [53]. The no-slip condition is enforced at the pipette walls by the half-way
bounce-back boundary scheme [82]. The RBC’s center of mass is initially placed at a horizontal distance of
1.6 µm from the tip of the pipette. Both the RBC and micropipette are surrounded by a fluid with density
and viscosity similar to water. Finally, a resolution of 0.088 µm and 5 successive refinements are employed
respectively in the discretization of the computational domain and erythrocyte membrane, resulting in
∆s/∆x′ ≈ 1.4. These resolutions are on a par with those in Balogh & Bagchi [53].

4.2.2. Choice of the shear elastic modulus value

Using micropipettes of inner radius < 0.5 µm, Evans & La Celle [43] estimated the shear elastic modulus
to be Gs = 7.0 µN/m by fitting the experimental data for the aspiration length to Evans law. Considering the
spherical cap model, Chien et al. [44] found a good agreement with experimental results for Gs = 4.2 µN/m.
Waugh & Evans [45] studied the effect of temperature variations on the shear elastic modulus. At 35.3 ◦C,
they obtained a value of 6.07 ± 1.08 µN/m for Gs and its standard deviation. Similarly, Linderkamp &
Meiselman [46] measured Gs = 6.0 ± 1.1 µN/m. In a later study, Evans et al. [47] re-evaluated based on
Evans law the shear elastic modulus to be Gs = 9.0±1.7 µN/m by accurately measuring the inner diameter
of the micropipettes. As pointed out by Hochmuth & Waugh [83], greater weight should be given to this
value, as a 20% error in the measurement of Rpip results in a 40% error in the Gs estimation. Assuming
thus that GEV

s = 9.0 ± 1.7 µN/m and taking into account the micropipette aspiration analysis in §3.2,
the corresponding values of the shear elastic modulus can be obtained for the Skalak, neo-Hookean and
Yeoh laws. For the range of pressure differences and, therefore, aspiration lengths considered here, it is
found that GSK

s ∈ [2.6, 7.7]µN/m, GNH
s ∈ [7.3, 10.7]µN/m and GYE

s ∈ [3.7, 10.2]µN/m. As mentioned by
Dimitrakopoulos [11], the values range of Gs for the neo-Hookean and Yeoh laws should be scaled up by
a factor of 1.3, resulting in GNH

s ∈ [9.7, 14.3]µN/m and GYE
s ∈ [4.9, 13.6]µN/m, to implicitly account for

the area incompressibility constraint, which is satisfied in the cases of Evans and Skalak laws by explicitly
assigning a large value to the area dilatation modulus. Here, we have chosen: GSK

s = {4.0, 5.0, 6.0}µN/m

and G
NH/YE
s = {10.0, 12.0}µN/m, which are within the theoretically predicted ranges. Although the values

of GYE
s lie towards the upper theoretical limit, they were chosen such that a one-to-one comparison is allowed

between the results of the neo-Hookean and Yeoh laws. The summary of the simulation parameters is finally
shown in Table 2.

15



∆P ′ (µN/m)
0 5 10 15 20 25 30

L
′

1

1.5

2

2.5

3

3.5

4
GSK

s = 4 µN/m
GSK

s = 5 µN/m
GSK

s = 6 µN/m
GNH

s = 10 µN/m
GNH

s = 12 µN/m
GYE

s = 10 µN/m
GYE

s = 12 µN/m
Waugh & Evans [37]

(b)

(c)

Gs
SK = 4 N/m

Gs
YE = 12 N/m

Figure 6: (a) Schematic diagram of the computational setup employed in the micropipette aspiration simulations. A red blood
cell is aspirated into a pipette of length Lpip, inner radius Rpip and thickness Wpip. When the RBC reaches mechanical
equilibrium, its deformation is characterized by the aspiration length Lasp. (b) Comparison of the dimensionless aspiration
lengths L′ = Lasp/Rpip found by the different constitutive laws at various (normalized) pressure differences ∆P ′ = ∆P ·Rpip/2
with the experimental results of Waugh & Evans [45]. (c) Visualization of the aspirated RBC shape for GSK

s = 4.0 µN/m and
GYE

s = 12.0 µN/m at ∆P ′ = 25.2 µN/m.
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Parameter Value
Computational domain size, L×H ×W 8.6 µm× 11.5 µm× 11.5 µm
Pipette’s length, radius, thickness, (Lpip, Rpip,Wpip) (4.3, 0.9, 0.8)µm
Domain resolution, ∆x′ 0.088 µm
Fluid density, ρ = ρwater 1000 kg/m3

Water kinematic viscosity, νamb = νwater 1.0× 10−6 m2/s
Cytoplasm kinematic viscosity, νcyto 6.0× 10−6 m2/s
Kinematic viscosity ratio, λ = νcyto/νamb 6.0
Relaxation time, τ 1 for the water and 3.5 for the cytoplasm
RBC’s center of mass, (cx, cy, cz) (−1.6, 0, 0)µm
RBC discretization, (Nref , Nelem, Nver) (5, 20480, 10242)
Shear elastic modulus, Gs GSK

s = {4.0, 5.0, 6.0}µN/m
(
CSK = 100

)
GNH

s = {10.0, 12.0}µN/m
GYE

s = {10.0, 12.0}µN/m
Bending elastic modulus, kb 1.8× 10−19 N ·m
Volume penalty coefficient, kv 0.1

Table 2: Summary of the parameters for the micropipette aspiration simulation.

4.2.3. Effect on the aspiration length and the erythrocyte membrane area

Figure 6(b) presents the results of the dimensionless aspiration length L′ = Lasp/Rpip as a function of
the normalized pressure difference ∆P ′ = ∆P · Rpip/2. The results for the different constitutive laws are
compared with the experimental ones of Waugh & Evans [45]. Considering Skalak law with GSK

s = 5.0 µN/m,
a good agreement with the experimental results can be reached only for the intermediate pressure differences,
with the relative error in L′ being less than 6.1%. At ∆P ′ = 8.5 and 25.2 µN/m, the discrepancy in the
prediction of L′ is higher than 20 and 10%, respectively. By increasing the erythrocyte membrane stiffness
to GSK

s = 6.0 µN/m, a better agreement with the experimental estimation of L′ can be obtained at ∆P ′ =
8.5 µN/m, with the relative error reduced to 12.8%. A further increase in GSK

s , such as 7.0 µN/m, would
improve the agreement with the reference result of Waugh & Evans [45] for the lowest ∆P ′. Similarly, the
computationally predicted L′ at ∆P ′ = 25.2 µN/m agrees excellently with the corresponding experimentally
determined value when reducing the RBC stiffness to GSK

s = 4.0 µN/m. The relative error is less than 1.1%.
It is noteworthy that both GSK

s = 7.0 and 4.0 µN/m for which an excellent agreement with the reference
results at the lowest and highest ∆P ′ can be respectively expected or observed correspond to values of
GEV

s close its upper limit, that is GEV
s = 10.7 µN/m. For the neo-Hookean law with GNH

s = 10.0 µN/m,
corresponding to GEV

s = 7.5 µN/m, the aspiration length is significantly overestimated in all cases, with the
relative error being 13 − 25%. Increasing GNH

s to 12.0 µN/m, corresponding to GEV
s = 9.0 µN/m, results

in a good agreement with the experimental data at ∆P ′ < 20.0 µN/m. The relative differences in L′ are
less than 2.5% at ∆P ′ = 8.5 and 13.2 µN/m and 7.0% at ∆P ′ = 15.8 µN/m. The deviation observed
for the higher pressure differences could be reduced if a higher value of GNH

s was considered, for example
14.0 µN/m. This value corresponds to GEV

s = 10.5 µN/m. The Yeoh law with GYE
s = 10.0 µN/m performs

adequately with the discrepancies in the estimated aspiration length ranging from 5% to 12%. An excellent
agreement can be achieved by increasing GYE

s to 12.0 µN/m, with the relative error in L′ being less than
3.5% in all cases. It is worth mentioning that, as expected by the micropipette aspiration analysis in §3.2,
the neo-Hookean and Yeoh laws predict similar aspiration lengths for the same value of shear elastic modulus
at ∆P ′ < 10.0 µN/m, for which L′ ≤ 1.5. It is clear that only Yeoh law is capable of accurately estimating
the aspiration length at the whole range of pressure differences for a single value of shear elastic modulus.
Finally, it should be noted that, despite the large deformations the aspirated RBC undergoes, the variations
in the erythrocyte membrane area are negligible for all constitutive laws. For Skalak law, the area dilatation
is restricted to 0.15%. For neo-Hookean and Yeoh laws, the maximum area dilatation is respectively found
to be 0.8% and 0.3%.
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4.2.4. Effect on the erythrocyte morphology

Although both the neo-Hookean and Yeoh laws satisfy implicitly the area-incompressibility constraint
in the micropipette aspiration simulations performed here, differences in the aspirated RBC shape found by
the aforementioned and Skalak laws were observed. Figure 6(c) illustrates the erythrocyte membrane shapes
as obtained by Skalak and Yeoh laws at the highest pressure difference, ∆P ′ = 25.2 µN/m (∆P = 56 Pa).
Results are presented for GSK

s = 4.0 µN/m and GYE
s = 12.0 µN/m since an excellent agreement with the

experimentally estimated aspiration length could be achieved for these values of shear elastic modulus in
both cases. The shapes resulting by the use of the neo-Hookean law are omitted as they are identical to
those found by employing Yeoh law. As can be seen, the erythrocyte membrane exhibits wrinkling at the
part of its exterior surface being close to the pipette tip when Yeoh law is considered. At ∆P ′ < 15.0 µN/m,
all constitutive laws produce the same RBC shape. The wrinkling appears slightly in the neo-Hookean and
Yeoh law cases at ∆P ′ = 15.8 µN/m (∆P = 35 Pa), and it becomes more apparent at the higher pressure
differences (∆P ≥ 45 Pa). Folding/buckling of the erythrocyte membrane has been reported to occur during
micropipette aspiration experiments [44, 46]. Evans et al. [47] observed such wrinkling when performing
aspiration experiments with normal and sickle erythrocytes in micropipettes with inner diameter of 1.5 µm
at a suction pressure of 45 Pa. It is expected that wrinkling will appear at lower suction pressures for
micropipettes of higher inner diameter, which facilitate the aspiration of erythrocytes. Here, the threshold
suction pressure for wrinkling to occur is evaluated at 35 Pa for micropipettes with inner diameter of 1.8 µm,
while it can be easily observed at ∆P ≥ 45 Pa. These experimental observations suggest that the RBC
shape found by the neo-Hookean and Yeoh laws may correspond to reality; however, more evidence should
be provided in future micropipette aspiration experiments to verify the exact wrinkling morphology.

5. Conclusions

Given the molecular structure complexity of red blood cells, it should not be expected that any of
the constitutive laws, currently available in the literature, may accurately predict all potential erythrocyte
behaviours [48]. Yet, it is essential to elucidate their capability of accurately capturing the erythrocyte
behaviour in terms of different levels of deformation. The present work provides insight into the range of
applicability of the most commonly used constitutive laws in the modelling of the erythrocyte membrane
response, that is the Skalak, neo-Hookean, and Yeoh laws. We have focused on the moderate and large
deformation regime, which is commonly encountered also in physiological settings. Two configurations,
namely optical tweezers and micropipette aspiration, have been examined here by means of computational
modelling. These configurations allow us to rigorously compare constitutive laws for two reasons. First, ex-
perimental measurements are available in the literature, and, second, relationships between the shear elastic
modulus values of the different constitutive laws can be theoretically derived. Finally, these configurations
allow us to cover deformations across all planes, with the erythrocyte being subjected to deformations in the
axial and transverse planes in the optical tweezers experiment, and in the lateral plane during micropipette
aspiration.

For the optical tweezers experiment, it has been found that all constitutive laws considered here are
able to adequately predict the force-extension experimental data, i.e. the axial and transverse diameters,
over the full deformation range for a constant value of their shear elastic modulus. For Skalak law, the

Skalak neo-Hookean Yeoh
Shear elastic modulus, Gs [4.0, 5.0] µN/m 12.0 µN/m 10.0 µN/m
Axial diameter, DA 3 3 3
Transverse diameter, DT 3 slightly overpredicted slightly overpredicted
Erythrocyte folding 7 3 3
Area-incompressibility 3 7 7

Table 3: Summary of the optical tweezers findings.
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Skalak neo-Hookean Yeoh
Shear elastic modulus, Gs [4.0, 7.0] µN/m [12.0, 14.0] µN/m 12.0 µN/m
Aspiration length, L′ Gs-dependent Gs-dependent Gs-independent
Erythrocyte wrinkling 7 3 3
Area-incompressibility 3 3 3

Table 4: Summary of the micropipette aspiration findings.

optimal value of Gs lies between 4.0 and 5.0 µN/m, while this value raises up to 12.0 and 10.0 µN/m
when considering, respectively, the neo-Hookean and Yeoh laws. Although these values of GNH

s and GYE
s

result in a good agreement with experimental data for the axial diameter of the stretched erythrocyte, a
slight overprediction of ∼ 8% appeared to occur for the transverse diameter. It is worth mentioning that, as
predicted by the theoretical analysis of uniaxial extension, the neo-Hookean and Yeoh laws produce identical
deformation in the axial direction at |FOT| ≤ 48 pN, corresponding to a maximum extension of ∼ 40%, for
the same value of Gs. The differences in DA between these two laws become apparent at |FOT| > 88 pN,
when the RBC has stretched at least ∼ 65% of its initial size, and can be attributed to the change in Yeoh
law’s nature (from strain-softening to strain-hardening) which occurs at a RBC extension of ∼ 70%. It
should also be noted that the results for DA of Yeoh law match those of Skalak law at |FOT| > 170 pN,
corresponding to extensions of ∼ 100%, when GYE

s = 2GSK
s , as anticipated by theory. With respect to the

transverse diameter, the following trends have been revealed: 1. varying the shear elastic modulus value
does not influence significantly the estimation of DT for any constitutive law, and 2. the neo-Hookean and
Yeoh laws predict similar results, demonstrating that the cubic extension term in Yeoh law has a negligible
effect on the RBC deformation in the transverse direction. Regarding the morphology, a folding on the
erythrocyte membrane, similar to that observed in experiments, can be seen when considering the neo-
Hookean and Yeoh laws, indicating that these laws maintain the RBC’s biconcave shape. On the contrary,
the erythrocyte shape gradually transitions from biconcave to rounded with increasing |FOT| for Skalak
law. This transition is delayed with increasing value of the shear elastic modulus. Lastly, the erythrocyte
membrane area does not sustain significant variations in the case of Skalak law, when sufficiently high values
of its dilatational modulus are considered, as opposed to the neo-Hookean and Yeoh laws. A short summary
of the findings for the optical tweezers experiment can be found in Table 3.

For the micropipette aspiration experiment, it has been demonstrated that only Yeoh law is able to
precisely predict the aspiration length across the entire range of suction pressures considered here for a fixed
shear elastic modulus value, found to be GYE

s = 12.0 µN/m. For the Skalak and neo-Hookean laws, the
shear elastic modulus value, for which a good agreement can be obtained with the experimental results, is
dependent on the applied suction pressure, and, thus, the resultant deformation. It has been shown that
the Gs value should vary between 4.0 to 7.0 µN/m for Skalak law, and 12.0 to 14.0 µN/m for the neo-
Hookean model. In accordance with the theoretical analysis, similar aspiration lengths are predicted by the
neo-Hookean and Yeoh laws for the same value of shear elastic modulus when L′ ≤ 1.5. Importantly, it has
been revealed that wrinkling occurs on the erythrocyte membrane for suction pressures ∆P ≥ 35 Pa when
considering the neo-Hookean and Yeoh laws, but not the Skalak law. It is noteworthy that the threshold
suction pressure for wrinkling to appear in our simulations, i.e. ∆P = 35 Pa, is close to that experimentally
observed, that is 45 Pa [47]. The discrepancy between the two may be attributed to the difference in the
inner diameter of the pipette considered here (1.8 µm) and used in the experiments (1.5 µm). Finally,
negligible variations in the erythrocyte membrane area have been reported for all constitutive laws. The
computational findings for the micropipette aspiration experiment are summarized in Table 4.

The current study paves the way for further investigations on the effect of constitutive law on the
erythrocyte behaviour. More physiologically relevant configurations, such as the flow of red blood cells
through narrow slits similar to those encountered in the spleen, are worth exploring in the future. Varying
the erythrocyte properties also merits further study, as any variation will reflect on the shear elastic modulus
value predicted by each constitutive law.
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Appendix: Stresses and forces computation

Stresses computation

Following Green & Adkins [84], we express the erythrocyte membrane mechanics problem in the curvi-
linear coordinate system defined by ξ1 and ξ2. Let X0 (ξ1, ξ2) and X (ξ1, ξ2, t) be the position of a given
membrane material point in the reference and deformed states, respectively. To describe elastic deformations
of a curved surface, it is convenient to use the local covariant (A1,A2,n) and contravariant

(
A1,A2,n

)
bases in the deformed state, composed of the tangent vectors

Aα = X ,α =
∂X

∂ξα
, α = 1, 2, (32)

and the outward unit normal vector n. The covariant metric and curvature tensors are defined in the
deformed state as

Aαβ = Aα ·Aβ , (33a)

Bαβ = Aα,β · n =
∂Aα

∂ξβ
· n, (33b)

where α, β = 1, 2. The contravariant representations Aαβ and Bαβ of the metric and curvature tensors are
defined similarly to Eq. (33), and satisfy the following conditions: AαγAγβ = δαβ and BαγBγβ = δαβ , where

δαβ is the Kronecker delta. The same quantities can be defined in the reference state, i.e. A0
α, A0

αβ , B0
αβ , etc.

The surface deformation gradient tensor F = Aα⊗A0α is such that dX = F·dX0. The Green-Lagrange
strain tensor E is defined as E = 1

2 (C− I), where C = FT · F is the right Cauchy-Green tensor, and its
strain invariants are given by

I1 = 2 tr (E) = tr (C)− 2 = λ2
1 + λ2

2 − 2, (34a)

I2 = 2 det (E) = det (C)− 1 = λ2
1λ

2
2 − 1, (34b)

with λ1 and λ2 being the principal extension ratios. The Cauchy tension tensor T, which depends on the
strain energy function of the chosen constitutive law, is expressed as

T =
1

Js
F · ∂Ws

∂E
· FT , (35)

where the Jacobian Js = λ1λ2 represents physically the ratio between the deformed and reference local
surface areas. The contravariant representation of T takes thus the form [27, 85]

Tαβ =
2

Js

∂Ws

∂I1
A0αβ + 2Js

∂Ws

∂I2
Aαβ . (36)
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Finally, the membrane and bending stresses due to the Helfrich bending energy, Eq. (13), can be found
as [86]

σαβ =
2√
A

∂
(√

AEb
)

∂Aαβ
=
kb

2

(
4κ2Aαβ − 8κBαβ

)
, (37a)

µαβ =
∂Eb
∂Bαβ

=
kb

2

(
4κAαβ

)
, (37b)

with A being the determinant of the local metric.

Forces computation

The characteristic feature of the Loop subdivision surfaces is that the displacement field within an
element does not depend on the displacements of only the vertices composing the element, but also of its
1-ring neighboring vertices, that is the vertices sharing 1 edge with it. For a given element e, the limit
position Xe can be computed as [87]

Xe (ξ1, ξ2) =
∑
n∈En

Ne
n (ξ1, ξ2)Xn, (38)

where the node n belongs to the 1-ring En about the element e, Ne
n are the shape functions, and Xn denotes

the nodal coordinates. In the current work, we employ the box-spline shape functions as presented in the
work of Cirak et al. [73].

To calculate the surface force density Fm exerted by the membrane onto the surrounding fluids, the
weak form of the equation describing the quasistatic mechanical equilibrium of the erythrocyte membrane

∇s ·
(
Tαβ + σαβ + µαβ

)
+ F v − Fm = 0 (39)

needs to be solved, where ∇s denotes the surface gradient and F v is the volume penalty force density
corresponding to Eq. (14). The detailed solution process can be found in [86]. The surface force density of
the lth vertex located at X l can then be computed as [88]

F l
m =

Fm∫
S
Ne
l dS

. (40)
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[32] M. Carin, D. Barthès-Biesel, F. Edwards-Lévy, C. Postel, D. C. Andrei, Compression of Biocompatible Liquid-Filled
HSA-Alginate Capsules: Determination of the Membrane Mechanical Properties, Biotechnol. Bioeng. 82 (2003) 207–212.

[33] F. Risso, M. Carin, Compression of a capsule: Mechanical laws of membranes with negligible bending stiffness, Phys. Rev.
E 69 (2004) 061601.

[34] M. Rachik, D. Barthes-Biesel, M. Carin, F. Edwards-Levy, Identification of the elastic properties of an artificial capsule
membrane with the compression test: Effect of thickness, J. Colloid Interf. Sci. 301 (2006) 217–226.
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