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A B S T R A C T 

We study the topology of the network of ionized and neutral regions that characterized the intergalactic medium during the Epoch 

of Reionization. Our analysis uses the formalism of persistent homology, which offers a highly intuitive and comprehensive 
description of the ionization topology in terms of the births and deaths of topological features. Features are identified as k - 
dimensional holes in the ionization bubble network, whose abundance is given by the k th Betti number: β0 for ionized bubbles, 
β1 for tunnels, and β2 for neutral islands. Using semi-numerical models of reionization, we investigate the dependence on 

the properties of sources and sinks of ionizing radiation. Of all topological features, we find that the tunnels dominate during 

reionization and that their number is easiest to observe and most sensitive to the astrophysical parameters of interest, such as the 
gas fraction and halo mass necessary for star formation. Seen as a phase transition, the importance of the tunnels can be explained 

by the entanglement of two percolating clusters and the fact that higher-dimensional features arise when lower-dimensional 
features link together. We also study the relation between the morphological components of the bubble network (bubbles, tunnels, 
and islands) and those of the cosmic web (clusters, filaments, and voids), describing a correspondence between the k -dimensional 
features of both. Finally, we apply the formalism to mock observations of the 21-cm signal. Assuming 1000 observation hours 
with HERA Phase II, we show that astrophysical models can be differentiated and confirm that persistent homology provides 
additional information beyond the power spectrum. 

Key words: intergalactic medium – dark ages, reionization, first stars – large-scale structure of Universe – cosmology: theory. 

1

T  

i  

i
d
l
i
(  

E
S
w
a
2  

s
n
p
d
t
D  

w
s

�

i  

v
m
(  

i  

e  

M  

e
2
s  

f
o  

2  

o
s  

a
f  

p  

w  

t  

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/2/2709/6987277 by U
niversity of D

urham
 user on 02 M

arch 2023
 I N T RO D U C T I O N  

he anticipated detection of a 21-cm signal from the Epoch of Reion-
zation (EoR) will be an important milestone in the development of
ntensity mapping, an ambitious effort to map the three-dimensional 
istribution of gas in the Universe through the redshifted spectral 
ine of neutral hydrogen. By measuring spatial variations in the 
ntensity of the 21-cm signal, radio interferometers, such as LOFAR 

van Haarlem et al. 2013 ), MWA (Tingay et al. 2013 ), Hydrogen
poch of Reionization Array (HERA) (DeBoer et al. 2017 ), and 
KA (Dewdney et al. 2009 ), could survey a volume far exceeding that 
hich is currently accessible, with enormous potential for cosmology 

nd astrophysics (Furlanetto, Oh & Briggs 2006 ; Pritchard & Loeb 
012 ; Liu & Shaw 2020 ). During the Dark Ages ( z � 30), the
ignal is a clean tracer of the total matter distribution, permitting 
o v el constraints on the primordial power spectrum and fundamental 
hysics. At lower redshifts, the signal depends on the temperature, 
ensity, and ionization fraction of hydrogen, revealing the state of 
he intergalactic medium (IGM) as it evolved through the Cosmic 
awn and Epoch of Reionization, the periods between 5.5 � z � 20
hen the first stars were formed and feedback processes heated and 

ubsequently ionized the IGM. 
 E-mail: willem.h.elbers@durham.ac.uk 
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Current observations of the Cosmic Dawn and Epoch of Reion- 
zation are limited, co v ering only a small fraction of the total
olume. For instance, polarization measurements of the cosmic 
icrowave background only probe the integrated optical depth 

Planck Collaboration VI 2020 ) and for the Lyman- α forest one
s restricted to the available sightlines (Becker et al. 2015 ; Bosman
t al. 2018 ; Eilers, Davies & Hennawi 2018 ; Garaldi, Gnedin &
adau 2019 ; Yang et al. 2020 ). In terms of our understanding of these

arly epochs, the spatial and tomographic information encoded in the 
1-cm signal would be transformational. Ho we ver, untangling this 
ignal remains challenging due to its weakness, the presence of bright
oregrounds, and the size of the astrophysical model space. Currently, 
nly upper limits on the 21-cm power spectrum exist (Mertens et al.
020 ; Trott et al. 2020 ; Abdurashidova et al. 2022 ) and the creation
f three-dimensional maps that capture the rich topology of the 
ignal will require an even greater sensitivity. This calls for a data
nalysis framework capable of extracting interpretable information 
rom noisy channels. In this paper, which is a continuation of our
revious work (Elbers & van de Weygaert 2019 ; henceforth Paper I),
e argue that persistent homology offers such a framework and one

hat is ideally suited for reionization due to its grounding in topology.
It has long been recognized that topology provides a salient 

escription of the spatial inhomogeneity of reionization (Gnedin 
000 ; Lee et al. 2008 ). In the topological picture, we follow the spatial
onnectivity of the network of ionized regions to characterize the 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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rocess of reionization. A basic description of this process proceeds
s follows. During the early stages, isolated H II bubbles form around
he first sources. As the ionization front advances, these bubbles link
p to form connected regions of ionized material, which encircle
unnels of neutral gas. Eventually, the openings of these tunnels
re ionized as well, creating cavities that contain the last remaining
slands of neutral material. These cavities are finally ionized from
he outside in. Following Paper I, we call this growing structure
he ‘ionization bubble network’, although a more appropriate name
ould also reflect the role of the neutral regions and the prominent

unnels that connect them. Among these features, the tunnels are
f particular importance, as they relate to the percolation processes
ssociated with reionization (Furlanetto & Oh 2016 ; Bag et al. 2018 ).
e will show that the peak of their prominence coincides with the

poch of Reionization proper. 
The standard summary statistic for 21-cm fluctuations is the power

pectrum (Furlanetto, Zaldarriaga & Hernquist 2004 ; Zaldarriaga,
urlanetto & Hernquist 2004 ; Mellema et al. 2006 ; McQuinn
t al. 2007 ; Pober et al. 2014 ), but non-Gaussianity implies that
omplementary observables contain additional information (we will
onfirm this explicitly for persistent homology in Section 6 ). A range
f such statistics have been proposed in the literature, including
he bispectrum (Shimabukuro et al. 2017 ; Majumdar et al. 2018 ;
utter et al. 2020a ; Watkinson, Greig & Mesinger 2022 ), Minkowski

unctionals (Gleser et al. 2006 ; Friedrich et al. 2011 ; Yoshiura et al.
016 ; Kapahtia et al. 2018 ; Bag et al. 2018 ; Chen et al. 2019 ),
nd the size distribution of bubbles (Lin et al. 2016 ; Giri et al.
017 ; Kakiichi et al. 2017 ; Bag et al. 2018 ). 1 In this paper, we
tudy the 21-cm signal using the theory of persistent homology. This
ormalism offers a highly intuitive and comprehensive description
f the ionization topology in terms of the births and deaths of
opological features (components, tunnels, and cavities). A notable
dvantage of the framework is its ability to quantify the significance
f topological features, which sets it apart from global quantities like
he genus and Betti numbers (see Section 1.1 ). This is particularly
seful not only for extracting genuine astrophysical features from
oisy observations, but also for unco v ering the multiscale nature of
he network that arises from the hierarchical build-up of structure.
nother key advantage is its ability to identify tunnels in the bubble
etwork. As mentioned abo v e, tunnels are an important tracer of
eionization, but one for which the power spectrum is ill-suited due
o its lack of sensitivity to one-dimensional filamentary structures
Obreschkow et al. 2012 ). 

In Paper I, we already gave an extensive description of the
heory of persistent homology and used it to study a number of
henomenological models of reionization. We identified different
tages of reionization based on the types of features that dominate.
n this work, we apply the formalism to realistic mock observations
enerated with the semi-numerical code 21cmFAST (Murray et al.
020 ). Our goal in this paper is twofold: (i) to study the evolution
nd persistence of the ionization topology in more realistic scenarios
nd (ii) to test whether persistent homology can be used to extract
strophysical information from mock observations. 

The remainder of the paper is structured as follows. In Section 2 ,
e briefly describe our methods and re vie w some essential elements
f the formalism. In Section 3 , we describe our simulations and
ipeline for including observational effects. We then focus on the
volution and structure of the ionization topology, describing the
volution with redshift in Section 4 and discussing the link with the
NRAS 520, 2709–2726 (2023) 
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opology of the cosmic web in Section 5 . We then apply the formalism
o the thermal structure of the 21-cm signal itself and describe its use
s a classification tool in Section 6 . Finally, we provide a discussion
nd concluding remarks in Section 7 . 

.1 Persistent homology 

opology is the study of properties that are conserved under contin-
ous deformations, such as bending or stretching. One of the most
lementary such properties is the genus g , simply put the number of
oles in a surface. The genus has been widely applied in the context of
eionization (e.g. Gleser et al. 2006 ; Lee et al. 2008 ; Friedrich et al.
011 ; Hong et al. 2014 ). The notion of holes can be generalized,
eading to the definition of Betti numbers. Informally, the k th
etti number gives the number of k -dimensional holes. For three-
imensional objects, there are three rele v ant numbers: β0 describes
he number gaps or connected components, β1 the number of
penings or tunnels, and β2 the number of cavities or shells. Applying
hese concepts to the ionization bubble network, we find that β0 

escribes the number of ionized regions, β1 the number of neutral or
onized tunnels, and β2 the number of enclosed neutral patches. We
ollectively refer to the bubbles, tunnels, and patches as topological
eatures. 

In algebraic topology, βk is the rank of the k th homology group,
tself an algebraic representation of the k -dimensional holes (Hatcher
002 ; Edelsbrunner & Harer 2010 ; Carlsson & Vejdemo-Johansson
021 ). The Betti numbers are related to the more familiar Euler
haracteristic via the alternating sum 

= β0 − β1 + β2 . (1) 

vidently, the Betti numbers contain strictly more information than
he Euler characteristic or genus. Ho we ver, we can go further by
eeping track of individual features as some underlying parameter

is varied. We assign every feature a pair of numbers ( αbirth ,
death ), corresponding to the values at which the feature appears
nd disappears. The persistence of a feature is the difference αdeath 

αbirth (Edelsbrunner, Letscher & Zomorodian 2000 ; Zomorodian
 Carlsson 2005 ). For each dimension k , there exists a persistence

iagram representing the set of k -dimensional features in ( αbirth ,
death ) space. The Betti numbers βk ( α) can be reconstructed from

he persistence diagrams as a function of α. For example, we
an follow the evolution of the ionization topology as a function
f time t . The number of components β0 increases by 1 when
 bubble is born and decreases by 1 when two regions merge,
nd similarly for the tunnels and neutral patches. The diagrams
or βk and βk + 1 are furthermore related, since higher-dimensional
eatures arise when lower-dimensional features link together (see
ig. 1 ). Persistence is useful as a measure of topological significance:
eatures that exist only within a narrow interval [ α, α + ε] are less
ignificant and more likely to be noise than features that are extremely
ersistent. 
Besides our earlier work (Elbers 2017 , Paper I), Betti numbers have

een used in the context of reionization by Kapahtia et al. ( 2018 ),
apahtia, Chingangbam & Appleby ( 2019 ), Kapahtia et al. ( 2021 ),
iri & Mellema ( 2021 ), and Bianco et al. ( 2021 ). Among these, the
ork of Giri & Mellema ( 2021 ) is most closely related to our own,
hile Kapahtia et al. ( 2018 , 2019 , 2021 ) analyse two-dimensional

emperature maps. An important difference with these works is that
ur analysis accounts for the persistence of features. This allows
s to quantify their significance, which is a useful analytical tool
nd crucial for applications to low signal-to-noise maps. Persistence
as also used by Th ́elie et al. ( 2022 ) to identify significant ionized
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Figure 1. Ionized regions at z = 7.5 in a cuboid 80 Mpc deep and 300 Mpc 
on a side, smoothed with a Gaussian filter with a FWHM of 15 Mpc . The 
regions are coloured by the redshift of first ionization z ion , according to the 
‘Faint Galaxies’ model introduced in Section 3.1 . The bright spots correspond 
to early H II bubbles. Three such regions have been marked to indicate that 
tunnels are formed once bubbles link up. 
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2 Other filtration parameters were proposed in Paper I, such as the ionization 
fraction x II and spatial course-graining scale α. 
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atches, follo wing a dif ferent but related formalism based on Morse
heory. In this work, we will analyse the full topology of the bubble
etwork, including its tunnels and neutral patches, by deriving 
ersistence diagrams for all three dimensions. 
In recent years, persistent homology has become a popular tool 

n cosmology due to its ability to capture the complex multiscale 
opology that arises from nonlinear structure formation and identify 
ts most significant features. The most fruitful applications have 
een in studies of the cosmic web (van de Weygaert et al. 2011 ;
ousbie 2011 ; Pranav et al. 2017 ; Xu et al. 2019 ; Wilding et al.
021 ; Bermejo et al. 2022 ), which have shown that the persistent
omology of the cosmic density field reflects the hierarchical build- 
p of structure, and to the Gaussianity of random fields (Feldbrugge 
 van Engelen 2012 ; Park et al. 2013 ; Cole & Shiu 2018 ; Feldbrugge

t al. 2019 ; Cole, Biagetti & Shiu 2020 ; Biagetti, Cole & Shiu 2021 ).
he versatility of the formalism is reflected by other wide-ranging 
pplications, including most recently to interstellar magnetic fields 
Makarenko et al. 2018 ) and baryon acoustic oscillations (Kono 
t al. 2020 ). The formalism can be used to impro v e constraints
n cosmological parameters, as demonstrated ef fecti v ely by He y-
enreich, Br ̈uck & Harnois-D ́eraps ( 2021 ) in the case of cosmic
hear. 

 M E T H O D S  

ere, we briefly describe our methods for calculating topological 
tatistics and re vie w some essential elements of the formalism. For
 detailed discussion of the theory, we refer to Paper I. 

.1 Field filtrations 

e use the Field Filtration method to describe the ionization topology 
s a function of different parameters. The method works by taking 
uperlevel sets of three-dimensional scalar fields. In this paper, we 
onsider two different filtration parameters, 2 each bringing to light a 
ifferent aspect of the ionization topology. 

(i) Redshift z. In the first part, we consider the evolution of the
onization topology with redshift, offering a formal description of the 
onization process. This description reveals a multiscale organization 
hat reflects the hierarchical evolution of the underlying cosmic 
ensity field. The three-dimensional field is the z ion field, giving the
edshift of first ionization of each cell. The persistence of a feature
epresents its lifetime. 

(ii) Temperature T b . In the second part, we apply the formalism
irectly to mock observations and show that we can distinguish 
strophysical models based on the topology. In this case, the three-
imensional field is the 21-cm temperature field and the persistence of 
 feature represents the range of temperatures for which it exists. This
llows genuine features to be distinguished from thermal fluctuations. 

After the choice of parameter has been made, we construct 
 filtration that captures the topology of the associated three- 
imensional field f ( x ). The filtration is a nested sequence of objects,
alled simplicial complexes , constructed by taking superlevel sets 
f f ( x ). A simplicial complex is a structure that is convenient
or computational purposes and built from simplices: points, lines, 
riangles, and tetrahedra. The filtration is constructed as follows. We 
tart by computing a periodic Delaunay triangulation of the grid on
hich the field values are given. This represents the final ‘completed’

implicial comple x. A v erte x v from the triangulation is added to the
ltration when the filtration parameter α exceeds the field value f ( v).
ny higher-dimensional simplex is added at the lowest value of α for
hich each of its vertices are present. The complex is built with the

omputer package CGAL (The CGAL Project 2017 ) and its topology
s computed with the GUDHI library (Maria et al. 2014 ). 

The Field Filtration method may be compared to the integral 
eometric approach used to compute Minkowski functionals (Mecke, 
uchert & Wagner 1994 ; Schmalzing & Buchert 1997 ). In both
ases, the structure of the field is studied using superlevel sets. The
inkowski functionals describe the geometry of the superlevel sets 

n terms of the volume, surface area, and mean curvature, as well
s the topology, through the Gauss–Bonnet theorem, in terms of 
he Euler characteristic. Similarly, the Betti numbers and persistence 
iagrams computed with the Field Filtration method describe the 
opology of the superlevel sets in terms of d -dimensional feature
ounts. As noted before, the Betti numbers are related to the Euler
haracteristic through the alternating sum ( 1 ), but contain additional
nformation. As such, the integral geometric and Field Filtration 

ethods are similar but complementary. 

.2 Persistence diagrams 

 persistence diagram is a plot of features in ( αbirth , αdeath ) space.
he advantage of persistence diagrams is that they allow us to
ifferentiate between significant topological features that exist over 
 wide range of scales and insignificant features that are more likely
o be noise. Significant features will have a larger persistence, αdeath 

αbirth , and lie further away from the diagonal, as shown in Fig. 2 .
iven two persistence diagrams X and Y , we can form a one-to-one

orrespondence φ: X → Y that matches each point in X with a point
n Y and vice versa. Each diagram contains infinitely many copies
f the diagonal, which we treat as a point � that can be matched
MNRAS 520, 2709–2726 (2023) 
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M

Figure 2. (Left) Persistence diagrams, showing the births and deaths – and o v erall significance – of tunnels in the ionization bubble network. Shown are 
persistence diagrams for two reionization source models: ‘Faint Galaxies’ and ‘Bright Galaxies’, introduced in Section 3.1 overleaf. Features with greater 
persistence, δT death − δT birth , are more significant and lie further from the diagonal. (Right) Optimal pairings between persistence diagrams. The first plot 
represents a pairing between different random realizations of the same astrophysical model. The second plot represents a pairing between realizations of different 
models. Evidently, the total distance is much larger between simulations with different models. 
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ith another copy of the diagonal or with an off-diagonal point. In
ig. 2 , we show two examples of such pairings for diagrams of one-
imensional features (tunnels). The pairing on the left is between two
andom realizations of the same reionization source model (‘Faint
alaxies’). On the right, we show a pairing with a realization of a
ifferent model (‘Bright Galaxies’). The details of these models are
iven in Section 3.1 . 
Given a pairing φ, we can compute the Euclidean distance between

ny two matched points || x − φ( x ) || . A pairing is said to be optimal if
t minimizes the total squared distance between all points. The total
 

2 − Wasserstein distance between the diagrams is then defined as
Turner et al. 2014 ; Boissonnat, Chazal & Yvinec 2018 ) 

( X, Y ) = 

[ 

inf 
φ: X→ Y 

∑ 

x∈ X 
| | x − φ( x) | | 2 

] 1 / 2 

. (2) 

n other words, the distance between two diagrams is the square root
f the total squared distance of an optimal pairing. The pairings in
ig. 2 are optimal. Evidently, the distance between diagrams from

he same astrophysical model is much less than the distance between
iagrams of different models. Moreo v er, the distance is dominated
y high-persistence features. Noisy features close to the diagonal can
l w ays be matched with � and therefore have a negligible impact on
he Wasserstein distance. We will exploit this property to differentiate
etween noisy observations from different models. 

To enable a statistical description, we also define summary statis-
ics for samples of diagrams. A set { X i } of n persistence diagrams
efine a Fr ́echet function 

 ( Y ) = 

1 

n 

n ∑ 

i= 1 

d( Y , X i ) 
2 . (3) 

 Fr ́ec het aver a g e of { X i } is a diagram Y that minimizes F ( Y ). The
r ́echet variance of { X i } is the minimum F ( Y ). See the discussion
urrounding equations (5)–(7) in paper I for more details. These sum-
ary statistics can be combined into a visual representation called
 persistence field . Persistence fields not only resemble persistence
iagrams, but also reflect the density and statistical uncertainty of
eatures. All smoothed persistence diagrams shown in this paper are
ersistence fields and we will use the terms synonymously. 
NRAS 520, 2709–2726 (2023) 
 SI MULATI ONS  

e apply our formalism to realistic simulations of the ionization field
nd the resulting 21-cm signal. In the first part of the paper, we study
he evolution of the ionization topology assuming perfect knowledge
f the ionization state of the IGM. In the second part, we apply the
ormalism to mock observations of the 21-cm differential brightness
emperature. The simulations are run with the semi-numerical code
1cmFAST , described in Section 3.1 . Our treatment of instrumental
ffects is described in Section 3.2 . 

.1 Reionization simulations 

e make use of 21cmFAST (Murray et al. 2020 ), a semi-numerical
ode based on excursion set principles (Mesinger & Furlanetto
007 ; Mesinger, Furlanetto & Cen 2011 ). The basic operation is as
ollows. First, an initial Gaussian density perturbation is generated
n a grid, which is then evolved forward in time using Lagrangian
erturbation theory. Ionized regions are identified using the excursion
et formalism. On a courser grid, the number of ionizing photons
ithin spheres of decreasing radius is compared with the number of

ecombinations to determine whether a cell is ionized. 
In determining the number of ionizing photons, the galactic UV

adiation is calculated from the mean baryon density in each sphere
sing the prescription of Park et al. ( 2019 ). In this prescription,
he number of ionizing photons per baryon ζ = f ∗f esc N γ / b is broken
p into parts: the fraction f ∗ of gas contained in stars, the escape
raction of ionizing photons f esc , and a normalization factor N γ / b 

 5000. The first tw o f actors are assumed to follow a power law
ith respect to halo mass: f ∗ = f ∗, 10 M 

α∗
h and f esc = f esc , 10 M 

αesc 
h ,

ormalized at 10 10 M �. 
It is expected that X-ray sources heat the IGM prior to reionization

aking off (Oh 2001 ; Venkatesan, Giroux & Shull 2001 ; Ricotti &
striker 2004 ). This process is modelled by calculating the intensity
f X-ray radiation at each cell, from which the initial ionization
raction x II and spin temperature T S at each cell are computed.
inally, the 21-cm differential brightness temperature field δT b can
e calculated using (e.g. Pritchard & Loeb 2012 ) 

T b ( z) = T 0 ( z)(1 + δb )(1 − x II ) 

(
1 − T CMB ( z) 

T S 

)
, (4) 

art/stad120_f2.eps
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here T 0 ( z) is a function of cosmological parameters and redshift,
b the baryonic o v erdensity, T CMB the CMB temperature, and T S the
pin temperature. For more details, we refer to Mesinger et al. ( 2011 )
nd Park et al. ( 2019 ). 

We assume a standard flat � CDM cosmology with h = 0.68, n s 
 0.97, σ 8 = 0.81, �m 

= 0.31, and �b = 0.0048. Based on Greig
 Mesinger ( 2017 ), we distinguish two astrophysical scenarios with 

ontrasting reionization morphologies: 

(i) Faint galaxies : M turn = 0.5 × 10 9 M �, f ∗, 10 = 0.05. 
(ii) Bright galaxies : M turn = 7.5 × 10 9 M �, f ∗, 10 = 0.15. 

The scenarios differ in two astrophysical parameters: M turn , which 
s the minimum halo mass below which star formation is suppressed
xponentially due to feedback, and f ∗, 10 , which is the fraction of
as contained in stars normalized for halos with mass 10 10 M �.
e use the fiducial values of Park et al. ( 2019 ) for the remaining

strophysical parameters in the model: α∗ = 0.5, f esc, 10 = 0.1, αesc = 

0.5, the star formation time-scale t ∗ = 0.5 in units of Hubble time
 

−1 , and the minimum energy E 0 = 0 . 5 keV necessary for an X-ray
o escape. The two scenarios were chosen to represent the likely 
ange of reionization topologies, but with both scenarios achieving 
omplete reionization at z ∼ 6. In addition to these two models, we
lso explore the impact of radiation sinks by running a model with
ewer recombinations. 

In the first part of the paper, we study the evolution of the
onization topology for these different scenarios. The persistence 
elds shown in the next section represent the Fr ́echet average of

hree realizations of a ( 300 Mpc ) 3 cube, corresponding to the fiducial 
Faint Galaxies’ model. The density fields were evolved on 1024 3 

rids and the ionization fields and topology were calculated on 256 3 

rids. We evolved a single realization for each of the alternative 
odels considered in this paper using the same grid and box sizes.

n the second part, we use many smaller realizations of ( 300 Mpc ) 3 

ubes with just 512 3 density grids and 128 3 δT b grids. 

.2 Instrumental effects 

he Hydrogen Epoch of Reionization Array (HERA) recently re- 
orted the first results from Phase I of the experiment (Abdurashidova 
t al. 2022 ), setting impro v ed upper limits on the 21-cm power
pectrum. In this paper, we will model instrumental effects based 
n 1000 hours of observation with Phase II of HERA (DeBoer et al.
017 ), following a procedure similar to that of Hassan et al. ( 2019 ),
ut accounting for lightcone effects (Greig & Mesinger 2018 ). We 
ssume a 350-element layout, consisting of 320 elements tightly 
acked in a hexagonal core and 30 outlying elements. We deal with
hree main instrumental effects in order: 

(i) angular resolution of the instrument, 
(ii) fore ground remo val or a v oidance, 
(iii) thermal noise. 

.2.1 Angular resolution 

adio interferometers make observations in uv -space, which need to 
e transformed to comoving distances. Baseline lengths u = ( u, v)
re related to comoving wavenumbers k ⊥ 

= ( k x , k y ) in the plane
rthogonal to the line of sight according to (Furlanetto et al. 2006 ) 

 ⊥ 

= 

2 πu 

D c ( z) 
, (5) 

here D c ( z) is the comoving distance at redshift z. The longest
aselines will determine the angular resolution of the instrument. We 
ccount for the redshift-dependence of the resolution by computing 
he intensity of baseline co v erage at each uv pixel at 10 redshifts
etween 6 ≤ z ≤ 25 with 21cmSENSE (Pober 2016 ). Pixels with min-
mal uv -co v erage, corresponding to outrigger baselines, contribute 

ost of the thermal noise. We find that a cut-off of 20 per cent on the
ixels with the least uv -coverage benefits topological inference, by 
educing thermal noise at the cost of limiting the angular resolution.
o apply the resolution to our lightcones, we compute the Fourier

ransform of each cubic slice along the redshift direction and discard
odes with zero uv -co v erage at the bounding redshifts. Finally, we

inearly interpolate between the inverse Fourier transforms of the 
ubes along the redshift direction. 

.2.2 For eground r emoval 

ontamination by foreground emission is a major impediment to 
1-cm observations of the EoR. This effect is mainly restricted to
 wedge in Fourier space (Liu, Parsons & Trott 2014 ; Pober et al.
014 ), 

 ‖ ≤ H ( z ) D c ( z ) 

c(1 + z) 
sin ( θ ) k ⊥ 

, (6) 

here k � is the wavenumber parallel to the line of sight, H ( z) the
ubble rate, and θ the angular radius of the field of view. The case
ith sin ( θ ) = 1, known as the horizon limit, applies if foregrounds

annot be remo v ed. This leav es a window in which the EoR can
e observ ed relativ ely unobstructedly. We consider two possible 
cenarios following Pober et al. ( 2014 ). In the moderate scenario,
oreground emission bleeds into the EoR window affecting modes 
p to k ‖ = 0 . 1 h Mpc −1 beyond the horizon limit. We discard all
odes below the horizon plus a 0 . 1 h Mpc −1 buffer. The optimistic 

cenario of Pober et al. ( 2014 ) assumes that a successful foreground
emo val strate gy can be found, such that only modes below the full
idth at half-maximum (FWHM) of the primary beam need to be
iscarded ( θ < FWHM/2). We compute both foreground models with 
1cmSENSE and apply them to the lightcones in the same way as the
ngular resolution. 

.2.3 Thermal noise 

hermal noise can be modelled as a Gaussian random field with
oise power spectrum (Zaldarriaga et al. 2004 ; Pober et al. 2014 ) 

 

2 
N ( k) = X 

2 Y 

k 3 

2 π2 

�′ 

2 t 
T 2 sys , (7) 

here X 

2 Y is a cosmological conversion factor, t is the integration
ime for mode k , �

′ 
is a beam-dependent factor, and T sys is the

ystem temperature. The system temperature is T sys = T sky + T recv ,
here we adopt T recv = 100 K and T sky = 60 K ( λ/ 1 m ) 2 . 55 (Richard
hompson, Moran & Swenson 2017 ). We generate a Gaussian ran-
om field with power spectrum ( 7 ) and divide the noise by the amount
f uv -co v erage at each ( k ⊥ 

, k � ) pix el. Giv en that �
′ ∼ λ2 , the o v erall

edshift dependence is approximately � 

2 
N ∼ ( z + 1) 7 . 5 . To properly

nclude this redshift-dependence in our lightcones, we simulate noise 
ubes at 10 redshifts between 6 ≤ z ≤ 25 and interpolate along the
ine of sight. We smooth the final signal in each cube with an isotropic
aussian filter with smoothing radius 0 . 24 MHz , which corresponds 

o 4 Mpc at z ∼ 8. We subtract the average temperature in each
wo-dimensional slice along the redshift direction, since absolute 
alibration is not possible. Before calculating the topology, we reduce 
he resolution further by shrinking the cubic slices to 64 3 voxels in
rder to speed up the calculation. 
MNRAS 520, 2709–2726 (2023) 
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Figure 3. (Left) Topological evolution of the fiducial ‘Faint Galaxies’ model. Betti curves show the number of ionized regions, tunnels, and neutral regions 
alive as a function of redshift. The dashed line is the total number, N born , of ionized regions that have been born. The vertical dotted lines indicate the two 
percolation transitions. (Right) The persistence diagram for β0 shows the births and deaths of ionized regions. 

Figure 4. Persistence diagrams for the ‘Faint Galaxies’ model, mapped to ionization fraction, x II , coordinates. Each point represents the birth and death of a 
topological feature in the ionization bubble network. The three diagrams are for features in dimensions k = 0, 1, and 2. Note that the axis limits are different for 
the first diagram ( β0 ), as most of the pre-reionization evolution shown in the right panel of Fig. 3 is compressed in x II -space. 
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Our main analysis assumes 1000 hours of observ ation. Ho we ver,
o investigate the effects of thermal noise, we also linearly scale the
oise fields by factors between 0.1 and 10, corresponding to 10 5 and
0 1 hours of observation, respectively. 

 TO P O L O G I C A L  E VO L U T I O N  

he first application of the formalism will be to give a theoretical
escription of the evolution of the ionization topology, without
onsidering instrumental effects. This is done with a filtration of
he z ion field, which gives the redshift of first ionization of each cell.
he resulting Fig. 3 illustrates the main ideas of this section. The left
anel shows Betti curves, describing the numbers of features alive at
ach redshift: ionized regions β0 (black), ionized or neutral tunnels
1 (red), and neutral regions β2 (blue). The right panel is an example
NRAS 520, 2709–2726 (2023) 
f a persistence diagram, in this case for β0 , showing the births and
eaths of ionized regions in birth–death space. Further persistence
iagrams, mapped to ionization fraction, x II , coordinates are shown
n Fig. 4 , now for all three dimensions. 

In the remainder of this section, we describe how the topology
volves during each stage of heating and reionization (Section 4.1 ),
nd how the topology depends on the sources and sinks (Sections 4.2
nd 4.3 ), as well as the spatial structure of the neutral regions
Section 4.4 ). Finally, we discuss how percolation theory can explain
he dominant role of the tunnels during the EoR (Section 4.5 ). 

.1 Global aspects 

irst, let us broadly consider how the topology of the network
volves. This has traditionally been described in terms of the pre-
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 v erlap, o v erlap, and post-o v erlap stages of the ionization bubbles
Gnedin 2000 ). These stages can be identified by taking the genus or
uler characteristic as a global indicator of the topology (Lee et al.
008 ; Friedrich et al. 2011 ; Hong et al. 2014 ; Giri et al. 2019 ), but
onsidering the Betti numbers separately, as we do here, allows one to
dentify additional stages during which the tunnels or neutral patches 
re important. Fig. 3 makes this abundantly clear. In the left panel, we
how the Betti curves for the fiducial ‘Faint Galaxies’ model. The β0 -
urve (solid black) shows the number of ionized regions as a function
f redshift z. Between 15 < z < 17, this number increases gradually
nd mostly tracks the total number, N born , of ionized regions that have
een born (dashed black). Around z = 15, the degree of o v erlap, 1
β0 / N born , reaches 10 per cent. This point marks the end of the

re-o v erlap stage, during which the topology was characterized by 
he emergence of distinct ionization bubbles. 

Between 10 < z < 15, N born increases rapidly as a younger
eneration of sources turn on. Ho we ver, the number β0 of distinct
onized regions reaches an inflection point at z = 12.5 due to
ncreased o v erlap. Ionized re gions born at later times are less
ersistent, as shown in the persistence diagram in the right panel 
f Fig. 3 . We note that this remains true whether expressed in terms
f redshift z or proper time t . There are two physical reasons for the
ecreased persistence: younger bubbles arise in clusters and merge 
mongst themselves and they are more easily absorbed into pre- 
xisting ionized structures. The pre-overlap and overlap stages cover 
he period 10 < z < 17, corresponding to the epoch of IGM heating,
hich precedes the Epoch of Reionization. During this period, the 

onization fraction, x II , remains below a few per cent. As a result,
ne large neutral region dominates and higher-dimensional structures 
such as tunnels or neutral islands surrounded by ionized material) 
re largely absent. Up to this point, the topology is well described by
he single parameter β0 and the size distribution of ionized regions 
ives an appropriate description of the geometry. Around z = 10, just
fter β0 reaches a maximum, a percolation transition occurs. This is 
 benchmark for the end of the o v erlap stage and the beginning of
he ‘tunnel stage’ (Paper I). 

The number of bubbles decreases from z = 10 onwards. The 
eath of bubbles is associated with the birth of tunnels, which 
rise when ionized regions link up (as illustrated in Fig. 1 ). Let
s therefore consider the β1 -curve (red) for the number of tunnels in
he network. After the first percolation transition, the tunnels become 
 significant component and they remain dominant throughout most 
f the reionization period. This is even more apparent when we 
ook at the topology as a function of the ionization fraction, x II ,
n the middle panel of Fig. 4 , which shows the continuous births of
ersistent tunnels until the end of reionization. The tunnels disappear 
apidly following a second percolation transition around z = 6.5. The 
ersistence diagram for tunnels resembles a triangle in birth–death 
pace. The two edges of the triangle correspond to the percolation 
ransitions that bound the reionization era: the first transition is 
esponsible for the vertical edge at x II, birth ∼ 0.1 and the second 
ransition is responsible for the horizontal edge at x II, death ∼ 0.95. 
he two edges meet at an apex, marking the most significant tunnels
resent in the simulation, similar to that seen in persistence diagrams 
f the cosmic density field (Wilding et al. 2021 ). The dominance of
he tunnels is best understood when we consider reionization as a 
ercolation process (see Section 4.5 ). 
Finally, the number of neutral components is given by the β2 curve 

blue). These seem to be extremely rare, which is consistent with the
ndings of Giri et al. ( 2019 ), Giri & Mellema ( 2021 ) that neutral

slands are much less common in the final stages of reionization than
onized regions are in the early stages. Indeed, Fig. 3 shows that
he neutral re gions nev er outnumber the tunnels. Since this was our
riterion for the ‘neutral patch stage’ (Paper I), it appears that a neutral
atch stage is absent. This is slightly misleading, as we will see in
ection 4.4 , because significance in terms of number differs from
ignificance in terms of volume fraction. Nevertheless, the neutral 
egions are most numerous around the second percolation transition 
hen the large neutral cluster breaks off into smaller neutral regions.
he lack of persistence of the neutral regions (rightmost panel of
ig. 4 ) is due to the fact that the neutral regions are quickly ionized
nce they break off from the percolating cluster. 

.2 The effect of sources 

n Fig. 5 , we compare the two source models in terms of their Betti
urves. Both models are tuned to match observations and produce the
ame global ionization history that ends at z = 6 (Greig & Mesinger
017 ), but the resulting z ion fields have markedly different topologies.
he sources in the ‘Bright Galaxies’ model are rarer and brighter. As
 result, the ionized regions are larger but fewer in number, and we
ee fewer topological features of any kind. A second important effect
s that the Epoch of Heating is delayed, due to the late formation of
he sources. 

The number β0 of ionized regions in the ‘Bright Galaxies’ model 
racks the ‘Faint Galaxies’ model within a few per cent after z =
. This means that, at the same ionization fraction, the connectivity
nd o v erlap of the large ionized re gions that e xist between 6 <
 < 8 are largely independent of the sources. This is because the
lobal evolution during the EoR is similar for both models by
onstruction. The main topological difference is in the neutral regions 
nd especially the tunnels. This is encouraging, because we expect the 
unnels to be the easiest to detect. It should be easier to estimate the
umber of holes than to identify whether there are any gaps between
egions (which after all may connect out of view). Furthermore, β1 

an be measured by counting holes in either the neutral regions or
he ionized regions. This prediction is confirmed when we apply the
ormalism to the 21-cm signal in Section 6 , at least when foregrounds
an be successfully remo v ed. 

It is interesting to consider the Euler characteristic χ (bottom- 
ight panel) as well. The Euler characteristic tracks the o v erall
opological evolution described in Section 4.1 and can be used to
istinguish different scenarios (Lee et al. 2008 ; Friedrich et al. 2011 ;
iri et al. 2019 ). Ho we ver, considering the topological components

ndependently rev eals e xactly why the Euler characteristic behaves as 
t does. Recalling equation ( 1 ), which relates χ to the Betti numbers,
nd the fact that neutral patches are rare, we learn that the evolution
f the Euler characteristic mostly depends on the interplay between 
he number of ionized components and the number of tunnels. Before
eionization, χ ≈ β0 tracks the number of ionized regions, but during 
eionization χ ≈ β0 − β1 . The trough in the χ -curve seen for the 
Faint Galaxies’ model corresponds to the Epoch of Reionization 
hen the tunnels dominate. The depth of this trough is determined
ot only by the number of tunnels, but also by the relative timing of
he Epoch of Heating and the Epoch of Reionization. By contrast,
he EoH and EoR o v erlap in the ‘Bright Galaxies’ model. The trough
n the χ -curve is absent for two reasons: the smaller numbers of
opological features o v erall and the o v erlap between the β0 and β1 

urves due to the delayed formation of the sources. 

.3 The effect of sinks 

ext, we consider the effect of recombinations. We compare the 
ducial ‘Faint Galaxies’ model at 100 per cent recombinations with 
MNRAS 520, 2709–2726 (2023) 
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Figure 5. The effect of sources and sinks on the reionization topology shown in terms of Betti numbers. The top two panels compare two source populations: 
faint and bright galaxies. The bottom left panel shows the Faint Galaxies topology in log-log space, with the fainter dotted lines corresponding to a scenario 
with 10 per cent fewer recombinations. Note the logarithmic scaling of z to emphasize differences around z = 6. The bottom-right panel shows the Euler 
characteristic, χ = β0 − β1 + β2 , for all three scenarios with the fainter dotted line again corresponding to the faint 90 per cent recombination scenario. 
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 ‘Faint Galaxies’ model where the recombination coefficient is
educed by 10 per cent. This model represents a cosmology with
 decreased abundance of absorbers such as Lyman limit systems.
he results are shown in the bottom left panel of Fig. 5 . The
umber of features is largely unaffected at high redshift, but starts to
eviate from z = 7.5 onwards. For each dimension, the number of
opological features is reduced by about 5 per cent in the 90 per cent
ecombination model. This is due to the fact that ionizing photons can
enetrate further, allowing the ionized network to expand uniformly
n each direction compared to the fiducial model. While the decrease
s similar in each dimension, the tunnels dominate during this time
eriod, such that the effect of sinks is easiest to observe in the β1 

urve. 

.4 Spatial structure of the neutral regions 

s discussed in Section 4.1 , enclosed neutral regions are born mostly
uring the second half of the EoR and are not very persistent. The
nformation contained in a persistence diagram of dimension d − 1
an also be represented as a merger tree. This is demonstrated by the
NRAS 520, 2709–2726 (2023) 
wo panels of Fig. 6 . All neutral regions split off from the percolating
luster starting from z = 9.5. Because our model follows a distinctly
nside-out scenario, the filaments connecting the neutral regions are
onized first, producing isolated neutral islands. This contrasts with
cenarios that involve a large degree of outside-in reionization (e.g.
inlator et al. 2009 , see also Watkinson & Pritchard 2014 ; Hutter
t al. 2020b ; Pagano & Liu 2020 ). Once neutral regions split off
rom the percolating cluster, they disappear quickly, i.e. they have
ow persistence. Particularly around z = 7, many short-lived regions
plit off from the percolating cluster. In physical terms, once a neutral
egion is surrounded by the ionizing front on all sides, it is quickly
onized from the outside in. Unlike some other percolation problems,
eionization is therefore asymmetrical. The first percolation, from
he birth of the earliest bubbles to the formation of the percolating
onized cluster, takes about 300 Myr with many bubbles surviving for
00 Myr or more. The second percolation, from the breaking apart
f the neutral cluster to the end of reionization, takes only 60 Myr. 
Despite our finding that the number of enclosed neutral regions is at

ll times small, it would be misleading to say that there are no neutral
atches. At redshift z = 6.5, many neutral patches are considerable in

art/stad120_f5.eps
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Figure 6. (Left) The merger tree shows that most neutral regions disappear quickly after they split off from the percolating cluster, i.e. they have low persistence. 
(Right) This is easily seen in the persistence diagram for neutral islands ( β2 ). Both diagrams are for the ‘Faint Galaxies’ model. 
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ize, occasionally 5 Mpc or more in radius. The topology is therefore
ne of rare but large neutral patches connected only by tenuous 
eutral tunnels, similar to the topology seen at the end of reionization
n the model of Kulkarni et al. ( 2019 ). This is also reflected visually
n the slices of Fig. 7 , discussed below. 

.5 Percolation and filamentarity 

he sudden topological changes that occur during reionization can 
e understood using percolation theory (Furlanetto & Oh 2016 ; Bag 
t al. 2018 ; Pathak et al. 2022 ). A percolation transition occurs when
n infinite cluster suddenly appears or disappears. In the case of
eionization, two such transitions can be identified. The first occurs 
hen enough ionized regions merge to form one connected structure 

rom one side of the simulation box to the other. This happens at z =
.4 ( x II = 0.13) in our fiducial ‘Faint Galaxies’ model. The second
ercolation transition occurs when the neutral cluster breaks apart 
nto smaller clusters, which occurs at z = 6.3 ( x II = 0.92). These
re shown as vertical dotted lines in Fig. 3 , flanking the peak of the
umber of tunnels ( β1 ). 
Topology and percolation theory are closely connected. In par- 

icular, the Euler characteristic χ can be used to detect percolation 
ransitions. Okun ( 1990 ) studied the Euler characteristic of uniformly 
istributed expanding balls, which is equi v alent to the Poisson model
onsidered in Paper I. He showed that 

= 

(
1 − 3 x + x 2 

)
e −x , (8) 

here x ( r ) ∼ r 3 is the mean number of points in a ball of radius
 . This functional form matches our results very well and shows
n initial peak, followed by a valley, and a smaller second peak.
hese elements correspond to the bubble, tunnel, and patch stages 

hat occur in sequence. Percolation transitions occur at the two zeros 
f χ . In a wider range of models, a percolation transition occurs
hen χ ≈ 0 (Neher, Mecke & Wagner 2008 ), which happens when 
ne topological feature starts dominating o v er another (Bobrowski 
 Skraba 2020 ). This also agrees with the broader class of models

onsidered in Paper I, where we used the first percolation transition
o define the beginning of the tunnel stage. Similar behaviour was 
eported by Giri & Mellema ( 2021 ) and broadly the same behaviour
s seen again here, though with an important difference. For the 
Faint Galaxies’ model, the zero of χ occurs some time after the 
rst percolation transition and for the ‘Bright Galaxies’ model, χ
ev er becomes ne gativ e at all. Rather than identifying the percolation
ransitions with the exact zeros of χ , which does not hold in general,
t seems more appropriate to associate percolation transitions with 
 rapid change in the number of tunnels. This connection can be
nderstood by considering the structure of the percolating clusters. 
Between 6.3 < z < 9.4, there are two intertwined percolating

lusters: one neutral and one ionized. In Fig. 3 , we see that this era
orresponds to the period where tunnels are dominant. Furthermore, 
his is also the period during which the ionization fraction rises most
apidly, which we identify with the EoR proper. The dominance of
he tunnels is not coincidental: β1 represents the number of holes 
nd therefore measures the degree to which these two clusters are
ntangled. This can be seen very clearly in Fig. 1 and the slices
isplayed in Fig. 7 . The rapid change in filamentarity of the largest
luster is a hallmark of percolation (Bag et al. 2018 ). From the
oint of view of homology, this happens because higher-dimensional 
eatures are born when lower-dimensional features link together. 
he number of tunnels represents an important physical observable, 

elated to the shape of the largest cluster (Pathak et al. 2022 ). For
xample, in the ‘Bright Galaxies’ model, where the ionized regions 
urrounding the sources are larger, the ionized cluster contains fewer 
oles through which the neutral cluster could connect to itself. We
hus see through the lens of percolation theory how the physics of
eionization affects its topology. 

 COSMI C  W E B  C O R R E S P O N D E N C E  

he evolution of the ionization topology is intimately connected 
ith the formation of the earliest structures that emerged during the
osmic Dawn. These structures themselves have a rich topology, 
hich reflects the hierarchical build-up of the cosmic web (Pranav 

t al. 2017 ; Wilding et al. 2021 ). In this section, we clarify the
onnection between topological features in the ionization bubble 
etwork on the one hand and the cosmic density field on the other.
oth fields have topological features in dimensions k = 0, 1, and
: the connected components, tunnels, and cavities of the respective 
elds. For the ionization bubble network, these correspond to ionized 
egions, ionized and neutral tunnels, and enclosed neutral patches. 
or the cosmic density field, they correspond to the well-known 
omponents of the cosmic web (Bond, Kofman & Pogosyan 1996 ;
an de Weygaert & Bond 2008 ): clusters, filaments, and cosmic
oids. For inside-out models of reionization, such as the models 
tudied here, there is a clear association between the k -dimensional
omponents in the two fields. Ionizing sources are most likely to
MNRAS 520, 2709–2726 (2023) 
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Figure 7. Thin slices of the ionization topology for the ‘Faint Galaxies’ model at z = 10 (left), z = 8 (middle), and z = 7 (right). The neutral regions are shown 
at the top, coloured according to cosmic web signature: green = void, purple = wall, blue = filament, red = cluster. On the bottom, we show the ionized regions 
with the same colour scheme. Images created with the Splotch code (Dolag et al. 2008 ). The cube has side lengths of 300 Mpc . 
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e found in the densest regions, such that most ionized regions
nitially expand outwards from clusters. This establishes an initial
orrespondence between the zero-dimensional features in both fields.
imilar reasoning applies to the filaments, which contain around
0 per cent of dark matter halos, this ratio varying only slightly
 v er time (Cautun et al. 2014 ), and a similar fraction of galaxies
Ganeshaiah Veena et al. 2019 ). Hence, filaments are the next most
ikely location for sources and once ionized connect the bubbles
urrounding clusters. This provides a correspondence between the
ne-dimensional features: filaments and tunnels. Finally, due to
 lack of sources, cosmic voids tend to be ionized much later,
roviding a connection with the two-dimensional neutral patches.
hile this basic correspondence appears to hold true, the details are

onsiderably more complex as the following discussion reveals. 
We describe the ionization of the various components of the

osmic web for our ‘Faint Galaxies’ model. To identify the structural
omponents of the cosmic web, we use the NEXUS + algorithm
Cautun, van de Weygaert & Jones 2013 ) to calculate a ‘cosmic web
ignature’ at each point in space. This signature corresponds to one
f the principal morphological elements that constitute the cosmic
eb: void, filament, wall, or cluster. The NEXUS + formalism is the
ost commonly used version of the Multiscale Morphology Filter

MMF) and NEXUS families of cosmic web classification techniques
Arag ́on-Calv o et al. 2007 ; Arag ́on-Calv o, van de Weygaert &
ones 2010 ; Cautun et al. 2013 ; Cautun et al. 2014 ; Aragon-
alvo & Yang 2014 ). A detailed description of this formalism is
rovided in Appendix A . Instrumental for these algorithms is that
NRAS 520, 2709–2726 (2023) 
hey simultaneously pay heed to two principal characteristics of
he cosmic web. The first aspect concerns the mostly anisotropic
omponents of the cosmic web, for the specification of which the
lgorithms invoke the eigenvalues of the Hessian of the density field,
elocity field, or tidal field. Equally important is the Scale-Space
nalysis used to probe the multiscale character of the cosmic mass
istribution: the product of the hierarchical evolution and build-up
f structure in the Universe. The outcome of the MMF/ NEXUS
dentification procedure is a set of diverse and complex cosmic web
omponents, from the prominent filamentary arteries to underdense
osmic voids. Amongst the various versions of NEXUS algorithms,
e here use NEXUS + . This version uses a Log-Gaussian filtering of

he cosmic density field as input. It is the version that is most used,
ue to its optimal dynamic range, resolving structural features of
he cosmic web ranging from small tenuous features up to the large
ominant arteries and voids of the Megaparsec Universe. 
After identifying the components of the cosmic web by their

ignature, we analyse their corresponding ionization histories. In
ig. 8 , we show the volume ionization fraction x II ( z) by cosmic web
ignature. In line with expectation, all four components follow a
imilar trajectory, but with filaments, walls, and voids (in that order)
elayed behind the clusters. This ordering, in which the densest
nvironments are ionized first, is the basic prediction for inside-out
cenarios (Hutter et al. 2017 ). At high redshifts, filaments constitute
ost of the ionized volume. Even though clusters are ionized first,

hey make up a negligible fraction of the total volume. Meanwhile,
he ionization front has not yet reached the walls and voids. This

art/stad120_f7.eps
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Figure 8. (Left) Ionization fraction by cosmic web signature. (Middle and Right) The fraction of ionized and neutral cells that is of a given signature. All three 
panels are for the ‘Faint Galaxies’ model. 
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eaves the filaments as the dominant cosmic web environment for 
onized material during the early stages of reionization. The bottom 

eft panel of Fig. 7 shows a rendering of the ionized regions at z =
0. The picture is clearly dominated by the blue filaments, which 
ake up 50 per cent of the ionized volume at this time. At z = 9,
laments, walls, and voids each make up about a third of the ionized
olume. During the EoR, the voids are also ionized and they take
 v er as the dominant component due to their larger total volume. 
Let us consider next the identity of the neutral patches. For inside-

ut scenarios, the neutral patches are expected to coincide with 
he deepest voids in the cosmic web. This expectation is confirmed 
isually by the top row of Fig. 7 , showing renderings of the neutral
egions at z ∈ { 10, 8, 7 } . The final snapshot shows the large remaining
eutral patches entirely colour-coded as void regions. In the third 
anel of Fig. 8 , we see that voids constitute most of the neutral
olume at all times, with the ratio increasing from z = 10 onwards
s the last neutral walls and filaments are ionized. One interesting 
mplication is that counting the tunnels in the neutral regions gives a
ower bound on the filamentarity of the cosmic web. 

As we saw in Section 4 , the tunnels are the most interesting
nd prominent feature of the ionization bubble network during 
eionization. The question arises whether they are related to the 
laments of the cosmic web. At this point, we should be more explicit
bout what we mean by tunnels. Because the neutral and ionized 
e gions are e xactly complementary, the number of one-dimensional 
oles in the neutral regions (or ‘ionized tunnels’) is equal to the
umber of one-dimensional holes in the ionized regions (or ‘neutral 
unnels’). Of course, this number is just what β1 measures. This result
pplies only to the one-dimensional holes and is a consequence of
lexander duality (see Hatcher 2002 ). Conveniently, this means that 
e can use both the neutral and the ionized tunnels to constrain β1 .

n the ‘Faint Galaxies’ simulations, the filaments are ionized early 
n. Hence, the tunnels that connect the ionized regions most likely 
oincide with these filaments. On the other hand, the neutral tunnels 
an be found even in the deepest void regions. 

 CLA SSIFIC ATION  

he predicted differential brightness temperature δT b is given by 
quation ( 4 ). In principle, we can extract the ionized and neutral
egions from the observed signal using a variety of techniques 
uch as granulometry (Kakiichi et al. 2017 ) or the friends-of-
riends algorithm (Friedrich et al. 2011 ). This paves the way for
n analysis of the type described abo v e. The approach in this case
s very similar to the ones needed to extract other statistics such
s the size distribution of the ionized or neutral regions. Ho we ver,
nother interesting possibility is to apply our formalism directly to 
he extracted temperature field itself by means of a thermal filtration.

.1 Thermal filtrations 

ne of the main advantages of the persistent homology framework 
s its ability to distinguish real topological features from noise 
Edelsbrunner et al. 2000 ). Small perturbations in the signal result in
ersistence diagrams that are close to the unperturbed diagram. This 
ollows from the stability of the Wasserstein metric ( 2 ). Specifically,
his is the case because because small perturbations either change the
ersistence of real features by a small amount or create new noisy
eatures with small persistence. In addition, the preceding analysis 
as shown that persistent homology is sensitive to tunnels and that
hese are a key tracer of the percolation processes associated with
eionization. Such tunnels should also be present in the temperature 
eld itself. This reasoning provides strong moti v ation for applying

he formalism directly to the temperature field of the observed 21-cm
ignal. This can be done with the Field Filtration method outlined in
ection 2 . The output is a thermal filtration of the signal, revealing
hich topological features emerge or disappear as the temperature is 

ncreased. 
We demonstrate this in Fig. 9 for a tomographic slice of the

T b field at z = 7 from a lightcone created with 21cmFAST . For
llustrative purposes, we assume the optimistic foreground scenario 
nd decrease the fiducial noise level by a factor of 

√ 

10 . The top
ow in Fig. 9 shows images of the signal, before and after applying
elescope effects, for the two astrophysical source models: ‘Faint 
alaxies’ and ‘Bright Galaxies’. The noiseless images reveal cold 

pots within hot regions, the most prominent of which survive in the
oisy images, and which correspond to ionized cavities or tunnels 
hat protrude through neutral regions. We also see temperature 
uctuations within hot regions that arise as a result of variations

n the baryonic o v erdensity, spin temperature, or ionization fraction,
ccording to equation ( 4 ). The bottom row shows the associated β1 -
ersistence diagrams for tunnels. There are two notable classes of 
MNRAS 520, 2709–2726 (2023) 
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Figure 9. (Top) Slices through the theoretical lightcones for the ‘Faint Galaxies’ and ‘Bright Galaxies’ models before and after applying telescope effects, 
assuming the optimistic foreground scenario with 10 4 hours of observing. (Bottom) One-dimensional persistence fields averaged over 16 realizations. 
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ighly persistent features in the noiseless diagrams, one narrow strip
t δT b = −10 mK (keeping in mind that the absolute temperature
s arbitrary) and one broad grouping at a higher temperature that
epends on the model. The first class corresponds to tunnels in the
onized network, which can be identified with the tunnels studied
n the previous sections. The second class corresponds to tunnels
n the signal that emerge as a result of temperature fluctuations
ithin neutral regions. A third intermediate class of highly persistent

eatures born at temperatures −10 < δT b < 10 mK may be identified
ith partially ionized tunnels. After applying the telescope effects,

he two main classes can still be differentiated by eye, especially for
he ‘Bright Galaxies’ model. Under more pessimistic observational
ircumstances, when differences are harder to see by eye, a statistical
pproach based on distances between persistence diagrams may still
llow an interpretable topological analysis. This will be the topic of
he remainder of this section. 

.2 Model selection 

e have seen that the ‘Faint Galaxies’ and ‘Bright Galaxies’ models
roduce distinct ionization topologies. Let us consider whether these
ifferences are statistically significant for noisy observations under
if ferent observ ational circumstances. Using the pipeline discussed
n Section 3 , we generate a catalogue of mock lightcones for both

odels. Each lightcone consists of a set of three-dimensional tomo-
raphic ‘slices’ and for each slice, we construct a thermal filtration
nd compute the associated persistence diagrams for β0 , β1 , and β2 .
he corresponding persistence diagrams from different lightcones
enerated with the same model are statistically independent and
dentically distributed. We imagine that these might correspond to
on-o v erlapping fields observed during each night. 
NRAS 520, 2709–2726 (2023) 
To determine whether the differences are statistically significant,
e will carry out a randomization test. Given a set of N persistence
iagrams, some of which were generated with one model and some
ith the other, our task is to label the diagrams according to the
nderlying model, dividing them into two disjoint sets of n 1 and n 2 
 N − n 1 elements. Following Robinson & Turner ( 2017 ), we use

he test statistic 

 = 

2 ∑ 

m = 1 

1 

2 n m 

( n m 

− 1) 

n m ∑ 

j= 1 

n m ∑ 

k= 1 

d( X m,j , X m,k ) 
2 , (9) 

here d ( X , Y ) is the Wasserstein metric defined in equation ( 2 ) and
 m , j is the j th persistence diagram labelled with m and m ∈ { 1, 2 } is
rbitrary. Note that there are multiple diagrams per lightcone and we
nly compute distances between the corresponding diagrams from
ifferent lightcones. Our results are based on N = 16 lightcones, half
rom each model. F is the mean squared distance between diagrams
ith the same label , based on the observation that Wasserstein
istances are minimized for pairs of diagrams from the same model
see Fig. 2 ). This statistic is relatively cheap to compute compared
o statistics that involve the Fr ́echet average or cross distances. Let
 true be the value of the test statistic evaluated in the case where each
bservation is labelled correctly (all Faint observations are in one
roup and all Bright observations in the other). We may reject the
ypothesis that the two models are topologically indistinguishable if
 true is extreme compared to the value of F for random permutations
f the labels. 
As an illustration, Fig. 10 shows the ratio F true / 〈 F random 

〉 as a
unction of redshift, assuming the fiducial number of 10 3 hours of
bservation. The ratio is most extreme for the optimistic foreground
cenario (left panel) and lies far outside the shaded region indicating
he 95 per cent range for random permutations. This shows that
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Figure 10. Ratio of the test statistic F e v aluated on true classifications of mock observations compared to the average value for random permutations of 
the labels. The shaded area is the 95 per cent CI for random permutations. The fact that F true lies far outside this region indicates that observations can be 
differentiated on the basis of Wasserstein distances between persistence diagrams. The ratio is shown as a function of redshift, for all dimensions and both 
foreground scenarios, assuming the fiducial number of 10 3 hours of observation. 
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opological differences are significant even for noisy observations. 
s anticipated, the tunnels ( β1 ) are the strongest differentiator 

hroughout. We also recognize that the cavities ( β2 ) are a stronger
ndicator at early times, while the components ( β0 ) are relatively 

ore discriminating at late times. Although these results are harder 
o interpret than the noiseless ionization fields studied in the previous 
ections, this may be understood by noting that a class of cavities
n the temperature field correspond to ionized regions. These differ 

ore strongly between the two models at early times, because both 
odels are tuned to reproduce the same global reionization history 

t late times (see Fig. 5 ). By contrast, a class of components ( β0 )
f the temperature field correspond to neutral regions, which are 
ore sensitive to the model at late times. Under the moderate 

oreground scenario (right panel), all features exhibit the same 
edshift dependence, but we see hints of the same pattern. 

Using a Monte Carlo approach, we estimate the probability 
 ( F true ≤ F random 

) to determine whether F true is extreme and hence
hether the topological differences are significant under different 
bservational circumstances. Fig. 11 shows the resulting P -values as 
 function of the number of hours of observation, averaged over the
omographic slices with z ≤ 17. We see that the distinguishing power 
f the tunnels ( β1 ) is greatest in the case of the optimistic foreground
cenario, and similar to the other features in the moderate scenario. 
ocussing on the tunnels, the differences are extreme for the fiducial 
umber of hours (10 3 ) and greater in both fore ground scenarios. F or
0 2 hrs , we still obtain P > 0.95 for the optimistic scenario and P >

.90 for the moderate scenario. These results suggest that persistence 
iagrams from thermal filtrations can be used to extract astrophysical 
nformation from noisy observations. 

Topological approaches rely on both amplitude and phase in- 
ormation and can therefore offer discriminatory power beyond 
hat is possible with two-point statistics alone. To demonstrate this 

xplicitly, we apply our pipeline to whitened temperature fields, 
btained by dividing out all the information contained in the three- 
imensional power spectrum. We define the whitened temperature 
ap in Fourier space, ε( k ), by 

( k ) = 

T ( k ) √ 

〈| T ( k) | 2 〉 , (10) 
here we take into account the Fourier space masking used to model
he instrumental effects (Section 3.2 ). By construction, the power 
pectrum of ε( k ) is completely uninformative: P ( k ) = 〈| ε( k ) | 2 〉 =
. Ho we ver, the fields still contain amplitude information, as we
o not enforce | ε( k ) | = 1. The dotted lines in Fig. 12 show the P -
alues obtained for these whitened fields, using the β1 -persistence 
iagrams. The results are slightly degraded compared to the normal 
emperature maps, but topological classification still appears to be 
ossible for the fiducial number of hours (10 3 ) and greater. This
xplicitly confirms that persistent homology is complementary to 
he 21-cm power spectrum. 

 DI SCUSSI ON  

mong the physical processes studied in cosmology, reionization 
s particularly well-suited for a topological description. As the last 
ajor phase transition of gas in the Universe, reionization describes 

he process by which the neutral hydrogen of the Dark Ages was
ransformed into the IGM seen today. From the point of view of
opology, the evolution of the IGM during the Epoch of Reionization
s characterized by the spatial connectivity of the ionized and neutral
egions. In this work, we have analysed this connectivity using 
he language of persistent Betti numbers. Borrowed from algebraic 
opology, the k th Betti number βk represents the number of k -
imensional holes in an object, or formally the rank of the k th homol-
gy group (Hatcher 2002 ; Edelsbrunner & Harer 2010 ; Carlsson &
ejdemo-Johansson 2021 ). For three-dimensional structures like the 

onization bubble network, there are three non-trivial Betti numbers: 
0 gives the number of connected components, β1 the number of one- 
imensional openings or tunnels, and β2 the number of cavities or 
hells. In the context of reionization, these are interpreted as ionized
ubbles ( β0 ), ionized or neutral tunnels ( β1 ), and enclosed neutral
slands ( β2 ). We collectively refer to these k -dimensional holes as
opological features. By following the births and deaths of features 
s a function of a filtration parameter α, we construct persistence
ntervals ( αbirth , αdeath ), describing the range of values for which the
eatures exist (Edelsbrunner et al. 2000 ; Zomorodian & Carlsson 
005 ). Combining the persistence intervals of all features yields a
ersistence diagram, capturing at once the topological evolution as a 
unction of time, scale, or temperature. One of the key advantages of
MNRAS 520, 2709–2726 (2023) 
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Figure 11. Average P -value assuming that observations from the ‘Faint Galaxies’ and ‘Bright Galaxies’ models are topologically indistinguishable on the basis 
of βd -persistence diagrams ( d = 0, 1, and 2), shown as a function of hours of observation and for different foreground scenarios. The results are averaged over 
the tomographic slices with z ≤ 17. The shaded area represents P > 0.95. The constraining power of the tunnels ( β1 ) is greatest under the optimistic scenario 
and comparable to the other features under the moderate scenario. 

Figure 12. Average P -value assuming that observations from the ‘Faint 
Galaxies’ and ‘Bright Galaxies’ models are topologically indistinguishable 
on the basis of β1 -persistence diagrams (tunnels), as a function of hours 
of observation for different foreground scenarios. The results are averaged 
o v er the tomographic slices with z ≤ 17. Also shown as dotted lines are 
the results obtained from whitened temperature maps, which by construction 
hav e uninformativ e power spectra. The shaded area represents P > 0.95. 
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he framework is that the measured quantities can be linked directly
o morphological features, including the prominent tunnels of the
ubble network. The framework also allows the identification of the
ost significant features present in noisy observations. 
Using the language of persistent homology, we studied the evolu-

ion of the ionization topology for semi-numerical models generated
ith the 21cmFAST code (Murray et al. 2020 ). Different stages of

eionization can be identified by the types of features that dominate.
hen the first stars ionize the hydrogen around them, the ionized

ubbles initially trace the large-scale topology of the cosmic web.
etween 5.5 � z � 10, an intricate network of ionized and neutral

egions emerges, whose topology depends both on the location and
roperties of the sources and sinks of ionizing radiation. The tunnels
hat connect the ionized patches are the dominant component during
his period and depend most sensitively on the physics of reionization
see Fig. 5 ). We find that this tunnel stage coincides with the period
uring which the ionization fraction rises most rapidly, which can
NRAS 520, 2709–2726 (2023) 
e associated with the Epoch of Reionization proper, and which
egins and ends with a percolation transition (Furlanetto & Oh
016 ; Bag et al. 2018 ). In the first percolation transition, the ionized
ubbles link up to form an infinite percolating cluster of ionized
aterial, perforated by a multitude of neutral tunnels. In the second

de-)percolation transition, the infinite cluster of neutral material
plits apart into many disconnected patches, while the neutral
unnels are ionized and disappear. Unlike some idealized percolation

odels, we find an asymmetry between the two transitions, with the
rst stage of reionization lasting much longer than the final stage
nd with ionized bubbles being much more persistent (long-lived)
nd numerous compared to the neutral islands at their respective
eaks. 
We also explored the relation between the morphological com-

onents of the ionization bubble network (bubbles, tunnels, and
slands) and those of the cosmic web (clusters, filaments, and voids),
nding a close association between the k -dimensional features of
oth, particularly between the filaments of the cosmic web and the
unnels of ionized material during the early stages of reionization.
inally, we applied our formalism directly to mock observations of

he 21-cm signal, assuming 1000 hrs of observation with Phase II
f HERA (DeBoer et al. 2017 ), for different foreground scenarios
Pober et al. 2014 ). By casting the signal in terms of persistence dia-
rams using the temperature itself as filtration parameter, significant
opological features can be differentiated from thermal fluctuations.

e used the L 

2 -Wasserstein metric as a topological distance measure
etween persistence diagrams (Turner et al. 2014 ; Boissonnat et al.
018 ). Applying a randomization test to these Wasserstein distances
Robinson & Turner 2017 ), we showed that observations from
ifferent astrophysical models are distinguishable, even for whitened
emperature fields that have the information content of the power
pectrum divided out. To use persistent homology for astrophysical
arameter inference, observations will have to be compared with a
arge number of theoretical models. Although this is possible with
quation ( 9 ), an alternative would be to use a kernel density-based
ikelihood function (Mileyko, Mukherjee & Harer 2011 ) or to use
ector representations of persistence diagrams like persistence fields
Paper I), persistence images (Adams et al. 2017 ; Cole et al. 2020 ),
r persistent Betti functions (Heydenreich et al. 2021 ). Markov
hain Monte Carlo methods could then be used to extract parameter
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onstraints, analogous to approaches for the 21-cm power spectrum 

Greig & Mesinger 2015 ) and bispectrum (Watkinson et al. 2022 ). 
In an effort to find complementary observables to the power 

pectrum, we have identified persistence diagrams as a sensitive 
robe of the ionization topology. They can be related to several 
ther quantities that have been used to study reionization. First of
ll, the Betti numbers β i ( α) for i ∈ { 0, 1, 2 } count the number of
eatures alive as a function of α (Elbers 2017 ; Kapahtia et al. 2018 ;
lbers & van de Weygaert 2019 ; Kapahtia et al. 2019 ; Kapahtia
t al. 2021 ; Giri & Mellema 2021 ; Bianco et al. 2021 ) and are
herefore an ‘integral’ of the persistence diagrams. The commonly 
sed Euler characteristic (Lee et al. 2008 ; Friedrich et al. 2011 ; Hong
t al. 2014 ) is an alternating sum of Betti numbers, χ = β0 − β1 

 β2 , and one of the Minkowski functionals (Gleser et al. 2006 ;
oshiura et al. 2016 ; Bag et al. 2018 ; Kapahtia et al. 2018 ; Chen
t al. 2019 ). These quantities are frequently shown as a function of
 course-graining scale α. For Gaussian random fields, the shape 
f the resulting Betti curves is sensitive to the power spectrum. 
his is unlike the equi v alent χ ( α)-curve, which only depends on

he power spectrum in its o v erall amplitude (Pranav et al. 2019 ).
nterestingly for reionization, these topological quantities are also 
ensitive to percolation transitions (Furlanetto & Oh 2016 ; Bag 
t al. 2018 ). Indeed in an idealized setting, χ passes through zero
t a percolation transition, indicating that one component starts to 
ominate o v er another (Neher et al. 2008 ). The twin percolation
ransitions of reionization are shown even more clearly in the β1 -
ersistence diagram for tunnels (Fig. 4 , middle panel), where the 
dges of the triangle at x II, birth ∼ 0.1 and x II, death ∼ 0.95 reflect 
he onset of the tunnel stage at the first percolation transition and
he disappearance of tunnels at the second. Persistence diagrams can 
lso be represented as merger trees (Chardin, Aubert & Ocvirk 2012 ),
howing the lifetimes of features (Fig. 6 ). Using a spatial filtration,
ersistent homology allows a multiscale study of topological features 
Paper I), relating persistence diagrams to bubble and island size 
istributions (Lin et al. 2016 ; Giri et al. 2017 ; Kakiichi et al. 2017 ;
ag et al. 2018 ). 
In Paper I, our analysis was restricted to phenomenological models 

f reionization. Although the resulting idealized bubble networks 
re topologically isomorphic to networks with more complex mor- 
hologies, thereby providing a connection with theoretical results 
uch as equation ( 8 ), this nevertheless limited the applicability 
f our results. In this paper, we have expanded our analysis to
emi-numerical models generated with 21cmFAST . Compared to 
aper I, we find broadly similar results in terms of the topological
tages of reionization, the role of the percolation transitions, the 
apid rise of the ionization fraction during the tunnel stage, and 
he asymmetry between the ionized regions and neutral patches 
t their respective peaks. These appear to be generic features of
ubble reionization scenarios, although in detail the topology retains 
 strong dependence on the underlying physics. By varying the 
arameters of the model, we explored some of this dependence. Of 
ourse, the fidelity of the simulations could be further impro v ed. At
igher resolutions, smaller topological features could be identified, 
hich may be important for the rare neutral islands. The semi-
umerical models could be extended to include other rele v ant 
rocesses, such as redshift space distortions (Bharadwaj & Ali 
004 ; Barkana & Loeb 2005 ; Mao et al. 2012 ), relative baryon-
ark matter velocities (Tseliakhovich & Hirata 2010 ; Dalal, Pen & 

eljak 2010 ), and molecular-cooling galaxies in minihalos (Qin et al. 
020 ; Mu ̃ noz et al. 2022 ). Finally, we expect that the application
f persistent homology to self-consistent radiation hydrodynamics 
imulations (Gnedin & Kaurov 2014 ; Rosdahl et al. 2018 ; Ocvirk
t al. 2020 ; Chan et al. 2021 ; Kannan et al. 2022 ) will offer further
nsights. 
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PPEN D IX  A :  T H E  MMF/NEXUS  FORMALI SM  

he family of MMF and NEXUS techniques (Arag ́on-Calvo et al. 
007 ; Arag ́on-Calvo et al. 2010 ; Cautun et al. 2013 ; Cautun et al.
014 ; Aragon-Calvo & Yang 2014 ) is used for the morphological
dentification of cosmic web structures. A key aspect of these 
pproaches is the use of a Scale-Space representation that ensures 
he detection of structures present at all scales. The formalism entails 
 fully adaptive framework for classifying the matter distribution on 
he basis of local variations in the density field, velocity field, or
ravity field. At each scale, these are encoded in the Hessian matrix
f the field in question. Subsequently, a set of morphological filters
s used to classify the spatial matter distribution into three basic 
omponents: the clusters, filaments, and walls that constitute the 
osmic web, with cosmic voids assuming the remaining space. Each 
olume element is assigned a single environmental characteristic by 
equiring that filament regions cannot be nodes and that wall regions 
an be neither nodes nor filaments. The outcome of the identification 
rocedure is a volume-filling field that specifies at each point the 
ocal morphological signature: node, filament, wall, or void. 

1 Formalism 

he first step of MMF/ NEXUS is to define a four-dimensional 
cale-space representation of the input field f ( x ). In nearly all
mplementations, this is achieved by means of a Gaussian filtering 
f f ( x ) o v er a set of scales [ R 0 , R 1 , . . . , R N ], given by 

 R n ( x ) = 

∫ 

d 3 k 

(2 π ) 3 
e −k 2 R 2 n / 2 ˆ f ( k ) e ik ·x , (A1) 

here ˆ f ( k ) is the Fourier transform of f ( x ). Subsequently, the
essian H ij ,R n ( x ) of the filtered field is computed as 

 ij ,R n ( x ) = R 

2 
n 

∂ 2 f R n ( x ) 
∂ x i ∂ x j 

. (A2) 

n this equation, R 

2 
n serves as a renormalization factor related to 

he multiscale nature of the algorithm. The morphological signature 
s contained in the local geometry as specified by the eigenvalues 
f the Hessian matrix, h 1 ≤ h 2 ≤ h 3 . The eigenvalues are used to
ssign to every point, x , a node, filament, and wall characteristic,
hich are determined by a set of morphology filter functions (see 
rag ́on-Calvo et al. 2007 ; Cautun et al. 2013 ). The morphology
lter operation consists of assigning to each volume element and at 
ach filter scale an environmental signature S R n ( x ). Subsequently, the
nvironmental signatures calculated for each filter scale are combined 
o obtain a scale-independent signature, S( x ), which is defined as the
he maximum signature o v er all scales, 

( x ) = max 
levels n 

S R n ( x ) . (A3) 

he final step in the MMF/ NEXUS procedure involves the use of
riteria to find the threshold signature that identifies valid structures. 
ignature values larger than the threshold correspond to real struc- 
ures, while the remainder are regarded as spurious detections. The 
arious implementations of MMF/NEXUS can differ in the definition 
f the detection thresholds. 

2 Application and developments 

ollowing the introduction of the basic version of MMF by Arag ́on-
alvo et al. ( 2007 ), the technique was applied to the analysis
f the cosmic web in simulations of cosmic structure formation 
Arag ́on-Calvo et al. 2010 ) and to the identification of filaments and
alaxy-filament alignments in the Sloan Digital Sky Survey galaxy 
istribution (Jones, van de Weygaert & Arag ́on-Calvo 2010 ). The
rincipal technique, and corresponding philosophy, has subsequently 
een branched in several further elaborations and developments. The 
wo principal developments are the NEXUS formalism developed by 
autun et al. ( 2013 ) and the MMF-2 method developed by Aragon-
alvo & Yang ( 2014 ). NEXUS has extended the MMF formalism to a

ubstantially wider range of physical agents involved in the formation 
f the cosmic web, along with substantially firmer foundations for 
he criteria used to identify the various weblike structures. MMF-2 
nstead focusses on the hierarchical nature of the cosmic web, by
ntroducing and exploiting the concept of hierachical space . 

2.1 NEXUS and NEXUS + 

he NEXUS version of the formalism (Cautun et al. 2013 ; Cautun
t al. 2014 ) builds upon the original MMF algorithm and was
eveloped with the goal of obtaining a more robust and more
hysically moti v ated environmental classification method. The full 
EXUS suite of cosmic web identifiers (see Cautun et al. 2013 )

ncludes options for a range of cosmic web tracers, such as the
rdinary density, the logarithmic density, the v elocity div ergence, the
elocity shear, and the tidal force fields. NEXUS has incorporated 
hese options in a versatile code for the analysis of cosmic web
tructure and dynamics, following the realization that they represent 
ey physical aspects that shape the cosmic mass distribution into the
omplexity of the cosmic web. 

Amongst the various versions of the NEXUS suite, we made use
f NEXUS + in this paper. This is the version that is most used,
ue to its considerable dynamic range. Other versions of NEXUS ,
articularly those looking at the anisotropy of the velocity field, tend
o single out the dynamically dominant features (see, e.g. Ganeshaiah 
eena et al. 2018 ). NEXUS + takes as input a regularly sampled
ensity field, which is smoothed using a Log-Gaussian filter. Like 
he basic version of the formalism, the filter is applied over a set of
cales and for each scale, the eigenvalues of the Hessian matrix are
omputed. The eigenvalues subsequently define an environmental 
ignature for each volume element that characterizes how close this 
egion is to an ideal knot, filament, and wall. Then, the environmental
ignatures computed for each scale are combined into a single 
cale-independent signature. In the last step, physical criteria are 
sed to determine a detection threshold. All points with signature 
alues abo v e the threshold are valid structures. F or knots, the
hreshold is given by the requirement that most knot-regions should 
e virialized. For filaments and walls, the threshold is determined on
he basis of the change in filament and wall mass as a function of
ignature. The peak of the mass variation with signature delineates 
he most prominent filamentary and wall features of the cosmic 
eb. 
MNRAS 520, 2709–2726 (2023) 
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2.2 MMF-2: Multiscale Morphology Filter-2 

n alternative development of the original MMF method is MMF-2
Aragon-Calvo & Yang 2014 ). In order to account for the hierar-
hical nature of the cosmic web, MMF-2 introduces the concept of
ier arc hical space . This is in contrast to scale-space approaches (as
n the original MMF), which emphasize the scale of the structures
ut are insensitive to their nesting relations. The first step is the
reation of a hierarchical space (Arag ́on-Calvo et al. 2010 ; Aragon-
alvo & Yang 2014 ). This is done by Gaussian-smoothing the initial
onditions (instead of the final density field). This linear-regime
moothing is applied when the Fourier modes are independent, such
hat specific scales in the density field can be targetted before Fourier

ode-mixing occurs. When evolved under gravity, the smoothed
nitial conditions produce all the anisotropic features of the cosmic
eb, but lack small-scale structures below the smoothing scale. This
NRAS 520, 2709–2726 (2023) 
educes the dynamic range in the density field and greatly limits
he contamination produced by dense halos in the identification of
laments and walls. The hierarchical space is a continuum co v ering

he full range of scales in the density field. For practical purposes,
o we ver, only a small set of linear-regime smoothed initial condition
re evolved to the present time. 

For each realization in the hierarchical space, a number of mor-
hology filters are applied, defined by ratios between the eigenvalues
f the Hessian matrix. Similar to other versions of MMF/ NEXUS , a
hreshold is applied to the response from each morphology filter to
roduce a set of binary masks sampled on a regular grid that indicates
hich voxels belong to a given morphology at a given hierarchical

evel. 
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