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Abstract

We extend the Matomäki–Radziwiłł theorem to a large collection of unbounded
multiplicative functions that are uniformly bounded, but not necessarily bounded by 1,
on the primes. Our result allows us to estimate averages of such a function f in typical
intervals of length h(log X )c , with h = h(X ) → ∞ and where c = cf ≥ 0 is determined
by the distribution of {|f (p)|}p in an explicit way. We give three applications. First, we
show that the classical Rankin–Selberg-type asymptotic formula for partial sums of
|λf (n)|2, where {λf (n)}n is the sequence of normalized Fourier coefficients of a primitive
non-CM holomorphic cusp form, persists in typical short intervals of length h log X , if
h = h(X ) → ∞. We also generalize this result to sequences {|λπ (n)|2}n, where λπ (n) is
the nth coefficient of the standard L-function of an automorphic representation π with
unitary central character for GLm,m ≥ 2, provided π satisfies the generalized
Ramanujan conjecture. Second, using recent developments in the theory of
automorphic forms we estimate the variance of averages of all positive real moments
{|λf (n)|α}n over intervals of length h(log X )cα , with cα > 0 explicit, for any α > 0, as
h = h(X ) → ∞. Finally, we show that the (non-multiplicative) Hooley �-function has
average value � log log X in typical short intervals of length (log X )1/2+η , where η > 0
is fixed.
Keywords: Multiplicative functions, Automorphic forms, Hooley delta function,
Pretentious analytic number theory, Matomäki–Radziwiłł method

Mathematics Subject Classification: 11N64, 11F30

1 Introduction andmain results
1.1 The Matomäki–Radziwiłł theorem for boundedmultiplicative functions

The Matomäki–Radziwiłł theorem, in its various incarnations, gives estimates for the
error term in approximating the average of a bounded multiplicative function in a typical
short interval by a corresponding long interval average. In the breakthrough paper [26],
the authors showed that, uniformly over all real-valued multiplicative functions f : N →
[−1, 1], for any 1 ≤ h ≤ X such that h = h(X) → ∞ as X → ∞,

1
h

∑

x−h<n≤x
f (n) = 2

X
∑

X/2<n≤X
f (n) + o(1) (1.1)

for all but o(X) integers x ∈ [X/2, X]. A key feature of this result is that the interval length
h can grow arbitrarily slowly as a function of X . This result has had countless applications
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to a variety of problems across mathematics, including to partial results toward Chowla’s
conjecture on correlations of the Liouville function [36,38], the resolution of the famous
Erdős discrepancy problem [37], and progress on Sarnak’sMöbius disjointness conjecture
(e.g., [3,35]; see [20] for a more exhaustive list).
Since [26], the result has been extended and generalized in various directions. In [27], a

corresponding short interval result was given for non-pretentious complex-valued mul-
tiplicative functions f : N → U, where U := {z ∈ C : |z| ≤ 1}. To be precise, if we
define

Df (X ;T ) := min|t|≤T
D(f, nit ;X)2 := min|t|≤T

∑

p≤X

1 − Re(f (p)p−it )
p

,

where D denotes the Granville–Soundararajan pretentious distance, they showed that if
f : N → U satisfies Df (X ;X) → ∞ then

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n)

∣∣∣∣∣∣
= o(1)

for all but o(X) integers x ∈ [X/2, X], whenever h = h(X) → ∞. In a different direction,
exploring the heuristic relationship between the distributions of arithmetic functions in
short intervals and in short arithmetic progressions, Klurman, the author and Teräväi-
nen [19] obtained an analogue of (1.1) for typical1 short arithmetic progressions.
In the recent paper [25], a widely generalized version of the results of [26]was developed,

which among other things extended the work of [27]. The authors showed that for a
general complex-valued multiplicative function f : N → U, if t0 = t0(f, X) is a minimizer
in the definition of Df (X ;X) then for all but o(X) integers x ∈ [X/2, X], one obtains an
asymptotic formula with main term of the form

1
h

∑

x−h<n≤x
f (n) = 1

h

∫ x

x−h
uit0du · 2

X
∑

X/2<n≤X
f (n)n−it0 + o(1), (1.2)

with a better quantitative dependence of the bound for the exceptional set on the interval
length h than in [26].
By Shiu’s theorem (Lemma 3.2), we have

1
X
∑

n≤X
| f (n) |�

∏

p≤X

(
1 + |f (p)| − 1

p

)
,

so (1.2) is trivial whenever
∑

p≤X
1−|f (p)|

p → ∞, for instance, if f (p) = 0 significantly often
on the primes. Rectifying this weakness, Matomäki and Radziwiłł improved the quality
of the o(1) error term for a large collection of 1-bounded functions with sparse prime
support. Specifically, they showed that if there are constants A > 0 and θ ∈ (0, 1] such
that the sieve-type lower bound condition

∑

z<p≤w

|f (p)|
p

≥ A
∑

z<p≤w

1
p

− O
(

1
log z

)
holds for all 2 ≤ z ≤ w ≤ Xθ (1.3)

holds then one can improve the o(1) term to

o

⎛

⎝
∏

p≤X

(
1 + |f (p)| − 1

p

)⎞

⎠ .

1Complications arise concerning both the prime divisors of themodulus q aswell as the distribution of zeros ofDirichlet
L-functions (mod q), so the theorem proven in [19] is qualitatively weaker than (1.1) unconditionally in general.
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This savings comes at a natural cost, namely that the length of the interval h is no longer
arbitrarily slow growing as a function of X , but must grow in a manner that depends on
the sparseness of the support2 of f .
Precisely, the main result of [25] may be stated as follows. In the sequel, for a multiplica-

tive function f : N → U we write

H (f ;X) :=
∏

p≤X

(
1 + (|f (p)| − 1)2

p

)
.

Theorem (Matomäki–Radziwiłł, [25] Thm. 1.9) Let A > 0 and θ ∈ (0, 1]. Let f : N → U

be a multiplicative function such that (1.3) holds for all 2 ≤ z ≤ w ≤ Xθ . Let 2 ≤ h0 ≤ Xθ

and put h := h0H (f ;X). Also, set t0 = t0(f, X). Then there are constants3 C = C(θ ) > 1,
ρA > 0 such that for any δ ∈ (0, 1/1000) and 0 < ρ < ρA,

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n) − 1

h

∫ x

x−h
uit0du · 2

X
∑

X/2<n≤X
f (n)n−it0

∣∣∣∣∣∣

≤
(

δ + C
(
log log h0
log h0

)A
+ (logX)−Aρ/36

)
∏

p≤X

(
1 + |f (p)| − 1

p

)
,

for all x ∈ [X/2, X] outside of a set of size

�θ X
(
h−(δ/2000)1/A + X−θ3(δ/2000)6/A

)
.

1.2 Divisor-boundedmultiplicative functions

Let B ≥ 1. We define the generalized B-divisor function dB(n) via

ζ (s)B =
∑

n≥1

dB(n)
ns

for Re(s) > 1.

It can be deduced that dB(n) ismultiplicative, andmoreover dB(pk ) = �(B+k)
k !�(B) , for all k ≥ 1.

In particular, dB(p) = B. For integer values ofB this coincides with the usualB-fold divisor
functions, e.g., when B = 2 we have dB(n) = d(n), and when B = 1 we have dB(n) ≡ 1.
We say that a multiplicative function f : N → C is divisor-bounded if there is a B ≥ 1

such that |f (n)| ≤ dB(n) for all n. When B = 2, for example, this includes functions such
as the twisted divisor function d(n, θ ) := ∑

d|n diθ for θ ∈ R, as well as r(n)/4, where
r(n) := |{(a, b) ∈ Z

2 : a2 + b2 = n}|.
There is a rich literature about mean values of general, 1-bounded multiplicative func-

tions. The works of Wirsing [43] and Halász [10] are fundamental, with noteworthy
developments by Montgomery [29] and Tenenbaum [39, Thm. III.4.7]. The theory has
recently undergone an important change in perspective, due in large part to the extensive,
pioneering works of Granville and Soundararajan (e.g., [8,9]). This well-formed theory
significantly informs the results of [25,26].
In comparison, the study of long averages of general unboundedmultiplicative functions

has only garnered significant interestmore recently. Granville, Harper, and Soundararajan
[7], in developing anewproof of a quantitative formofHalász’ theorem,were able to obtain

2As pointed out in [25, p. 8], it is generally unclear what the least size of such intervals must be for a given bounded
multiplicative function.
3In [25], they obtained the explicit constant ρA = A/3 − 2

3π sin(πA/2).
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bounds for averages of multiplicative functions f : N → C for which the coefficients of
the Dirichlet series4

− L′

L
(s, f ) =

∑

n≥1

�f (n)
ns

, where L(s, f ) :=
∑

n≥1

f (n)
ns

for Re(s) > 1, (1.4)

satisfy the bound |�f (n)| ≤ B�(n) uniformly over n ∈ N for some B ≥ 1, where �(n) is
the vonMangoldt function. Such functions satisfy |f (n)| ≤ dB(n) for all n. In [41], Tenen-
baum, improving on qualitative results due to Elliott [1], established quantitative upper
bounds and asymptotic formulae for the ratios |∑n≤X f (n)|/(∑n≤X |f (n)|), assuming f is
uniformly bounded on the primes, not too large on average at prime powers, and satisfies
a hypothesis like (1.3). See also [22, Ch. 2] for results of a similar kind under stronger
hypotheses.
On the basis of these developments, it is reasonable to ask whether the results of [25,26]

can be extended to divisor-bounded functions of a certain type. This was hinted at in
[25, p. 9] but, as far as the author is aware, it does not yet exist in the literature. The
purpose of this paper is to establish such extensions for a broad class of divisor-bounded
multiplicative functions, among other unbounded functions.
In the following subsection, we provide three examples thatmotivate ourmain theorem,

Theorem 1.7. Besides the applications we give here, this result will also be applied in [23]
to study short interval averages of general additive functions.

1.3 Applications

1.3.1 Rankin–Selberg estimates for GLm in typical short intervals

Let f be a fixed even weight k ≥ 2, level 1 primitive Hecke-normalized holomorphic cusp
form without complex multiplication, and write its Fourier expansion at ∞ as

f (z) =
∑

n≥1
λf (n)n

k−1
2 e(nz), Im(z) > 0,

with λf (1) = 1. Set also

gf (n) :=
∑

d2|n
|λf (n/d2)|2.

By the Hecke relation

λf (m)λf (n) =
∑

d|(m,n)
λf
(mn
d2
)
, m, n ∈ N,

|λf |2 and thus also gf are multiplicative functions. Deligne showed that |λf (p)| ≤ 2 for all
primes p, and in general |λf (n)|2 ≤ d(n)2. Thus |λf |2 is bounded by a power of a divisor
function, and the same can be shown for gf .
The classical Rankin–Selberg method shows [18, Sec. 14.9] that asymptotic formulae

1
X
∑

n≤X
|λf (n)|2 = cf + O(X−2/5),

1
X
∑

n≤X
gf (n) = df + O(X−2/5),

hold as X → ∞, where cf , df > 0 are constants depending on f . The Rankin–Selberg
problem is equivalent to asking for an improvement of the error term X−2/5 in both of
these estimates, but this is not our point of interest here.

4Implicitly, it is assumed that − L′
L (s, f ) is well defined in Re(s) > 1.
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One can ask whether the above asymptotic formulae continue to hold in short intervals.
Ivić [17] considered the variance of the error term in short interval averages. Specifically,
he showed [17, Cor. 2] on the Lindelöf hypothesis that

1
X

∫ 2X

X

⎛

⎝1
h

∑

x<n≤x+h
gf (n) − df

⎞

⎠
2

dx = o(1), (1.5)

as long as h ≥ X2/5−ε , albeit with a power-saving error term in the latter range.
At the expense of the quality of the error term, we obtain the following improvement in
the range where (1.5) holds.

Corollary 1.1 Let 10 ≤ h0 ≤ X/(10 logX) and set h := h0 logX. Then there is a constant
θ > 0 such that

1
X

∫ 2X

X

⎛

⎝1
h

∑

x<n≤x+h
|λf (n)|2 − cf

⎞

⎠
2

dx � log log h0
log h0

+ log logX
(logX)θ

.

The same estimate holds when |λf |2 and cf are replaced by gf and df , respectively.

This corollary might appear surprising, given our currently incomplete understanding of
the shifted convolution problem

∑

X<n≤2X
|λf (n)|2|λf (n + r)|2, 1 ≤ |r| ≤ h.

Actually, our proof of Corollary 1.1 relies only on the multiplicativity of |λf |2, Deligne’s
theorem, and the prime number theorem for Rankin–Selberg L-functions (see, e.g.,
Lemma 5.6). This suggests5 that a generalization to coefficients of automorphic L-
functions forGLn should be possible, provided that these satisfy the generalized Ramanu-
jan conjecture and hence are divisor-bounded.
To be more precise, let m ≥ 2, let A be the ring of adeles of Q, and let π be a cuspidal
automorphic representation of GLm(A) with unitary central character that acts trivially
on the diagonally embedded copy of R

+. We let qπ denote the conductor of π . The finite
part of π factors as a tensor product π = ⊗pπp, with local representations πp at each
prime p. The local L-function at p takes the form

L(s,πp) =
∏

1≤j≤m

(
1 − αj,π (p)

ps

)−1
:=
∑

l≥0

λπ (pl)
pls

,

where {α1,π (p), . . . ,αm,π (p)} ⊂ C are the Satake parameters of πp. The standard L-
function of π is then

L(s,π ) :=
∏

p
L(s,πp) =

∑

n≥1

λπ (n)
ns

,

which converges absolutely when Re(s) > 1. The sequence of coefficients λπ (n) thus
defined is multiplicative, with the property that

λπ (pr) =
∑

r1 ,...,rm≥0
r1+···+rm=r

∏

1≤j≤m
αj,π (p)rj .

5We would like to thank Maksym Radziwiłł and Jesse Thorner for pointing this out.
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The generalized Ramanujan conjecture (GRC) implies that for all 1 ≤ j ≤ m, |αj,π (p)| = 1
whenever p � qπ and otherwise |αj,π (p)| ≤ 1. It follows that if π satisfies GRC then

|λπ (pr)| ≤
∑

r1 ,...,rm≥0
r1+···+rm=r

1 =
(
m + r − 1

r

)
= dm(pr),

and therefore that |λπ (n)| ≤ dm(n). As a consequence of these properties, we will prove
the following.

Theorem 1.2 Let m ≥ 2 and let π be a fixed cuspidal automorphic representation for
GLm(A) as above. Assume that π satisfies GRC. Let 10 ≤ h0 ≤ X/(10(logX)m2−1) and let
h := h0(logX)m

2−1. Then there is a constant θ = θ (m) > 0 such that

1
X

∫ 2X

X

⎛

⎝1
h

∑

x<n≤x+h
|λπ (n)|2 − 1

X
∑

X<n≤2X
|λπ (n)|2

⎞

⎠
2

dx � log log h0
log h0

+ log logX
(logX)θ

.

Remark 1.3 In the case m = 2, the parameter h must grow faster than (logX)3 in Theo-
rem 1.2, whereas Corollary 1.1 allows any h growing faster than logX . This is due to the
fact that the range of h in these estimates depends on the size of

∑
p≤X |λπ (p)|4/p. When

π = πf for a cusp form f on GL2(A), we may estimate this sum using the well-known
expression

|λf (p)|4 = 2 + 3λSym2f (p) + λSym4 f (p)

for all primes p, since Symr f is cuspidal automorphic for r = 2, 4 and thus∑
p≤X λSymr f (p)/p = O(1). When m ≥ 3, such data for |λπ (p)|4 are not available uncon-

ditionally in general, to the best of the author’s knowledge. Assuming the validity of Lang-
lands’ functoriality conjecture, a (likely more complicated) expression would follow from
the factorization of the standardL-functionL(s, f ) of the representation f = π⊗π̃⊗π⊗π̃ ,
where π̃ is the contragredient representation of π . Using GRC alone, we cheaply obtain
the simple upper bound

∑

p≤X

|λπ (p)|4
p

≤ m2
∑

p≤X

|λπ (p)|2
p

= m2 log logX + O(1),

from Rankin–Selberg theory, and this is the source of the exponentm2 in the range of h.
We will instead deduce Corollary 1.1 from Theorem 1.4 below, which is tailored to GL2
cusp forms.

1.3.2 Moments of coefficients of GL2 cusp forms in typical short intervals

Our next application concerns short interval averages of the moments n 
→ |λf (n)|α , for
any α > 0, with the notation of the previous subsection. This generalizes Corollary 1.1.

Theorem 1.4 Let α > 0 and define

cα := 2α

√
π

�
(

α+1
2
)

�(α/2 + 2)
, dα := c2α − 2cα + 1.
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Let 10 ≤ h0 ≤ X/(10(logX)dα ) and put h := h0(logX)dα . There is a constant θ = θ (α) > 0
such that

1
X

∫ 2X

X

⎛

⎝1
h

∑

x<n≤x+h
|λf (n)|α − 1

X
∑

X<n≤2X
|λf (n)|α

⎞

⎠
2

dx

�α

((
log log h0
log h0

)cα
+ log logX

(logX)θ

)
(logX)2(cα−1).

When α �= 2, the Rankin–Selberg theory is no longer available. In its place, a crucial role
in the proof of this result is played by a quantitative version of the Sato–Tate theorem for
non-CM cusp forms, due to Thorner [42], which uses the deep results of Newton and
Thorne [30]; see Sect. 5.1 for the details.

Remark 1.5 Using the Sato–Tate theorem and [22, Thm. 1.2.4], it can be shown that
1
X
∑

X<n≤2X |λf (n)|α �α (logX)cα−1, so the estimate in Theorem 1.4 is indeed non-trivial.

1.3.3 Hooley’s�-function in short intervals

The distribution of divisors of a typical positive integer is a topic of classical interest and
a source of many difficult problems. Given an integer n ∈ N, let

Dn(v) := 1
d(n)

∑

d|n
d≤ev

1, for v ∈ R.

This is a distribution function on the divisors of n. A concentration function forDn(v), in
the sense of probability theory, can be given by

Q(n) := max
u∈R |Dn(u + 1) − Dn(u)| = max

u∈R
1

d(n)
∑

d|n
eu<d≤eu+1

1.

Hooley [15] considered the unnormalized variant

�(n) := d(n)Q(n) = max
u∈R

∑

d|n
eu<d≤eu+1

1,

now known asHooley’s�-function, and used it to attack various problems related, among
other things, to inhomogeneous Diophantine approximation by squares, as well as War-
ing’s problem for cubes. Clearly, 0 ≤ �(n) ≤ d(n), but one seeks more refined data about
this function. For example, Erdős [2] conjectured in 1948 that, except on a set of natural
density 0, �(n) > 1.
Many authors have investigated the average and almost sure behavior of �. Maier and
Tenenbaum [21] proved Erdős’ conjecture in a quantitative form. A significant portion
of Hall and Tenenbaum’s book [11] is devoted to the � function, including the currently
best known upper bound for its mean value (see also [12]). For a partial survey of these
results, see [40] .
Much less has been done concerning the local behavior of the�-function. To the author’s
knowledge, the only result about its short interval behavior was worked out in the setting
of polynomials over a finite field by Gorodetsky [5, Cor. 1.5].
By relating �(n) to integral averages of the characteristic function of Dn (which is multi-
plicative), we can deduce the following lower bound for � on average over typical short
intervals of length (logX)1/2+η, for η ∈ (0, 1/2].
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Corollary 1.6 Fix δ ∈ (0, 1], and let 10 ≤ h0 ≤ X
10(log X)(1+δ)/2 and set h = h0(logX)(1+δ)/2.

Then for all but oh0→∞(X) integers x ∈ [X/2, X] we have

1
h

∑

x−h<n≤x
�(n) � δ log logX.

1.4 Statement of main results

We fix B, C ≥ 1, 0 < A ≤ B, and for X large we defineM(X ;A, B, C) to denote the set of
multiplicative functions f : N → C such that:

(i) |f (p)| ≤ B for all primes p ≤ X ,
(ii) |f (n)| ≤ dB(n)C for all n ≤ X ,
(iii) for all z0 ≤ z ≤ w ≤ X , we have

∑

z<p≤w

|f (p)|
p

≥ A
∑

z<p≤w

1
p

− O
(

1
log z

)
. (1.6)

As described above, the work [25] treats 1-bounded multiplicative functions f ∈
M(X ;A, 1, 1). We are interested in generalizing the results from [25] to be applicable
to the collection M(X ;A, B, C), with B ≥ 1. For the purpose of applications, we further
extendM(X ;A, B, C) as follows.
Fixing γ > 0 and 0 < σ ≤ A, we define M(X ;A, B, C ; γ , σ ) to be the collection

of multiplicative functions f : N → C satisfying (i) and (ii), as well as the additional
hypotheses

(iii’) for all z0 ≤ z ≤ w ≤ X , we have
∑

z<p≤w

|f (p)|
p

≥ A
∑

z<p≤w

1
p

− O
(

1
(log z)γ

)
, (1.7)

(iv) letting t0 ∈ [−X, X] be a minimizer on [−X, X] of the map

t 
→ ρ(f, nit ;X)2 :=
∑

p≤X

|f (p)| − Re(f (p)p−it )
p

,

we have for all t ∈ [−2X, 2X] that

ρ(f, nit ;X)2 ≥ σ min{log logX, log(1 + |t − t0| logX)} − OA,B(1). (1.8)

(We may select t0 = 0 if f ≥ 0.)

Condition (iii’) is a weaker form of (iii). The full strength of (iii) is needed in [25, Lem. A.1]
to obtain (iv) for all 0 < σ < σA with a particular constant σA > 0, which is crucial to
the proof of [25, Theorem 1.9]. We will show below, as a consequence of [25, Lem. 5.1(i)],
that if f ∈ M(X ;A, B, C) then condition (iv) here holds for any 0 < σ < σA,B, where

σA,B := A
3

(
1 − sinc

(
πA
2B

))
, sinc(t) := sin t

t
for t �= 0. (1.9)

In particular, for any 0 < σ < σA,B, M(X ;A, B, C) ⊆ M(X ;A, B, C ; 1, σ ). In proving
Corollary 1.1, for instance, it is profitable to assume (iii’) rather than (iii), given currently
available quantitative versions of the Sato–Tate theorem (see (5.1)).
In the sequel, fix B, C ≥ 1, 0 < A ≤ B, γ > 0 and 0 < σ ≤ A. We define

σ̂ := min{1, σ }, κ := σ̂

8B + 21
. (1.10)
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Given T ≥ 1, we set

Mf (X ;T ) := min|t|≤T
ρ(f, nit ;X)2 = min|t|≤T

∑

p≤X

|f (p)| − Re(f (p)p−it )
p

.

We select t0(f, T ) to be a real number t ∈ [−T, T ] that gives theminimum in the definition
ofMf (X ;T ).
Finally, for a multiplicative function f : N → C we recall that

H (f ;X) :=
∏

p≤X

(
1 + (|f (p)| − 1)2

p

)
,

observing for future reference that whenever |f (p)| ≤ B for all p ≤ X ,

H (f ;X) �B
∏

p≤X

(
1 + |f (p)|2 − 1

p

)(
1 + |f (p)| − 1

p

)−2
. (1.11)

The main result of this paper is the following.

Theorem 1.7 Let X ≥ 100. Let f ∈ M(X ;A, B, C ; γ , σ ), and put t0 = t0(f, X). Let 10 ≤
h0 ≤ X/10H (f ;X), and set h := h0H (f ;X). Then

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n) − 1

h

∫ x

x−h
uit0du · 2

X
∑

X/2<n≤X
f (n)n−it0

∣∣∣∣∣∣

2

dx

�A,B,C

((
log log h0
log h0

)A
+
(
log logX
(logX)κ

)min{1,A}) ∏

p≤X

(
1 + |f (p)| − 1

p

)2
.

Remark 1.8 By Shiu’s theorem (Lemma 3.2), it is easy to show that the long sum term in
the LHS is

� 1
X

⎛

⎝
∑

X/3<n≤X
|f (n)|

⎞

⎠
2

�B
∏

p≤X

(
1 + |f (p)| − 1

p

)2
.

Thus, this theorem shows that the variance is smaller than the square of the “trivial” bound
for the long sum by a factor tending to 0 provided h0(X) → ∞, as X → ∞.

2 Outline of the proof of Theorem 1.7
To prove Theorem 1.7, we will establish two estimates. The first compares typical
short averages of f ∈ M(X ;A, B, C ; γ , σ ) to typical medium-length ones (i.e., of length
X/(logX)c, for c = c(σ ) > 0 small). The techniques involved were developed in [26],
using certain corresponding refinements that arose in [25].

Theorem 2.1 Let B, C ≥ 1, 0 < A ≤ B, γ > 0 and 0 < σ ≤ A. Assume that
f ∈ M(X ;A, B, C ; γ , σ ). Let 10 ≤ h0 ≤ X/10H (f ;X), set h1 := h0H (f ;X) and
h2 = X/(logX)σ̂ /2 and assume that h1 ≤ h2. Finally, put t0 = t0(f, X). Then

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h1

∑

x−h1<m≤x
f (m) − 1

h1

∫ x

x−h1
uit0du · 1

h2

∑

x−h2<m≤x
f (m)m−it0

∣∣∣∣∣∣

2

dx

�A,B,C

((
log log h0
log h0

)A
+
(
log logX
(logX)κ

)min{1,A}) ∏

p≤X

(
1 + |f (p)| − 1

p

)2
.



   12 Page 10 of 47 Mangerel et al. Res Math Sci          (2023) 10:12 

Essential to the treatment of Theorem 2.1 are strong pointwise upper bounds for Dirichlet
polynomials

∑

X/3<n≤X

a(n)f (n)
n1+it ,

where {a(n)}n ⊂ [0, 1] is a particular sequence of weights, f ∈ M(X ;A, B, C ; γ , σ ) and
t ∈ [−X, X]. To obtain these estimates, we will apply some of the recent results about
unboundedmultiplicative functions described in Sect. 1.2. This is carried out at the begin-
ning of Sect. 3.
The second estimate we require toward Theorem 1.7 is a “Lipschitz” bound, approxi-

mating the averages of a multiplicative function f on any sufficiently long medium-length
interval by a long interval average of f . The techniques involved are different from those
used in the proof of Theorem 2.1, and largely follow the work of Granville, Harper, and
Soundararajan [7]; see Sect. 3.1 for the details.

Theorem 2.2 Let B, C ≥ 1, 0 < A ≤ B, γ > 0 and 0 < σ ≤ A. Let X/(logX)σ̂ /2 ≤ h ≤
X/10, and let x ∈ [X/2, X]. Assume that f ∈ M(X ;A, B, C ; γ , σ ). Then both of

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n)n−it0 − 2

X
∑

X/2<n≤X
f (n)n−it0

∣∣∣∣∣∣
,

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n) − 1

h

∫ x

x−h
uit0du · 2

X
∑

X/2<n≤X
f (n)n−it0

∣∣∣∣∣∣

are bounded by

�A,B,C
(log logX)σ̂+1

(logX)σ̂ /2

∏

p≤X

(
1 + |f (p)| − 1

p

)
.

Proof of Theorem 1.7 assuming Theorems 2.1 and 2.2 Assume the hypotheses of Theo-
rem 1.7. If h > h2 then Theorem 1.7 follows immediately from the second estimate
in Theorem 2.2. Thus, we may assume that h ≤ h′. Applying the elementary inequality
(a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0, we get

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n) − 1

h

∫ x

x−h
uit0du · 2

X
∑

X/2<n≤X
f (n)n−it0

∣∣∣∣∣∣

2

dx

� 2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
f (n) − 1

h

∫ x

x−h
uit0du · 1

h2

∑

x−h2<n≤x
f (n)n−it0

∣∣∣∣∣∣

2

dx

+ sup
X/2<x≤X

∣∣∣∣∣∣
1
h2

∑

x−h2<n≤x
f (n)n−it0 − 2

X
∑

X/2<n≤X
f (n)n−it0

∣∣∣∣∣∣

2

=: T1 + T2,
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upon trivially bounding h−1|∫ xx−h u
it0du| ≤ 1. By Theorem 2.1 and the first estimate of

Theorem 2.2,

T1 �A,B,C

((
log log h
log h

)A
+
(
log logX
(logX)κ

)min{1,A}) ∏

p≤X

(
1 + |f (p)| − 1

p

)2

T2 �A,B,C
(log logX)σ̂+1

(logX)σ̂ /2

∏

p≤X

(
1 + |f (p)| − 1

p

)2
.

Combining these bounds proves the claim. ��

3 Averages of divisor-boundedmultiplicative functions and the proof of
Theorem 2.2
In the sequel, we will require control over various averages of multiplicative functions f ∈
M(X ;A, B, C ; γ , σ ). In this and the next subsection, such bounds are derived/recorded.
First, we will require some general pointwise estimates for prime power values of f ∈
M(X ;A, B, C ; γ , σ ). In preparation, define

P(s) :=
∑

n≥1
pk ||n⇒pk≤X

f (n)
ns

=
∏

p≤X

⎛

⎜⎜⎜⎝1 +
∑

k≥1
pk≤X

f (pk )
pks

⎞

⎟⎟⎟⎠ , Re(s) > 1.

Wherever P is nonzero, we may also write the logarithmic derivative Dirichlet series

−P′

P
(s) =

∑

n≥1

�f,X (n)
ns

.

Lemma 3.1 Suppose f : N → C is multiplicative and satisfies |f (n)| ≤ dB(n)C for all
n ≤ X.
(a) For any prime power pν ≤ X, we have

|f (pν)| �B,C

⎧
⎨

⎩

(
5
4

)ν (
1 + ν

B−1

)(B−1)C
, if B > 1,

1 if B = 1.

(b) For any η ∈ [0, 1/2), we have
∑

pν≤X
ν≥2

|f (pν)|
p(1−η)ν �η,B,C 1.

(c) �f,X (n) = 0 unless n = pν for some prime power pν . In particular, if pν ≤ X we have
|�f (p)| ≤ B log p when ν = 1 and otherwise |�f,X (pν)| �ε,B,C pεν .

Proof (a) If B = 1 then the claim is obvious since dB ≡ 1. Thus, we may assume that
B > 1. We may also assume that ν is large relative to B, C , for otherwise the estimate is
trivial for a suitably large implicit constant.
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Given these assumptions, observe that by Stirling’s approximation,

|f (pν)| ≤ dB(pν)C =
(

ν + B − 1
ν

)C

�B,C

(√
2π (ν + B − 1)
2π
√

ν(B − 1)

(
1 + B − 1

ν

)ν

·
(
1 + ν

B − 1

)B−1
)C

�B,C

(
5
4

)ν (
1 + ν

B − 1

)C(B−1)
,

provided that ν is large enough that
(
1 + B−1

ν

)C ≤ 5
4 . This proves a).

(b) Let δ := 1
2 − η. For each 2 ≤ p ≤ X , we have p1/2 > 5/4, and thus by a),

∑

ν≥2:
pν≤X

|f (pν)|
p(1−η)ν �B,C

∑

ν≥2

(
1 + ν

B − 1

)BC ( 5
4p1/2+δ

)ν

�B,C,δ
∑

ν≥2

(
5

4p(1+δ)/2

)ν

� p−1−δ .

We deduce (b) upon summing over p ≤ X .
(c) We begin by giving an expression for �f,X (pν).
In light of (a), we may deduce that there is σ = σ (B, C) > 1 such that when Re(s) ≥ σ ,

∣∣∣∣∣∣

∑

pν≤X

f (pν)
pνs

∣∣∣∣∣∣
≤ 1

2
for all 2 ≤ p ≤ X. (3.1)

It follows from the Euler product representation of P(s) that P(s) �= 0 in the half-plane
Re(s) ≥ σ . Thus, −P′(s)/P(s) is also analytic in this half-plane.
Integrating −P′/P term by term from s to ∞ along a line contained in the half-plane
Re(s) ≥ σ , we deduce that

∑

n≥1

�f,X (n)
ns log n

= log P(s) =
∑

p≤X
log

⎛

⎜⎜⎝1 +
∑

ν≥1
pν≤X

f (pν)
pνs

⎞

⎟⎟⎠ .

Given (3.1), we obtain the Taylor expansion

∑

n≥1

�f,X (n)
ns log n

=
∑

p≤X

∑

k≥1

(−1)k−1

k
∑

ν1 ,...,νk≥1
pνi≤X∀i

f (pν1 ) · · · f (pνk )
p(ν1+···+νk )s

=
∑

pν

p≤X

1
pνs log pν

⎛

⎜⎜⎜⎜⎜⎝
log pν ·

∑

1≤k≤ν

(−1)k−1

k
∑

ν1+···+νk=ν
ν1 ,...,νk≥1
pνi≤X∀i

∏

1≤i≤k
f (pνi )

⎞

⎟⎟⎟⎟⎟⎠
.

By the identity theorem for Dirichlet series, we thus find that �f,X (n) = 0 unless n = pν

for some prime power pν with p ≤ X , in which case

�f,X (pν) = log pν ·
∑

1≤k≤ν

(−1)k−1

k
∑

ν1+·+νk=ν
ν1 ,...,νk≥1
pνi≤X∀i

∏

1≤i≤k
f (pνi ). (3.2)
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When ν = 1, we get the expression �f,X (p) = f (p) log p, so that |�f (p)| ≤ B log p.
For ν ≥ 2, we simply note using the uniform bound dB(n)C �B,C,ε nε and the triangle
inequality in (3.2) that

|�f,X (pν)| �B,C,ε
∑

1≤k≤ν

1
k

∑

ν1+···+νk=ν
ν1 ,...,νk≥1

∏

1≤i≤k
pνiε ≤ pνεp(ν),

where p(ν) denotes the number of partitions of the positive integer ν. By a classical bound
of Hardy–Ramanujan [13, Sec. 2.3], there is an absolute constant c > 0 such that

p(ν) � ec
√

ν �ε pνε ,

which implies the claim. ��

We will use the following upper bound for non-negative functions repeatedly in the
sequel. For convenience, given a multiplicative function g and Y ≥ 2 we write

Pg (Y ) :=
∏

p≤Y

(
1 + |g(p)| − 1

p

)
.

Lemma 3.2 [P. Shiu; [32], Thm. 1] Let f : N → C be a multiplicative function satisfying
|f (n)| ≤ dB(n)C for all n ≤ X. Let

√
X < Y ≤ X, δ ∈ (0, 1) and let Y δ ≤ y ≤ Y . Then

∑

Y−y<n≤Y
|f (n)| �B,C,δ yPf (X).

Proof The hypotheses required to apply [32, Thm. 1] aremore precisely that |f (n)| �ε nε

for all n ≤ X and that there is a constant A ≥ 1 such that |f (pν)| ≤ Aν for all pν ≤ X . The
first hypothesis is obvious from dB(n)C ≤ d(n)�B�C �B,C,ε nε , while the second is implied
by Lemma 3.1 a). ��

Lemma 3.3 Let f ∈ M(X ;A, B, C ; γ , σ ) and let t0 = t0(f, X). Let X1/5 ≤ Y ≤ X, and let
2 ≤ P ≤ Q ≤ exp

(
logX

log logX

)
. Then for any 1 ≤ Z ≤ logX,

sup
Z<|u|≤X/2

∣∣∣∣∣∣∣∣

∑

n≤Y
p|n⇒p/∈[P,Q]

f (n)n−i(t0+u)

∣∣∣∣∣∣∣∣
�A,B,C YPf (X)

((
logQ
log P

)2B log logX
logXσ

+ 1√
Z

)
.

Proof Define β(n) := f (n)1p|n⇒p/∈[P,Q], and for t ∈ R set βt (n) := β(n)n−it . Note that
|βt (n)| ≤ |f (n)| for all n and t ∈ R. As f ∈ M(X ;A, B, C ; γ , σ ), we have that

1. maxp≤X |f (p)| ≤ B
2.
∑

pk≤X
k≥2

|f (pk )| log pk
pk �B,C 1 by Lemma 3.1b), and

3.
∑

y<p≤X
|f (p)|
p ≥ A log

(
logX
log y

)
− OA,B(1) uniformly in 2 ≤ y ≤ X ,

for all t ∈ R. Thus, the hypotheses of [41, Cor. 2.1] are fulfilled with r = |f |. Applying that
result gives, for every Z < |u| ≤ X/2,

∣∣∣∣∣∣

∑

n≤Y
βt0+u(n)

∣∣∣∣∣∣
�A,B,C

⎛

⎝
∑

n≤Y
|f (n)|

⎞

⎠
(
(1 + Mβt0+u(Y ;Z/2)e

−Mβt0+u (Y ;Z/2) + 1√
Z

)
.
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Let t = t(u) ∈ [−Z/2, Z/2] be the minimizer implicit inMft0+u (Y ;Z/2), so that

Mβt0+u (Y ;Z/2) = ρ(β , ni(t0+u+t);Y )2 ≤ 2B log logX.

As X1/5 ≤ Y ≤ X ,

ρ(β , ni(t0+u+t);Y )2 = ρ(β , ni(t0+u+t);X)2 − OB(1)

≥ ρ(f, ni(t0+u+t);X)2 − 2B log
(
logQ
log P

)
− OB(1).

Since f ∈ M(X ;A, B, C ; γ , σ ) and |t0 + u + t| ≤ 2X and |u + t| > Z/2, we have by (1.8)
that

ρ(f, ni(t0+u+t);X)2 ≥ σ min{log logX, log(1 + |u + t| logX)} − OA,B(1)

≥ σ log logX − OA,B(1).

It thus follows that

max
Z<|u|≤X/2

∣∣∣∣∣∣

∑

n≤Y
βt0+u(n)

∣∣∣∣∣∣
�A,B,C

⎛

⎝
∑

n≤Y
|f (n)|

⎞

⎠
((

logQ
log P

)2B log logX
(logX)σ

+ 1√
Z

)
.

Finally, applying Lemma 3.2 together with Mertens’ theorem, we obtain
∑

n≤Y
|f (n)| �B,C Y

∏

p≤Y

(
1 + |f (p)| − 1

p

)
�B YPf (X),

and the claim follows. ��

We need the following estimate for certain divisor-bounded functions on y-smooth6

integers, which is essentially due to Song [34]. An important role is played by the function
ρk (u) for k ∈ N and u ≥ 0, which is a generalization of the classical Dickman–de Bruijn
function, defined by the differential delay equation

uρ′
k (u) = (k − 1)ρk (u) − kρk (u − 1) if u ≥ 1,

and ρk (u) := uk−1/�(k) for 0 ≤ u < 1.

Lemma 3.4 Let g : N → R be a non-negative multiplicative function for which there are
real constants δ ∈ (0, 1), η ∈ (0, 1/2) and D > 0, and an integer k ≥ 1 such that

∑

p≤z
g(p) log p = kz + O(z/(log z)δ) for all z ≥ 2, (3.3)

∑

pν ,ν≥2

g(pν)
p(1−η)ν ≤ D. (3.4)

Let x ≥ 3 and let exp
(
(log x log log x)2/(2+δ)

)
≤ y ≤ x. Set u := log x

log y . Then

∑

n≤x
P+(n)≤y

g(n) = e−γ kxρk (u)
G(1, y)
log y

(
1 + O

(
log(u + 1)
(log y)δ/2

))
,

6By a y-smooth or y-friable integer, we mean a positive integer n such that p | n ⇒ p ≤ y.
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where G(s, y) := ∑
P+(n)≤y g(n)n−s for Re(s) > 0, and P+(n) denotes the largest prime

factor of n.
In particular, for y in the given range and such that u → ∞ we have

∑

n≤x
P+(n)≤y

g(n) �k,D,δ x(log y)k−1 exp
(

−1
3
u log u

)
.

Proof The first claim is a special case of the main result of [34].
For the second claim, we note that

G(1, y) ≤ exp

⎛

⎜⎜⎝
∑

p≤y

g(p)
p

+
∑

p≤y
ν≥2

g(pν)
pν

⎞

⎟⎟⎠ �D exp

⎛

⎝
∑

p≤y

g(p)
p

⎞

⎠ �δ (log y)k ,

where the penultimate estimate follows from (3.4), and the last estimate is obtained by
partial summation from (3.3). Furthermore, by [33, (3.10)] and well-known upper bounds
for the Dickman–de Bruijn function (e.g., [6, (1.6)]), we have

ρk (u) = ku+O(u/ log(1+u))ρ(u) ≤ exp
(
2u log k − 1

2
u log u

)
≤ exp

(
−1
3
u log u

)
,

whenever u is large enough in terms of k , and the claim follows. ��

By combining the last two lemmas, we may deduce the following upper bound for
Dirichlet polynomials of a special type (cf. [26, Lem. 3]).

Corollary 3.5 Let 10 ≤ P ≤ Q ≤ exp
(

logX
log logX

)
, and let 1 ≤ Z ≤ logX. Assume the

hypotheses of Lemma 3.3, and assume X ≥ X0(B, C). Then for any
√
X ≤ Y ≤ X,

sup
Z<|u|≤X/2

∣∣∣∣∣∣

∑

Y /3<n≤Y

f (n)
n1+i(t0+u)(1 + ω[P,Q](n))

∣∣∣∣∣∣

�A,B,C Pf (X)
((

logQ
log P

)3B log logX
(logX)σ

+
(
logQ
log P

)B 1√
Z

)
,

where ω[P,Q](n) := ∑
p|n

P≤p≤Q
1.

Proof Fix u ∈ [−X/2, X/2]\[−Z, Z] and set t := t0 + u. Write f = α ∗ β , where α and
β are multiplicative functions with α(pk ) = f (pk ) whenever P ≤ p ≤ Q and pk ≤ X , and
β(pk ) = f (pk ) for all other primes powers pk ≤ X . We apply the hyperbola method with
M = √

Y to get

∣∣∣∣∣∣

∑

Y /3<n≤Y

f (n)
n1+it (1 + ω[P,Q](n))

∣∣∣∣∣∣
�
∑

a≤M

|α(a)|
a(1 + ω(a))

∣∣∣∣∣∣

∑

Y /(3a)<b≤Y /a

β(b)b−it

b

∣∣∣∣∣∣

+
∑

b≤Y /M

|β(b)|
b

∑

max{M,Y /(3b)}<a≤Y /b

|α(a)|
a

=: R1 + R2.
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To boundR1, we apply partial summation and Lemma 3.3 to obtain, uniformly in u,

∑

Y /(3a)<b≤Y /a

β(b)b−it

b
�A,B,C sup

Y /(3a)≤y≤Y /a

1
y

∣∣∣∣∣∣

∑

n≤y
β(b)b−it

∣∣∣∣∣∣

� Pf (X)
((

logQ
log P

)2B log logX
(logX)σ

+ 1√
Z

)
.

Given the prime power support of α, we have

∑

a≤M

|α(a)|
a

�B,C
∏

P≤p≤Q

(
1 + |f (p)|

p

)
�B

(
logQ
log P

)B
,

so that on combining this with the previous estimate, we obtain

R1 �A,B,C Pf (X)
((

logQ
log P

)3B log logX
(logX)σ

+
(
logQ
log P

)B 1√
Z

)
.

Next, consider R2. Note that α(n) = f (n)1p|n⇒p∈[P,Q], and so since |f (n)| ≤ dB(n)C

uniformly over n ≤ X we have
∑

X/(3b)<a≤X/b

|α(a)|
a

� b
X

∑

n≤X/b
P+(n)≤Q

g(n),

where g(n) := d�B�(n)�C�. Note that g(n) takes integer values, and in particular taking
k := �B��C� ∈ Z, for each XM/Y < z ≤ X we have

∑

p≤z
g(p) log p = k

∑

p≤z
log p = kU + O(z/(log z)1/2),

say, by the prime number theorem. Furthermore, that g satisfies (3.4) with some η ∈
(0, 1/2) andD = OB,C (1) is the content of Lemma3.1b).Hence, asub := log(X/b)/ logQ ≥
B logX
2 logQ ≥ B

2 log logX , Lemma 3.4 implies that when X is sufficiently large in terms of B
and C we obtain

b
X

∑

n≤X/b
P+(n)≤Q

g(n) � (logQ)k−1 exp
(

−1
6
ub log ub

)
�B,C (logX)−B−100.

Combining this with the bound
∑

b≤X/M

|β(b)|
b

≤
∑

b≤X/M

|f (b)|
b

� (logX)Pf (X) � (logX)B,

which again follows frompartial summation and Lemma3.2, we obtainR2 � (logX)−100.
Altogether, we conclude that

∣∣∣∣∣∣

∑

Y /3<n≤Y

f (n)
n1+i(t0+u)(1 + ω[P,Q](n))

∣∣∣∣∣∣

�B,C Pf (X)
(
(logX)−100 +

(
logQ
log P

)3B log logX
(logX)σ

+
(
logQ
log P

)B 1√
Z

)
,

uniformly over Z < |u| ≤ X/2, and the claim follows since Z−1/2 ≥ (logX)−1/2. ��
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3.1 Lipschitz bounds andmain terms

In this subsection, we derive a slight refinement of the Lipschitz bounds found in [7, Thm.
1.5]. Specifically, our estimates are sensitive to the distribution of values |f (p)|, which
will allow us to obtain Theorem 2.2. See also [28] for some related Lipschitz-type bounds
for unbounded multiplicative functions that share some overlap7 with the general result
obtained presently.

Theorem 3.6 [Relative Lipschitz bounds] Let 1 ≤ w ≤ X1/3 and let f ∈
M(X ;A, B, C ; γ , σ ). Set t0 = t0(f, X). Then

∣∣∣∣∣∣
w
X

∑

n≤X/w
f (n)n−it0 − 1

X
∑

n≤X
f (n)n−it0

∣∣∣∣∣∣

�A,B,C log
(

logX
log(ew)

)(
log(ew) + log logX

logX

)σ̂

Pf (X),

where σ̂ := min{1, σ }. The same bound holds for the quantity
∣∣∣∣∣∣

(w
X

)1+it0 ∑

n≤X/w
f (n) − 1

X1+it0

∑

n≤X
f (n)

∣∣∣∣∣∣
.

To this end, we need to introduce some notation that is consistent with the notation from
[7]. For Re(s) > 1, we write

F (s) =
∑

n≥1
pk ||n⇒pk≤X

f (n)n−it0

ns
.

For each prime power pk ≤ X , k ≥ 1, define

s(pk ) :=
⎧
⎨

⎩
f (pk )p−ikt0 if p ≤ y

0 if p > y
�(pk ) :=

⎧
⎨

⎩
0 if p ≤ y

f (pk )p−ikt0 if p > y
,

where y ≥ 2 is a large parameter to be chosen later. We extend s and � multiplicatively to
all n ∈ N with pk ||n ⇒ pk ≤ X , and set s(n) = �(n) = 0 otherwise. For Re(s) > 1, also
define

S(s) =
∑

n≥1

s(n)
ns

, L(s) :=
∑

n≥1

�(n)
ns

.

We recall that��(n) is the nth coefficient of the Dirichlet series−L′/L(s), the logarithmic
derivative of L(s), which is well defined for all Re(s) > 1 whenever y ≥ y0(B, C) by
Lemma 3.1 c).

Lemma 3.7 Let f ∈ M(X ;A, B, C ; γ , σ ). Let t ∈ R and ξ ≥ 1/ logX. Then

|F (1 + ξ + it)| �A,B,C ξ−1(1 + ξ logX)1−APf (X)e−ρ(fn−it0 ,nit ;e1/ξ )2 �B (logX)B.

7Matthiesen [28] works with a slightly more rigid collection of unbounded functions, at least as far as her assump-
tions on lower bounds for |f (p)| on average; in particular, she assumes uniform lower bounds on the weighted sums
x−1∑

p≤x |f (p)| log p, which is a stronger condition than (1.6), say. Therefore, we cannot simply import her related
results in the sequel.
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Proof By Lemma 3.1b) and maxp≤X |f (p)| ≤ B, we deduce that

|F (1 + ξ + it)| �B
∏

p≤X

∣∣∣∣∣1 + f (p)p−i(t0+t)

p1+ξ

∣∣∣∣∣ exp

⎛

⎜⎜⎜⎝
∑

pk≤X
k≥2

|f (pk )|
pk(1+ξ )

⎞

⎟⎟⎟⎠

�B,C
∏

p≤X

(
1 + |f (p)|

p1+ξ

)(
1 + Re(f (p)p−i(t0+t)) − |f (p)|

p1+ξ

)
.

By partial summation and the prime number theorem, given any sequence {αp}p ⊂ C

with maxp|αp| �B 1 the estimates

∑

p>e1/ξ

αp
p1+ξ

�B

∫ ∞

e1/ξ
e−ξv dv

v
�B 1

∑

p≤e1/ξ

(
αp
p

− αp
p1±ξ

)
� Bξ

∑

p≤e1/ξ

log p
p

�B 1, (3.5)

both hold. It follows that

|F (1 + ξ + it)| �B,C
∏

p≤e1/ξ

(
1 + |f (p)|

p

)
exp

⎛

⎝−
∑

p≤e1/ξ

|f (p)| − Re(f (p)p−i(t0+t))
p

⎞

⎠

�B ξ−1Pf (X) exp

⎛

⎝
∑

e1/ξ <p≤X

1 − |f (p)|
p

⎞

⎠ e−ρ(fn−it0 ,nit ;e1/ξ )2 .

Since f ∈ M(X ;A, B; γ , σ ), we have
∑

e1/ξ <p≤X

1 − |f (p)|
p

≤ (1 − A)
∑

e1/ξ <p≤X

1
p

+ O(ξγ ) = (1 − A) log(ξ logX) + OA(1).

We thus obtain

|F (1 + ξ + it)| �A,B,C ξ−1(1 + ξ logX)1−APf (X)e−ρ(fn−it0 ,nit ;e1/ξ )2 ,

which proves the first claimed estimate.
To obtain the second, note that ρ(fn−it0 , nit ;Y )2 ≥ 0 for all Y ≥ 2, and so using |f (p)| ≤ B
and A ≥ 0 we obtain the further bound

� ξ−1(ξ logX)1−APf (X) � (logX)Pf (X) �B exp

⎛

⎝
∑

p≤X

|f (p)|
p

⎞

⎠ � (logX)B,

as claimed. ��
To bound certain error terms in the proof of Theorem 3.6, we require the following

estimate, whose proof largely follows that of [7, Lem. 2.4]

Lemma 3.8 Let e3 ≤ w ≤ X1/3, w ≤ y ≤ √
X and η := 1/ log y ∈ (0, 1/3]. Then for any

X/w ≤ Z ≤ X,

∑

mn≤Z
|s(m)| |�(n)|

nη
+
∫ η

0

∑

mkn≤Z
|s(m)| |��(k)�(n)|

kαn2η+α
dα �A,B,C Z

(
log y
log Z

)A
Pf (X).
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Proof In the first sum, the summands arise from a Dirichlet convolution of multiplica-
tive functions |s| ∗ |�|n−η, and we clearly have |s(n)|, |�(n)| ≤ dB(n)C for all n ≤ X . By
Lemmas 3.2 and (3.5), the first sum is therefore

�B,C
Z

log Z
exp

⎛

⎝
∑

p≤y

|f (p)|
p

+
∑

y<p≤Z

|f (p)|
p1+η

⎞

⎠

�B Z
log y
logX

Pf (X) exp

⎛

⎝
∑

y<p≤X

1 − |f (p)|
p

⎞

⎠ .

Arguing as in the previous lemma, since f ∈ M(X ;A, B, C ; γ , σ ) this is bounded by

�A Z
log y
logX

·
(
logX
log y

)1−A
Pf (X) � Z

(
log y
logX

)A
Pf (X).

For the second term, we use Lemma 3.1c), which shows that |��(p)| ≤ B log p and
|��(pν)| �ε,B,C pνε . It follows that for 1 ≤ K ≤ X ,

∣∣∣∣∣∣

∑

k≤K
��(n)n−α

∣∣∣∣∣∣
≤ B

∑

p≤K
p−α log p + OB,C

⎛

⎜⎜⎝
∑

pν≤K
ν≥2

pν/6

⎞

⎟⎟⎠ �B,C K 1−α + K 2/3,

say, which is acceptable. Therefore taking K = Z/mn, the α integral in the statement is

�B,C

∫ η

0
Z1−α

∑

mn≤Z

|s(m)|
m1−α

|�(n)|
n1+2η dα.

Extending the inner sum by positivity to all products mn with pk ||mn ⇒ pk ≤ Z and
using the estimates (3.5) once again, we may bound the integral using Euler products as

�B,C

∫ η

0
Z1−α ·

∏

p≤y

(
1 + |f (p)|

p1−α

) ∏

y<p≤X

(
1 + |f (p)|

p1+2η

)
dα

�B Z
∏

p≤y

(
1 + |f (p)|

p

)∫ η

0
Z−αdα �B Z

log y
log Z

Pf (X) exp

⎛

⎝
∑

y<p≤X

1 − |f (p)|
p

⎞

⎠

�A,B Z
(
log y
logX

)A
Pf (X).

This completes the proof. ��
Proof of Theorem 3.6 The proof follows that of [7, Thm. 1.5], and we principally highlight
the differences.
We begin with the first claim of the theorem. Let T := (logX)B+1 and y := max{ew, T 2}.
Fix η := 1/ log y, c0 := 1+1/ logX . Then [7, Lem. 2.2] (replacingβ byβ/2) and Lemma3.8
combine to show that

1
X
∑

n≤X
f (n)n−it0 − w

X
∑

n≤X/w
f (n)n−it0

=
∫ η

0

∫ η

0

1
π i

∫ c0+i∞

c0−i∞
S(s)L(s + α)

L′

L (s + α)
L′

L (s + α + 2β)
Xs−1(1 − w1−s)

s
dsdβdα

+ OA,B,C

((
log y
logX

)A
Pf (X)

)
.
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Consider the inner integral over s. Shifting s 
→ s − α − β and applying [7, Lem. 2.5], this
is

1
π i

∫ c0+iT

c0−iT
S(s − α − β)L(s + β)

⎛

⎝
∑

y<m<X/y

��(m)
ms−β

⎞

⎠

⎛

⎝
∑

y<n<X/y

��(n)
ns+β

⎞

⎠

·X
s−1−α−β (1 − w1+α+β−s)

s − α − β
ds + O

(
1

logX

)
.

Extracting the maximum over |t| ≤ T , then applying Cauchy–Schwarz and [7, Lem. 2.6],
the main term for the s-integral is bounded above by

� X−α−β

(
max|t|≤T

|S(c0 − α − β + it)L(c0 + β + it)||1 − w1+α+β−c0−it |
|c0 − α − β + it|

)

×
⎛

⎜⎝
∫ T

−T

∣∣∣∣∣∣

∑

y<m<X/y

��(m)
mc0−β−it

∣∣∣∣∣∣

2

dt

⎞

⎟⎠

1/2⎛

⎜⎝
∫ T

−T

∣∣∣∣∣∣

∑

y<m<X/y

��(m)
mc0+β−it

∣∣∣∣∣∣

2

dt

⎞

⎟⎠

1/2

�B,C X−α−β

(
max|t|≤T

|S(c0 − α − β + it)L(c0 + β + it)||1 − w1+α+β−c0−it |
|c0 − α − β + it|

)

×
⎛

⎝
∑

y<p<X/y

log p
pc0−2β + y−1/2+2β

⎞

⎠
1/2⎛

⎝
∑

y<p<X/y

log p
pc0+2β + y−1/2−2β

⎞

⎠
1/2

� X−α−β

(
X
y

)β

min{logX, 1/β}

×
(
max|t|≤T

|S(c0 − α − β + it)L(c0 + β + it)||1 − w1+α+β−c0−it |
|c0 − α − β + it|

)
.

Furthermore, by (3.5) and α,β ≤ η = 1/ log y, we see that for any t ∈ R,

X−α−β

(
X
y

)β

|S(c0 − α − β + it)L(c0 + β + it)|

�B,C X−αy−β |S(c0 + β + it)L(c0 + β + it)|
� X−α|F (c0 + β + it)|.

Thus, we have so far shown that
∣∣∣∣∣∣
1
X
∑

n≤X
f (n)n−it0 − w

X
∑

n≤X/w
f (n)n−it0

∣∣∣∣∣∣

�A,B,C

∫ η

0

∫ η

0
X−α min{logX, 1/β}max|t|≤T

|F (c0 + β + it)(1 − w1+α+β−c0−it )|
|c0 + β + it| dβdα

+
(
log logX + log(ew)

logX

)A
Pf (X) + 1

logX
. (3.6)

Observe next that

|w−β−it − w1+α+β−c0−it | �
(

α + β + 1
logX

)
log(ew),
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so that we may rewrite the integral expression in (3.6) as

∫ η

0

(∫ η

0
X−αdx

)
min{logX, 1/β}max|t|≤T

|F (c0 + β + it)(1 − w−β−it )|
|c0 + β + it| dβ

+ (log(ew))
∫ η

0
max|t|≤T

|F (c0 + β + it)|min{logX,β−1}
∫ η

0
X−α (α + β + 1/ logX) dαdβ

=: T1 + T2.

We first estimate T2. The integral over α is

�
(

β + 1
logX

)∫ η

0
X−αdα +

∫ η

0
αX−αdα � 1

logX

(
β + 1

logX

)
.

Applying Lemma 3.7 (with ξ = 1/ logX + β) and ρ(fn−it0 , nit ;Y )2 ≥ 0 for all Y ≥ 2,

T2 �A,B,C (log(ew))Pf (X)
∫ η

0
min{1, (β logX)−1}(1 + β logX)1−Adβ .

Splitting the β-integral at 1/ logX and evaluating, we obtain

T2 �A,B,C (log(ew))Pf (X)
(

1
logX

+ 1A=1 log(η logX) + 1
(logX)A

(
(logX)A−1 + η1−A

))

�B Pf (X)
(
(log(ew))(1 + 1A=1 log(logX/ log(ew)))

logX
+
(
log(ew) + log logX

logX

)A
)

� Pf (X)
(
log(ew) + log logX

logX

)min{1,A} (
1 + 1A=1 log

(
logX
log(ew)

))
.

We now turn to T1. By evaluating the α integral, we have

T1 � 1
logX

∫ η

0
min{logX, 1/β}max|t|≤T

|F (c0 + β + it)||1 − w−β−it |
|c0 + β + it| dβ .

Put T ′ := 1
2 (logX)

B. If the maximum occurs at |t| > T ′ then using the second estimate
in Lemma 3.7 we obtain

T1 �B,C
1

logX

∫ η

0
min{logX, 1/β} · (logX)

B

T ′ dβ � 1
logX

(
(logX) · 1

logX
+ log (η logX)

)

� log logX
logX

.

Thus, suppose the maximum occurs with |t| ≤ T ′. Applying [7, Lem. 3.1], we get

max
|t|≤T ′|F (c0 + β + it)(1 − w−β−it )|

≤ max
|t|≤(logX)B

|F (c0 + it)(1 − w−it )| + O

⎛

⎝ β

(logX)B
∑

n≤X

|f (n)|
n1+1/ logX

⎞

⎠

= max
|t|≤(logX)B

|F (c0 + it)(1 − w−it )| + OB,C

(
β

(logX)B−1Pf (X)
)
.
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Inserting this into the β integral yields, in this case,

T1 �B max
|t|≤(logX)B

|F (c0 + it)(1 − w−it )| · 1
logX

∫ η

0
min{logX, 1/β}dβ + Pf (X)

(logX)B

�B max
|t|≤(logX)B

|F (1 + 1/ logX + it)(1 − w−it )| · log(logX/ log(ew))
logX

+ Pf (X)
(logX)B

.

Finally, we focus on the maximum here. Note that |1 − w−it | � min{1, |t| log(ew)}, so
combining Lemma 3.7 with our hypothesis (1.8), we obtain

max
|t|≤(logX)B

|F (1 + 1/ logX + it)(1 − w−it )|

�A,B,C (logX)Pf (X) · max
|t|≤(logX)B

min{1, |t| log(ew)}e−ρ(f,ni(t0+t);X)2

�A,B (logX)Pf (X) max
|t|≤(logX)B

min{1, |t| log(ew)}
(

1
(logX)σ

+ 1
(1 + |t| logX)σ

)

� (logX)Pf (X) ·
(
log(ew)
logX

)min{1,σ }
.

Hence, as σ̂ = min{1, σ } ≤ A ≤ B, and (logX)−1 �A (logX)−APf (X) by (1.7) we get

T1 �A,B,C log
(

logX
log(ew)

)(
log(ew)
logX

)σ̂

Pf (X) + Pf (X)
(logX)B

+ log logX
logX

� log
(

logX
log(ew)

)(
log(ew) + log logX

logX

)σ̂

Pf (X).

Combining all of these bounds and inserting them into (3.6), we thus find that
∣∣∣∣∣∣
1
X
∑

n≤X
f (n)n−it0 − w

X
∑

n≤X/w
f (n)n−it0

∣∣∣∣∣∣

�A,B,C Pf (X) log
(

logX
log(ew)

)((
log(ew) + log logX

logX

)min{1,A}
+
(
log(ew) + log logX

logX

)σ̂
)

� Pf (X) log
(

logX
log(ew)

)(
log(ew) + log logX

logX

)σ̂

.

This proves the first claim.
The second claim can be deduced similarly, since (using the same notation as above) in
the first step we have (after shifting s 
→ s − it0)

1
X1+it0

∑

n≤X
f (n) −

(w
X

)1+it0 ∑

n≤X/w
f (n)

=
∫ η

0

∫ η

0

1
π i

∫ c0+i∞

c0−i∞
S(s − α − β)L(s + β)

L′

L (s + α)
L′

L (s + α + 2β)
Xs−1(1 − w1−s)

s + it0
dsdβdα

+ OA,B,C

((
log y
logX

)A
Pf (X)

)
,

which simply localizes the argument above to the range |t + t0| ≤ T instead. ��
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Theorem 3.6 may be directly applied to obtain the first estimate in Theorem 2.2. To
obtain the second, we will use the following corollary of Theorem 3.6 that allows us to
pass from n−it0 -twisted sums to untwisted sums of f (n) on long intervals.

Corollary 3.9 Let t0 = t0(f, X) be as above. Then for any x ∈ (X/2, X],

1
x
∑

n≤x
f (n)n−it0 = 1 + it0

x1+it0

∑

n≤x
f (n) + OA,B,C

(
|t0|Pf (X)

(log logX)σ̂+1

(logX)σ̂

)
.

Proof By partial summation, we have

1
x
∑

n≤x
f (n)n−it0 = 1

x

∫ x

1
u−it0d{

∑

n≤x
f (n)}

= 1
x1+it0

∑

n≤x
f (n) + it0

x

∫ x

1

1
u1+it0

∑

n≤u
f (n)du. (3.7)

We split the integral over u at x/(logX)2. In the first range, we use the trivial bound
together with Lemma 3.2, obtaining

≤ |t0|
x

∫ x/(logX)2

1

(
1
u
∑

n≤u
|f (n)|

)
du �B,C

|t0|
(logX)2

∏

p≤X

(
1 + |f (p)|

p

)
� |t0|

logX
Pf (X).

In the remaining range x/(logX)2 < u ≤ x, we apply the second claim in Theorem 3.6
(with 1 ≤ w ≤ (logX)2), which gives

it0
x

∫ x

x/(logX)2

(
1

x1+it0

∑

n≤x
f (n) + OA,B,C

(
Pf (X)

(log logX)σ̂+1

(logX)σ̂

))
du

=
(

1
x1+it0

∑

n≤x
f (n)

)
· it0
x

∫ x

x/(logX)2
du + OA,B,C

(
|t0|Pf (X)

(log logX)σ̂+1

(logX)σ̂

)

= it0
x1+it0

∑

n≤x
f (n) + OA,B,C

(
|t0|Pf (X)

(log logX)σ̂+1

(logX)σ̂

)
.

Combining this with the estimate from 1 ≤ u ≤ x/(logX)2, then inserting this into (3.7),
we prove the claim. ��

Proof of Theorem 2.2 We begin by proving the first estimate in the statement of the
theorem. Let X/(logX)σ̂ /2 ≤ h ≤ X/10. Note that by writing x − h = x/w, where
w := (1 − h/x)−1 ∈ [1, 2], the sum of f (n)n−it0 over (x − h, x] is

1
h

⎛

⎝
∑

n≤x
f (n)n−it0 −

∑

n≤x/w
f (n)n−it0

⎞

⎠ . (3.8)

and similarly its sum over (X/2, X] is

2
X

⎛

⎝
∑

n≤X
f (n)n−it0 −

∑

n≤X/2
f (n)n−it0

⎞

⎠ . (3.9)
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By Theorem 3.6, (3.8) becomes

1
h

((
1 − 1

w

)∑

n≤x
f (n)n−it0

)
+ OA,B,C

(
X
h
(log logX)σ̂+1

(logX)σ̂
Pf (X)

)

= 1
x
∑

n≤x
f (n)n−it0 + OA,B,C

(
(log logX)σ̂+1

(logX)σ̂ /2 Pf (X)
)
.

Similarly, applying Theorem 3.6 twice to (3.9), we also find that

2
X

∑

X
2 <n≤X

f (n)n−it0 = 2
X

(
1 − 1

2

)∑

n≤X
f (n)n−it0 + OA,B,C

(
(log logX)σ̂+1

(logX)σ̂
Pf (X)

)

= 1
x
∑

n≤x
f (n)n−it0 + OA,B,C

(
(log logX)σ̂+1

(logX)σ̂
Pf (X)

)
, (3.10)

viewing x = X/u for some u ∈ [1, 2] in the last step. Combinedwith the previous estimate,
we deduce the first claimed estimate of the theorem.
To prove the second claimed estimate, we apply Corollary 3.9 to obtain

∑

x−h<n≤x
f (n) = xit0

1 + it0

∑

n≤x
f (n)n−it0 − (x − h)it0

1 + it0

∑

n≤x−h
f (n)n−it0

+ O
(
XPf (X)

(log logX)σ̂+1

(logX)σ̂

)
.

Setting w := (1 − h/x)−1 as in (3.8), we have

xit0
1 + it0

∑

n≤x
f (n)n−it0 − (x − h)it0

1 + it0

∑

n≤x−h
f (n)n−it0

=
(

xit0
1 + it0

− 1
w
(x − h)it0
1 + it0

)∑

n≤x
f (n)n−it0 + O

(
XPf (X)

(log logX)σ̂+1

(logX)σ̂

)

= x1+it0 − (x − h)1+it0

1 + it0
· 1
x
∑

n≤x
f (n)n−it0 + O

(
XPf (X)

(log logX)σ̂+1

(logX)σ̂

)
.

By (3.10), the main term here is
∫ x

x−h
uit0du · 2

X
∑

X/2<n≤X
f (n)n−it0 + O

(
XPf (X)

(log logX)σ̂+1

(logX)σ̂

)
.

Combining these estimates, we thus obtain

1
h

∑

x−h<n≤x
f (n) = 1

h

∫ x

x−h
uit0du · 2

X
∑

X/2<n≤x
f (n)n−it0 + O

(
X
h
Pf (X)

(log logX)σ̂+1

(logX)σ̂

)
,

and so the second claimed estimate of the theorem follows from h ≥ X/(logX)σ̂ /2. ��

4 Applying theMatomäki–Radziwiłł method
In this section, which broadly follows the lines of the proof of [26, Thm. 3], we set out the
key elements of the proof of Theorem 2.1.
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4.1 Large sieve estimates

The content of this subsection can essentially all be found in [26, Sec. 6 and 7] and in [25,
Sec. 3]. In what follows, a set T ⊂ R is said to bewell spaced if |t1− t2| ≥ 1 for any distinct
t1, t2 ∈ T .

Lemma 4.1 [Sparse large sieve for multiplicative sequences] Let T ≥ 1 and 2 ≤ N ≤ X.
Let {an}n≤N be a sequence of complex numbers. Let T ⊂ [−T, T ] be well spaced. The
following bounds hold:

(a) (L2 mean value theorem, sparse version)

∫ T

−T
|
∑

n≤N
ann−it |2dt � T

∑

n≤N
|an|2 + T

∑

n≤N

∑

1≤|m|≤n/T
|anam+n|.

(b) (L2 mean value theoremwithmultiplicativemajorant) Let 1 ≤ M ≤ N, and let c > 0.
Assume there is a multiplicative function f : N → C satisfying |f (n)| ≤ dB(n)C such
that |an| ≤ c|f (n)| for all n ≤ N. Then

∫ T

−T
|

∑

N−M<n≤N

ann−it

n
|2dt �B,C c2

(
TM
N 2 Pf 2 (N ) + M

N
Pf (N )2

)
.

(c) (Discrete mean value theorem)

∑

t∈T
|
∑

N/3<n≤N

ann−it

n
|2

� min
{(

1 + T
N

)
log(2N ),

(
1 + |T |T

1/2

N

)
log(2T )

}
1
N

∑

N/3<n≤N
|an|2.

Proof Part (a) is [25, Lem. 3.2], part (b) is proven in the same way as8 [25, Lem. 3.4] and
part (c) is a combination of [26, Lem. 7 and 9]. ��

Lemma 4.2 [Large sieve with prime support] Let B, T ≥ 1, P ≥ 10. Let {ap}P<p≤2P
be a sequence with maxP<p≤2P |ap| ≤ B. Let P(s) := ∑

P<p≤2P app−s, for s ∈ C and let
T ⊂ [−T, T ] be a well-spaced set.

(a) (Halász–Montgomery estimate for primes)
∑

t∈T
|P(1 + it)|2 �B

1
(log P)2

(
1 + |T |(log T )2 exp

(
− log P
(log T )2/3+ε

))
.

(b) (Large values estimate) If T consists only of t ∈ [−T, T ] with |P(1 + it)| ≥ V−1 then

|T | �B T 2 logV
log P V 2 exp

(
2B

log T
log P

log log T
)
.

Proof Part (a) is [26, Lem. 11], while part (b) is proven precisely as in [26, Lem. 8], keeping
track of the upper bound condition |ap| ≤ B. ��

8The technique used there relies on the main result of [14], which is valid generally for multiplicative functions that
are bounded by a power of the divisor function.
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4.2 Dirichlet polynomial decomposition

The following is a variant of [26, Lem. 12] tailored to elements ofM(X ;A, B, C ; γ , σ ).

Lemma 4.3 Let f ∈ M(X ;A, B, C ; γ , σ ). Let T ≥ 1, 1 ≤ H ≤ X1/2 and 1 ≤ P ≤ Q ≤
X1/2. Set I to be the interval of integers

⌊
H log P

⌋ ≤ v ≤ H logQ, and let T ⊂ [−T, T ].
Then

∫

T

∣∣∣∣∣∣∣∣∣

∑

X/3<n≤X
ω[P,Q](n)≥1

f (n)
n1+it

∣∣∣∣∣∣∣∣∣

2

dt �B,C H log(Q/P)
∑

v∈I

∫

T
|Qv,H (1 + it)Rv,H (1 + it)|2dt

+
(
1
H

+ 1
P

)(
T
X
Pf 2 (X) + Pf (X)2

)
,

where for v ∈ I and s ∈ C we have set

Qv,H (s) :=
∑

P≤p≤Q
v/H≤log p≤(v+1)/H

f (p)p−s

Rv,H (s) :=
∑

Xe−v/H /3≤m≤Xe−v/H

f (m)
ms(ω[P,Q](m) + 1)

.

Proof Theproof is the same as that of [26, Lem. 12] (withan = f (n)1ω[P,Q]≥1(n),bm = f (m)
and cp = f (p) for P ≤ p ≤ Q), with appropriate appeal to Lemma 4.1 in place of the usual
mean value theorem. For example (as on [26, top of p.20]), for Y ∈ {X/(3Q), X/P} we
have

∫

T

∣∣∣∣∣∣

∑

m∈[Ye−1/H ,Ye1/H ]

f (m)m−1−it

∣∣∣∣∣∣

2

dt �B,C
T
XH

Pf 2 (X) + 1
H
Pf (X)2.

��

Lemma 4.4 Let f ∈ M(X ;A, B, C ; γ , σ ). Let T, Y1, Y2 ≥ 1, 1 ≤ X ′ ≤ X/Y1 and let
� := � log Y2

log Y1 �. Define

Q(s) :=
∑

Y1/2<p≤Y1

cpp−s, A(s) :=
∑

X ′/(2Y2)<m≤X ′/Y2

f (m)m−s,

where |cp| ≤ B for all Y1/2 < p ≤ Y1. Finally, let T ⊆ [−T, T ]. Then
∫

T
|Q(1 + it)�A(1 + it)|2dt �B,C B2�(�!)2

(
T
X
Pf 2 (X) + Pf (X)2

)
.

Proof Writing cp := Bc′p, where now |c′p| ≤ 1 and letting Q̃(s) denote the Dirichlet
polynomial with cp replaced by c′p for all p ∈ (Y1/2, Y1], the LHS in the statement is

� B2�
∫

T
|Q̃(1 + it)A(1 + it)|2dt.

The rest of the proof is essentially the same as that of [25, Lem. 7.1], saving that the function
g∗ is replaced by |f | (this does not affect the proof, which depends on our Lemma 3.2 and
[14, Thm. 3], both of which also apply to |f |.) ��
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4.3 Integral averages of Dirichlet polynomials

As above, we write t0 = t0(f, X) to denote an element of [−X, X] that minimizes the map

t 
→
∑

p≤X

|f (p)| − Re(f (p)p−it )
p

= ρ(f, nit ;X)2.

Proposition 4.5 Let 1/ logX ≤ δ ≤ 1, and put Iδ := [t0 − δ−1, t0 + δ−1]. Let {an}n≤X be
a sequence of complex numbers. Then

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h<m≤x
am − 1

2π

∫

Iδ
A(1 + it)

x1+it − (x − h)1+it

h(1 + it)
dt

∣∣∣∣∣∣

2

dx

�
∫

[−X/h,X/h]\Iδ
|A(1 + it)|2dt + max

T≥X/h

X
hT

∫ 2T

T
|A(1 + it)|2dt,

where we have set

A(s) :=
∑

X/3<n≤X

a(n)
ns

, s ∈ C.

Proof For each x ∈ [X/2, X], Perron’s formula gives
1
h

∑

x−h<m≤x
am = 1

2π

∫

R

A(1 + it)
x1+it − (x − h)1+it

h(1 + it)
dt.

Subtracting the contribution from |t − t0| ≤ δ−1, the LHS in the statement becomes

2
X

∫ X

X/2

∣∣∣∣
1
2π

∫

R\Iδ
A(1 + it)

x1+it − (x − h)1+it

h(1 + it)
dt
∣∣∣∣
2
dx.

The remainder of the proof is identical to that of [26, Lemma 14] (which only uses the
boundedness of the coefficients {an}n there for the corresponding contribution of Iδ). ��

4.4 Restricting to a “nicely factored” set

We fix parameters η ∈ (0, 1/12), Q1 := h0, P1 := (log h0)40B/η and Pj :=
exp

(
j4j/A−2/A(logQ1)j−1(log P1)

)
, Qj := exp

(
j4j/A(logQ1)j

)
, for 1 ≤ j ≤ J , where J is

maximal with QJ ≤ exp
(√

logX
)
. We highlight the different choice of P1, with all other

choices being the same as in [26, Sec. 2 and 8]. We also let

S = SX,P1 ,Q1 := {n ≤ X : ω[Pj ,Qj](n) ≥ 1 for all 1 ≤ j ≤ J }.

Remark 4.6 The following properties may be verified directly, as long as h0 is sufficiently
large (in terms of B):

1. log Pj ≥ 8Bj2/A
η

log log(2BQj+1) for all 1 ≤ j ≤ J
2. logQj ≤ 24j(logQj−1)(logQ1) ≤ (logQj−1)3 ≤ Q1/24

j−1

3. log Pj
logQj

= log P1
j2/A logQ1

for 2 ≤ j ≤ J , so the terms {log Pj/ logQj}j≥1 are summable.

We will use these in due course.

We wish to reduce our work to handling short and long averages with n restricted to
the set S . To handle averages of f (n) for n /∈ S , we use the following result. For a set of
integersA, we write (n,A) = 1 to mean that (n, a) = 1 for all a ∈ A.
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Lemma 4.7 Let 1 < P ≤ Q ≤ X, and let f ∈ M(X ;A, B, C ; γ , σ ). Then for any 10 ≤ h0 ≤
X/10H (f ;X) and h := h0H (f ;X),

2
X

∫ X

X/2

∣∣∣∣∣∣∣∣

1
h

∑

x−h<m≤x
(m,[P,Q])=1

f (m)

∣∣∣∣∣∣∣∣

2

dx �A,B,C

((
log P
logQ

)A
+ 1

h0

)
Pf (X)2.

In particular,

2
X

∫ X

X/2

∣∣∣∣∣∣∣∣

1
h

∑

x−h<m≤x
m/∈S

f (m)

∣∣∣∣∣∣∣∣

2

dx �A,B,C

(
log log h0
log h0

)A
Pf (X)2.

Proof Expanding the square and applying the triangle inequality, the LHS is

≤ 2
h2X

∑

X/2−h<m1 ,m2≤X
|m1−m2|≤h

(m1m2 ,[P,Q])=1

|f (m1)f (m2)|
∫ X

X/2
1[m1 ,m1+h)(x)1[m2 ,m2+h)(x)dx

� 1
hX

∑

X/3<m≤X
|f (m)|2 + 1

hX
∑

1≤|l|≤h

∑

X/3<m≤X
(m,[P,Q])=1

|f (m)f (m + l)|.

By Lemmas 3.2 and (1.11), the first term on the RHS is bounded as

�B,C
1

h0H (f ;X)
Pf 2 (X) �B

1
h0

Pf (X)2. (4.1)

Next, to bound the correlation sums we apply9 [25, Lem. 3.3] (with r1 = r2 = 1) to the
pair of multiplicative functions f 1Sc and f , which gives

∑

1≤|l|≤h

∑

X/3<n≤X
(n,[P,Q])=1

|f (n)f (n + l)| �B,C hXPf 1(m,[P,Q])=1 (X)Pf (X).

Since f ∈ M(X ;A, B, C ; γ , σ ), by (1.7) we get

Pf 1(m,[P,Q])=1 (X) �B Pf (X)
∏

P≤p≤Q

(
1 + 1 − |f (p)|

p

)(
1 − 1

p

)

�A,B Pf (X) exp
(
A log

(
log P
logQ

))

=
(
log P
logQ

)A
Pf (X).

It follows that

1
hX

∑

1≤|l|≤h

∑

X/3<n≤X
n/∈S

|f (n)f (n + l)| �A,B

(
log P
logQ

)A
Pf (X)2.

9This result is stated in [25] for bounded multiplicative functions, but the proof there works identically for divisor-
bounded functions as well since it relies principally on the general setup of [14, Thm. 3]. One might invoke the work
of [14] to prove this, though the implication is slightly less direct.
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The first claim now follows upon combining this with (4.1). The second claim follows
similarly, saving that in the argument above the term Pf 1(m,[P,Q])=1 (X) is replaced by

Pf 1Sc (X) �B Pf (X)
∑

1≤j≤J

∏

Pj≤p≤Qj

(
1 + 1 − |f (p)|

p

)(
1 − 1

p

)

�A,B Pf (X)
∑

j≥1
exp

(
A log

( log Pj
logQj

))
�
∑

j≥1

1
j2

(
log P1
logQ1

)A
Pf (X)

�A,B

(
log log h0
log h0

)A
Pf (X).

��

Having disposed of n /∈ S , we now concentrate on n ∈ S . To prove Theorem 2.1, we will
apply Proposition 4.5 to the sequence am = f (m)1m∈S , in combination with the following
key proposition.
Recall that κ := min{1,σ }

8B+21 . We also define � := (2B + 5)κ , and

F (s) :=
∑

X/3<n≤X
n∈S

f (n)
ns

, s ∈ C.

Proposition 4.8 Set δ = (logX)−�. Then
∫

[−X/h,X/h]\Iδ
|F (1 + it)|2dt �A,B,C

(
(logQ1)1/3

P1/6−2η
1

+
(
log logX
(logX)κ

)min{1,A})
Pf (X)2.

Remark 4.9 We remark that both terms in Proposition 4.5 can be treated using Proposi-
tion 4.8. Indeed, by Lemma 4.1(b),

1
T

∫ 2T

T
|F (1 + it)|2dt �B,C

1
X
Pf 2 (X) + 1

T
Pf (X)2.

and therefore

max
T≥X(log h0)A/h

X/h
T

∫ 2T

T
|F (1 + it)|2dt �B,C

1
h
Pf 2 (X) + 1

(log h0)A
Pf (X)2

� 1
(log h0)A

Pf (X)2,

which is obviously sufficient in Theorem 2.1. We clearly also have

max
X/h<T≤X(log h0)A/h

X/h
T

∫ 2T

T
|F (1 + it)|2dt ≤

∫ X(log h0)A/h

X/h
|F (1 + it)|2dt.

This expression will also be bounded using Proposition 4.8 with h replaced by h/(log h0)A,
which does not change the form of the final estimates.

4.5 Proof of Proposition 4.8

The proof follows the same lines as those in [26, Sec. 8], saving that we apply our versions
of the corresponding lemmas that address the growth of f ∈ M(X ;A, B, C ; γ , σ ). We
sketch the details here, emphasizing the main differences.
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We select parameters α1, . . . ,αJ such that αj := 1
4 − η

(
1 + 1

2j

)
. For each 1 ≤ j ≤ J , let

Ij := [
⌊
Hj log Pj

⌋
, Hj logQj] ∩ Z, Hj := j2

P1/6−η
1

(logQ1)1/3
.

Also, with s ∈ C we let

Qv,Hj (s) :=
∑

Pj≤p≤Qj

ev/Hj≤p≤e(v+1)/Hj

f (p)p−s,

Rv,Hj (s) :=
∑

1
3Xe

−v/Hj<m≤Xe−v/Hj

f (m)
ms(1 + ω[Pj ,Qj](m))

.

We split the set of t ∈ X := [−X/h, X/h]\Iδ into sets

T1 := {t ∈ X : |Qv,H1 (1 + it)| ≤ e−α1v/H1∀ v1 ∈ I1}
Tj := {t ∈ X : |Qv,Hj (1 + it)| ≤ e−αjv/Hj∀ vj ∈ Ij}\

⋃

1≤i≤j−1
Ti,

2 ≤ j ≤ J, if J ≥ 2

U := X \
⋃

1≤j≤J
Tj .

We thus have
∫

[−X/h,X/h]\Iδ
|F (1 + it)|2dt =

∑

1≤j≤J

∫

Tj
|F (1 + it)|2dt +

∫

U
|F (1 + it)|2dt.

We estimate the contributions from Tj as in [26], saving that in the applications of the
large sieve inequalities we use Lemma 4.1(b); as an example, we will give full details for
j = 1 and highlight the main changes for the corresponding bounds for 2 ≤ j ≤ J .
In each case, we apply Lemma 4.3 to obtain

∫

Tj
|F (1 + it)|2dt �B,C Mj + Ej ,

where we set

Mj := Hj log(Qj/Pj)
∑

v∈Ij

∫

Tj
|Qv,Hj (1 + it)Rv,Hj (1 + it)|2dt

Ej :=
(

1
Hj

+ 1
Pj

)(
T
X
Pf 2 (X) + Pf (X)2

)
.

The choice of parameters gives, by (4.1),

∑

1≤j≤J
Ej � (logQ1)1/3

P1/6−η
1

(
1

h0H (f ;X)
Pf 2 (X) + Pf (X)2

)

�B,C
(logQ1)1/3

P1/6−η
1

Pf (X)2, (4.2)

since
∑

j P
−1
j � P−1

1 and H (f ;X)−1Pf 2 (X) �B,C Pf (X)2.
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We next consider the contribution from the main terms. When j = 1, since v/H1 ≤
logQ1 = log h0, we have

M1 ≤ H1 logQ1
∑

v∈I1
e−2α1v/H1

∫ X/h

−X/h
|Rv,Hj (1 + it)|2dt

�B,C H1 logQ1
∑

v∈I1
e−2α1v/H1

(
Pf (X)2 + ev/H1

h0H (f ;X)
Pf 2 (X)

)

�B,C
H2
1 logQ1

P2α1
1

Pf (X)2,

using Lemma4.1 (b) and treatingPf 2 (X) using (4.1). SinceH2
1 logQ1 = P1/3−2η

1 (logQ1)1/3

≤ P1/3−η
1 , P2α1

1 ≥ P1/2−3η
1 and η ∈ (0, 1/12), we get

M1 � P−1/6+2η
1 Pf (X)2.

Let now 2 ≤ j ≤ J , if J ≥ 2. By definition, we have

Tj =
⋃

r∈Ij−1

Tj,r ,

where Tj,r is the set of all t ∈ Tj such that |Qr,Hj−1 (1 + it)| > e−αj−1r/Hj−1 . Pointwise
bounding |Qv,Hj (1 + it)| for each v ∈ Ij leads to

Mj ≤ Hj logQj
∑

v∈Ij

∑

r∈Ij−1

e−2αjv/Hj

∫

Tj,r
|Rv,Hj (1 + it)|2dt

≤ (Hj logQj)|Ij||Ij−1|e−2v0αj+2�j r0αj−1

∫ X/h

−X/h
|Qr0 ,Hj−1 (1 + it)�Rv,Hj (1 + it)|2dt,

where (r0, v0) ∈ Ij−1 × Ij yield the maximal contribution among all such pairs, and
�j := � v/Hj

r/Hj−1
�. Using Lemma 4.4, we get

Mj �B,C (Hj logQj)3e−2v0αj+2�j r0αj−1 exp (2� log(2B�))
(
1 + 1

h0

)
Pf (X)2.

Minormodifications to the estimates in [26, Sec. 8.2] (with h0 in place of h there), selecting
h0 sufficiently large in terms of B, show that

Mj �B,C
1

j2P1
Pf (X)2,

whence it follows that
∑

2≤j≤J
Mj � P−1

1 Pf (X)2

(the requirements of our parameters Pj, Qj and αj summarized in Remark 4.6 are sufficient
for this).
Finally, we consider U . Set H := (logX)κ , P = exp((logX)1−κ ) and Q = exp(logX/

log logX), put I := [
⌊
H log P

⌋
, H logQ] ∩ Z, and define Qv,H and Rv,H by

Qv,H (s) :=
∑

P≤p≤Q
ev/H≤p≤e(v+1)/H

f (p)p−s,

Rv,H (s) :=
∑

1
3Xe−v/H<m≤Xe−v/H

f (m)
ms(1 + ω[P,Q](m))

.
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Combining Lemma 4.3 with 4.1 a) and the proof of Lemma 4.7 to control those n coprime
to P ≤ p ≤ Q, we get that there is some v0 ∈ I such that

∫

U
|F (1 + it)|2dt

�B,C (H logX)2
∫

U
|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2dt

+
∫ T

−T

∣∣∣∣∣∣∣∣

∑

X/3<n≤X
(n,[P,Q])=1

f (n)
n1+it

∣∣∣∣∣∣∣∣

2

dt + Pf (X)2
(
1 + 1

h0

)(
1
H

+ 1
P

)

�B,C (H logX)2
∫

U
|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2dt

+ Pf (X)2
(
1
H

+ 1
P

+
(
log P
logQ

)A
)

�B,C (H logX)2
∫

U
|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2dt

+
(
log logX
(logX)κ

)min{1,A}
Pf (X)2, (4.3)

As in [26, Sec. 8.3] we may select a discrete subset V ⊂ U that is well spaced, such that
∫

U
|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2dt �

∑

t∈V
|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2.

By assumption, for each t ∈ V wehave |Qr0 ,H (1+it)| > e−αJ r0/HJ ≥ P−αJ
J , for some r0 ∈ IJ .

We have logQJ+1 ≥ √
logX by definition, and (as mentioned in Remark 4.6) log PJ ≥

4B
η
log logQJ+1, whence (logX)2B/η ≤ PJ ≤ QJ ≤ exp(

√
logX). Applying Lemma 4.2(b)

for each r0 ∈ IJ , we thus have

|V| �B |IJ | exp
(
2αJ (log PJ )

(
1 + logX

log PJ

)
+ 2B

logX log logX
log PJ

)

≤ X1/2−2η+o(1) · Xη = X1/2−η+o(1).

We now split the set V into the subsets

VS := {t ∈ V : |Qv0 ,H (1 + it)| ≤ (logX)−
1
2B

2−10}
VL := {t ∈ V : |Qv0 ,H (1 + it)| > (logX)−

1
2B

2−10};

the exponent B2/2 is present in order to cancel the logX power that arises from

Pf 2 (X) �B H (f ;X)Pf (X)2 �B (logX)B
2Pf (X)2.

By a pointwise bound, Lemma 4.1(c) and the above estimate for |V| ≥ |VS |, we obtain
∑

t∈VS

|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2

� (logX)−B2−19(1 + |VS |X−1/2)
ev0/H

X
∑

X/(3ev0/H )<n≤X/ev0/H

|f (n)|2

�B,C (logX)−B2−19Pf 2 (X) �B (logX)−19Pf (X)2.
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Consider next the contribution from VL. Applying Lemma 4.2(b) once again, this time
using the condition |Qv0 ,H (1 + it)| > (logX)− 1

2B
2−10, to obtain

|VL| �B exp
(
(B2 + 20) (log logX)

(
1 + logX

log P

)
+ 2B

logX log logX
log P

)

= exp
(
(logX)κ+oB(1)

)
.

Recall that � = (2B + 5)κ ∈ (0, 1). Applying Lemma 3.5 (with Z = 1/δ = (logX)�) to
bound Rv0 ,H (1 + it) pointwise in t, together with Lemma 4.2(a) to estimate Qv0 ,H (1 + it)
in mean square, noting that κ < 1/3 − κ , we obtain

∑

t∈VL

|Qv0 ,H (1 + it)Rv0 ,H (1 + it)|2

�A,B,C Pf (X)2
((

logQ
log P

)B
δ1/2 +

(
logQ
log P

)3B log logX
(logX)σ

)2 ∑

t∈VL

|Qv0 ,H (1 + it)|2

�B
Pf (X)2

(log P)2
(
(logX)2Bκ−� + (logX)6Bκ−2σ+o(1)

)

�B Pf (X)2
(
(logX)2(B+1)κ−2−� + (logX)(6B+2)κ−2−2σ+o(1)

)
.

Combining this estimate with the one for VS , then plugging this back into our estimate
(4.3), we get

∫

U
|F (1 + it)|2dt

�A,B,C (logX)2+2κ
(
(logX)2(B+1)κ−2−� + (logX)(6B+2)κ−2−2σ+o(1)

)
Pf (X)2

+
(
log logX
(logX)κ

)min{1,A}
Pf (X)2

�
(
(logX)2(B+2)κ−� + (logX)(6B+4)κ−2σ +

(
log logX
(logX)κ

)min{1,A})
Pf (X)2

�
(
log logX
(logX)κ

)min{1,A}
Pf (X)2,

since 2(B + 2)κ − � = −κ , and σ ≥ σ̂ > (3B + 5/2)κ by definition. This completes the
proof of Proposition 4.8.

Proof of Theorem 2.1 Let f ∈ M(X ;A, B, C ; γ , σ ). Set h := h1/(log h0)A, and select P1 =
(log h)40B/η and Q1 = h. We may assume that X is larger than any constant depending
on B, since otherwise Theorem 2.1 follows with a sufficiently large implied constant;
we may also assume h is larger than any constant depending on B, since otherwise the
theorem follows (again with a large enough implied constant depending at most on B)
from Remark 1.8 and Lemma 4.7 (taking P = Q = 3/2, say).
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By Lemma 4.7, we have

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h1

∑

x−h1<m≤x
f (m) − 1

h1

∫ x

x−h1
uit0du · 1

h2

∑

x−h2<m≤x

f (m)
mit0

∣∣∣∣∣∣

2

dx

�A,B,C
2
X

∫ X

X/2

∣∣∣∣∣∣∣∣

1
h1

∑

x−h1<m≤x
m∈S

f (m) − 1
h1

∫ x

x−h1
uit0du · 1

h2

∑

x−h2<m≤x
m∈S

f (m)
mit0

∣∣∣∣∣∣∣∣

2

dx

+
(
log log h0
log h0

)A
Pf (X)2.

Set δ := (logX)−(2B+5)κ once again, and note that t0(fn−it0 , X) = 0 is admissible. Thus,

∑

X/3<n≤X
n∈S

f (n)n−it0

ns
= F (s + it0).

Set I(x; t, h) := h−1 ∫ x
x−h u

itdu. By the Cauchy–Schwarz inequality and the trivial bound
|I(x; t, h)| ≤ 1, we obtain

2
X

∫ X

X/2

∣∣∣∣∣∣∣∣

1
h1

∑

x−h1<m≤x
m∈S

f (m) − I(x; t0, h1) · 1
h2

∑

x−h2<m≤x
m∈S

f (m)m−it0

∣∣∣∣∣∣∣∣

2

dx

� 1
X

∫ X

X/2

∣∣∣∣∣∣∣∣

1
h1

∑

x−h1<m≤x
m∈S

f (m) − 1
2π

∫

Iδ
F (1 + it)

x1+it − (x − h1)1+it

h1(1 + it)
dt

∣∣∣∣∣∣∣∣

2

dx

+ 1
X

∫ X

X/2

∣∣∣∣∣∣∣∣

1
h2

∑

x−h2<m≤x
m∈S

f (m)
mit0

− 1
2π

∫ δ−1

−δ−1
F (1 + i(t + t0))

x1+it − (x − h2)1+it

h2(1 + it)
dt

∣∣∣∣∣∣∣∣

2

dx

+ max
X/2<x≤X

∣∣∣∣
∫

Iδ
F (1 + it)

x1+it − (x − h1)1+it

h1(1 + it)
dt

−I(x; t0, h1)
∫ δ−1

−δ−1
F (1 + i(t + t0))

x1+it − (x − h2)1+it

h2(1 + it)
dt

∣∣∣∣∣

2

=: I1 + I2 + I3.

Consider I3 first. Making a change of variables w = t − t0 and using uiw = xiw +
O(δ−1h1/X) for |w| ≤ δ−1 and u ∈ [x − h1, x], we see that

1
h1

∫

Iδ
F (1 + it)

x1+it − (x − h1)1+it

1 + it
dt =

∫ δ−1

−δ−1
F (1 + i(t0 + w))I(x; t0 + w, h1)dw

= I(x; t0, h1)
∫ δ−1

−δ−1
F (1 + i(t0 + w))xiwdw + O

(
δ−2 h1

X
max

|w|≤δ−1
|F (1 + i(t0 + w))|

)
.
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Similarly, we have

1
h2

∫ δ−1

−δ−1
F (1 + i(t + t0))

x1+it − (x − h2)1+it

1 + it
dt

=
∫ δ−1

−δ−1
F (1 + i(t + t0))xitdt + O

(
δ−2 h2

X
max

|t|≤δ−1
|F (1 + i(t + t0))|

)
.

Applying partial summation, dropping the condition n ∈ S , and then using Lemma 3.2,
we find

max
|t|≤δ−1

|F (1 + i(t + t0))| � 1
X

∑

X/3<n≤X
|f (n)| �B,C Pf (X),

and thus, as h1 ≤ h2 = X/(logX)σ̂ /2, we obtain

I3 �B,C

(
δ−2 h2

X

)2
Pf (X)2 � (logX)4(2B+5)κ−(8B+21)κPf (X)2 = (logX)−κPf (X).

Next, we treat I1 and I2. Applying Proposition 4.5 to each of these integrals and trivially
bounding the u integral in I2, we find

I1 + I2 �
∫

[−X/h1 ,X/h1]\Iδ
|F (1 + it)|2dt + max

T≥X/h1

X
h1T

∫ 2T

T
|F (1 + it)|2dt.

By the argument in Remark 4.9 and our choice of h, the latter is bounded by

�
∫

[−X/h,X/h]\Iδ
|F (1 + it)|2dt + (log h0)−APf (X)2.

But by Proposition 4.8, this integral is bounded by

�A,B,C

(
(logQ1)1/3

P1/6−η
1

+
(
log logX
(logX)κ

)min{1,A})
Pf (X)2

�
(
(log h)−30B +

(
log logX
(logX)κ

)min{1,A})
Pf (X)2.

Combining these steps, and using A ≤ B and log h � log h1, we obtain

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h1<m≤x
f (m) − 1

h1

∫ x

x−h1
uit0du · 1

h2

∑

x−h2<m≤x
f (m)m−it0

∣∣∣∣∣∣

2

dx

�A,B,C

((
log log h0
log h0

)A
+
(
log logX
(logX)κ

)min{1,A})
Pf (X)2,

which completes the proof.

5 Applications
5.1 Proof of Theorem 1.4

Let f be a primitive, Hecke-normalized holomorphic cusp form without complex multi-
plication of fixed even weight k ≥ 2 and level 1. Write the Fourier expansion of f at ∞
as

f (z) =
∑

n≥1
λf (n)n

k−1
2 e(nz), Im(z) > 0,
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where {λf (n)}n is the sequence of normalized Fourier coefficients with λf (1) = 1. As noted
in Sect. 1.3.2, λf is a multiplicative function. Deligne’s proof of the Ramanujan conjecture
for f shows that |λf (p)| ≤ 2 and |λf (n)| ≤ d(n) for all primes p and positive integers n.
Moreover, the quantitative Sato–Tate theorem of Thorner [42], which is based on the
deep results of Newton and Thorne [30], shows that for any [a, b] ⊆ [−2, 2],

|{p ≤ X : λf (p) ∈ [a, b]}| =
(
1
π

∫ b

a

√
1 − (v/2)2dv

)∫ X

2

dt
log t

+ O
(
X log(k logX)
(logX)3/2

)
. (5.1)

Recall that

cα = 2α

√
π

�
(

α+1
2
)

�(α/2 + 2)
.

Using this data, we will prove the following.

Proposition 5.1 Let α > 0 and ε ∈ (0, 1/2). There is a constant δ = δ(α) > 0 such that
|λf |α ∈ M(X ; cα , 2α , 2; 1/2 − ε, δ).

UsingProposition 5.1, wewill be able to applyTheorem1.7 in order to deriveCorollary 1.1.
We will check that |λf |α satisfies the required hypotheses in the following lemmas.

Lemma 5.2 For any 2 ≤ z < w, we have
∑

z<p≤w

|λf (p)|α
p

= cα
∑

z<p≤w

1
p

+ O((log z)−1/2+o(1)).

Similarly, we have

∑

p≤X

|λf (p)|2α
p

= c2α log logX + O(1).

Proof Let β ∈ {α, 2α}. By partial summation,

∑

z<p≤w

|λf (p)|β
p

=
∫ 2

0
uβd{

∑

z<p≤w
|λf (p)|≤u

1
p
} = 2β

∑

z<p≤w

1
p

− β

∫ 2

0

⎛

⎜⎜⎝
∑

z<p≤w
|λf (p)|≤u

1
p

⎞

⎟⎟⎠uβ−1du.

Fix u ∈ (0, 2], and let Iu := [0, u] ∪ [−u, 0] so that |λf (p)| ≤ u if and only if λf (p) ∈ Iu. By
partial summation and (5.1),

∑

z<p≤w
λf (p)∈Iu

1
p

= 2
π

∫ u

0

√
1 − (v/2)2dv ·

∫ w

z

dy
y log y

+ O
(
log log z
(log z)3/2

+
∫ w

z

log log y dy
y(log y)3/2

)

=
(
2
π

∫ u

0

√
1 − (v/2)2dv

)
log(logw/ log z) + O((log z)−1/2+o(1)).

Multiplying the main term by βuβ−1 and integrating in u, we obtain Iβ log(logw/ log z)+
O(1/ log z), where

Iβ := 2β
π

∫ 2

0
uβ−1

∫ u

0

√
1 − (v/2)2dvdu = 2β

π

∫ 2

0

(∫ 2

v
uβ−1du

)√
1 − (v/2)2dv

= 2β+1

π

∫ 2

0
(1 − (v/2)β )

√
1 − (v/2)2dv = 2β − 2β+1

π

∫ 2

0
(v/2)β

√
1 − (v/2)2dv.
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Making the change of variables t := (v/2)2, we find that

2β − Iβ = 2β+1

π

∫ 1

0
t(β−1)/2(1 − t)1/2dt = 2β+1

π

�
(

β+1
2

)
�(3/2)

�(β/2 + 2)

= 2β

√
π

�
(

β+1
2

)

�(β/2 + 2)
= cβ .

It follows, therefore, that when β ∈ {α, 2α},
∑

z<p≤w

|λf (p)|β
p

= Iβ
∑

z<p≤w

1
p

+ O((log z)−1/2+o(1))

= cβ
∑

z<p≤w

1
p

+ O((log z)−1/2+o(1)).

and both claims follow. ��

To obtain uniform lower bound estimates for ρ(|λf |α , nit ;X)2, we will need some control
over the product |λf (p)|α(1 − cos(t log p)), on average over p. In some ranges of t, this is
furnished by the following lemma.

Lemma 5.3 Let |t| ≥ 1. There is a constant c = c(α) > 0 such that if Y ≥ (|t| + 3)2 and
Y is sufficiently large then

∑

Y<p≤2Y
|λf (p)|α|1 − pit |2 ≥ c

Y
log Y

.

Proof We adapt an argument due to Goldfeld and Li [4, Lem. 12.12 and 12.15] and
Humphries [16, Lem. 2.1]. Let η ∈ (0, 1/2) be a parameter to be chosen later. Using the
Sato–Tate law, we have

|{Y < p ≤ 2Y : |λf (p)| > η}| =
(
1 − 2

π

∫ η

−η

√
1 − (u/2)2du − o(1)

)
Y

log Y

≥
(
1 − 4η

π
− o(1)

)
Y

log Y
. (5.2)

Next, we estimate the cardinality

|{Y < p ≤ 2Y : |1 − pit | ≤ η}| = |{Y < p ≤ 2Y : |sin((t log p)/2)| ≤ η/2}|.

Set β := sin−1(η/2)/π ∈ [0, 1/2], Whenever sin(t log p/2) ∈ [−η/2, η/2] there is m ∈ Z

such that (t log p)/2 ∈ [π (m − β),π (m + β)]. By Jordan’s inequality, β ≤ 1
2 sin(πβ) = η

4 ,
and we see that

|{Y < p ≤ 2Y : |1 − pit | ≤ η}| ≤ |{Y < p ≤ 2Y : ‖(t log p)/(2π )‖ ≤ η/4}|,

where ‖t‖ := minm∈Z |t − m|. Splitting up the primes Y < p ≤ 2Y according to the
nearest integerm to (t log p)/(2π ), the latter may be bounded above as

≤
∑

|t| log Y−πη/2
2π ≤m≤ |t| log(2Y )+πη/2

2π

(
π

(
e
2πm+πη/2

|t|
)

− π

(
e
2πm−πη/2

|t|
))

.
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For each m, we have e
2πm+πη/2

|t| ≤
(
1 + πη

|t|
)
e
2πm−πη/2

|t| . By the Brun–Titchmarsh theorem,
we get, uniformly over allm in the sum,

π

(
e
2πm+πη/2

|t|
)

− π

(
e
2πm−πη/2

|t|
)

≤ 2πη

|t|
e2π (m−η/4)/|t|

2π (m − η/4)/|t| − log(|t|/η)
≤ 2πη

2Y
|t|(log Y − (log Y )/2)

≤ 16πη
Y

|t| log Y ,

for Y large enough. Since there are ≤ 1+ |t|(log(2Y )− log Y )/(2π ) ≤ 2|t| integers in the
range of summation, we obtain

|{Y < p ≤ 2Y : |1 − pit | ≤ η}| ≤ 32πη
Y

log Y
. (5.3)

We deduce from (5.2) and (5.3) that

|{Y < p ≤ 2Y : |λf (p)| > η and |1 − pit | > η}|
≥ |{Y < p ≤ 2Y : |λf (p)| > η}| − |{Y < p ≤ 2Y : |1 − pit | ≤ η}|
≥ max

{
0, 1 − η

(
4
π

+ 32π
)

− o(1)
}

· Y
log Y

.

Selecting η = 1
250 , say, we get that if Y is sufficiently large,

|{Y < p ≤ 2Y : |λf (p)| > η and |1 − pit | > η}| ≥ Y
2 log Y

.

Finally, we obtain that
∑

Y<p≤2Y
|λf (p)|α|1 − pit |2 > η2+α|{Y < p ≤ 2Y : |λf (p)| > η and |1 − pit | > η}|

≥ η2+α

2
· Y
log Y

,

which proves the claim with c = η2+α/2. ��
We now obtain lower bounds for ρ(|λf |α , nit ;X)2 for all |t| ≤ X .

Lemma 5.4 There is a δ = δ(α) > 0 such that whenever |t| ≤ X we have
∑

p≤X

|λf (p)|α(1 − cos(t log p))
p

≥ δmin{log logX, log(1 + |t| logX)} − O(1).

Moreover, we may select the minimizing t ∈ [−X, X] for |λf |2 as t0(|λf |2, X) = 0 (see the
discussion surrounding (1.8) for the definition of t0).

Proof Wemay assume that X is sufficiently large, else the estimate given is trivial. When
|t| ≤ 1/ logX the claim is vacuous. Thus, wemay focus on the case 1/ logX < |t| ≤ X .We
consider the ranges 1/ logX < |t| ≤ 1, 1 < |t| ≤ logX and logX < |t| ≤ X separately.
Throughout we will introduce an auxiliary parameter 2 ≤ Y ≤ X , chosen case by case,
and use the inequality

∑

p≤X

|λf (p)|α(1 − cos(t log p))
p

≥
∑

Y≤p≤X

|λf (p)|α(1 − cos(t log p))
p

.
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Suppose first that 1/ logX < |t| ≤ 1. Let Y := e1/|t| and write

R(X) :=
∑

p≤X
|λf (p)|α − cαπ (X),

so that by arguments analogous to those of Lemma 5.2, R(X) � X/(logX)3/2−o(1). By
partial summation and Lemma 5.2,

∑

Y≤p≤X

|λf (p)|α cos(t log p)
p

= cα
∫ X

Y

cos(t log u)
u

du
log u

+ O
(

1
log Y

)
+
∫ X

Y
R(u) (cos(t log u) + t sin(t log u))

du
u2

= cα
∫ |t| logX

1
cos(tv/|t|) dv

v
+ O

(
(1 + |t|)(log Y )−1/2+o(1)

)
� 1,

the bound in the last step arising from setting v := |t| log u and integrating by parts. Thus,
in light of Lemma 5.2

∑

Y<p≤X

|λf (p)|α(1 − cos(t log p))
p

= cα log(1 + |t| logX) − O(1).

Next, we consider the intermediate range 1 < |t| ≤ logX . Here, we set Y := (10 logX)2,
employ a dyadic decomposition and apply Lemma 5.3 to obtain, when X is large enough,

∑

p≤X

|λf (p)|α(1 − cos(t log p))
p

≥ 1
2

∑

Y<2j≤X/2

2−(j+1)
∑

2j<p≤2j+1

|λf (p)|α|1 − pit |2 ≥ c
4 log 2

∑

Y<2j≤X/2

1
j

= c
4 log 2

log
(
logX
log Y

)
− O(1) ≥ c

8 log 2
log logX − O(1),

for some c = c(α) > 0.
Finally, assume that logX ≤ |t| ≤ X . In this case, putY := exp

(
(logX)2/3+ε

)
, where ε > 0

is small. Letm ≥ 1 be an integer parameter to be chosen later. By Hölder’s inequality,
∣∣∣∣∣∣

∑

Y<p≤X

|λf (p)|α cos(t log p)
p

∣∣∣∣∣∣

≤
⎛

⎝
∑

Y<p≤X

|λf (p)| 2αm
2m−1

p

⎞

⎠
1− 1

2m

·
⎛

⎝
∑

Y<p≤X

cos(t log p)2m

p

⎞

⎠

1
2m

.

We can bound |λf (p)|2αm/(2m−1) ≤ |λf (p)|α2α/(2m−1), so that by Lemma 5.2 the first sum
is

≤ 2α/(2m)c1−1/(2m)
α (log(logX/ log Y ))1−1/2m + Om(1).

Now, we can write

cos(t log p)2m = 2−2m(pit + p−it )2m

= 2−2m
(
2m
m

)
+ 2−2m

∑

0≤j≤m−1

(
2m
j

)
(p2i(m−j)t + p−2i(m−j)t ).
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By the zero-free region of the Riemann zeta function (see e.g., [24, Lem. 2]), we have

max
1≤|l|≤m

∣∣∣∣∣∣

∑

Y<p≤X

1
p1+ilt

∣∣∣∣∣∣
� logX

1 + |t| + (logX)−10 � 1.

It follows that
∑

Y<p≤X

cos(t log p)2m

p
= 2−2m

(
2m
m

)
log(logX/ log Y ) + Om(1),

and therefore in sum we have
∣∣∣∣∣∣

∑

Y<p≤X

|λf (p)|α cos(t log p)
p

∣∣∣∣∣∣
≤ cα

(
2α

cα

) 1
2m
(
2−2m

(
2m
m

)) 1
2m

log
(
logX
log Y

)
+ Om(1).

Using the bounds
√
2πn(n/e)n ≤ n! ≤ 2

√
2πn(n/e)n, valid for all n ∈ N (see e.g., [31]),

we get that
(
2α

cα

)1/(2m) (
2−2m

(
2m
m

))1/(2m)
≤
(

2α+1

cα
√

πm

)1/(2m)
,

and thus takingm ≥ m0(α), we obtain
∣∣∣∣∣∣

∑

Y<p≤X

|λf (p)|α cos(t log p)
p

∣∣∣∣∣∣
≤ 2−1/(2m)cα log(logX/ log Y ) + O(1).

We thus obtain in this case that
∑

p≤X

|λf (p)|α(1 − cos(t log p))
p

≥ cα(1 − 2−1/(2m))
(
1
3

− ε

)
log logX − O(1).

Combiningour estimates fromeachof these ranges andputting δ := cα min{c/(8 log 2), 14 (1−
2−1/(2m))}, we deduce that

∑

p≤X

|λf (p)|α(1 − cos(t log p))
p

≥ δmin{log logX, log(1 + |t| logX)} − O(1).

This completes the proof of the lower bound. ��

Proof of Proposition 5.1 Let X be large. By Deligne’s theorem we have |λf (p)|α ≤ 2α for
all p. In addition, we have |λf (n)|α ≤ d(n)α ≤ d2α+1 (n)max{1,α} for all n. By Lemma 5.2, we
see that we can take A = cα and any γ ∈ (0, 1/2) in an estimate of the form

∑

z<p≤w

|λf (p)|α
p

≥ cα
∑

z<p≤w

1
p

− O
(

1
(log z)γ

)
for 2 ≤ z ≤ w ≤ X,

and finally, by Lemma 5.4 there is a constant δ > 0 such that

∑

p≤X

|λf (p)|α − Re(|λf (p)|αp−it )
p

≥ δmin{log logX, log(1 + |t − t0| logX)} − O(1),

as t0 = 0 is admissible. Thus, by definition, |λf |α ∈ M(X ; cα , 2α ,max{1,α}; 1/2− ε, δ) for
any ε ∈ (0, 1/2) and X large, as claimed. ��
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Proof of Theorem 1.4 In viewofProposition5.1,wemay applyTheorem1.7 to the function
|λf |α . We see that if h = h0H (|λf |α ;X) and h0 → ∞ then

1
X

∫ 2X

X

∣∣∣∣∣∣
1
h

∑

x<n≤x+h
|λf (n)|α − 1

X
∑

X<n≤2X
|λf (n)|α

∣∣∣∣∣∣

2

dx

�
((

log log h0
log h0

)cα
+ log logX

(logX)θ

)
(logX)2(cα−1),

where θ = θ (α) > 0. Furthermore, by Lemma 5.2, we have

H (|λf |α ;X) � exp

⎛

⎝
∑

p≤X

|λf (p)|2α − 2|λf (p)|α + 1
p

⎞

⎠ � dα logX,

where dα = c2α − 2cα + 1. Thus, changing h0 by a constant factor, we deduce that
h = h0(logX)dα can be taken in the above estimate. The claim follows. ��
Proof of Corollary 1.1 When α = 2, we have c2 = 1 and d2 = c4 − 2c2 + 1 = 1. Hence,
H (|λf |2;X) � logX . Since

cf = 1
X

∑

X<n≤2X
|λf (n)|2 + O(X−2/5),

the claim for |λf |2 follows immediately from Theorem 1.4.
It remains to consider gf (n) = ∑

d2|n|λf (n/d2)|2. Clearly, gf (n) ≤ ∑
e|n d(n/e)2 ≤ d(n)3,

and gf (p) = |λf (p)|2 for all primes p. By Proposition 5.1, we have gf ∈ M(X ; 1, 4, 3; 1/2−
ε, δ) for any ε ∈ (0, 1/2), and H (gf ;X) = H (|λf |2;X). The result now follows in the same
way as for |λf |2, using

df = 1
X

∑

X<n≤2X
gf (n) + O(X−2/5)

in this case. ��

5.2 Proof of Theorem 1.2

Fix m ≥ 2, let A denote the adeles over Q, and let π be a fixed cuspidal automorphic
representation for GLm(A) with unitary central character normalized so that it is trivial
on the diagonally embedded copy of R

+. We write qπ to denote the conductor of π .
We assume that π satisfies GRC, and we write λπ (n) to denote the nth coefficient of the
standard L-function of π . The key result of this subsection is the following analogue of
Proposition 5.1.

Proposition 5.5 With the above notation, we have |λπ |2 ∈ M(X ; 1, m2, 2) whenever X is
sufficiently large in terms of q(π ), and t0(|λπ |2, X) = 0 is admissible.

For primes p � qπ , we have |λπ (p)|2 = λπ⊗π̃ (p), where π̃ denotes the contragredient
representation of π and π ⊗ π̃ is the Rankin–Selberg convolution of π and π̃ . As π is
fixed, the primes p | qπ will cause no harm to our estimates.

Lemma 5.6 There is a constant c = c(m) > 0 such that
∑

p≤X
|λπ (p)|2 log p = X + Oπ (Xe−c

√
logX ) as X → ∞.
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In particular, we have
∑

z<p≤w
|λπ (p)|2

p = ∑
z<p≤w

1
p + Oπ ( 1

log z ) for any z < p ≤ w.

Proof Assume X is sufficiently large relative to qπ . Set f := π ⊗ π̃ , and write �f,X (n) to
denote the nth coefficient of the logarithmic derivative −L′

L (s, f ). Combining [18, Thm.
5.13] (see the remarks that follow the statement for a discussion relevant to the case of a
Rankin–Selberg convolution) with [18, Exer. 6], we deduce that

∑

p≤X
|λπ (p)|2 log p =

∑

n≤X
�f,X (n) + Oπ (

√
X log2 X) = X + Oπ

(
X exp

(
−c′m−4√logX

))
,

for some absolute constant c′ > 0 (note that the exceptional zero plays no role when X is
large enough). This implies the first claim. The second follows immediately from the first
statement by partial summation. ��
Proof of Proposition 5.5 Lemma 5.6 implies that (1.6) holds with A = 1, and by GRC we
have |λπ (n)|2 ≤ dm(n)2. It thus follows that |λπ |2 ∈ M(X ; 1, m2, 2), as claimed. ��
Proof of Theorem 1.2 Recall that m and π are fixed. A direct application of Theorem 1.7
shows (after replacing X by 2X and x − h by x) that there is κ = κ(m) > 0 such that

1
X

∫ 2X

X

∣∣∣∣∣∣
1
h

∑

x<n≤x+h
|λπ (n)|2 − 1

X
∑

X<n≤2X
|λπ (n)|2

∣∣∣∣∣∣

2

dx

�m

(
log log h0
log h0

+ log logX
(logX)κ

)
P|λπ |2 (X)2,

where h = h0H (|λπ |2;X) and 10 ≤ h0 ≤ X/(10H (|λπ |2;X)). By Lemma 5.6P|λπ |2 (X) �m
1. We also have

H (|λπ |2;X) �m exp

⎛

⎝
∑

p≤X

|λπ (p)|4 − 2|λπ (p)|2 + 1
p

⎞

⎠ � exp

⎛

⎝
∑

p≤X

m2|λπ (p)|2 − 1
p

⎞

⎠

� (logX)m
2−1.

It follows that our variance estimate holds if h ≥ h0(logX)m
2−1 and 10 ≤ h0 ≤

X/(10(logX)m2−1), and the proof of the theorem is complete. ��

5.3 Proof of Corollary 1.6

Recall that

�(n) := max
u∈R

∑

d|n
eu≤d<eu+1

1.

Given θ ∈ R, write also

d(n, θ ) :=
∑

d|n
diθ .

This is clearly a multiplicative function, with d(n) = d(n, 0). In probabilistic terms, it is
also d(n) times the characteristic function of the distribution function

Dn(v) := 1
d(n)

∑

d|n
d≤ev

1, v ∈ R.

introduced in Sect. 1.3. The following general bounds for concentration functions in terms
of characteristic functions allow us to relate �(n) with integral averages of d(n, θ ).
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Lemma 5.7 There are constants c2 > c1 > 0 such that, uniformly in n ∈ N,

c1
1

d(n)

∫ 1

0
|d(n, θ )|2dθ ≤ �(n) ≤ c2

∫ 1

0
|d(n, θ )|dθ .

Proof This is Exercise 279 in [39]. ��
By Lemma 5.7, we find that for any x ∈ [X/2, X] and 10 ≤ h ≤ X ,

∑

x−h<n≤x
�(n) �

∫ 1

0

∑

x−h<n≤x

|d(n, θ )|2
d(n)

dθ . (5.4)

For θ ∈ R and n ∈ N, we write fθ (n) := |d(n, θ )|2/d(n).
Corollary 5.8 Let θ ∈ (1/ logX, 1]. Let 10 ≤ h0 ≤ X/ logX and put h :=
h0(θ−1 logX)1/2. Then there is a constant κ1,2 > 0 such that for any 0 < κ < κ1,2,

2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
fθ (n) − 2

X
∑

X/2<n≤X
fθ (n)

∣∣∣∣∣∣

2

dx �
(
log log h0
log h0

+ log logX
(logX)κ

)
,

The implicit constant is independent of θ .

To this end, we prove that fθ ∈ M(X ; 1, 2, 1) for all 1/ logX < θ ≤ 1, which is the purpose
of the following lemmas.

Lemma 5.9 Let θ ∈ (0, 1], and let β := min{1/θ , logX}. Then
∑

p≤X

fθ (p)
p

= log(β logX) + O(1).

Similarly,

H (fθ ;X) � (β logX)1/2.

Proof Observe that for each p,

fθ (p) = 1
2
|1 + piθ |2 = 1 + cos(θ log p).

Put Y := min{X, exp(1/θ )} = eβ . For p ≤ Y , we have cos(θ log p) = 1 + O(θ2(log p)2), so
that by the prime number theorem,

∑

p≤Y

fθ (p)
p

=
∑

p≤Y

2
p

+ O

⎛

⎝θ2
∑

p≤e1/θ

(log p)2

p

⎞

⎠ = 2 log(min{1/θ , logX}) + O(1).

This proves the first claim if 0 ≤ θ ≤ 1/ logX , so assume now that 1/ logX < θ ≤ 1. By
partial summation and the prime number theorem, we have

∑

Y<p≤X

1 + cos(θ log p)
p

=
∫ θ logX

1
(1 + cos v)

dv
v

+ O(1)

=
∑

1≤k≤ θ logX
2π

∫ 2π

0
(1 + cos v)

du
u + 2πk

+ O(1)

=
(

1
2π

∫ 2π

0
(1 + cosu)du

)
log(θ logX) + O(1)

= log(θ logX) + O(1).
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We thus deduce that
∑

p≤X

fθ (p)
p

= 2 log(1/θ ) + log(θ logX) = log(θ−1 logX),

and the first claim follows for all 1
logX < θ ≤ 1 as well.

For the second claim, we simply note that

H (fθ ;X) � exp

⎛

⎝
∑

p≤X

(fθ (p) − 1)2

p

⎞

⎠ = exp

⎛

⎝
∑

p≤X

cos(θ log p)2

p

⎞

⎠ .

A similar partial summation argument shows that

∑

p≤X

cos(θ log p)2

p
= log(min{ 1

θ
, logX}) +

(
1
2π

∫ 2π

0
(cosu)2du

)
log(1 + θ logX) + O(1)

= 1
2
log(min{logX, 1

θ
} logX) + O(1),

and the claim follows. ��

Lemma 5.10 Let θ ∈ (0, 1]. Let 2 ≤ z ≤ w ≤ X. Then
∑

z<p≤w

fθ (p)
p

≥
∑

z<p≤w

1
p

+ O(1/ log z).

Proof Set Y := min{X, e1/θ } once again. If w ≤ Y then cos(θ log p) ≥ cos(1) ≥ 0 for all
z < p ≤ w, and thus

∑

z<p≤w

fθ (p)
p

≥
∑

z<p≤w

1
p

+ O(1/ log z).

On the other hand, if Y ≤ z (so that θ > 1/ logX) then by the same partial summation
argument as in Lemma 5.9 we find that

∑

z<p≤w

fθ (p)
p

=
(

1
2π

∫ 2π

0
(1 + cosu)du

)
log(logw/ log z) + O(1/ log z)

=
∑

z<p≤w

1
p

+ O(1/ log z).

Finally, suppose z < Y < w. In this case, we split the interval into the segments (z, Y ] and
(Y, w] and apply the arguments in each of the previous two cases to obtain

∑

z<p≤w

fθ (p)
p

≥
∑

z<p≤Y

1
p

+
∑

Y<p≤w

1
p

+ O(1/ log z)

≥
∑

z<p≤w

1
p

+ O(1/ log z),

as claimed. ��
Proof of Corollary 5.8 Let h = h0(θ−1 logX). Note that |d(n, θ )|2/d(n) ≤ d(n) uniformly
over n, so that combined with Lemma 5.10 we have that fθ ∈ M(X ; 1, 2, 1) for all
θ ∈ (1/ logX, 1]. Since H (fθ ;X) � (θ−1 logX)1/2 uniformly over all θ ∈ (1/ logX, 1]
by Lemma 5.9, the claim follows from Theorem 1.7.
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Proof of Corollary 1.6 Let δ ∈ (0, 1], set Y := exp
(
(logX)δ

)
and put h = h0(logX)(1+δ)/2,

with 10 ≤ h0 ≤ X/10(logX)(1+δ)/2. By Lemma 5.9, we have H (fθ ;X) � (logX)(1+δ)/2 for
all 1/ log Y < θ ≤ 1. By Fubini’s theorem, the Cauchy–Schwarz inequality and Corol-
lary 5.8, we thus see that

2
X

∫ X

2/X

⎡

⎣
∫ 1

1/ log Y

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
fθ (n) − 2

X
∑

X/2<n≤X
fθ (n)

∣∣∣∣∣∣
dθ

⎤

⎦ dx

≤
∫ 1

1/ log Y

⎛

⎜⎝
2
X

∫ X

X/2

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
fθ (n) − 2

X
∑

X/2<n≤X
fθ (n)

∣∣∣∣∣∣

2

dx

⎞

⎟⎠

1/2

dθ

�
(√

log log h0
log h0

+
(
log logX
(logX)κ

) 1
2
)∫ 1

1/ log Y
Pfθ (X)dθ ,

for any 0 < κ < κ1,2. By Lemma 5.9, we have

∫ 1

1/ log Y
Pfθ (X)dθ �

∫ 1

1/ log Y
exp

⎛

⎝
∑

p≤X

fθ (p) − 1
p

⎞

⎠ dθ �
∫ 1

1/ log Y

dθ
θ

= log log Y.

We thus deduce that for all but oh0→∞(X) exceptional integers x ∈ [X/2, X], we have that

∫ 1

1/ log Y

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
fθ (n) − 2

X
∑

X/2<n≤X
fθ (n)

∣∣∣∣∣∣
dθ = oh0→∞(log log Y ).

For any of the non-exceptional x, we apply use (5.4) to give

1
h

∑

x−h<n≤x
�(n) ≥

∫ 1

0

⎛

⎝1
h

∑

x−h<n≤x
fθ (n)

⎞

⎠ dθ

≥
∫ 1

1
log Y

⎛

⎝ 2
X

∑

X/2<n≤X
fθ (n)

⎞

⎠ dθ −
∫ 1

1
log Y

∣∣∣∣∣∣
1
h

∑

x−h<n≤x
fθ (n) − 2

X
∑

X/2<n≤X
fθ (n)

∣∣∣∣∣∣
dθ

=
∫ 1

1
log Y

⎛

⎝ 2
X

∑

X/2<n≤X
fθ (n)

⎞

⎠ dθ − oh0→∞(log log Y ). (5.5)

On the other hand, by [39, Exer. 208] we find that when 1/ logX ≤ θ ≤ 1,

2
X

∑

X/2<n≤X

|d(n, θ )|2
d(n)

≥ 2
X

∑

X/2<n≤X

μ2(n)|d(n, θ )|2
d(n)

= |ζ (1 + iθ )|Hθ (1) + O(|θ3/2|/√logX),

where for Re(s) > 3/4, Hθ (s) is some convergent Dirichlet series satisfying Hθ (1) � 1
uniformly in θ ∈ [1/ logX, 1]. Integrating over θ ∈ [1/ log Y, 1] and using the Laurent
expansion ζ (1 + iθ ) = (iθ )−1 + O(1), we deduce that

∫ 1

1/ log Y

⎛

⎝ 2
X

∑

X/2<n≤X
fθ (n)

⎞

⎠ dθ �
∫ 1

1/ log Y

dθ
θ

+ O(1) = δ log logX + O(1). (5.6)
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We thus have obtained

1
h

∑

x−h<n≤x
�(n) � δ log logX

for all but oh0→∞(X) integers x ∈ [X/2, X], and the claim follows. ��
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