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Fig. 1. The system application scenario: A doctor is assessing the muscle strength of a child in the pre-assessment clinic. With the
guidance of a demo, the child is asked to complete the specified CMAS action. For a side-by-side comparison, the doctor can see (a)
the real-world scene and (b) the augmented scene. Also, the machine score is provided for the doctor to (c) make a final decision.

Abstract— As the most common idiopathic inflammatory myopathy in children, juvenile dermatomyositis (JDM) is characterized by
skin rashes and muscle weakness. The childhood myositis assessment scale (CMAS) is commonly used to measure the degree of
muscle involvement for diagnosis or rehabilitation monitoring. On the one hand, human diagnosis is not scalable and may be subject to
personal bias. On the other hand, automatic action quality assessment (AQA) algorithms cannot guarantee 100% accuracy, making
them not suitable for biomedical applications. As a solution, we propose a video-based augmented reality system for human-in-the-loop
muscle strength assessment of children with JDM. We first propose an AQA algorithm for muscle strength assessment of JDM using
contrastive regression trained by a JDM dataset. Our core insight is to visualize the AQA results as a virtual character facilitated by a
3D animation dataset, so that users can compare the real-world patient and the virtual character to understand and verify the AQA
results. To allow effective comparisons, we propose a video-based augmented reality system. Given a feed, we adapt computer vision
algorithms for scene understanding, evaluate the optimal way of augmenting the virtual character into the scene, and highlight important
parts for effective human verification. The experimental results confirm the effectiveness of our AQA algorithm, and the results of the
user study demonstrate that humans can more accurately and quickly assess the muscle strength of children using our system.

Index Terms—Action Quality Assessment, Augmented Reality, Human-in-the-Loop System, Juvenile Dermatomyositis

1 INTRODUCTION

Juvenile dermatomyositis (JDM) is the most common idiopathic inflam-
matory myopathy in children, characterized by skin rashes and muscle
weakness [3, 22, 33]. Fig. 2 shows two examples of a typical skin rash
and a muscle weakness motion sequence of a child. There are approxi-
mately two to four children per million affected by JDM [16, 24, 31].
Due to the acuteness of JDM and the significant harm, early diagnosis
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Fig. 2. Typical symptoms of JDM: (a) skin rashes on the hand, (b)
difficulty climbing stairs due to muscle weakness.

and timely treatment are crucial to improving the outcome [13, 25].
However, the lack of pediatric specialists with expertise in diagnosing
JDM makes missed diagnoses and misdiagnoses extremely common,
particularly in developing countries. For example, in 2014, China had
0.43 pediatric specialists per 1,000 children, which was significantly
lower than the US at 1.46 [47].

Assessing the degree of muscle involvement in JDM, also known
as muscle strength assessment, is a key topic in JDM diagnosis. As
shown in Fig. 2(b), a child with JDM staggers while climbing stairs
due to muscle weakness. Testing for muscle strength and endurance
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Fig. 3. Examples of CMAS actions and the corresponding ones from the
motion dataset: (a) sit-ups, (b) supine to sit, (c) pick-up.

is one of the primary measures for JDM diagnosis and rehabilitation
monitoring. The mainstay of most clinical evaluations in children with
JDM is the childhood myositis assessment scale (CMAS), a measure
that incorporates function as well as strength [20]. Usually, children
with normal muscle strength achieve a full score of 52 through an
independent evaluation of 14 kinds of actions. In contrast, children
with a score of less than 52 are considered to have muscle weakness. On
the one hand, it is difficult for young children to complete these actions
assessed by the CMAS; on the other hand, it is hard for pediatricians
to determine accurate scores due to the highly subjective assessment
criteria. For example, for the ‘supine to sit’ action, there is no explicit
distinction as to whether the performance is ‘very difficult’ or ‘generally
difficult’. Hence, it is necessary to develop a decision support system
to provide a reliable and timely economical diagnosis for JDM.

Action quality assessment (AQA) has achieved great success in vari-
ous fields, such as sports analysis [27] and surgical skill assessment [19].
It aims to develop a system capable of evaluating some specific actions
automatically and objectively through a series of input videos. Thus,
it can be considered an alternative method of avoiding the influence
of personal judgment biases. However, the biomedical community
has concerns about fully automated AQA for JDM analysis because it
cannot guarantee 100% accuracy, similar to any machine learning algo-
rithm. Also, there is a lack of interface for human experts to understand
and be supported by automatic AQA algorithms. This motivates us to
research a solution that allows humans to effectively understand and
verify AQA results, so as to improve diagnosis effectiveness.

In this work, we propose a human-in-the-loop AQA framework for
muscle strength assessment of JDM, which enables effective human
verification of AQA-suggested results, thereby allowing automated
AQA to support human decisions. Our novel idea is to visualize a
virtual character that represents the AQA results, such that users can
effectively compare the movements of the real-world patient with the
virtual character as a cue for decision-making. Specifically, we first
collect a JDM dataset with over 1,000 video clips and construct a 3D
animation dataset comprising all the sub-categories of CMAS actions.
Next, the muscle strength assessment network trained on the JDM
dataset is used to assess a given sample. By using the results of machine
scoring, a virtual animation is retrieved from the dataset. Fig. 3 shows
three examples of real actions and the corresponding animations.

To allow the most effective comparisons between the real-world
patient and the virtual character, we propose a video-based augmented
reality system. There is a few virtual/augmented reality (VR/AR) re-
search that shows the potential of usage in an interactive visualization.
For example, Robles et al. [35] proposed a VR system to support the
screening of autism spectrum disorders. Pears et al. [30] proposed
several innovative AR solutions to deliver medical education. Ours is
distinctive in the sense that we focus on the optimal way of visualiza-
tion for comparisons. In particular, given a feed, we adapt semantic
segmentation and pose estimation algorithms to identify the posture of
the real-world patient and the objects in the scene. We then identify the
optimal position, based on an objective function, to augment the virtual
character into the scene. According to the pose of the real-world patient,
we also calculate the viewing angle and size of the virtual character,
such that the two would be the best aligned for effective comparison.
For effective verification, we highlight the important key points of both
patients and characters by utilizing the network layer heatmaps.

The experimental results confirm the effectiveness of the proposed
AQA algorithm, and the results of the user study demonstrate that
our system can assist non-specialists in the more accurate and faster

analysis of JDM. The system can be used by the expert to enhance their
diagnosis effectiveness. It can also be used by trained non-specialists
such as nurses so that they can help prioritize potential serious patients
and refer them to experts for diagnosis and treatment.

Our main contributions are:
• We propose a novel framework of human-in-the-loop JDM analy-

sis, which allows humans to effectively verify the result suggested
by machine scoring through the visual comparison of real-world
patients and virtual characters.

• We propose a video-based augmented reality visualization system
that facilitates effective comparisons by adapting computer vision
algorithms for scene analysis, and evaluate the optimal way of
augmenting the virtual character into the scene.

• We propose a new, large-scale dataset for JDM and an AQA
system for JDM analysis. Unlike existing AQA algorithms, ours is
designed to facilitate human understanding through the generation
of visualization cues.

2 RELATED WORK

VR and AR applications in healthcare, as well as AQA, are closely
related to this research. Hence, this section reviews both areas.

2.1 VR/AR in Healthcare
The use of VR and AR technologies in healthcare has been increasing
due to the capability they possess to enable a wide range of delivering
healthcare applications [9, 15, 23, 32, 34, 36, 40, 43, 44, 49], including
the training of physicians and other healthcare professionals, as well as
enhancing their ability to provide remote diagnosis services.

In the field of medical training and education [4, 9, 14, 23, 32, 34, 49],
VR/AR plays a key role in the interactive visualization. On the one
hand, VR/AR technology provides users with vivid visualizations that
deepen their understanding; on the other hand, it also provides users
with interactive methods, which contribute to the sense of participation.
For example, Pears et al. [30] proposed several innovative solutions
to deliver medical education while maintaining resident and educator
safety. Mobile AR allows remote users to view a surgical procedure and
interact with the video feed, allowing students to gain a comprehensive
understanding of surgery without having to be present in a classroom.
According to the results in [9], AR technology can enhance the experi-
ences of medical students by improving knowledge and understanding
as well as practical skills, and by facilitating social interaction.

In the field of medical diagnosis [8, 15, 35, 36, 40, 43, 44], VR/AR
plays a key role in the useful tool for the human-centered data acquisi-
tion. Researchers often build VR/AR scenes to collect human motion
data to analyze and diagnose diseases. For example, Wang et al. [40]
utilized a VR helmet and force feedback gloves to present users with
a playful experience for home rehabilitation. This study explores the
potential of fully immersing them in a playful experience within a
virtual cat bathing simulation. The results demonstrate that playfulness
brings a positive impact on the rehabilitation experience in VR. There-
fore, designing VR/AR games [8,44] for disease diagnosis is appealing.
However, long-term motion interactions in a VR/AR environment can
bring users cybersickness. Some studies [36, 43] to adopt mitigation
measures to avoid discomfort by predicting cybersickness.

Different from these medical systems, our system enables non-
specialists to make easy-to-judge assessments by comparing the pa-
tient’s movement with the virtual animation produced by AQA, thereby
allowing AQA to support human decisions. By side-by-side compari-
son, they can easily observe the difference between them.

2.2 Action Quality Assessment
AQA aims to quantify how well actions are performed from the same
class, which can be used as an alternative to avoid personal judgment
bias [17]. Recently, AQA has gained widespread attention due to
its wide applications such as rehabilitation medicine [1, 26], athletic
competition [37, 48], and specific skills assessment [10, 11].

Different classification criteria can be used to categorize these AQA
methods. As for the input format, these frameworks include exemplar-
based [2, 46, 48] and exemplar-free [37, 42] methods depending on
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Fig. 4. Pipeline of the proposed system: (a) muscle strength assessment using contrastive regression (Sect. 3.2), (b) motion retrieve from the
animation dataset, (c) AR effects rendering (Sect. 3.3), and (d) assisted assessment.

whether exemplars are used or not. The former usually involves select-
ing a set of exemplars along with the target sample as input, while the
latter does not. For example, Bai et al. [2] learned the relative score
of the input action relative to the exemplar, and used the exemplar’s
score to calculate the final quality score. Compared to exemplar-free
methods, this method is easier to regress relative scores. As for data
output, existing AQA methods can be divided into methods based on
quality scores, methods based on grades, and methods based on rank
orders. For example, Parmar et al. [27] classify the levels of cerebral
palsy rehabilitation exercises as ‘good’ or ‘bad’. Since the scores of in-
dividual actions in CMAS are determined by different execution levels,
our method falls into the grade-based method. As for processing flow,
AQA generally entails three steps: feature extraction, feature aggrega-
tion, and score regression. To avoid over-fitting caused by few samples,
most existing methods adopt powerful backbones such as C3D [38]
and I3D [5] as the feature extractor, which are usually pre-trained on
large action recognition datasets. Common feature aggregation and
regression methods [28, 29] include LSTM, TCN, MLP, etc.

Different from prior works, we propose a human-in-the-loop AQA
framework for muscle strength assessment based on contrastive regres-
sion. The AQA-suggested results are finally used to generate augmented
visualization cues for effective human verification.

3 METHODOLOGY

Inspired by the fact that direct assessment requires more expertise
than spotting differences, we design an AR system that can assist non-
specialists such as clinical nurses in assessing the muscle strength of
children with JDM. For example, it is possible for clinical nurses to
use our system to perform pre-assessment of patients. So they can help
prioritize potential serious patients and refer them to experts for further
diagnosis and treatment, which will reduce the workload of experts
from spending their time examining negative or non-urgent cases. As
shown in Fig. 1, a user can easily compare the difference between the
real patient and the virtual character through our system. Similar to
any machine learning algorithm, it cannot guarantee 100% accuracy for
existing AQA methods while we use it in biomedical applications that
require a lot of responsibility. To achieve this, a novel human-in-the-
loop AQA framework is embedded in our system, enabling effective
human verification of the AQA-suggested results.

In this section, we first provide an overview of the whole system.
Then, we detail the proposed AQA algorithm using contrastive regres-
sion. Finally, we describe the setting of the user study.

3.1 System Design
As can be seen in Fig. 4, there are four components in our pipeline: (a)
muscle strength assessment using contrastive regression (Sect. 3.2), (b)
motion retrieve from the animation dataset, (c) AR effects rendering
(Sect. 3.3), and (d) assisted assessment. The muscle strength assess-
ment algorithm produces results for searching virtual motions from
the animation dataset. The use of video-based AR effects to augment
real-world scenes can provide users with valuable cues for assessment.

Given an unobserved sample, our AQA algorithm outputs a predicted
grade ĝ, which is used to search a corresponding virtual motion from

2048 1024 1

ConvReLU–1

1024 512 1

ConvReLU–2

512 256 1

ConvReLU–3

256128 1

ConvReLU–4

128 1 1

ConvReLU–5

1

σ(·)
Query

Exemplar

Fig. 5. Network architecture of the contrastive regression module.

the constructed 3D animation dataset. To superimpose the virtual
animation in the real-world scene, we adapt computer vision algorithms
for scene understanding and evaluate the optimal way of augmenting the
virtual character in the scene. Thus, users can compare the real-world
patient and the character as a means to understand and verify the AQA
results. When there is a large difference between the real movement and
the virtual animation, it is thus easy for them to detect the difference,
and then re-evaluate this action by carefully reviewing the assessment
criteria. Notably, even people without prior experience in muscle
strength assessment can make an accurate diagnosis by comparing the
machine results facilitated by the virtual character to the real patient.

3.2 Muscle Strength Assessment
Our AQA algorithm aims to automatically assess the muscle strength
of the given action. Given an action sequence X ∈ RT×W×H×3

composed of T frames of sizeW ×H , the output is the predicted grade
ĝ, which is supervised by its ground-truth g. Thus, we need to first
obtain the video-level representation and then use it for grading.

3.2.1 Video-Level Representation Extraction
Since JDM is a rare disease, the collected JDM dataset (Sect. 4.1) is
with fewer than 100 samples for each action. It is easily over-fitting
when training large-sized models. Previous works [2, 45, 48] have
hypothesized that the action recognition features can also be applied to
the AQA task. So we choose I3D [5] pre-trained on the Kinetcis-400
dataset [18] as the feature extractor.

Considering that 3D CNNs [5, 38] are always memory- and
computation-intensive, we first divide the whole video sequence X

into M small clips X1,X2, · · · ,XM ∈ RT ′×W×H×3 with equal
length T ′. Then, these clips are fed to the feature extractor ϕ(·) to
obtain the corresponding clip-level features f1,f2, · · · ,fM ∈ RC .
Next, we can obtain the video-level representation f ∈ RC by average
pooling, where C is the dimension size.

f = AvgPool([ϕ(X1), ϕ(X2), · · · , ϕ(XM )]). (1)

3.2.2 Contrastive Regression
Motivated by the fact that directly assessing action quality is more
difficult than comparing a sample with exemplars, we propose the
contrastive regression module for muscle strength assessment. Fig. 5 il-
lustrates the network architecture of the proposed contrastive regression



module. A better representation space is developed by ensuring that
the distance between two similar samples is small, while the distance
between two dissimilar samples is large. The distance between two
samples in the representation space can, therefore, already reflect their
semantic relationship, if they belong to the same category.

Our goal is to regress the difference/similarity between the input
action and exemplars. A set of representative samples from the training
set is selected by a pediatric specialist for inference. The exemplars are
randomly selected during training, which enhances the robustness of
our system against any mistake by the pediatric specialist in selecting
the representative samples. For an action with G types of grades,
given an input sample X and the corresponding exemplars Xi

emp (i =

1, 2, · · · , G), we can obtain the video-level representations f and f i
emp

through Eq. (1). Next, f and f i
emp are concatenated together and fed

into our contrastive regression module ψ(·) to obtain the similarity:

ŝi = σ(ψ(concat(f ,f i
emp))), (2)

where σ(·) denotes the sigmoid activation function. A similarity score
indicates how likely the sample is to belong to the corresponding grade.
The final grade is determined by the highest similarity score:

ĝ = argmax
i

(ŝ1, ŝ2, · · · , ŝG). (3)

If the training set contains more than one set of exemplars, we can use
an ensemble strategy to determine the final grade by selecting multiple
sets of samples. The pseudo-code for inference of our algorithm is
elaborated on Algorithm 1, where E sets of samples are selected.

Algorithm 1: Inference procedure of our AQA algorithm for JDM analysis.

Input: A given action X, the training set T , the ensemblesE and gradesG.
Output: The corresponding predicted grade ĝ.

1 Obtain the video-level representation f by Eq. (1);
2 SelectE sets of representative samples {X1,1

emp,X
1,2
emp, · · · ,X

1,E
emp, · · · ,

XE,G
emp} from the training set T ;

3 Initialize the vote variable ŝ ∈ RG to the zero vector;
4 for i← 1, 2, · · · , E do
5 Initialize the temporary variable stmp ∈ RG to zeros;
6 for j ← 1, 2, · · · , G do
7 Obtain the video-level representation f i,j

emp by Eq. (1);
8 Calculate sitmp based on f i,j

emp by Eq. (2);

9 Calculate the temporary variable ĝtmp based on stmp by Eq. (3);
10 Add a vote for the ĝtmp-the element of the vote variable ŝ;

11 Calculate the final grade ĝ based on ŝ by Eq. (3);

3.2.3 Optimization
Existing AQA methods [2,48] ignore the intrinsic heterogeneity among
the feature spaces of action recognition and AQA, i.e., the model pre-
trained on action recognition datasets can be sub-optimal for AQA. To
compensate for this, we first design feature distance loss to regularize
the heterogeneous feature space:

Ldis = −
(
dij ln d̂ij + (1− dij) ln(1− d̂ij)

)
. (4)

where we use the cosine similarity to measure the distance d̂ij between
fi and fj . When fi and fj belong to the same grade, the ground-truth
distance dij is set to 1; otherwise, the ground-truth is set to 0.

We train the network by imposing the classification task and use the
cross-entropy function to define the score regression loss:

Lsco = −
G∑

i=1

(gi ln ĝi + (1− gi) ln(1− ĝi)) . (5)

Finally, the overall loss L can be obtained by:

L = λ1Ldis + λ2Lsco, (6)

where λ1 and λ2 are factors that balance the scale of each loss term,
distinguishing the importance of two objectives and ensuring that the
feature extractor and the score regression converge synchronously.

3.3 AR Effects Rendering
We augment the character in the optimal position and orientation so
that the real-world patient and the virtual character are compared as a
means of understanding and verifying the AQA results.

3.3.1 Position
As can be seen in Fig. 1, there are different objects and the patient in the
real-world scene. Due to the visual comparison of human movements,
we are much concerned with the location and orientation of the patient.
In this way, it is necessary to find where the patient is located so that
we can put the character in a suitable free place.

To achieve this, we utilize a video instance tracking and segmentation
algorithm [41] to track the patient during the assessment. Thus, we
can obtain a mask sequence of the patient. Fig. 6(a) shows the result
of tracking and segmentation where a mask is in cyan for a frame of
the patient and the bounding box is in yellow. Let Pi = (xi, yi) for
i ∈ [1, 4] denote the four vertices of the rectangle bounding box, we
can divide the whole space into four free sub-spaces.

We first calculate four outer vertices of the bounding box by:

P ′
1 = (xmin, ymin), P

′
2 = (xmin, ymax),

P ′
3 = (xmin, ymin), P

′
4 = (xmax, ymin),

(7)

where xmax, xmin, ymax, ymin denote the maximum as well as min-
imum x- and y-axis coordinate values of Pi. Then, there are four
adjacent combinations of P ′

i to form four corresponding lines P ′
1P

′
2,

P ′
2P

′
3, P ′

3P
′
4, P ′

4P
′
1. Naturally, they split the free space into four parts:

left, bottom, right, and top, denoted as A1, A2, A3, and A4. Fig. 6(a)
shows that there are four corners that cover two adjacent sub-spaces.
Particularly, all the corner areas will not be considered prior to the
placement of the character for the best visualization effect.

Generally, the larger the area of the free sub-spaces, the more likely
it is to be selected for positioning the character. At the same time,
the expected sub-space should have the capacity to accommodate the
outer rectangle P ′

1P
′
2P

′
3P

′
4 of the bounding box, so that it satisfies a

proportional insertion. The problem can be modeled as:

min
i

− hi × wi, ∀i ∈ [1, 4]

s.t. hi > ymax − ymin,

wi > xmax − xmin,

(8)

where hi and wi denote the vertical length and the horizontal length of
the i-th sub-space respectively. In case there is no solution to Eq. (8)
(i.e., none of the four sub-spaces can positively contain the rectangle
P ′
1P

′
2P

′
3P

′
4), we remove the constraints, find the optimal solution again,

and scale the virtual character accordingly.
Generally, the character will be placed at the center of the optimal

sub-space. However, the character in the area center may sometimes
be suspended in the air, which is unfriendly for visual comparison. As
shown in Fig. 6(b), we thus use a semantic segmentation algorithm for
scene understanding so that the virtual character can be placed on the
ground or the sleeper sofa, thus enhancing the visualization experience.
Therefore, if we can find a suitable plane in the optimal sub-space, we
can place the character there. If not, we will place it in the center.

3.3.2 Direction and Angle
Notably, our animation dataset is 3D in nature so we can render it from
all possible angles. To ensure the same orientation as the real-world
patient, it is necessary to identify the face angle and direction.

We determine the front-to-back and side-to-side orientation of the
patient’s face separately. Firstly, the required coordinates as shown in
Fig. 6(c), i.e., the hip PH, the neck PN, and the left shoulder PL, can be
easily obtained by a pose estimation method [21]. Note that the neck
is obtained by the median interpolation between two shoulders. The
two directed lines

−−−→
PHPN and

−−−→
PNPL form two vectors, denoted as v1

and v2. Thus, we can then determine the front-to-back orientation by
calculating the normal direction n between v1 and v2.

n = v1 × v2. (9)
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Fig. 6. Illustrations of (a) sub-space division, (b) scene segmentation, (c) key points and local coordinate system, and (d) the rendered AR effect.

Since the three points are located at the core of the human body and
are relatively stable, we can utilize the right-hand rule to determine the
real patient’s direction. If the direction of n is perpendicular to the
image plane inwards, the patient faces forward; otherwise, the patient
faces backward. Using the depth information provided by the pose
estimation, a rough 3D angle can be calculated.

As shown in Fig. 6(c), we establish a local coordinate system along
the x and y axes with the neck PN as the origin. Intuitively, if v2 falls
into the first and second quadrants, the patient faces to the right of the
camera; otherwise, the patient faces to the left. Furthermore, if v2 falls
into the first and fourth quadrants, the patient faces backward of the
camera; otherwise, the patient faces forward.

3.3.3 Attention Effects
Since different body parts contribute differently to AQA, identifying
their importance is crucial. However, it is impossible to pre-define key
parts for each action because key parts vary by patients’ symptoms.
Motivated by the success of attention mechanisms in deep learning, we
can obtain adaptive key parts for different patients and characters by
using intermediate layer heatmaps of our network, as shown in Fig. 4.

Firstly, we need to determine which parts are most important. It is
easy to obtain a feature map of the intermediate network layer, and
resize it to match the input size, denoted as F ∈ RT×W×H . Also,
we can obtain a mask sequence as same as Sect. 3.3.1, denoted as
M ∈ RT×W×H . The attention map is calculated by:

A = softmax(F⊙M), (10)

where the function softmax(·) normalizes the response of the human
body to [0, 1]. Responses are greater for important parts.

Secondly, we need to determine which of these important parts
correspond to the key points. The same as Sect. 3.3.2, we can obtain
a sequence of poses of the patient containing J key points. For each
frame, the importance αi of i-th key point is obtained by summing the
responses in its neighborhood Ni with the radius r: αi =

∑
j∈Ni

Aij .
Next, we calculate the i-th joint angle difference ωi between the patient
(ωi

1) and the character (ωi
2) by |ωi

1 − ωi
2|. Then, a highlighted key

point is determined if the response and the joint angle difference values
exceed the average values: αi >

1
J

∑
j αj and ωi >

1
J

∑
j ωj .

Fig. 6(d) shows the final rendered scene where the knees of the pa-
tient and the character are highlighted in red circle shading. It indicates
that the knee joint is important during floor rising, and that the knee
joint angle of the character and the patient differs significantly.

3.4 User Study Design
The purpose of this study is twofold: the first is to assess the gap
between machine scoring and expert scoring; the second is to determine
whether the proposed system can assist non-specialists in assessing
muscle strength more accurately for children with JDM. The former
can be verified by comparing the ground truth with the machine scoring,
as demonstrated in Sect. 3.2. The user study aims to explore how the
latter can be verified. We need to investigate two questions:
Q1. How fast are the participants when assessing a given sample?
Q2. How accurate are the assessment results of participants?

To answer these questions, we have designed two tasks (Sect. 3.4.1).
Participants are asked to solve the two tasks (Sect. 3.4.2). For both tasks,
we have recorded results, time usage, and some personal information.
In addition, we describe the detailed study procedure (Sect. 3.4.3).

3.4.1 Tasks

Two tasks are designed to evaluate the effectiveness of the system:

T1. CMAS Assessment Participants are required to assess the
muscle strength of patients according to CMAS rules.

T2. Assisted Assessment Participants are required to make a
final decision based on the machine score and the augmented scene.

3.4.2 Apparatus and Participants

The user study has been conducted at the Children’s Hospital of Capital
Institute of Pediatrics in Beijing, China.

The 3D animations are made by a Unity3D program. The system in-
cludes the patient, server, and doctor ends. The patient end is primarily
responsible for collecting data, which is then sent to the server for pro-
cessing and calculation. Based on the results calculated on the server,
the doctor end renders the AR scene to assist doctors in assessment.
Using our system, it is possible to complete the assessment at home via
remote diagnosis. Our system is currently in a prototype stage and is
primarily used for pre-assessment in clinics. After simple training for
the patient, the doctor opens the patient end to record actions. At the
doctor end, the rendered AR scenes can be seen for assessment within
a few seconds of delay. Data and results are automatically saved.

Instead of pediatric specialists, our system is primarily designed to
assist clinic doctors in pre-assessment. A total of 30 non-paid general
practitioners participate in the study to ensure its repeatability, and
each participant needs to assess all actions for each patient. Half of
the participants are males and half are females. Ages range from 25
to 50, and the mean, median, and standard deviation are 34.1, 32, and
7.8, respectively. No vision issues are reported by participants. The
assessment has been conducted on five representative patients selected
by a pediatric specialist. One girl and four boys are aged 8, 5, 5, 5,
and 15, with one mild case, two moderate cases, and two severe cases.
In all actions they perform, all scores are covered, indicating that the
symptom of representative patients has a high degree of diversity.

3.4.3 Procedure

Due to the COVID-19 epidemic, we recorded AR effects on videos and
created an online form. The action can therefore be prevented from
being repeated by the child. During the user study, participants are
invited for a remote assessment via the Internet. Each participant must
sign a consent form before the study procedure can begin.

The study procedure begins with an explanation of the study design.
Questions could be posed at any time. After the explanation, partici-
pants can assess the training examples for each task. Then, the actual
study formerly starts. Participants can assess the muscle strength of
patients by watching their actions. For task T2, participants can com-
pare the real action and the virtual animation. They should make a final
decision. After finishing each sub-task, the answer and the time usage
are automatically recorded. There are 30 (6× 5) sub-tasks, comprising
6 actions per child (5 children). Among the two tasks, the action order
is different to eliminate possible negative influences. After completing
each sub-task, participants can click the ‘pause’ button to take a break.
The break time cannot be recorded until they click the ‘start’ button
to the next. Participants fill out a questionnaire after solving all tasks
regarding their age and experience with the application. The study
takes approximately half an hour.
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Fig. 7. Statistical bar chart of the details for the JDM dataset: each sub-category is sorted descendingly by sample number.

4 EXPERIMENTS

We first introduce the experimental setup, including datasets, evalua-
tion metrics, and implementation details. And then we show lots of
qualitative and quantitative experiments and analyze the results.

4.1 Datasets
The details of the collected dataset are shown in Fig. 7. Different
colors represent different actions, and each sub-category is sorted in
descending order by the sample number.

In total, 14 types of actions are included in the dataset. Based on
different evaluation criteria, these actions can be divided into three
categories: time-related actions, position-related actions, and uncertain
actions. A time-related action is evaluated primarily on the basis of
how long it takes to complete the action. A position-related action is
primarily evaluated in terms of the magnitude and position of movement
of a body part. Uncertain actions require subjective judgments about
how difficult they are to perform. The uncertain action is more difficult
to evaluate, while the others can be easily measured by simple distance
metrics. Among them, we do not consider actions that miss some
sub-categories and we prefer to select actions that require subjective
judgments. As a result, six challenging actions have been selected to
conduct this study. To boost data collection efficiency and increase
the number of samples, we use an iPad, an iPhone, and two different
USB cameras to collect the data. The video resolution contains (1080,
1920), (1080, 1912), (1920, 1080), and (1080, 1914), and the frame
rate contains 30 fps and 29 fps. Furthermore, the duration of different
actions varies, even for the same type of action, leading to differences
in the total number of frames. To ensure a unified input, all samples
have been normalized to the same resolution and frame number.

4.2 Evaluation Metrics
In addition to accuracy, we also use two evaluation metrics to validate
the performance of the proposed AQA algorithm.

Spearman’s Rank Correlation Coefficient Similar to previous
works [11,17,37], we adopt the Spearman’s rank correlation coefficient
ρ to evaluate the algorithm performance. The coefficient ρ measures
the correlation between two statistical variables, which is defined as:

ρ =

∑
n(gn − gavg)(ĝn − ĝavg)√∑

n(gn − gavg)2
∑

n(ĝn − ĝavg)2
, (11)

where gavg and ĝavg denote the average values of the ground truth and
predicted score vectors, respectively. The rank correlation between
ground truth and predicted scores increases as ρ increases.

Relative ℓ2 Distance We also adopt the relative ℓ2 distance (R-ℓ2)
[48] to measure the algorithm performance. It eliminates the negative
impact of different actions spanning different scoring intervals. Given
the highest and lowest scores gmax and gmin, R-ℓ2 is defined as:

R-ℓ2 =
1

N

N∑
n

(
|gn − ĝn|
gmax − gmin

)2

× 100, (12)

where N is the sample number. Fisher’s z-value is used to measure the
average performance across actions.

Table 1. Comparison results on the MTL-AQA dataset.

Methods Spe. Coe. Rel. R-ℓ2 Dis.

I3D + MLP [37] 0.9231 0.468
USDL [37] 0.9066 0.654
I3D + MLP [48] 0.9381 0.394
CoRe [48] 0.9512 0.260
Ours 0.9537 0.245

4.3 Implementation Details
We have implemented all experiments using the Pytorch framework
with two Nvidia RTX 3090 GPUs.

The initial learning rate is set to 10−3 for regression and 10−4 for
I3D. We use Adam to optimize the network, and the weight decay is set
to 10−5. The balance factors λ1 and λ2 are set to 1. Both the training
and testing batch size is set to 1. The neighborhood radius is set to
20. In the prediction process, ten sets of exemplars are selected for
inference, and the final score is determined via ensemble voting. For
all experiments, 103 frames are extracted for each video clip and split
into ten clips, each containing 16 frames with overlap between clips.
For non-square frames, we use the padding strategy to convert them
into squared ones. We use the frame-shifting strategy to augment the
samples in the training phase: all frames are shifted left or right by 0
to 5 frames and the rest is filled with empty images. With a test ratio
of 0.3, we divide the dataset into the training set and the test set. In
the training phase, a hybrid training strategy is proposed to boost the
assessment performance: the pre-trained model is first fine-tuned on
all 14 types of actions in an unsupervised manner [7], followed by
fine-tuning on each type of action separately. To re-balance imbalance
samples, we adopt a re-sampling strategy [12] to train the network.

4.4 Results and Analysis
We first compare our model with the state-of-the-art. Then, the ablation
results are given. Next, we show large qualitative and quantitative
results. Finally, we present and analyze the results of the user study.

4.4.1 Comparisons with State-of-the-Art
Our method is compared with the state-of-the-art on a public AQA
dataset and our dataset for muscle strength assessment.

We first use our proposed method to perform the AQA task on the
MTL-AQA dataset [28]. It is a quite large-scale AQA dataset and is
commonly used as the benchmark dataset to evaluate the effectiveness
of AQA methods. The results are reported in Table 1. We compare two
state-of-the-art AQA methods, where [37] is based on direct regression
and [48] on learning a relative quality score. Table 1 shows that our
method achieves better performance than the others [37, 48]. The fact
that our method still improves on this dataset is very encouraging since
the state-of-the-art has reached close to the limit. Thus, our method is
quantitatively demonstrated to be effective.

Then, two methods have been implemented for muscle strength
assessment. The whole pipeline of our method can be divided into
feature extractor (as well as feature aggregation) and score regression.
To ensure a fair comparison, all methods utilize the I3D network as
a feature extractor and the average pooling as a feature aggregator,



Table 2. Accuracy (%) and Spearman’s rank coefficient on six CMAS actions with different methods of muscle strength assessment.

Methods
Head lift Supine to sit Arm straighten Floor sit Floor rise Chair rise

Acc. Spe. Coe. Acc. Spe. Coe. Acc. Spe. Coe. Acc. Spe. Coe. Acc. Spe. Coe. Acc. Spe. Coe.

SVM 43.48 0.3139 58.33 0.5351 52.17 0.3246 68.00 0.7761 73.91 0.6718 90.00 0.4716
MLP 66.67 0.7626 83.83 0.8361 73.33 0.3731 55.56 0.1284 78.26 0.3969 81.25 0.5878
Ours 86.96 0.8393 91.67 0.9256 80.00 0.5357 76.00 0.7840 87.50 0.8710 93.75 0.9326
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Fig. 8. Plots of different feature spaces on the ‘supine to sit’ action: (a)
the original space, (b) MLP, (c) ours w/o Ldis, and (d) ours.

whereas the score regression differs. Most AQA methods [17, 37, 48]
adopt the MLP layers to regress the quality score. Similarly, we also
use several MLP layers to regress the grade of muscle strength. Differ-
ent from these methods, a simple yet effective contrastive regression
module is proposed. Therefore, we have implemented an MLP-based
method for comparison. In addition, we have also implemented a lin-
ear support vector machine (SVM) [6, 50] based method for muscle
strength assessment. The comparison results on six CMAS actions are
shown in Table 2. Among these actions, our method achieves the best
performance, indicating the effectiveness of our proposed method. The
other methods perform poorly, showing that directly transferring the
current AQA methods to muscle strength assessment is ineffective. For
example, our method on the ‘supine to sit’ action achieves an accuracy
of 92.67%, whereas the MLP only achieves that of 58.33%.

We use the t-distributed stochastic neighbor embedding (t-SNE) [39]
to visualize the different feature spaces in Fig. 8. The original feature
space in Fig. 8(a) makes it almost impossible to distinguish any sub-
category. In contrast, the feature space in Fig. 8(b) processed by MLP
has a certain degree of identification, while the feature space in Fig. 8(d)
processed by our method is almost linearly separable. In this regard,
our proposed method is qualitatively demonstrated to be effective.

4.4.2 Ablation Study
This ablation study aims to verify the effectiveness of the core designs.
All the experiments of the ablation study are performed on the ‘supine
to sit’ action. Table 3 shows the corresponding results.

Effectiveness of Fine-Tuning Existing AQA methods [2, 48]
ignore the large transfer gap from the action recognition to action
quality assessment. To address this issue, we first fine-tune the pre-
trained backbone model on all 14 types of actions in an unsupervised
manner and then fine-tune it on each action separately. According
to the second line (w/o FT) in Table 3, the removal of the first fine-
tuning step results in a 25.00% reduction in accuracy and a 0.6895

Table 3. Ablation results of the ‘supine to sit’ action.

Methods Acc. (%) Spe. Coe. Rel. R-ℓ2 Dis.

Ours 91.67 0.9256 0.0231
w/o FT 66.67 ↓25.00 0.2361 ↓0.6895 0.1296 ↑0.0190

w/o RS 75.00 ↓16.67 0.7166 ↓0.2090 0.0972 ↑0.0741

w/o CR 83.83 ↓7.84 0.8361 ↓0.0895 0.0471 ↑0.0190

w/o Ldis 88.24 ↓3.43 0.8975 ↓0.0281 0.0523 ↑0.0292

reduction in correlation. Thus, fine-tuning the model is essential for
improving assessment performance, especially for the JDM dataset,
where each action only spans several dozen. This also demonstrates the
effectiveness of the hybrid training strategy.

Effectiveness of Re-Sampling As shown in Fig. 7, all action
data exhibit a typical long-tailed distribution, and even for each type of
action, the distribution of its sub-categories is highly imbalanced. In
the case of the ‘head lift’ action, there are five grades, with the numbers
(10, 15, 19, 13, 5, 8). According to the third row (w/o RS) of Table 3,
the removal of the re-sampling strategy results in a 16.67% reduction in
accuracy and a 0.2090 reduction in correlation. In addition, the network
always produces the same grades in this case. Thus, it is evident that
re-sampling is efficient in fixing the class imbalance problem, which is
crucial for improving the accuracy of muscle strength measurement.

Effectiveness of Contrastive Regression Inspired by the con-
trastive AQA methods [17, 48], we propose a contrastive regression
module for muscle strength assessment. According to the fourth line
(w/o CR) of Table 3, the removal of the proposed contrastive regression
results in a 7.84% reduction in accuracy and a 0.0895 reduction in
correlation. In this way, the contrastive regression module contributes
to improving the performance of muscle strength assessment.

Effectiveness of the Distance Loss For each action, we also
fine-tune the backbone during the training phase. To constrain the
feature space, we propose a distance loss, where the optimal model
requires low distance and high similarity between the same subcate-
gories. Similarly, we eliminate this loss function and maintain all other
modules unchanged to determine whether it is effective. Based on the
results in the fifth row (w/o Ldis) of Table 3, the elimination of the
distance loss results in a 3.43% reduction in accuracy and a 0.0281
reduction in correlation. After removing this loss, the feature space in
Fig. 8(c) has more indistinguishable samples than the feature space in
Fig. 8(d). Hence, the distance loss is demonstrated to be effective in
both the qualitative and quantitative results.

Effectiveness of the Number of Ensembles For the regression
module, the number of ensembles is a significant hyper-parameter
affecting the results. We conduct several experiments on the ‘supine
to sit’ action with different values of layers, ranging from 0 to 4. The
corresponding results are shown in Fig. 10. When the ensemble is 0,
the model is equivalent to removing contrastive regression, directly
predicting muscle strength. There is a gradual increase in accuracy rate
and correlation coefficient as the number of ensembles increases. At
the same time, the relative R-ℓ2 distance decreases, suggesting that the
number of ensembles is an important factor in improving assessment
performance. By using a greater number of ensembles, the model is
able to refer to more exemplars while incurring a greater computational
cost. Thus, we only use one ensemble to conduct the other experiments.

4.4.3 Visualization
We visualize the accuracy as well as loss during the training phase, the
confusion matrix, and the inference results of several examples.



Sample #003, Action #1

1-st(a) 2-nd 3-rd 4-th 5-th
0 1 2 3

Grade

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty

Sample #007, Action #7

1-st(b 2-nd 3-rd 4-th 5-th
0 1 2 3

Grade

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty

Sample #008, Action #11

1-st(c) 2-nd 3-rd 4-th 5-th
0 1 2 3 4

Grade

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty

Fig. 9. Three samples and their predicted grade distribution using our proposed method: the first column to the fifth column denote the five different
frames, and the final column represents the plot of the corresponding predicted grade similarity distribution.
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Case Study In Fig. 9, three action samples have all been success-
fully assessed. The samples are #003 for the ‘supine to lift’ action,
#007 for the ‘arm straighten’ action, and #011 for the ‘floor rise’ action,
respectively. Five frames have been selected to illustrate the performing
process of each action, which are shown in the first to fifth columns
of Fig. 9. Please refer to the supplementary video for the complete
rendered effect. The rendered scene can be viewed in conjunction with
the virtual animation and the real action at the same time, where the key
joints have been highlighted with transparent circles. The last column
of Fig. 9 is the predicted grade distribution, where Figs. 9(a) and 9(b)
are two successful cases and Fig. 9(c) shows a failed case.

In Fig. 9(b), the young girl can easily raise her arms, which is
within grade 3. According to the grade distribution, the model output
is the most similar to grade 3, indicating that this sample is the most
similar to the exemplar of grade 3 and thus the predicted grade is 3. This
demonstrates that our proposed muscle strength assessment algorithm is
effective. We can also see that the arm joints are highlighted, indicating
that the arm joints are important and that the virtual character differs
from the real patient. Even though there are few differences between
the two, the clinic doctor will still choose to believe in the machine
score because he is confident that the two have the same level of action.
In Fig. 9(c), the little boy sways when he gets up from the floor, and
judging subjectively with different degrees of difficulty is quite difficult.
Unfortunately, the model incorrectly identifies mild difficulty (grade 3)
as severe (grade 1). When observing that there is a significant difference
between the real patient and the virtual character, the doctor makes
a final assessment using CMAS rules. Finally, the action in Fig. 9(c)
is still successfully assessed as grade 3. By using a simple visual
comparison rather than a direct assessment based on CMAS rules, our
system can assist doctors in their assessment and reduce their workload.

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Train acc
Test acc
Train loss
Test loss

(a)
0 1 2 3

Grade

0
1

2
3

G
ra

de

0.94 0.00 0.02 0.06

0.00 0.00 0.02 0.00

0.06 1.00 0.95 0.00

0.00 0.00 0.00 0.94

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 11. The plot of (a) accuracy and loss curves during the training
phase and the heatmap of (b) the confusion matrix.

Once the machine makes a mistake, doctors can make a final decision
to improve the assessment performance.

Our muscle strength assessment algorithm is video-based, so pose
estimation is not required. During the AR effects rendering phase,
determining the direction for inserting the character and visualizing key
parts requires pose estimation. Hence, once the pose estimation fails,
the character may not be accurately placed in the real environment.
In this way, the assisted assessment functionality may be affected so
doctors cannot use our system to verify the machine results. In this
scenario, the accuracy is equal to that of the algorithm at least. It
should be noted that the results of our algorithm are still significantly
better than clinical doctors. As a result, our system is still capable of
assisting clinical doctors in the assessment process and improving the
performance of the assessment, even if the pose estimation fails.

Accuracy and Loss Fig. 11(a) shows the accuracy and loss curves
during the training phase with 100 epochs for an experiment on the
‘supine to sit’ action. During the training process, the training error
gradually decreases, the accuracy gradually increases, and the test
results are also consistent. The test accuracy fluctuates more than the
training accuracy as a result of fewer samples in the test set. After 50
epochs, the average loss in the test set is smaller than the loss in the
training set, as the accuracy gradually approaches the accuracy of the
training set. Thus, it demonstrates that our algorithm is so effective that
few samples are needed to converge without over-fitting.

Confusion Matrix Fig. 11(b) shows the confusion matrix of one
inference on the ‘supine to sit’ action. Each element of the confusion
matrix means that the action with the i-th grade is assessed as the j-th
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grade. Accordingly, the greater the number of elements in the main
diagonal, the more accurate the model is at assessment. As can be seen
in Fig. 11(b), all samples of grade 1 are incorrectly assessed as grade 2,
while the others are more accurate. Among four types of sub-categories,
the number of samples with grade 1 is only three, accounting for 3.8%
of the total. During training, samples with grade 1 are over-sampled,
but the similarity between the augmented samples is high, resulting in
incorrect assessments. Additionally, the actions of grades 1 and 2 are
similar, so grade 1 is incorrectly assessed as grade 2.

4.4.4 User Study
A comparative study is first presented to evaluate the effectiveness of
attention effects. Next, we evaluate the effectiveness of our machine
scoring algorithm by comparing its results with those of the CMAS
assessment (T1). Finally, we evaluate the effectiveness of the human
verification functionality in our system by comparing the results of the
assisted assessment (T2) and those of the CMAS assessment (T1).

Effectiveness of Attention Effects As stated in Sect. 3.3.3, we
highlight the key parts of both the patient and the character, allowing
users to complete the task the most effectively. Notice that a better user
experience may not directly impact accuracy, but it reflects in other
aspects such as ease of operation and effectiveness of visualisations.
Thus, a comparative study has been conducted to investigate the user’s
preference for two different rendered effects in Figs. 12(a) and 12(b).
The result is shown in Fig. 12(c) where 90% of respondents, including
doctors, parents, and others, prefer to highlight key parts for visual
comparison. This demonstrates that it is easier to identify their move-
ments’ differences using Fig. 12(b) than Fig. 12(a). In this regard, we
next verify the virtual character and the attention effects as a whole.

Effectiveness of Machine Scoring Due to personal bias and a
lack of professional diagnostic experience, it is difficult for general
practitioners to accurately assess muscle strength. However, the ma-
chine scoring algorithm can circumvent these difficulties. Combining
Fig. 13(a) and Table 2, it is encouraging that our machine scoring algo-
rithm has achieved greater accuracy than the CMAS assessment (T1)
on all actions. For example, participants achieve 88.89% accuracy on
the ‘supine to sit’ action when performing task T1, which is lower than
the machine accuracy of 91.67%. The participants are mainly general
practitioners, so it is evident that our machine scoring algorithm is
more effective. This provides the potential to improve the assessment
performance of clinical doctors with the aid of machine scoring.

Effectiveness of Visual Comparison By combining AR tech-
nology and visual comparison, our system aims to provide effective
verification for clinical doctors. If our algorithm makes a mistake, there
is a discrepancy between the actions of the virtual character and the
real patient, and then clinical doctors can make a final decision based
on CMAS rules. Using our system (T2), participants can easily iden-
tify and correct errors for machine scoring. In Fig. 13(a), participants
achieve 96.66% accuracy on the ‘supine to sit’ action when performing
task T2, in which the accuracy is increased by 7.77% than machine
scoring and 4.99% than the CMAS assessment (T1). This indicates
that our system using visual comparison can assist clinical doctors in
improving their assessment accuracy. In addition, we have examined
how long participants spent performing the two tasks. In Fig. 13(b),
participants spent less time performing task T2 than task T1. Therefore,
it demonstrates that our system using visual comparison can also assist
clinical doctors in improving their assessment efficiency.

Discussion Because our algorithm is relatively objective, it can
achieve a more accurate result than participants who are limited by
personal bias. However, it cannot achieve 100% accuracy, similar
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Fig. 13. Plots of average accuracy and time usage for the user study.

to any machine learning algorithm. Hence, the proposed algorithm
cannot be directly applied to biomedical applications. To this end, we
propose an AR system that incorporates visual comparison for effective
human verification. On the one hand, the human-in-the-loop nature
is helpful to avoid possible errors/biases introduced by the machine
scoring algorithm. On the other hand, the visual comparison facilitated
by AR rendering effects improves the efficiency of assessment, since
the visual comparison is more effective than the direct assessment based
on CMAS rules. As compared with the CMAS assessment used by
clinical doctors, the results of the user study prove that our system can
assist them in assessing muscle strength more accurately and rapidly.

5 CONCLUSIONS

A method for assisting clinical doctors in assessing the muscle strength
of children with JDM is explored in this work. Through side-by-side
comparison, we aim to construct augmented scenes to assist clinical
doctors in assessing muscle strength and monitoring the rehabilita-
tion progress of patients. On the one hand, the proposed algorithm can
avoid personal bias when grading actions performed by patients. On the
other hand, the use of visual comparison supported by AR technology
allows effective human verification, thereby reducing the negative con-
sequences of misjudgment on the part of the machine scoring algorithm.
The experimental results show that clinical doctors without expertise
can make faster and more accurate assessments with our system.

Limitations and Future Work Since different types of actions are
assessed according to different rules, it is difficult to establish a general
algorithm that can be used to adaptively assess any action in CMAS.
Furthermore, taking into account the distribution of the sample, this
work has studied six challenging CMAS actions for the assessment of
muscle strength. The principle of muscle strength assessment is to infer
the patients’ muscle strength score from their movements. Therefore,
we assess muscle strength by classifying actions into different levels.
Different from the known action recognition, since actions of different
grads also tend to be less variable, our muscle strength assessment
task is more fine-grained and thus more challenging. Additionally,
the imbalanced class size and small sample size complicate our task.
Therefore, we propose a new pre-training method to boost assessment
performance using the re-sampling technique. To assist doctors in
effective verification, we incorporate visual comparison to propose an
AR system. As our system is still in the prototype stage, its ease of
functionality needs to be further verified before clinical use.

The following future work needs to be explored further: (1) Based on
different CMAS rules, we can divide the 14 types of actions into three
evaluation types. We will establish automatic assessment algorithms
for each type of action. This allows us to assess muscle strength across
all actions in a comprehensive manner. (2) The corresponding character
for a given action is selected from the previously generated animation
dataset, which does not contain any personalized design. Therefore, it
is possible to generate more realistic motions by combining the motion-
style transfer technique. (3) We will conduct further user studies to
assess the repeatability and usability of our system. Further optimiza-
tion and validation of our system will be also necessary before clinical
use. In conclusion, it is necessary to solve these problems for accurate
muscle strength assessment and comfortable clinical usage.
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