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We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations
in the weakly coupled spin-1=2 Heisenberg layers of the molecular-based bulk material
½CuðpzÞ2ð2-HOpyÞ2�ðPF6Þ2. At zero field, a transition to long-range order occurs at 1.38 K, caused by
a weak intrinsic easy-plane anisotropy and an interlayer exchange of J0=kB ≈ 1 mK. Because of the
moderate intralayer exchange coupling of J=kB ¼ 6.8 K, the application of laboratory magnetic fields
induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT
regime, as the tiny interlayer exchange J0 only induces 3D correlations upon close approach to the BKT
transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic
resonance measurements to probe the spin correlations that determine the critical temperatures of the
BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series
expansion quantum Monte Carlo simulations based on the experimentally determined model parameters.
Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures
between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram
of ½CuðpzÞ2ð2-HOpyÞ2�ðPF6Þ2 is determined by the field-tuned XY anisotropy and the concomitant
BKT physics.
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Cooperative behavior and critical phenomena of strongly
correlated magnets are typically dictated by the lattice and
spin dimensions, as well as by the symmetry of the
underlying Hamiltonian [1–8]. Among the most fascinating
examples are two-dimensional (2D) XY spin systems,
which are known to undergo a topological Berezinskii-
Kosterlitz-Thouless phase transition at a finite temperature
TBKT [9–11], which marks the binding of topological
defects in vortex-antivortex pairs. So far, experimental
efforts to probe a genuine BKT transition in a bulk material
were compromised by the onset of 3D order [12–18] due to
the inherent 3D nature of these materials. Still, if the
perturbative terms relative to a purely 2D XY model are
small enough, the experimental observation of magnetic
properties associated with BKT correlations may be pos-
sible in the transition regime [19–23].
In particular, a controlled tuning of the XY anisotropy,

with associated impact on TBKT, can provide an ideal test
bed for experimental studies of BKT physics and their

comparison to numerical state-of-the-art modeling. As
a possible approach to tune the magnetic correlations
away from 2D Heisenberg to a 2D XY symmetry, the
application of a uniform magnetic field to the 2D quantum
Heisenberg antiferromagnet breaks theOð3Þ symmetry, but
preserves the easy-planeOð2Þ symmetry, as was confirmed
by quantum Monte Carlo (QMC) calculations [24].
Correspondingly, for Zeeman energies of the order of
the exchange energy, the effective XY-exchange anisotropy
can be controlled. The associated BKT transition persists
for all fields below saturation, yielding a nonmonotonic
magnetic phase diagram [24].
In order to find materials that allow us to study this

phenomenology, the chemical engineering of molecular-
based bulk magnets is a promising approach. By an
appropriate choice of molecular ligands and counterions,
the syntheses of several materials that realize a 2D
spin-1=2 Heisenberg model on the square lattice
were reported [25–35]. In these materials, a moderate
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nearest-neighbor exchange interaction of the order of a few
K allows for the tunability of the effective exchange
anisotropy by experimentally accessible magnetic fields.
Indeed, for several Cu2þ-based molecular materials, a
nonmonotonic magnetic phase diagram as a function of
the external field was reported [25,30,32,36,37]. The
magnetic properties of these molecular-based 2D quantum
Heisenberg antiferromagnets were mostly investigated by
thermodynamic methods [26,30,32,34,35], thus missing
local information about the magnetic correlations in the
BKT transition regime.
In this Letter, we report on the field-tunable anisotropy of

magnetic correlations in ½CuðpzÞ2ð2-HOpyÞ2�ðPF6Þ2 [with
pz ¼ C4H4N2, 2-HOpy ¼ C5H4NHO] (CuPOF in the fol-
lowing), ranging from the almost-isotropic Heisenberg
limit at zero field to a substantial XY anisotropy upon
increasing the magnetic field strength. We use nuclear
magnetic resonance (NMR) as the experimental probe for
the dynamic and quasistatic spin correlations. Furthermore,
by QMC simulations, we calculate the in-plane spin stiff-
ness, which we use to determine the critical temperatures of
the long-range order (LRO) and the BKT transition. Our
main findings are (i) that the temperature dependence of the
nuclear spin-lattice relaxation rate follows the behavior
predicted from 2D BKT theory in a wide range of temper-
atures, determined by the field-driven anisotropy, (ii) that
finite-size scaling of the QMC results permits the extraction
of TBKT, which lies below the actual 3D ordering temper-
ature TLRO, and (iii) that both temperatures exhibit a
nonmonotonic field dependence, which is analogous to
the behavior when instead of the field, the anisotropy of
interactions is tuned, a clear signature for the tunability of
BKT correlations.
The synthesis and characterization of CuPOF by means

of various techniques, including μþSR experiments, are
described in Ref. [25]. The crystals are flat plates with the
crystallographic c axis perpendicular to the plate. The NMR
spectra and spin-lattice relaxation time T1 were recorded
using a standard Hahn spin-echo pulse sequence and an
inversion-recovery method, respectively. The measurements
were performed using a commercial phase-coherent spec-
trometer and a 16 T superconducting magnet, equipped with
a 3He sample-in-liquid cryostat. A single-axis goniometer
was used to align the c axis parallel to the magnetic field.
The magnetic interactions of CuPOF in an applied field

are well approximated by the effective Hamiltonian

H ¼ J
X
hi;jik

½Sxi Sxj þ Syi S
y
j þ ð1 − ΔÞSziSzj�

þ J0
X
hi;ji⊥

Si · Sj − gμBμ0H
X
i

Szi ; ð1Þ

where hi; jik and hi; ji⊥ denote the intra- and interlayer
nearest neighbors, and J and J0 are the intra- and interlayer

exchange couplings, estimated as J=kB ¼ 6.8 K and
J0=kB ≈ 1 mK [25]. Whereas Δ ¼ 0 corresponds to the
isotropic Heisenberg case, 0 < Δ ≤ 1 quantifies an easy-
plane anisotropy, with a zero-field value of Δ ≈ 0.01…0.02
for CuPOF [25].
In the presence of interlayer interactions, any nonfrustrated

magnetic quasi-2D lattice inevitably undergoes a transition to
long-range order at low temperatures. Because of the very
large separation of the magnetic layers in CuPOF, with
J0=J ≈ 1.4 × 10−4, the very small entropy change associated
with the transition to LRO is beyond the experimental
resolution of thermodynamic quantities [25,38]. On the other
hand, μþSR is very sensitive to the local staggered magneti-
zation, and was used to probe the transition to LRO at 1.38
(2) K in CuPOF [25]. This transition occurs under the
influence of the weak intrinsic easy-plane anisotropy, which
yields a temperature-driven crossover from isotropic to XY-
type correlations at the crossover temperature Tco > TLRO.
An applied magnetic field increases the effective XY
anisotropy, which manifests itself as a field-dependent
minimum of the uniform bulk susceptibility at Tco, as
depicted by the pentagons in Fig. 1.
The temperature dependence of the 31P-NMR spin-lattice

relaxation rate at out-of-plane fields up to 16 T is presented

FIG. 1. Phase diagram of CuPOF for out-of-plane magnetic
fields from experiment and numerics. The pentagons denote the
spin-anisotropy crossover temperature Tco from Ref. [25]. White
diamonds indicate the transition temperature TLRO to long-range
order, and squares show the BKT transition temperature TBKT, as
obtained from the analysis of the 31P 1=T1 rate (Fig. 2). TLRO at
zero field is determined by μþSR measurements [25]. The green
pluses and red crosses denote TLRO and TBKT, respectively, as
obtained from QMC calculations (Fig. 3). The diamond at 17.5 T
denotes the saturation field, which was determined from mag-
netization experiments [25], and is in agreement with QMC
results. All lines are guides to the eye.

PHYSICAL REVIEW LETTERS 130, 086704 (2023)

086704-2



in Figs. 2(a)–2(c). The spin-lattice relaxation rate 1=T1 has
sharp maxima at TLRO ¼ 1.96 and 2.66 K at 2 and 7 T,
respectively. In comparison, the maximum amplitude of
1=T1 at 16 T (TLRO ¼ 1.15 K) is substantially reduced.
The transition temperatures between the 2D XY and the
LRO regimes are depicted by diamonds in Fig. 1. The
strong dependence of TLRO on the field strength that we
observe in CuPOF clearly indicates a field tunability of the
XY anisotropy of the spin correlations [24]. This behavior
is confirmed by our QMC simulations.
As previously reported, the 31P 1=T1 rate in CuPOF

yields several broad maxima at high temperatures, which
are associated with a freezing of the PF6 molecular
reorientation modes [39]. Below about 10 K, in the range
of interest in the present study, these modes are frozen out
and 1=T1 becomes temperature independent, indicating
predominantly paramagnetic fluctuations. In 2D magnetic
lattices, the onset of short-range spin correlations occurs at
temperatures T ≃ J=kB [38], with a correlation length of
about one magnetic-lattice constant [16,40].
At temperatures above the onset of LRO, 1=T1 can serve

as a probe for the dynamic correlation length ξ [19,20,41–
44]. As was shown from dynamical scaling arguments
[41], 1=T1 is proportional to the transverse spin correlation
length as 1=T1 ∝ ξz−η, where z and η are characteristic
dynamic and critical exponents [3,19,41,45]. By compar-
ing the temperature dependence of 1=T1 with the charac-
teristic ξ of different universality classes, we can therefore
probe the nature of the predominant correlations in the
critical regime, before the system finally undergoes the
transition to long-range order. Thus, we compare the BKT
correlation length of a 2D easy-plane antiferromagnet,
ξ2DXY ∝ expð0.5π= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=TBKT − 1
p Þ [11,16], with that of a

3D isotropic Heisenberg antiferromagnet, ξ3DHeis ∝ jT −
TLROj−0.7112 [46,47].
To describe 1=T1 in the interval TLRO ≤ T ≤ J=kB, we

note that η ¼ 0.0375 for the 3D Heisenberg antiferromag-
net [46], with the LRO transition residing in the Oð3Þ
universality class, whereas the easy-plane model has η ¼
1=4 [48–50]. For both models, we use z ¼ d=2, with d the
spatial dimensionality [45]. The experimental estimates of
TBKT are obtained from fits to the 2D XY form.
In Figs. 2(a)–2(c), we show the measured 1=T1 along

with both fits, for fields of 2, 7, and 16 T [51]. In contrast to
the 3D Heisenberg description, the 2D XY fit accurately
captures the increase of 1=T1 near TLRO, most noticeably
at 7 T. The fits yield TBKT ¼ 1.708ð14Þ, 2.237(7), and
0.90(16) K for applied fields of 2, 7, and 16 T, respectively,
with errors determined by bootstrapping. The nonmonotonic
dependence of TBKT on the field tracks that of TLRO, being
separated by a few hundred mK for the most part, as shown
in the phase diagram in Fig. 1. One should note, however,
that the BKT transition is preempted by the LRO that arises
from the 3D correlations, stemming from the finite interlayer
exchange interaction J0. In the Supplemental Material [52],
we discuss indications that changing the field strength has
similar effects on the spin correlations as changing the
exchange anisotropyΔ [16,62] and argue that hence the field
allows us to tune the effective anisotropy. Further, as shown
by μþSR and 1H-NMR spectroscopy, the low-temperature
staggered magnetization in CuPOF agrees with a change
from Heisenberg behavior at zero field towards that of a 2D
XY system at 7 T, see Fig. S2 in the Supplemental
Material [52].
In order to shed more light on the experimentally

observed phenomenology of mixed Néel and BKT-type
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FIG. 2. (a)–(c) Temperature-dependent 31P nuclear spin-lattice relaxation rate 1=T1 of CuPOF, recorded at out-of-plane fields of 2, 7,
and 16 T. The solid lines are best fits according to 1=T1 ∝ ξz−η for the temperature dependent correlation lengths ξ3DHeis and ξ2DXY of the
3D Heisenberg and the 2D XY cases (see main text). The transition temperature TLRO, marked with a downward triangle, is inferred from
the 1=T1 peak position, and TBKT, marked with a dotted line, is determined from fits according to 1=T1 ∝ ξz−η2DXY. At all fields, but most
noticeably at 7 T, 1=T1 is described best by ξ2DXY at T ≳ TLRO.
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correlations, we numerically investigate the Hamiltonian (1)
using stochastic series expansion quantum Monte Carlo
with directed loops [63]. We consider finite simple-cubic
lattices with periodic boundary conditions and dimensions
L × L × L=8, fixing J=kB ¼ 6.8 K, J0=kB ¼ 1 mK, and
Δ ¼ 0.0185. To determine TBKT and TLRO, we calculate the
in-plane spin stiffness ρ ¼ 8L−3

∂
2F=∂ϕ2jϕ¼0, which is

defined as the second derivative of the free energy F with
respect to a uniform in-plane twist angle ϕ [64,65]. This
quantity is nonzero in the BKT phase and in the thermo-
dynamic limit it should vanish instantly at TBKT. For the
finite lattices simulated with QMC, this drop-off is instead
continuous, but based on how ρ approaches the instant drop-
off with increasing system size, we can determine TBKT. In
particular, using finite-size scaling theory, it is predicted that
ρ depends on temperature T and system size L as [64]

ρðT; LÞ=PðLÞ ¼ f

�
lnðLÞ − affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − TBKT
p

�
; ð2Þ

PðLÞ ¼ 1þ 1

2 lnðLÞ þ cþ ln½c=2þ lnL� þ
b

ln2L
; ð3Þ

where a, b, c are fitting constants and f is a general
continuous function which we choose to be a fifth-order
polynomial. This parametrization of ρ is fitted closely above
TBKT for simulation data of the J0 ¼ 0 model to de-
duce TBKT. Afterwards, we plot ρ=P versus lnðLÞ −
a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − TBKT

p
in the fitting interval, which should collapse

to a single curve if the fit is perfect. We checked that fitting ρ
for J0 ¼ 1 mK in the full 3Dmodel reproduces the 2D TBKT
to within error bars, when fitted at T > TLRO, where the
interlayer coupling becomes insignificant such that the 2D
scaling ansatz (3) holds. In Fig. 3(a), we show the finite-size
collapse of the ρ fit performed at 2 T, for systems with up to
1 × 106 spins and a temperature grid ofΔT ¼ 1 mK. The fit
yields TBKT ¼ 1.748ð15Þ K.
To determine TLRO, we consider the scaled in-plane

stiffness Lρ for the full 3D model with J0 ¼ 1 mK. At large
L, this quantity becomes size independent at TLRO [47].
Hence, by determining the crossings T� between Lρ curves
with two different sizes L, and extrapolating this crossing
temperature to L → ∞, we obtain TLRO [66]. In Fig. 3(b),
we show the scaling analysis performed for Lρ at 2 T,
where the inset shows the L → ∞ scaling of the crossing
temperature T�. Here, we used a second-order polynomial,
which yields TLRO ¼ 1.959ð2Þ K. Further calculations of
the relevant magnetization components and correlation
length are presented in Fig. S3 of the Supplemental
Material [52].
Employing these procedures at different magnetic fields,

we determined TBKT ¼ 1.4877ð6Þ, 1.7477(15), 1.9584(24),
1.5323(13), and 0.6495(15) K, at fields of 0, 2, 7, 12, and
16 T, respectively. We also confirmed that TBKT ¼ 0 when
both Δ ¼ 0 and H ¼ 0, which emphasizes the strong effect

on TBKT of the seemingly small Δ ¼ 0.0185 for CuPOF.
Furthermore, we determined TLRO ¼ 1.7425ð19Þ, 1.9597
(20), 2.1768(23), 1.7110(22), and 0.7376(17) K. At all
fields, our calculations yield TLRO > TBKT, thus supporting
the experimental phenomenology, as can be seen in Fig. 1.
We also determined the saturation field to be 17.5 T, in
excellent agreement with the experimental value. As in the
experiment, the strong dependence of the numerically
determined TLRO on the field strength reflects the effect
of the field-induced anisotropy. The quantitative
differences to the experimental transition temperatures at
elevated fields might be resolved by extending the com-
plexity of the modelling. In Fig. S4 of the Supplemental
Material, we obtain a simple estimate of an effective
exchange anisotropy ΔðHÞ at H ≤ 6 T and compare it to
the low-field results [52].

(a)

(b)

FIG. 3. Finite-size scaling analysis performed to obtain the
critical temperatures TBKT and TLRO from the QMC simulations
at 2 T. (a) Data collapse of the finite-size in-plane spin stiffness ρ
fit closely above TBKT, for the J0 ¼ 0 model, which should
collapse to a single curve if the fit is perfect, reaffirming the
calculated TBKT. The different curves correspond to different
linear sizes L. (b) Crossings of the Lρ curves for the J0 ¼ 1 mK
model; the inset shows the L → ∞ scaling of the crossing
temperature T�. The red line denotes a second-order polynomial
fit, which is extrapolated to 1=L → 0 to estimate TLRO.
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Our findings suggest the following scenario for the
temperature evolution of spin correlations in CuPOF in
applied magnetic fields. Decreasing the temperatures from
the paramagnetic high-temperature limit, isotropic
Heisenberg-type spin correlations develop, which cross
over to an anisotropic XY-type close to Tco. With further
decreasing temperature, the correlation length ξ grows
exponentially due to the vortex physics described by
BKT theory. For T ≳ TBKT, a rather low density of these
topological excitations is expected [67]. The exponential
increase of ξ yields a rapid strengthening of the antiferro-
magnetic correlations in the XY regime and, therefore, the
staggered magnetization appears effectively nonzero even
above TLRO (see Supplemental Material) [52]. With further
increase of ξ upon lowering the temperature further, the
magnetic correlations, due to the influence of the small but
nonzero interlayer interaction J0 on the regions with large
in-plane correlation lengths, can no longer be treated as 2D,
and a transition to long-range order occurs at TLRO. As a
consequence of the field-induced BKT-type spin correla-
tions, a concomitant nonmonotonic behavior of the tran-
sition temperature TLRO is observed experimentally and
confirmed by our QMC simulations.
In conclusion, the very good agreement between our

experimental results and the matching QMC calculations
establishes our study of CuPOF as a model case, where the
application of a magnetic field allows a controlled tuning of
the spin-1=2 system from the almost isotropic 2D
Heisenberg to the highly anisotropic 2D XY limit. The
phenomenology in CuPOF is driven by field-induced
Berezinskii-Kosterlitz-Thouless physics under the influence
of extremely small interplane interactions, thus providing an
attractive opportunity for systematic investigations of the
BKT-type topological excitations and calling for further
experimental studies by inelastic scattering techniques.

Data presented in this Letter resulting from the UK effort
are available from [68].
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