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mortality rates are equal and take the same value over all lattice sites, the resulting18

model is a critical branching random walk (characterized by a mean total number19

of offspring equal to 1). There exists an asymptotical statistical equilibrium, also20

called steady state. In contrast, when duplication and mortality rates take inde-21

pendent random values drawn from a common nondegenerate distribution (so that22

the difference between duplication and mortality rates has nonzero variance), then23

the steady state no longer exists. Simultaneously at all lattice sites, if the difference24

between duplication and mortality rates takes strictly positive values with strictly25

positive probability, the total number of particles grows exponentially. The lattice26

Zd includes large connected sets where the duplication rate exceeds the death rate27

by a positive constant amount, and these connected sets provide the growth of28

the total population. This is the supercritical regime of branching processes. On29

the other hand, if the difference between duplication and mortality rates is almost30

surely negative or null except when it is almost surely zero, then the total number31

of particles vanishes asymptotically. The steady state can be reached only if the32

difference between duplication and mortality rates is almost surely zero.33

keywords: branching random walk; contact population model; random environ-34

ment; steady state35

1 Introduction36

In a contact process on the d-dimensional lattice Zd, d ≥ 1, the particles move inde-37

pendently of one another on Zd as random walks, split into two offspring, or die. The38

birth-and-death mechanism is controlled at each lattice site x ∈ Zd by the duplication39

rate λ(x) and the mortality rate µ(x).40

When rates λ(x) ≡ µ(x) ≡ λ0 > 0 are constant for all x ∈ Zd, the walk is a critical41

branching random walk, characterized by a mean total number of offspring equal to 142

(Sewastjanow, 1974). Molchanov and Whitmeyer (2017) proved that if the underlying43

random walk is transient —with strictly positive probability, particles never return to44

the initial lattice site after a finite random time (Durrett, 2010: p. 190)—, then the45

distribution of the particle field asymptotically approaches a statistical equilibrium, also46
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called steady state.47

However, if λ(x) and µ(x) are random fields on the lattice, does the population process48

converge to a steady state? One might speculate that having the expectations of λ(x)49

and µ(x), which characterize the random environment, equal to the same constants for all50

x ∈ Zd, allows the convergence of the particle field distribution to a stochastic equilibrium.51

We show that this is never the case if λ(·)− µ(·) 6≡ 0.52

With Theorems 1 and 2 below, we show that if the random vectors (λ(x), µ(x))x∈Zd ,53

are drawn independently from the same non-degenerate distribution, then simultaneously54

at all x ∈ Zd, either the population vanishes asymptotically or the population grows55

exponentially. The latter case is due to the existence of arbitrarily large connected sets of56

sites x ∈ Zd, where the random vectors (λ(x), µ(x))x∈Zd satisfy λ(x)−µ(x) ≥ δ0 for some57

constant δ0 > 0. The exponential growth of the population is heterogeneous over the58

lattice, that is, “intermittent”: almost all particles are concentrated near large enough59

sets where the potential is positive (Molchanov, 2012; König, 2016).60

2 Model61

2.1 The random environment62

N(t, y) is the total number of particles at the lattice site y ∈ Zd at time t ≥ 0. Initially,63

there is a single particle at each site, N(0, y) = 1 for all y ∈ Zd. Particles can indepen-64

dently of one another move as continuous-time random walks on Zd, die, or split into two65

offspring, where duplication and mortality rates (reflecting the environment) are random:66

(
λ(x, ωm), µ(x, ωm)

)
x∈Zd, ωm∈Ωm

(1)

defined on some fixed probability space (Ωm,Fm,Pm). λ(x) = λ(x, ωm) is the random67

splitting or duplication rate and µ(x) = µ(x, ωm) is the random mortality rate at site68

x ∈ Zd (but constant over time). The vectors
(
λ(x), µ(x)

)
=
(
λ(x, ωm), µ(x, ωm)

)
, x ∈ Zd,69

are independent of one another with common non-degenerate distribution in (Ωm,Fm,Pm)70
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(König, 2016, 2021: and references therein about surveys of random potentials). For the71

sake of simplicity we also assume that λ(x) and µ(x) are uniformly bounded, that is, for72

some c0 > 0,73

Pm
(
0 ≤ λ(x) ≤ c0, 0 ≤ µ(x) ≤ c0

)
= 1 for all x ∈ Zd. (2)

2.2 The process74

Given a realization of the random environment from Eq. (1), particles either:75

split: at every x ∈ Zd, particles split into two offspring particles independently of one76

another at rate λ(x) ≥ 0;77

die: at every x ∈ Zd, particles die independently of one another at rate µ(x) ≥ 0;78

or move: the particles jump independently from one another with generator κLa,79

where κ > 0 is the diffusive coefficient and La is defined by80

(Laψ) (x) =
∑

y∈Zd\{0}

(
ψ(x+ y)− ψ(x)

)
a(y) ≡

∑
y∈Zd

(
ψ(x+ y)− ψ(x)

)
a(y), (3)

where ψ is any bounded function defined on the lattice, a(y), y ∈ Zd, is a symmetric81

probability kernel, defined by:82

a(y) ≥ a(0) = 0 , a(y) ≡ a(−y) ,
∑
y∈Zd

a(y) = 1. (4)

We assume that the jump kernel a(y) decreases sufficiently fast as |y| → ∞, so that all83

its exponential moments are finite. Equivalently,84

∑
y∈Zd

a(y) cosh
(
(θ, y)

)
<∞ (5)

for all θ ∈ Rd, where (θ, y) is the inner product in Rd. The corresponding continuous-time85

random walk is also assumed irreducible, that is, it is supported on the full lattice Zd. A86

sufficient irreducibility condition is that a(y) > 0 for all |y| = 1.87
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For a given realization of the random environment, that is, for fixed ωm ∈ Ωm, the88

random dynamics governed by Eq. (3) and (4) generates the so-called quenched (Sznitman,89

1998) expectation denoted by E and probability denoted by P. The averages over ωm ∈90

Ωm are the annealed expectation E and probability P . With 〈 · 〉 denoting averaging over91

ωm ∈ Ωm, E(·) = 〈E(·) 〉.92

2.3 The probability generating function93

Consider the total number n(t, x, y) of particles at the lattice site y ∈ Zd at time t ≥ 0,94

generated by a single particle at x ∈ Zd at time 0. Then n(0, x, y) = 1 if x = y and95

n(0, x, y) = 0 otherwise. The sizes of the sub-populations
(
n(t, x, y)

)
y∈Zd are mutually96

independent, in the sense that, for any positive integer M and any distinct sites x1,. . .xM ,97

any finite set Γ ⊂ Zd and any random vectors
(
n(t, x1, y)

)
y∈Γ

,. . . ,
(
n(t, xM , y)

)
y∈Γ

are98

independent of one another. For each y ∈ Zd and t ≥ 0, the population size N(t, y) is a99

sum of the independent sub-population sizes:100

N(t, y) =
∑
x∈Zd

n(t, x, y). (6)

Fix ωm ∈ Ωm and finite Γ ⊆ Zd. Then the population size101

n(t, x,Γ, ωm) :=
∑
y∈Γ

n(t, x, y, ωm) (7)

in Γ has the quenched probability generating function102

uz(t, x,Γ, ωm) := Ezn(t,x,Γ,ωm). (8)

It satisfies103

∂uz
∂t

(t, x,Γ, ωm) = κ (Lauz) (t, x,Γ, ωm) + λ(x, ωm)u2
z(t, x,Γ, ωm)

− (λ(x, ωm) + µ(x, ωm))uz(t, x,Γ, ωm) + µ(x, ωm),

(9)
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(Kolmogorov, Petrovskii, and Piskunov, 1937), with initial condition104

uz(0, x,Γ, ωm) =


z, x ∈ Γ,

1, x /∈ Γ.

(10)

Differentiating Eq. (9) k times with respect to z at z = 1− yields quenched factorial105

moments:106

mk(t, x,Γ, ωm) := E
(
n(n− 1) · · · (n− k + 1)

)
, (11)

where n := n(t, x,Γ, ωm). In particular, the first quenched moment is solution to107

∂m1

∂t
(t, x,Γ, ωm) = κ (Lam1) (t, x,Γ, ωm) + V (x, ωm)m1(t, x,Γ, ωm)

= (Hm1) (t, x,Γ, ωm),

(12)

where the Hamiltonian H is defined by108

H ≡ H(ωm) := κLa + V (x, ωm), (13)

with the random potential109

V (x) ≡ V (x, ωm) := λ(x, ωm)− µ(x, ωm). (14)

The initial condition for Eq. (12) is110

m1(0, x,Γ) ≡ 1Γ(x) :=


1, if x ∈ Γ,

0, if x /∈ Γ.

(15)

Equations for higher moments mk(t, x,Γ, ωm), k ≥ 2, use the same Hamiltonian as in111

Eq. (13).112

Do these population models provide particle field solutions converging to a statistical113

equilibrium? When rates are constant and equal on the lattice (λ(x) ≡ µ(x) ≡ λ0 > 0 for114

all x ∈ Zd), and the underlying random walk with generator κLa is transient, Molchanov115
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and Whitmeyer (2017) proved that the factorial moments mk(t, x,Γ) in Eq. (11) converge116

asymptotically. This implies that, in the critical contact model with transient walk, the117

distribution of the population field N(t,Γ) =
∑

x∈Zd n(t, x,Γ) with finite sets Γ ⊂ Zd118

converges asymptotically in law to a steady state, which is a stationary ergodic field.119

Chernousova and Molchanov (2019) also proved the existence of a steady state when,120

in a critical case of branching process, each particle produces an arbitrary total number121

of offspring with distribution of jumps that is symmetric around the parent particle.122

Yarovaya (2013) and Bulinskaya (2021) and references therein have analyzed other aspects123

of branched random walks with heterogeneous (but non-random) birth-death processes.124

Balashova, Molchanov, and Yarovaya (2021) proved that if the underlying random125

walk is recurrent —it returns an infinite number of times to the initial lattice site al-126

most surely, (Durrett, 2010: p. 190)—, then, asymptotically, the population size N(t,Γ)127

solution in the critical contact model is intermittent, as clusters emerge and almost all128

particles are concentrated near large enough sets where the potential is positive. In129

particular, N(t,Γ)
P−a.s.−−−→
t→∞

0 for any finite set Γ ⊂ Zd.130

The contact models of Molchanov and Whitmeyer (2017) and Balashova, Molchanov,131

and Yarovaya (2021) in homogeneous deterministic environment and satisfying the crit-132

icality condition λ(x) ≡ µ(x) ≡ λ0 > 0 for all x ∈ Zd lack realism. Moreover, they are133

unstable to small perturbations of the parameters.134

Our model introduced in section 2 extends the contact population model to the case135

of random duplication and mortality rates, as in Eq. (1). If the distribution of the136

random potential in Eq. (14) has bounded positive density on some interval (v−, v+),137

then, according to the theory of random Schrödinger operators (Aizenman and Warzel,138

2015), the spectrum Sp of H(ωm) satisfies139

Sp (H(ωm)) = Sp (κLa) + range(V (·, ωm)) = [−κα + v−, v+], (16)
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where rangeV (·, ωm) denotes the range of V (·, ωm). Here140

Sp (κLa) ≡ range
(
κL̂a

)
=
(
κ
(

min
k∈[0,2π)d

â(k)− 1
)
, 0
)
≡ [−κα, 0], (17)

where â(k) =
∑

x∈Zd ei(k,x)a(x) and L̂a(k) = â(k)− 1 ≤ 0, k ∈ [0, 2π)d, are the associated141

Fourier transforms.142

In the spectral theory of random operators H(ωm) (Molchanov, 2012; Aizenman and143

Warzel, 2015), at least near the edges −κα + v− and v+ of the interval expressed in144

Eq. (16), the point spectrum of the random operator H(ωm) has exponentially decreas-145

ing eigenfunctions. These eigenfunctions are associated with the extreme values of the146

random potential V (x). These spectral properties of H(ωm) are the basis of Theorems 1147

and 2 below.148

Albeverio et al. (2000) showed that quenched and annealed moments of all orders149

grow in a non-regular and intermittent manner. However, the Pm-almost sure (for all150

realizations of the random environment expressed in Eq. (1)) behavior of the field N(t, y)151

at t→∞ cannot always be characterized by its moments.152

Here, we prove that the branching random walk model in non-degenerate stationary153

random environment (that is, with time-independent potential V (x) = λ(x)− µ(x) with154

strictly positive variance) has no steady state.155

2.4 Results156

The values of the potential V ≡ V (x) := λ(x) − µ(x) are independent and identically157

distributed at sites x ∈ Zd. Our first result is that, if the distribution of the potential V158

allows strictly positive values, the contact model displays an exponential growth.159

Theorem 1. If160

Pm
(
V > 0

)
> 0, (18)

then, for a Pm-almost-sure realization of the random environment in Eq. (1), the particle161
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field (N(t, y))y∈Zd, grows exponentially: there is a γ > 0 such that, for each y ∈ Zd,162

P− a.s., lim inf
t→∞

lnN(t, y)

t
≥ γ. (19)

In subsection 3.1 below, we show that the property in Eq. (19) holds for any γ such163

that Pm
(
V > γ

)
> 0.164

If V now is almost surely negative or null except when it is almost surely zero, then165

the particle field N(t, y), y ∈ Zd, goes extinct:166

Theorem 2. If167

Pm (V ≤ 0) = 1 but Pm (V < 0) > 0, (20)

then there exists a constant c > 0 and, for all x ∈ Zd, there is a t∗(x) ∈ [0,∞), such that168

EN(t, x) ≤ e−ct for all t ≥ t∗(x). (21)

In particular, P (N(t, x) > 0) decreases exponentially at rate c as t→∞.169

The large-time behavior of the particle field (N(t, x))x∈Zd is closely related to that of170

its first quenched moment M1(t, x) = EN(t, x), with M1(0, x) = 1 for all x ∈ Zd. By the171

Feynman-Kac representation (Gärtner and Molchanov, 1990: Th. 2.1),172

M1(t, x) = Ex exp

(∫ t

0

V (Xs) ds

)
, (22)

where (Xs)s∈[0,t] is a random walk with generator κLa from Eq. (3) and initial condition173

X0 = x. Heuristically, under Eq. (18), the main contribution to M1(t, x) and N(t, x) is174

expected to result from trajectories that spend enough time in the regions of the lattice175

where the potential V is uniformly positive. On the other hand, under Eq. (20), the176

integral in Eq. (22) is always negative or null while most trajectories eventually hit a177

large enough region of the lattice where the potential V is uniformly negative (subcritical178

case, Athreya and Ney (1972)), thus forcing the particle field to decrease asymptotically.179

By the upper bound expressed in Eq. (21) and Borel-Cantelli lemma (Feller, 1968),180
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N(tk, x) = 0, P-almost surely, for each fixed x ∈ Zd and each sequence 0 ≤ t0 < t1 < t2 <181

. . . with
∑

k≥0 e
−ctk <∞. The same holds for N(t, B) =

∑
x∈B N(t, x), where B ⊂ Zd is182

finite. The overall vanishing of the particle field at all times is more subtle.1183

3 Proofs184

The condition in Eq. (18) and the independence of the environment at sites x ∈ Zd Pm-185

almost-surely generate large clusters where the branching process is supercritical (sec-186

tion 3.1). This causes the population field located in these clusters to increase exponen-187

tially, irrespectively of the environment elsewhere. The result is exponential growth of188

the population everywhere in Zd, as stated in Theorem 1.189

On the other hand, governed by Eq. (20), for each x ∈ Zd, the annealed moment190

EN(t, x) of the particle field N(t, x) vanishes asymptotically (section 3.2).191

3.1 Proof of Theorem 1192

Our proof is based on stochastically lower bounding the process N(t, x) by another pop-193

ulation process for which the exponential growth in Eq. (19) is easier to prove. A key194

ingredient for the latter is the fact that under the condition in Eq. (18), the analogue of195

the operator H from Eq. (13) has a principal (also called dominant) eigenvalue, which is196

both positive and strictly above the rest of the spectrum of H.197

3.1.1 Comparison198

For fixed x0 ∈ Zd,
(
n(t, y)

)
t≥0,y∈Zd is the sub-population branching process with the same199

rates as N(t, .) in section 2 but starting from a single particle at x0:200

n(0, y) = 1x0(y) =


1, y = x0,

0, y 6= x0.

(23)

1Combining a suitable discrete version (Antal, Peter, 1995) of Sznitman (1998)’s method of enlarge-
ment of obstacles with the population survival analysis from Engländer and Peres (2017), yields the
Pm-almost-sure asymptotic behavior of the field (N(t, x))x∈Zd in the subcritical regime in Eq. (20). This
extension is beyond the scope of this article.
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Branching random walks n(t, y) possess the stochastic monotonicity property, which is201

the existence of a stochastic lower bound as in Eq. (51) below, the proof of which we202

present in section A.1:203

Lemma 3. For arbitrary x0 ∈ Zd and duplication and mortality rates
(
λε(x), µε(x)

)
x∈Zd,204

ε ∈ {+,−}, satisfying205

λ+(x) ≥ λ−(x) and µ+(x) ≤ µ−(x) (24)

for all x ∈ Zd, the associated branching random walks (nε(t, y))y∈Zd, ε = +,− are the total206

numbers of particles located at site y at time t, with initial condition expressed in Eq. (23),207

can be defined on a common probability space in such a way that the inequality208

n+(t, y) ≥ n−(t, y) (25)

holds for all t ≥ 0 and all y ∈ Zd.209

Lemma 3 allows for stochastically lower-bounding the population process N(t, y) using210

a simpler branching random walk for which the exponential growth of Theorem 1 is easier211

to prove.212

Given rates
(
λ(x), µ(x)

)
x∈Zd ,

(
N(t, y)

)
t≥0,y∈Zd and

(
n(t, x, y)

)
y∈Zd are the associated213

branching random walk and sub-populations, as in Eq. (6). By continuity of probability,214

the condition in Eq. (18) implies that there exist positive constants δ1, λ̂, and µ̂ such that215

Pm
(
λ(x) > λ̂, µ̂ > µ(x)

)
> 0, where λ̂− µ̂ > δ1 > 0. (26)

By independence of
(
λ(x), µ(x)

)
from one lattice site x ∈ Zd to another, for each finite216

Q ⊂ Zd,217

Pm
(
λ(x) > λ̂, µ̂ > µ(x) for all x ∈ Q

)
> 0. (27)

For simplicity, we choose Q in Eq. (27) as a lattice cube whose appropriate size we will218
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evaluate in section 3.1.3. Given such Q, define219

λQ(x) =


λ̂, if x ∈ Q,

0, if x /∈ Q,
µQ(x) =


µ̂, if x ∈ Q,

c0, if x /∈ Q,
(28)

where c0 > 0 is the common finite upper bound expressed in Eq. (2), and
(
NQ(t, y)

)
t≥0,y∈Zd220

and
(
nQ(t, x, y)

)
t≥0,x,y∈Zd are the associated branching random walk and sub-populations:221

NQ(t, y) :=
∑
x∈Q

nQ(t, x, y). (29)

As the inequalities222

λQ(x) ≤ λ(x) and µQ(x) ≥ µ(x) (30)

hold for all x ∈ Zd, that is, the coupling condition in Eq. (24) is satisfied, Lemma 3 allows223

for coupling the original branching random walk and the Q-modified process (with rates224

from Eq. (28)) to provide the inequalities225

NQ(t, y) ≤ N(t, y) and nQ(t, x, y) ≤ n(t, x, y) (31)

for all t ≥ 0 and all x, y ∈ Zd. This is consistent with the intuition that the harsher226

environment
(
λQ(x), µQ(x)

)
x∈Zd suppresses the population growth faster.227

The potential VQ(x) := λQ(x)− µQ(x) of the Q-modified process satisfies228

VQ(x) =


−c0, if x /∈ Q,

λ̂− µ̂, if x ∈ Q.
(32)

In particular, VQ(x) > δ1 > 0 in Q and VQ(x) < 0 outside Q.229

As in section 2.3, the time variation of the associated factorial moments is expressed230

in terms of the Schrödinger operator231

(HQφ) (x) :=
(
κLa + VQ(x)

)
φ(x), (33)
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as in Eq. (13). Moreover,232

VQ(x) = −c0 + Λ
∑
z∈Q

δ(x− z) with Λ := λ̂− µ̂+ c0, (34)

so that the operator HQ is analogous to the operator in the branching random walk with233

finitely many centers of generation (Molchanov and Yarovaya, 2012a,b), though in our234

case its spectrum is shifted by −c0 < 0.235

We now prove the existence of the strictly positive principal eigenvalue of the generator236

of the Q-modified process.237

3.1.2 An auxiliary model of supercritical branching random walk in finite238

domain239

To show that the auxiliary model with branching rates
(
λQ(x), µQ(x)

)
x∈Zd and the jump240

generator κLa display pointwise exponential growth of the population field (N(t, y))y∈Zd ,241

we again use Lemma 3 to stochastically compare the model of Eq. (3) and (28) to its242

version restricted to a finite domain in Zd. The latter is a continuous-time multi-type243

branching process (Athreya and Ney, 1972: V): define a type of a particle by its location244

site. Then the size of the population of particles of type y is equal to the size of the245

population of particles located at site y. Under the conditions of irreducibility of the246

jump kernel a(.), the P-almost-surely exponential growth of population (restricted to247

a finite domain) results from a continuous-time version of Kesten and Stigum (1966)’s248

theorem.249

For an integer ` ≥ 0, Q` is the lattice cube [−`, `]d∩Zd of side length 2`+1. The cube250

Q` is centered at the origin. We write Q`(z) for the image z + Q` of Q` by translation,251

with center at z ∈ Zd. Given positive integers `1, `2, and `3 to be fixed below, define252

L := `1 + `2, L̃ := `1 + `2 + `3 ≡ L+ `3, (35)

253

Q := QL, and Q̃ := QL̃. (36)
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The restricted version of the model of Eq. (3) and (28) is defined using the restricted254

jump rates
(
κa(y − x)

)
x,y∈Q̃ and the branching rates

(
λQ̃(x), µQ̃(x)

)
x∈Zd , with255

λQ̃(x) := λQ(x) and µQ̃(x) := µQ(x) + qQ̃(x) for all x ∈ Q̃, (37)

where256

qQ̃(x) := κ
∑

z such that x+z /∈Q̃

a(z) (38)

is the combined rate for a particle at site x ∈ Q̃ to jump outside Q̃ in the model of Eq. (3)257

and (28). The restricted model is a version of the model of Eq. {(3), (28)} with mortality258

rate µQ(x) set to infinity at all lattice sites x ∈ Zd \ Q̃.259

By Lemma 3, given the initial condition in Eq. (23) with arbitrary x0 ∈ Q̃, the260

population size of the restricted model satisfies ñ(t, x0, y) = 0 for all y ∈ Zd \ Q̃. By261

Lemma 3, we couple it stochastically to the population size of the model in Eq. (3) and262

(28), so that the bounds263

nQ(t, x0, y) ≥ ñ(t, x0, y) (39)

hold for all y ∈ Zd and t ≥ 0. Indeed, a particle located at x ∈ Q̃ lives for an264

exponentially-distributed time with parameter265

ΛQ(x) := λQ(x) + µQ(x) + κ > 0. (40)

Then, it either266

• splits into two particles located at x ∈ Q̃ with probability λQ(x)/ΛQ(x),267

• becomes a single particle located at y ∈ Q̃ with probability κa(y − x)/ΛQ(x),268

• dies out (producing no particles) with probability (µQ(x) + qQ̃(x))/ΛQ(x).269

Following Georgii and Baake (2003), Nx,y, x, y ∈ Q̃, is the population size at y ∈ Q̃270

generated after a single step by a particle located at x ∈ Q̃. Its expectation satisfies271

ENx,y =
2λQ(x)

ΛQ(x)
δxy +

κa(y − x)

ΛQ(x)
(1− δxy), (41)
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where δxy is the Kronecker function δ. The long-term behavior of this multitype branching272

process is controlled by the Perron eigenvalue γ̃ of the generator matrix G = (gx,y)x,y∈Q̃273

(Georgii and Baake, 2003: Eq. (2.3); Athreya and Ney, 1972: 202), where274

gx,y := ΛQ(x)
(
ENx,y − δxy

)
=


λQ̃(x)− µQ̃(x)− κ

∑
y∈Q̃ a(y − x), if x = y,

κa(y − x), if x 6= y.

(42)

Moreover,275

VQ̃(x) := λQ̃(x)− µQ̃(x) ≡ VQ(x)− qQ̃(x) for all x ∈ Q̃. (43)

The following lemma is key to our analysis of the supercritical regime.276

Lemma 4. Consider a( · ) the jump kernel from Eq. (4), κ > 0 an arbitrary jump rate, and277

finite cubes Q and Q̃ ⊃ Q in Zd defined as in Eq. (35) and (36). Define the deterministic278

matrix ĜQ̃ = (ĝx,y)x,y∈Q̃ as279

ĝx,y =


v̂x − κ, if x = y,

κa(y − x), if x 6= y,

(44)

where v̂x, x ∈ Q̃, are real numbers. δ > 0 and η > 0 are arbitrary constants.280

There exist positive integers `1, `2, and `3 such that, for the generated cubes Q and281

Q̃ ⊃ Q, if v̂x ≥ δ + η for all x ∈ Q, then the principal eigenvalue, which is real, of ĜQ̃ is282

strictly greater than δ > 0. Furthermore, given such Q and Q̃, the same result holds for283

each extended matrix ĜW = (ĝx,y)x,y∈W with entries as in Eq. (44), where the cube Q̃ is284

replaced by any finite lattice domain W ⊃ Q̃.285

The proof of Lemma 4 is based upon the min-max theorem (Appendix A.2). We use286

the uniform deterministic bound expressed in Lemma 4 to prove Theorem 1.287
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3.1.3 Almost-sure population growth288

Recall that the positive potential condition in Eq. (18) implies that there is a δ > 0 such289

that Pm
(
V > δ

)
> 0. By continuity of probability, there exists a η > 0 such that this290

bound can be improved to291

Pm
(
V > δ + η

)
> 0. (45)

As in Eq. (26), this implies the existence of positive λ̂ and µ̂ such that292

Pm
(
λ(x) > λ̂, µ̂ > µ(x)

)
> 0, where λ̂− µ̂ > δ + η > 0. (46)

For the rest of this section, fix such δ, η, λ̂, and µ̂.293

`1, `2, and `3 are the lengths defined in Lemma 4. L := `1 + `2 and L̃ := L + `3 are294

the scales expressed in Eq. (35). Given such L and L̃, Z̃d := (2L̃ + 1)Zd is the integer295

sub-lattice of step 2L̃+1 in each direction. For each shifted cube QL(z) ≡ z+QL, z ∈ Z̃d,296

as in Eq. (36), consider the event297

AL(z) :=
{
λ(x) > λ̂, µ̂ > µ(x) for all x ∈ QL(z)

}
. (47)

Because the λ(x) are independent from one lattice site x ∈ Zd to another, likewise for298

µ(x), the probability of the event AL(z) is299

Pm
(
AL(z)

)
≡
(
Pm
(
λ(x) > λ̂, µ̂ > µ(x)

))|QL|
> 0, (48)

where |QL| = (2L + 1)d is the total number of lattice sites in the lattice cube QL. By300

Borel-Cantelli’s lemma, the cardinality of301

Ã :=
{
z ∈ Z̃d : AL(z) holds

}
(49)

is Pm-almost-surely infinite.302

Given a realization of the environment, fix z ∈ Ã and consider the corresponding303
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integer-lattice branching random walk304

N
(z)
Q (t, y) :=

∑
x∈Zd

n
(z)
Q (t, x, y) x ∈ Zd, (50)

with rates from Eq. (28), where (z) indicates that Q ≡ Q(z). As in section 3.1.1, Lemma 3305

implies the stochastic bounds306

N
(z)
Q (t, y) ≤ N(t, y) and n

(z)
Q (t, x, y) ≤ n(t, x, y) (51)

for all t ≥ 0 and all x, y ∈ Zd.307

On the other hand, given z ∈ Ã fixed in Eq. (49), consider branching random walks308

Ñ
(z)
Q (t, y) and their associated sub-populations ñ

(z)
Q (t, x, y) as in section 3.1.2. It represents309

the branching random walk in Eq. (50) restricted to Q̃(z), namely where each particle310

dies when jumping from Q̃(z). By Lemma 3, both processes N
(z)
Q (t, y) and Ñ

(z)
Q (t, y) can311

be coupled such that sub-population sizes are ordered as312

ñ
(z)
Q (t, x, y) ≤ n

(z)
Q (t, x, y) (52)

for all t ≥ 0, x ∈ Q̃(z), and y ∈ Zd. ñ(z)
Q (t, x, y) ≡ 0 for all y /∈ Q̃(z).313

The generator ĜQ̃(z) of the process restricted to Q̃(z) satisfies the conditions of314

Lemma 4 and so its principal eigenvalue γ̃(z) is strictly positive with γ̃(z) > δ > 0. By315

irreducibility of the jump kernel a( · ), the generator ĜQ̃(z) is positive regular in the sense316

of Athreya and Ney (1972: 202) and Georgii and Baake (2003: 1093). By the continuous-317

time version of Kesten-Stigum theorem (Georgii and Baake, 2003: Theorem 2.1), there318

is a random variable W = W (z) ≥ 0 such that, P-almost surely,319

ñ
(z)
Q (t, x, y) e−γ̃(z)t → Wπy (53)

as t → ∞, where π = (πy, y ∈ Q̃(z)) is the (strictly positive) left eigenvector of the320

generator ĜQ̃(z) associated with the eigenvalue γ̃(z) > 0. For different z ∈ Ã, the random321
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variables W (z) are independent and identically distributed, with322

q ≡ q
(z)
W := P

(
W (z) > 0

)
> 0, (54)

due to the branching regularity condition (Georgii and Baake, 2003: Eq. (2.4)):323

E
(
Nxy logNxy

)
<∞ for all x, y ∈ Q̃(z), (55)

where Nxy is the total number of particles located at y resulting from a single split of324

one particle located at site x. In addition, P ( the process survives|W (z) > 0) = 1. Being325

solely determined by the dynamics of the process in Q̃(z), the survival events {W (z) > 0}326

are independent from one site z ∈ Ã to another. As a result, the cardinality of327

{
z ∈ Ã : W (z) > 0

}
(56)

is Pm × P-almost surely infinite. Thanks to the last item of Lemma 4, the key result of328

Eq. (19) of Theorem 1 follows.329

3.2 Proof of Theorem 2330

Our argument is that, under Eq. (20), P-almost surely, the integral
∫ t

0
V (Xs) ds in Eq. (22)331

tends to −∞ linearly fast. Therefore, the first annealed moment EN(t, x) vanishes expo-332

nentially when t→∞.333

Given the condition in Eq. (20), there exists δ2 > 0 with334

ε := Pm
(
V ≤ −δ2) > 0. (57)

We show that the upper bound expressed in Eq. (21) holds for each c ∈ (0, ε
4
δ2).335

By Eq. (57), the independent random variables336

ξy := 1V (y)≤−δ2(ωm) (58)
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have common Bernoulli distribution with success probability ε.337

Fix x ∈ Zd and consider the random sojourn times of the random walk Xs starting338

from X0 = x:339

τ(t, x, y) :=

∫ t

0

1y(Xs) ds, y ∈ Zd. (59)

For each fixed t ≥ 0, the positive or null random variables τ(t, x, y) satisfy340

∑
y∈Zd

τ(t, x, y) ≡ t (60)

and the integral in Eq. (22) is upper bounded:341

∫ t

0

V (Xs) ds ≤ −δ2St(x) where St ≡ St(x) :=
∑
y∈Zd

τ(t, x, y)ξy. (61)

By linearity of the expectation, the first Pm-averaged-over-ωm ∈ Ωm moment of St is342

〈St〉 =
∑
y∈Zd

τ(t, x, y)〈ξy〉 =
∑
y∈Zd

τ(t, x, y)ε = εt. (62)

The associated variance satisfies343

〈
(St − εt)2

〉
=

∑
y1,y2∈Zd

τ(t, x, y1)τ(t, x, y2)
〈
(ξ(y1)− ε)(ξ(y2)− ε)

〉
≡
∑
y∈Zd

τ 2(t, x, y)
〈
(ξ(y)− ε)2

〉
=
∑
y∈Zd

τ 2(t, x, y)ε(1− ε),
(63)

because, by independence of ξy from one y ∈ Zd to another, the off-diagonal terms (with344

y1 6= y2) in the sum have zero expectation.345

By Eq. (62), the first annealed moment of the sum in Eq. (61) satisfies346

ESt ≡ E
〈
St
〉

= εt, (64)
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so that to upper bound the annealed variance of the sum in Eq. (61):347

E(St − εt)2 ≡ E
〈
(St − εt)2

〉
= ε(1− ε)

∑
y∈Zd

Eτ 2(t, x, y), (65)

where348

Eτ 2(t, x, y) ≡
∫ t

0

∫ t

0

Ex
(
1y(Xs1)1y(Xs2)

)
ds1 ds2

= 2

∫∫
0≤s1≤s2≤t

p(s1, x, y)p(s2 − s1, y, y) ds1 ds2,

(66)

where the last term results from the symmetry of the random walk Xs, s ≥ 0, as in Eq. (4),349

and from the property Ex
(
1y(Xs)

)
= p(s, x, y), which is valid for all s ≥ 0 and lattice350

sites x and y. By homogeneity of the random walk Xs, s ≥ 0, (its transition probabilities351

satisfy p(s, y, y) ≡ p(s, 0, 0) for all s ≥ 0 and y ∈ Zd):352

Eτ 2(t, x, y) ≡ 2

∫ t

0

p(s1, x, y)

(∫ t

s1

p(s2 − s1, 0, 0) ds2

)
ds1

≤ 2

∫ t

0

p(u, 0, 0) du

∫ t

0

p(s1, x, y) ds1.

(67)

Based on Eq. (65) and on the identity
∑

y∈Zd p(s1, x, y) ≡ 1, the last inequality yields353

E(St − εt)2 ≤ 2ε(1− ε)t
∫ t

0

p(u, 0, 0) du, (68)

where the integral is upper bounded due to the following lemma.354

Lemma 5. For all t > 0, the transition probability p(t, x, y) of a homogeneous symmetric355

irreducible random walk on Zd satisfies the inequality356

p(t, 0, 0) ≤ c

t
d
2

, (69)

where c = c(d) > 0 is a finite constant.357

Proof in section A.3.358

As the upper bound expressed in Eq. (69) of the probability p(t, 0, 0) of return, In-359
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equality (68) becomes360

E(St − εt)2 ≡ E
〈
(St − εt)2

〉
≤


C1(ε)t

3
2 if d = 1,

C2(ε)t ln t if d = 2,

Cd(ε)t if d ≥ 3,

(70)

where Cd are finite positive constants, written in terms of ε. By Chebyshev’s inequality361

(Feller, 1968: IX, 6; Durrett, 2010: Eq. (1.6.1)), for every α > 0,362

P
(∣∣∣St

t
− ε
∣∣∣ > α

)
≤ α−2E

(St
t
− ε
)2

, (71)

where, by Eq. (70), the last expression decreases at least as fast as t−
1
2 when t→∞.363

For α = ε
2

and t = tn := 2n, n ∈ N,364

∑
n∈N

P
(∣∣∣Stn

tn
− ε
∣∣∣ > ε

2

)
<∞. (72)

By the first Borel-Cantelli lemma (Feller, 1968: Lemma VIII.3.2), there exists a random365

n∗ = n∗(x) with P{n∗ <∞} = 1 such that366

|Stn − εtn| >
ε

2
tn (73)

for all n ≥ n∗. As St in Eq. (61) is a non-decreasing function of t ≥ 0,367

St ≥
ε

4
t for all t ≥ tn∗ = 2n

∗
, (74)

which, from Feynman-Kac formula in Eq. (22) and the uniform point-wise upper bound368

in Eq. (61), yields Eq. (21):369

EN(t, x) ≡ E exp
(∫ t

0

V (Xs) ds
)
≤ E exp

(
− δ2St(x)

)
≤ exp

(
− εδ2

4
t
)

(75)

for all t ≥ tn∗ .370
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By Markov’s inequality (Durrett, 2010: Th. 1.6.4)), if ξ is a random variable such371

that ξ ≥ 0 almost surely and a > 0, then:372

P
(
ξ ≥ a

)
≤ Eξ

a
. (76)

Then373

P
(
N(t, x) > 0

)
≡ P

(
N(t, x) ≥ 1

)
≤ EN(t, x), (77)

which implies that the probability on the left-hand side decreases exponentially fast.374

Conclusion375

The distribution of population sizes governed by a critical branching random walk (also376

called “contact process”) on the d-dimensional lattice Zd, d ≥ 1, with constant duplication377

rate (λ) and mortality rate (µ), if the underlying random walk is transient, converges to378

a statistical equilibrium (Molchanov and Whitmeyer, 2017).379

If, instead of being constant, these rates are random such that the vectors (λ(x), µ(x))x∈Zd380

are independent from one lattice site to another and identically distributed, under the381

condition that the potential V (x) = λ(x)− µ(x) has a non-degenerate distribution (with382

nonzero variance), we showed that a steady state no longer exists: If the event
{
V (x) > 0

}
383

has a strictly positive probability, then the contact process is supercritical with popu-384

lation size growing exponentially fast. Alternatively, if V (x) ≤ 0 with probability one,385

while the event
{
V (x) < 0

}
has strictly positive probability, the population size N(t, x)386

vanishes asymptotically, for each x ∈ Zd. In particular, the annealed —average over387

events ωm ∈ Ωm— probability of the event
{
N(t, x) > 0

}
decreases exponentially fast.388
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A Proofs389

A.1 Proof of Lemma 3390

Our argument uses the coupling technique (Lindvall, 1992) and is similar to that in391

Chernousova, Hryniv, and Molchanov (2020: Theorem 3).392

We proceeded by induction, constructing branching random walks (n+(t, y))y∈Zd and393

(n−(t, y))y∈Zd on a common probability space, one change at a time, while making sure394

that the partial order n+(t, y) ≥ n−(t, y) in Eq. (25) always holds. The latter condition395

holds for t = 0 because, from Eq. (23),396

n+(0, y) = n−(0, y) = 1x0(y), for all y ∈ Zd. (78)

If (n+(t, y))y∈Zd and (n−(t, y))y∈Zd have been successfully constructed up to time t ≥ 0,397

while preserving the partial order in Eq. (25), consider the almost-surely finite sets398

Y0 :=
{
y ∈ Zd : n−(t, y) > 0

}
and Y1 :=

{
y ∈ Zd : n+(t, y) > n−(t, y)

}
, (79)

and denote k0
y := n−(t, y) ≥ 1 for y ∈ Y0 and k1

y := n+(t, y)− n−(t, y) ≥ 1 for y ∈ Y1. Y0399

is the support of n−, and Y0 ∪ Y1 the support of n+.400

For each y ∈ Y0, consider the independent exponential random variables401

ζ0
1,y ∼ Exp(κ k0

y), ζ0
2,y ∼ Exp(λ−y k

0
y), ζ0

3,y ∼ Exp(µ+
y k

0
y),

ζ0
4,y ∼ Exp

(
(λ+

y − λ−y ) k0
y

)
, ζ0

5,y ∼ Exp
(
(µ−y − µ+

y ) k0
y

)
,

(80)

where Exp denotes the exponential law and ζ ∼ Exp(ν) with ν ≥ 0 if P (ζ > s) = e−νs for402

all s ≥ 0. In particular, ζ ∼ Exp(0) is almost surely infinite, P (ζ = +∞) = 1. Likewise,403

for each y ∈ Y1, consider the independent exponential random variables404

ζ1
1,y ∼ Exp(κ k1

y), ζ1
2,y ∼ Exp(λ+

y k
1
y), ζ1

3,y ∼ Exp(µ+
y k

1
y). (81)
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Denote405

ζ̄ := min
(

min
{
ζ0
`,y : ` = 1, · · · , 5, y ∈ Y0

}
,min

{
ζ1
`,y : ` = 1, 2, 3, y ∈ Y1

})
. (82)

Two cases are possible. First, if406

ζ̄ ≡ ζ1
`,y for some ` ∈ {1, 2, 3} and y ∈ Y1, (83)

then407

nε(s, y) := nε(t, y) for all t ≤ s < t+ ζ̄ and y ∈ Zd, ε = +,−. (84)

Set n−(t+ ζ̄ , y) ≡ n−(t, y) and define the single-particle change in n+ is as:408

• if ζ̄ ≡ ζ1
1,y, then a single particle at y jumps to y + z ∈ Zd with probability a(z),409

that is, n+(t+ ζ̄ , x) = n+(t, x) + 1y+z(x)− 1y(x) for all x ∈ Zd;410

• if ζ̄ ≡ ζ1
2,y, then a single particle is born at y, that is, n+(t+ ζ̄ , x) = n+(t, x)+1y(x)411

for all x ∈ Zd;412

• if ζ̄ ≡ ζ1
3,y, then a single particle at y dies, that is, n+(t + ζ̄ , x) = n+(t, x) − 1y(x)413

for all x ∈ Zd.414

Otherwise, necessarily,415

ζ̄ ≡ ζ0
`,y for some ` ∈ {1, 2, 3, 4, 5} and y ∈ Y0. (85)

Then we let416

nε(s, y) := nε(t, y) for all t ≤ s < t+ ζ̄ and y ∈ Zd, ε = +,−, (86)

and define the single-particle changes in nε, ε = +,−, at time t+ ζ̄ as:417

• if ζ̄ ≡ ζ0
1,y, then, in each process, a single particle at y jumps to y + z ∈ Zd with418

probability a(z), that is, nε(t+ ζ̄ , x) = nε(t, x) + 1y+z(x)− 1y(x), ε = +,−, for all419

x ∈ Zd;420
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• if ζ̄ ≡ ζ0
2,y, then, in each process, a single particle is born at site y, that is, nε(t +421

ζ̄ , x) = nε(t, x) + 1y(x), ε = +,−, for all x ∈ Zd;422

• if ζ̄ ≡ ζ0
3,y, then a single particle at site y dies in each process, that is, nε(t+ ζ̄ , x) =423

nε(t, x)− 1y(x), ε = +,−, for all x ∈ Zd;424

• if ζ̄ ≡ ζ0
4,y, then a single particle is born at site y in n+ only, that is, n+(t+ ζ̄ , x) =425

n+(t, x) + 1y(x), with n−(t+ ζ̄ , x) ≡ n−(t, x) for all x ∈ Zd;426

• if ζ̄ ≡ ζ0
5,y, then a single particle at site y dies in n− only, that is, n−(t + ζ̄ , x) =427

n−(t, x)− 1y(x), with n+(t+ ζ̄ , x) ≡ n+(t, x) for all x ∈ Zd.428

The random fields (nε(s, · ))0≤s≤t+ζ̄ , ε = +,−, have the correct distributions, while the429

partial order condition Eq. (25) extends to the whole time interval [0, t+ ζ̄].430

Lemma 3 follows by induction.431

A.2 Proof of lemma 4432

For an arbitrary vector f ∈ RQ̃, denote433

(f, f) :=
∑
x∈Q̃

(fx)
2 and (ĜQ̃f, f) :=

∑
x,y∈Q̃

ĝx,yfxfy. (87)

From Eq. (44), we apply the min-max theorem by constructing the cubes Q and Q̃ ⊃ Q in434

Zd and a vector f ∈ RQ̃ for which the Rayleigh–Ritz (Horn and Johnson, 1985) quotient435

(ĜQ̃f, f)/(f, f) is strictly greater than δ > 0.436

First, define the first absolute moment M1 of the kernel a(z), z ∈ Zd:437

M1 :=
∑
z∈Zd

a(z) |z|, (88)

where |z| is the Euclidean distance to the origin in Zd. By Eq. (5), M1 < ∞. Given438

the lattice cube Q` of side length 2` + 1 with center at the origin 0Zd of Zd, q̄` is the439
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single-jump escape rate from 0Zd to the complement of Q`,440

q̄` := κ
∑
z /∈Q`

a(z). (89)

Given arbitrary integers `1 > 0, `2 > 0, and L as in Eq. (35), define441

fz :=


1− 1

`2
dist(z,Q`1), if dist(z,Q`1) ≤ `2,

0, otherwise,

(90)

where dist(z,Q`1) := minw∈Q`1
|z − w| is the distance from z ∈ Zd to the cube Q`1 ⊂ Zd.442

fz is a Lipschitz function of z, as, for all z, w ∈ Zd:443

|fz − fw| ≤
|z − w|
`2

. (91)

It vanishes outside QL, and 0 ≤ fz ≤ 1 for all z ∈ Zd. In particular,444

(f, f) =
∑
x∈Q̃

(fx)
2 ≡

∑
x∈QL

(fx)
2 ≤ |QL| = (2L+ 1)d. (92)

It remains to lower bound the quadratic form (ĜQ̃f, f). First, decompose445

(ĜQ̃f, f) =
∑
x∈Q

fxĝx,xfx +
∑
x∈Q

fx
∑

y∈Q\{x}

ĝx,yfy

=
∑
x∈Q

(
ĝx,x +

∑
y∈Q\{x}

ĝx,y
)
(fx)

2 +
∑
x∈Q

fx
∑

y∈Q\{x}

ĝx,y(fy − fx),
(93)

and from Eq. (44), for each x ∈ Q := QL ≡ Q`1+`2 ,446

ĝx,x +
∑

y∈Q\{x}

ĝx,y = v̂x − qQ̃(x) ≥ v̂x − q̄`3 , (94)

where we used the fact that
⋃
x∈QQ`3(x) ⊂ Q̃, which implies that each escape rate qQ̃(x),447

x ∈ Q, from Eq. (38), is upper bounded by q̄`3 . Also, q̄`3 → 0 as `3 → ∞. As a result,448
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for `3 such that 3q̄`3 < η, we get449

v̂x − q̄`3 > δ +
2

3
η > 0 (95)

for all x ∈ Q. The first sum on the right-hand side of Eq. (93) is lower-bounded by450

∑
x∈Q`1

(
ĝx,x +

∑
y∈Q\{x}

ĝx,y
)
(fx)

2 ≥
(
δ +

2

3
η
)
|Q`1| =

(
δ +

2

3
η
)
(2`1 + 1)d. (96)

On the other hand, because of the Lipschitz bound in Eq. (91), the last sum in Eq. (93)451

satisfies452

∣∣∣∑
x∈Q

fx
∑

y∈Q\{x}

ĝx,y(fy − fx)
∣∣∣ ≤ κ

`2

∑
x∈Q

∑
y∈Q\{x}

a(y − x)|y − x|

≤ M1κ

`2

|Q| = M1κ

`2

(2L+ 1)d,

(97)

where M1 defined in Eq. (88). Assume that `1 > `2, so that 2L + 1 = 2(`1 + `2) + 1 <453

2(2`1 + 1) and454 ∣∣∣∑
x∈Q

fx
∑

y∈Q\{x}

ĝx,y(fy − fx)
∣∣∣ ≤ 2dM1κ

`2

(2`1 + 1)d. (98)

For an integer `2 > 0 satisfying 2dM1κ <
η
3
`2,455

(ĜQ̃f, f) ≥
(
δ +

2

3
η
)
(2`1 + 1)d − η

3
(2`1 + 1)d =

(
δ +

η

3

)
(2`1 + 1)d. (99)

Hence the Rayleigh-Ritz quotient satisfies456

(ĜQ̃f, f)

(f, f)
≥
(
δ + η

3

)
(2`1 + 1)d

(2(`1 + `2) + 1)d
> δ, (100)

provided `1 is sufficiently large and satisfies `1 > `2 > 3 × 2dM1
κ
η
> 0. By the min-max457

principle, the principal eigenvalue (which is real) γ̂ of ĜQ̃ is458

γ̂ := sup
f 6=0Zd

(ĜQ̃f, f)

(f, f)
> δ. (101)
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The first item of Lemma 4 follows.459

Alternatively, given a lattice domain W ⊃ Q̃, consider the extended matrix ĜW ≡460

(ĝx,y)x,y∈W with entries as in Eq. (44). With the same argument for the vector f = (fx)x∈W461

with components from Eq. (90), the principal eigenvalue (which is real) of ĜW remains462

strictly greater than δ > 0 for all such W ⊂ Zd.463

For GQ̃ as in Eq. (44) with ĝx,x ≡ δ + η − κ for all x ∈ Q, by uniformity of the464

bound expressed in Eq. (95), there exists γ̄ > δ such that the principal eigenvalue γ̂ of465

ĜQ̃ satisfies γ̂ ≥ γ̄ > δ uniformly in the values of other diagonal entries ḡx,x, x ∈ Q̃ \Q.466

A.3 Proof of Lemma 5467

In terms of the inverse Fourier transform for the random walk with generator La (as in468

Eq. (3)), the probability p(t, 0, 0) of return satisfies469

p(t, 0, 0) =
1

(2π)d

∫
[−π,π)d

etκL̂a(k) dk, (102)

where, by symmetry postulated in Eq. (4), the Fourier transform L̂a is real-valued:470

L̂a(k) ≡
∑
z∈Zd

(
cos(k, z)− 1

)
a(z), k ∈ [−π, π)d. (103)

Following the argument in Spitzer (2001: §7) and using the irreducibility of the random471

walk, γ > 0 is such that the characteristic function of jumps satisfies472

∑
z∈Zd\{0}

cos(k, z)a(z) ≤ 1− γ|k|2 (104)

for all k ∈ [−π, π)d. Then473

p(t, 0, 0) =
1

(2π)d

∫
[−π,π)d

etκL̂a(k) dk ≤ 1

(2π)d

∫
[−π,π)d

e−tκγ|k|
2

dk

≤ 1

(2π)d

∫
Rd

e−tκγ|k|
2

dk,

(105)

from which the bound in Eq. (69) follows.474
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