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A B S T R A C T 

We use sparse regression methods (SRMs) to build accurate and explainable models that predict the stellar mass of central and 

satellite galaxies as a function of properties of their host dark matter haloes. SRMs are machine learning algorithms that provide a 
framework for modelling the go v erning equations of a system from data. In contrast with other machine learning algorithms, the 
solutions of SRM methods are simple and depend on a relatively small set of adjustable parameters. We collect data from 35 459 

galaxies from the EAGLE simulation using 19 redshift slices between z = 0 and z = 4 to parametrize the mass evolution of the 
host haloes. Using an appropriate formulation of input parameters, our methodology can model satellite and central haloes using 

a single predictive model that achieves the same accuracy as when predicted separately. This allows us to remove the somewhat 
arbitrary distinction between those two galaxy types and model them based only on their halo growth history. Our models can 

accurately reproduce the total galaxy stellar mass function and the stellar mass-dependent galaxy correlation functions ( ξ ( r )) 
of EAGLE. We show that our SRM model predictions of ξ ( r ) is competitive with those from subhalo abundance matching and 

might be comparable to results from extremely randomized trees. We suggest SRM as an encouraging approach for populating 

the haloes of dark matter only simulations with galaxies and for generating mock catalogues that can be used to explore galaxy 

evolution or analyse forthcoming large-scale structure surv e ys. 
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 I N T RO D U C T I O N  

ithin the Lambda cold dark matter ( � CDM) paradigm (e.g. Planck
ollaboration I 2014 ), an expanding universe filled with particles 

hat interact only through gravity can be accurately modelled using 
 -body simulations (e.g. Springel et al. 2005 ). Because of advances

n computational methods, such simulations can track the formation 
f galaxy-scale dark matter haloes within volumes approaching the 
ize of the observable Univ erse. Howev er, these simulations do not
nclude the baryonic component that leads to the formation of stars
nd galaxies. Hydrodynamical simulations that include baryons need 
o deal with complicated cooling and feedback processes and are 
trongly influenced by events happening at scales much smaller 
han the size of the simulation grid. This makes them significantly 

ore e xpensiv e to run and limits their volume to about 1 Gpc 3 (e.g.
pringel et al. 2018 ). There is, therefore, an incentive for a hybrid
pproach, in which one uses hydrodynamic simulations to learn the 
elation between dark matter and baryonic tracers, and then uses these 
elations to populate N -body mock catalogues of larger volume. 
 E-mail: icaza@kasi.re.kr 
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In Icaza-Lizaola et al. ( 2021 ), we present a no v el methodology
hat uses sparse regression methods (SRMs; Tibshirani 1996 ; Hastie, 
ibshirani & Wainwright 2015 ) to model the relations between the
tellar mass of a galaxy and its host halo in the Evolution and Assem-
ly of Galaxies and their Environments (EAGLE; Schaye et al. 2015 ;
rain et al. 2015 ; McAlpine et al. 2016 ) 100 Mpc hydrodynamical

imulation. SRMs are a set of machine learning (ML) algorithms 
esigned to identify the parameters that better describe a dependent 
ariable, then discard the remaining unnecessary ones. Recently, 
he y hav e been suggested as the appropriate framework to e xtract the
quation of states of a physical system from collected data and with
inimal knowledge of the physics of the system (Brunton, Proctor &
utz 2016 ). 
In Icaza-Lizaola et al. ( 2021 ), we were interested in developing

nd testing the methodology in a simple scenario without going 
nto some of the more complicated challenges that populating 
 realistic N -body mock accurately would require. With that in
ind, we tested our methodology on central galaxies (the main 

alaxy within each dark matter halo) only as they have monotonic
rowths with time which makes them easier to model. In this work,
e extend our methodology to include satellite galaxies as well. 
atellite galaxies (and their associated dark matter subhaloes) are 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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reated when a smaller dark matter halo is accreted by a larger
ne. This is a common process in the � CDM model. As they orbit
ithin the larger halo, satellite galaxies (and their remnant dark
atter subhaloes) undergo a much more diverse range of physical

rocesses than their central galaxy counterparts. 
Unlike the main dark matter halo, which undergoes monotonic
ass growth, the remnants of smaller accreted haloes may decay
ith time (e.g. Bower & Balogh 2004 ; van den Bosch et al. 2018 ),

s they lose mass due to processes such as tidal stripping and heating
Lynden-Bell 1967 ; Merritt 1983 ; Hayashi et al. 2003 ; Green & van
en Bosch 2019 ). Moreo v er, the satellite galaxies residing inside
hese remnant haloes are subject to ‘environmental’ processes that
emo v e cold gas and suppress the accretion of more material (Gunn &
ott 1972 ; Vollmer et al. 2001 ; Larson, Tinsley & Caldwell 1980 ;
ah ́e & McCarthy 2015 ; Correa, Schaye & Trayford 2019 ). As a

esult, star formation in satellite galaxies is significantly suppressed
ompared to central galaxies and we expect less stellar mass growth.

In EAGLE, the differentiation between central haloes and
ubhaloes is done by the SUBFIND algorithm (Springel et al.
001 ). Within each halo, the algorithm identifies the self-bound
 v erdensities and classifies them as independent subhaloes. The
ubhalo with the lowest potential energy is classified as the central
alo and assigned any diffuse mass that has not already been
ssociated with a subhalo. This distinction is made separately at
ach output time and is not a fundamental differentiation, but
ependent on the details of the algorithm. In some cases, this leads
o anomalous behaviour, in particular inconsistent classifications
f the same subhalo at different redshift slices (e.g. Behroozi et al.
015 ). It is, therefore, desirable to use a methodology that does
ot make a fundamental distinction between central and satellite
alaxies when modelling the stellar mass, but rather to use the same
pproach based on the o v erall halo mass history. 

In this paper, we use a lower threshold in the host halo mass for
ur central galaxy sample compared to Icaza-Lizaola et al. ( 2021 ),
educing it from M = 10 11.1 M � to M = 10 10.6 M �. This allows us
o identify low mass haloes which contain relatively large galaxies
with stellar masses greater than 10 9 M �). This is a particularly
mportant consideration for satellite galaxies, if we are to generate a
tellar-mass complete catalogue. 

Other works have used ML algorithms to model the relationship
etween the halo and stellar properties inside a hydrodynamical
imulation (e.g. Kamdar, Turk & Brunner 2016 ; Agarwal, Dav ́e &
assett 2018 ). Their models accurately reproduce several statistics
f the original simulation. Ho we ver, gi ven that these types of models
enerate black box answers it might be complicated to modify them
o reproduce statistics from observations instead. Lo v ell et al. ( 2022 )
rains an extremely randomized tree (ERT; Geurts, Ernst & Wehenkel
006 ) model on data from the EAGLE simulation and uses it to
opulate the P-Millennium N -body simulation with galaxies (Baugh
t al. 2018 ). Moster et al. ( 2021 ) uses a neural network approach that
ewards the algorithm for reproducing observed statistics of a survey
like correlation functions and stellar mass functions (SMFs)] instead
f properties of individual galaxies. This circumvents the problem of
ifferences in statistics between the hydrodynamical simulation used
o calibrate the model and those from an observational surv e y, at the
ost of not requiring accuracy in the predictions of the individual
alues of galaxy properties. Given that our model is an equation of
tate with a set of input parameters fitted by the model, it is in
rinciple possible to extract the best advantages of both approaches,
xtracting the important physical parameters by comparison to the
imulation, but optimizing the coefficients of these terms to reproduce
he statistics of an observational data set. 
NRAS 518, 2903–2920 (2023) 
This paper is organized as follows. Section 2 summarizes the
parse regression methodology used in this work, with a complete dis-
ussion of the methodology presented in Icaza-Lizaola et al. ( 2021 ).
ection 3 introduces the data set that we use and any enhancements

o the model that we have made to handle the more complex data set.
n particular, Section 3.1 explains the details of the bijective match
etween the hydrodynamical EAGLE simulation and the EAGLE
ark matter only (EAGLE DM hereafter) simulation. Sections 3.2
nd 3.3 describe the methodology used to extract our training data
et from the EAGLE DM only simulation as well as the new
arametrization of the model and the new weighting scheme adopted.
he results from our different models are shown and analysed in
ection 4 . In Section 4.2 , we compare the SMF and the clustering of
ur resulting models with the ones from the original EAGLE sample.
n Section 4.3 , we compare our resulting models with some available
rom the literature. Our conclusions and thoughts on the potential of
he current methodology are discussed in Section 5 . 

 M E T H O D O L O G Y  

he methodology followed in this work is presented in detail in Icaza-
izaola et al. ( 2021 ). Here, we include a summary of the key concepts,
nd then in Sections 3.2 and 3.3 , we describe the additions and
hanges to the methods adopted in this specific work. 

Sparse regression methods (SRM; Tibshirani 1996 ; Hastie et al.
015 ; Tibshirani & Friedman 2017 ) are a set of ML algorithms
esigned to develop a fitting function by selecting linear combina-
ions from a large library of candidate functional forms. The method
elects only a minimal subset of functions from the library such that
he combination describes the input data well but does not o v er-
t and hence a v oids poor interpolation between input points. One
ey advantage of SRM methods over other ML techniques is that
he resulting model is in the form of an equation with nominally a
mall subset of terms, making it more likely to have a clear physical
nterpretation. 

In Icaza-Lizaola et al. ( 2021 ), we used SRM to model the relation
etween the stellar mass ( M 

∗) of central galaxies and a set of
roperties of their host haloes. We found that a good, but simple
escription could be obtained based on the final mass of the host
alo and its parametrized formation history. In this paper, we aim
o provide a similar relationship that describes all galaxies in the
imulation, whether they are the dominant galaxy within the halo
which we refer to as central ) or a galaxy that was formed in a separate
ub-halo that has been subsequently been accreted (we refer to such
alaxy as a satellite ). Although we follow very similar methodologies
o Icaza-Lizaola et al. ( 2021 ), the halo and subhalo properties used as
nput parameters here have been adapted so that we can model both
atellites and central galaxies consistently. The details are described
n Section 3.2 . 

Let us call M the number of host halo properties, and N the total
umber of galaxies in our data set. For each halo property we define
he vector � x ′ i = [ x ′ 1 i , ..., x 

′ 
Ni ] that contains the observed value of the

 th property of each host halo ( i ≤ M ). 
The input halo properties need to be standardized so that they

ll vary within a consistent range. This is done using the following
ransformation: 

�  i = 

� x ′ i − μ
( � x ′ i 

)
σ
( � x ′ i 

) , (1) 

here μ and σ are the mean and standard deviation operators,
espectively. We use the � x i vectors to build a set of D polynomial
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unctions F l ( � x ) ( l < D ), where the function F l can be either a linear, a
uadratic or cubic combination of the dependent variables, i.e. F l α = 

 i α or F l α = x i α × x j α or F l α = x i α × x j α × x k α , where 1 ≤ i ≤ j ≤
 ≤ M and α < N . We use all possible linear quadratic and cubic
ombinations of the input properties and so D = 1 + M + M ( M +
)/2 + M ( M + 1)( M + 2)/6. 
The value of the stellar mass predicted by our model for galaxy α

 M 

∗
pα) 1 is expressed as the linear combination of functions F l α: 

 

∗
pα = 

D ∑ 

l= 0 

C l F lα, (2) 

here � C = [ C 0 , .., C D 

] are a set of coefficients. The optimal values of
hese coefficients are the quantities determined by our methodology. 

Following the SRM approach, most coefficients are discarded (i.e. 
e set C l = 0) and only a small subset of the possible coefficients

re retained. This is achieved by minimizing the LASSO function 
efined as 

 

(
� C 

)
= χ2 

(
� C 

)
+ λP 

(
� C 

)
, (3) 

here χ2 ( � C ) is a statistic that determines the goodness of the fit,
 ( � C ) is a penalty term that incentivizes the minimization to discard
nnecessary input parameters and λ is a hyperparameter of our 
ethodology that regulates the relative magnitude of P ( � C ). We 

efine χ2 ( � C ) as 

2 
(

� C 

)
= 

N ∑ 

α= 1 

( M 

∗
α − M 

∗
pα( C)) 2 

σ 2 
, (4) 

here σ is an estimate of the uncertainty of the measurement of M 

∗
α

as defined by equation 11 of Icaza-Lizaola et al. 2021 ). 
The penalty term P ( � C ) is defined in such a way that its value

ncreases significantly with the number of coefficients C j that are 
on-zero. The shape of P ( � C ) is given by the following equation: 

 

(
� C 

)
= 

D ∑ 

l= 1 

⎡ 

⎣ 

∑ 

m �= l 

| C m 

| e −( ε/ C m ) 2 

⎤ 

⎦ | C l | e −( ε/ C l ) 2 , (5) 

here ε is a small constant that determines how close to zero 
 coefficient needs to be before its contribution to the penalty is
egligible. 
In this work, all coef ficients belo w 10 −3 are discarded. We refer

he reader to Icaza-Lizaola et al. ( 2021 ) for a discussion of the choice
f this specific value and of the optimal ε value for third-order
olynomials. 
Equation ( 3 ) is designed to a v oid o v erfitting the input data, which

s a necessity in any model with a large space of input parameters.
his is achieved by the balancing between the goodness of fit and the
enalty term. An o v erfitted model would have a small χ2 by including
any non-zero parameters, which, in turn, w ould mak e the penalty

erm very large. Therefore, the minimum of L ( � C ) should correspond
o a model that is as simple as possible (small P ( � C )), while still
eing a good fit (small χ2 ). The equilibrium between the need to fit
he data well and to keep the number of non-zero coefficients small
s set by the choice of the λ parameter: a large value strongly reduces
he number of coefficients selected, while a small value does not 
 As mentioned later, our code actually models log 10 ( M 

∗/M �). We opt against 
ncluding the full logarithmic expression in the main text of the paper and 
ssociated equations to simplify the notation, while we show the explicit 
ependencies in the figure labels. 

2  

m  

t

s  

h  
enalize the goodness of fit enough. We determine the optimal value
sing the k -fold methodology (Hastie et al. 2015 ), where the data
re separated into a training set and a test set k -times. The optimal
alue of λ, and its associated uncertainty, can then be determined by
xamining how well a model fitted to the training set can predict the
ata in the test set. The full details of this process are described in
caza-Lizaola et al. ( 2021 ). 

We use 85 per cent of our data to train our model, with the
emaining 15 per cent labelled as the Holdout data set. The latter is
sed in Section 4.1 to test the accuracy of the method, while the full
ata set is used in Sections 4.2 and beyond. 

 DATA  

ur data set comes from the EAGLE (Crain et al. 2015 ; Schaye
t al. 2015 ; McAlpine et al. 2016 ) simulations, which are a suite of
ydrodynamical simulations built using the Planck 2014 cosmology 
Planck Collaboration I 2014 ). During the rest of this work, we
efine the stellar mass of a galaxy in EAGLE as the sum of all stellar
articles inside a sphere with an aperture of 30 kpc centred at the
entre of the potential of the galaxy. 

We use the simulations built in a 100 comoving Mpc box, which is
he largest box available. Haloes in the simulation are identified using
 Friends-of-Friends (FoF) algorithm (e.g. Davis et al. 1985 ) with
 linking length of b = 0.2. Subsequently, the SUBFIND algorithm
Springel et al. 2001 ) finds the subhaloes within each halo and selects
ne of them as the central halo. The simulation outputs are saved in
9 snapshots going from z = 20 to z = 0. The snapshots are used
o build merger trees (Qu et al. 2017 ) by identifying haloes with
heir progenitors at the previous redshift slice. Main progenitors are 
efined as the progenitors with the larger branch mass (De Lucia &
laizot 2007 ), defined as the sum of the progenitors mass at all
revious snapshots. During this work, we use the main progenitor 
ranch to track the mass evolution of a halo. 

.1 Matching 

he goal of this work is to develop a fitting function that allows
he mass of a galaxy to be estimated from knowledge of its DM
alo formation history only. Since DM haloes in hydrodynamical 
imulations are affected by baryonic processes that might alter their 
ensity profile (Navarro, Eke & Frenk 1996 ; Martizzi et al. 2012 ;
challer et al. 2015b ), or other properties like the shape of the halo
Katz & Gunn 1991 ; Bryan et al. 2013 ), it is important that we match
he haloes in the hydrodynamical simulation with the same haloes in
 dark matter only simulation (with identical cosmology and initial 
onditions). By making a one-to-one matching between the DM only 
imulation and the hydrodynamical one, the properties of the DM 

nly simulations can be used as the input variables of the model (the
ectors � x ′ j of Section 2 ), while the stellar mass is measured in the
ull-ph ysics h ydrodynamical simulation. The matching is done by 
ollowing the procedure of Schaller et al. ( 2015a ). To summarize,
e look at the 50 most bound DM particles of each halo or subhalo

n the hydrodynamical simulation: if a halo or subhalo of the DM
nly simulation contains at least half of these particles, then they
re matched. The matching is done for all haloes abo v e M total >

 × 10 9 M � and both haloes need to be abo v e this value to be
atched, where M total is the summed mass of all particles assigned

o the halo or subhalo. 
Fig. 1 shows the SMF of the full EAGLE hydrodynamical 

imulation and compares it to the SMF of the galaxies living in
aloes that were successfully matched. The bottom panel of Fig. 1
MNRAS 518, 2903–2920 (2023) 
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M

Figure 1. Comparison of the SMF of the full EAGLE simulation (solid 
lines), with the SMF from the galaxies living in haloes that were successfully 
matched (dashed lines). The plot shows results for both central haloes (red) 
and satellites (green), and the combined sample of central and satellites haloes 
(blue). The bottom panel shows the ratios of the SMF of comparable galaxy 
types (while keeping the colour coding the same as in the top panel) and 
quantifies the fraction of matching failures per galaxy type. 
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Figure 2. Distribution of the central galaxies (blue dots) and satellite galaxies 
(red dots) in our sample in the M max –M 

∗ space, where M max is the largest 
halo mass the halo’s main progenitor reached (see equation 6 ). The solid 
lines show the median value of the distributions. The plot shows that at a 
fixed M max the median galaxy mass of a satellite galaxy is larger than that of 
a central galaxy. 
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hows that the fraction of matching failures for central galaxies is
round 1 per cent for all stellar mass scales of interests. This explains
hy it was not necessary to consider the effect of unmatched haloes

n Icaza-Lizaola et al. ( 2021 ). Ho we ver, the number of unmatched
atellite galaxies is significantly larger, with a matching success rate
round 80 per cent for galaxies with log 10 ( M 

∗/M �) > 10 (green line
n the bottom panel of Fig. 1 ). 

With this in mind, all statistics presented from Section 4.2 onwards
esult from applying the model to all haloes in the EAGLE DM only
imulation (matched and unmatched) and compares them to statistics
rom all galaxies in the hydrodynamical simulation. This comparison
ssumes that the distribution of unmatched haloes in both simulations
s similar. We explore the validity of this assumption in Appendix A .

.2 Halo selection and input parametrization 

e begin our selection of haloes by tracing the evolution of the
alo mass in the DM only simulation at 19 redshift slices between
 = 0 and z = 4. This initial selection is based on M total ( z), the
otal mass of the particles associated to the halo or subhalo by the
UBFIND algorithm. These trajectories summarize the evolution of

he galaxies host halo mass as a function of redshift and give us
 relation between halo mass and time for each galaxy. In order
o ensure that the trajectory is not o v erly affected by the algorithm
sed in the selection process, we use a Gaussian kernel with a σ
f one redshift slice to smooth this evolution history. Since halo
asses can increase as well as decrease (for satellite galaxies in

articular), we base our halo selection on the maximum value of
 total ( z) in the smoothed trajectory. The success rate of the matching

s dependent on the halo mass, with more massive haloes being
ore likely to be matched. We find that Max ( M total ( z)) = 10 10 . 66 M �

orresponds to the threshold at which more than 90 per cent of haloes
NRAS 518, 2903–2920 (2023) 
re successfully matched. We define this threshold as the halo mass
ut-off of our sample. In order to a v oid missing data, we discard those
hat do not have a well-defined main progenitor in all redshift slices
p to z = 4. For Max ( M total ( z) ) > 10 10 . 66 M �, this cut is unimportant,
ith 99.6 per cent of the sample being kept. Our final sample consists
f a total of 35 456 galaxies, of which 9967 live inside subhaloes,
nd 25 489 inside central haloes. 

As a pre-processing step, we use the interpolation scheme de-
eloped in Icaza-Lizaola et al. ( 2021 ) to ensure the halo masses
f central galaxies are not affected by inconsistent classification
etween snapshots. Nominally haloes in our models have their
volution tracked with M total ( z) at all redshifts. We have compared
odels with different halo mass definitions for centrals, like M 

c 
200 , 

2 

nd found negligible differences on the accuracy of the stellar mass
redictions. 
Since the satellite halo mass cannot be expected to grow monoton-

cally with decreasing redshift, a more important parameter for each
alaxy is instead its maximum halo mass. In the rest of the paper, we
efer to this as M max : 

 max = Max ( M total ( z)) . (6) 

Central galaxies tend to grow monotonically with time, and M max 

s correlated with the stellar mass through the z = 0 stellar mass–
alo mass (SMHM) relation. In satellite galaxies, ho we ver, M max 

orresponds to the redshift at which their host halo merges and
ecomes the subhalo of a larger system. Once a halo merges the
ass of the halo declines due to tidal processes. We can expect,

herefore, that the galaxy mass at z = 0 will be well correlated with
he mass of the host halo before merging. Fig. 2 shows the distribution
f galaxies in the M max –M 

∗ space. 

art/stac3265_f1.eps
art/stac3265_f2.eps
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We note that the median stellar mass of satellite galaxies is larger
han that of centrals at fixed M max , i.e. for a fixed M max satellite
alaxies are more massi ve. The of fset in the SMHM relation for
atellites and centrals is driven by two competing processes. On the 
ne hand, satellites may undergo a strong suppression of their star
ormation as they orbit within the main halo due to the combined
ffects of ram-pressure stripping (the removal of the interstellar 
edium of the galaxy by ram pressure) and strangulation (the 

bsence of gas infall on to the satellite). On the other hand, while
he halo mass of the central continues to grow with cosmic time, the
atellite reaches its peak mass and M max becomes frozen thereafter. 
he net offset is determined by whether the halo mass or the stellar
ass grow fastest in the central galaxies, and by whether satellite 

alaxies are able to continue to grow in stellar mass after they are
ccreted (Behroozi et al. 2019 ). Because the effect on the stellar
ass growth tends to be delayed compared to the effect on the halo,

atellite galaxies tend to have larger stellar mass than their central 
ounterparts. 

We now describe the input parameters used in this work, which 
re the values of the vectors � x ′ j of Section 2 . 

In Icaza-Lizaola et al. ( 2021 ), we tested different parametrizations 
nd concluded that parameters that measure the SMHM relation and 
he halo growth trajectory are the most useful for modelling the stellar

ass at z = 0. We also found no impro v ement in our models when
dding parameters correlated with the angular momentum evolution 
f the halo. The best model that we found used log 10 ( M 

c 
200 ( z =

) / M �) as the input parameter that traced the SMHM relation, as
ell as a set of formation criteria parameters FC p that model the 

ssembly history, where FC p is the redshift by which a central galaxy 
as assembled p = [20, 30, 50, 70, 90] per cent of its current mass.
n order to accommodate satellite galaxies, we substitute the input 
arameter M 

c 
200 ( z = 0) with M max and we define the dimensionless

arameter 

gM max = log 10 ( M max / M �) (7) 

nd redefine the formation criteria parameters FC p as follows. First 
e find the redshift z i at which a halo or subhalo reaches M max . Then
e look at the evolutionary history of the halo from z = 4 up until
 i , and find the redshift ( z i ≤ FC p ≤ z = 4) at which the halo has
ssembled a percentage p of M max . 

Note that if z is such that M ( z) = M max , then z < FC 90 < FC 70 .
his parametrization is almost equi v alent to the one used in Icaza-
izaola et al. ( 2021 ) when only considering central galaxies as in

his case M 

c 
200 ( z = 0) ∼ M max . As a check, we ran our methodol-

gy on the data set of Icaza-Lizaola et al. ( 2021 ) with the new
arametrization. The resulting model is comparable to the original 
ne in accuracy and simplicity. In total we use six independent 
ariables in our methodology [lgM max , FC 20 , FC 30 , FC 50 , FC 70 , 
C 90 ]. Each of these parameters is transformed to the standardized 
pace defined by equation 1 . Since we consider cubic combinations of 
hese parameters, this leads to a model with up to D = 84 parameters.

Many methodologies have found that parameters related to the 
ircular velocity of haloes, like the maximum of the radial circular 
elocity profile at z = 0 ( V max ) or even the maximum value of V max 

mong all redshifts ( V peak ), are more accurate than the halo mass
hen modelling the stellar mass of their host galaxy (e.g. Conroy, 
echsler & Kravtsov 2006 ; Chaves-Montero et al. 2016 ; Matthee 

t al. 2017 ; Kamdar et al. 2016 ; Lo v ell et al. 2022 ). In our current
mplementation, strongly correlated parameters that serve a similar 
unction in the modelling of the stellar mass, like V max , V peak and
 total , are not easily distinguished by our algorithm. This leads to

ubtle variations in the surviving parameters of a given model that 
an depend on configuration parameters, like the starting point of the
inimization and the specific training set selection. Degeneracies 

ue to correlated model parameters are further discussed in Icaza- 
izaola et al. ( 2021 ) and at the end of Section 4 . 
We have run a model where we use both M max and V peak as free

arameters simultaneously, and compare it to the model with only 
 max that we present in the next section. We found no difference in

ccuracy or simplicity between the two models. Ho we ver, the fact that
ne model is a function of both parameters made its interpretation less 
traightforward. F or e xample, when running our algorithm using only 
 max , the SMHM relation is modelled as a third-order polynomial

f M max (as we show in Section 4.1 ), which makes intuitive sense
hen looking at Fig. 2 . Ho we ver, when using both M max and
 peak , the SMHM function is now modelled by a more complicated

unction of both parameters. Therefore, by adding parameters that 
re strongly correlated with M max , we lose explainability without 
aining accuracy, and hence we decide to keep only one of the
wo correlated parameters. In Appendix B , we discuss why we did
elect M max instead of V peak . A possibility to work with correlated
arameters without the need of doing this sort of correlation analysis
eforehand would be to use some principal component analysis (e.g. 
olliffe 2005 ). 

To test the differences between modelling satellite and central 
alaxies separately and modelling them together with a single model, 
e run three models independently of each other: 

(i) A model that only contains central galaxies, with N = 25 489
ata points. 
(ii) A model that only contains satellite galaxies, with N = 9967

ata points. 
(iii) A model that combines central and satellite galaxies and fits 

hem all at the same time, with N = 35, 456 data points. 

.3 Weighting the cost function 

n Icaza-Lizaola et al. ( 2021 ), we used a simple χ2 measure to
ssess the quality of the model’s prediction of the data (i.e. χ2 is the
ost function). In the CDM paradigm, ho we ver, smaller haloes are
l w ays much more numerous than massive ones. As a consequence,
uch methodology would have a stronger incentive to fit numerous 
maller haloes more accurately at the expense of a less accurate
t to less numerous massive ones. In Icaza-Lizaola et al. ( 2021 ),
e concluded that our methodology became more inaccurate for 
alaxies larger than log 10 ( M 

∗/M �) > 11.0 (see discussion of fig. 14)
ue to a relatively small fraction of galaxies above the threshold (90
ut of ∼9500). Given that in this iteration of the work we reduced the
ut-of f v alue of galaxies e ven further, we no w have a larger number
f smaller galaxies making the issue even more problematic. A good
olution to this problem is to assign a weight w 

′ 
i to each halo. This

eight determines how much of an incentive the code will have to
t a particular halo mass correctly. If the weight w 

′ 
i is larger for

alaxies in larger haloes, then by modifying equation ( 4 ) to include
 normalized weight w i as below, we will give a larger importance
o the rarer larger haloes: 

2 
w = 

N ∑ 

α= 1 

w α

(
M 

∗
α − M 

∗
pα( C) 

)2 

N 

2 
. (8) 

To compute the weight of a halo, we first look at the halo mass
unction (HMF) as a function of lgM max . To a v oid noisy weights
rom having a small number of objects in the more massive bins, we
ake use of a linear fit to the HMFs. Referring to the linear fits as
MNRAS 518, 2903–2920 (2023) 
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Table 1. Parameters and their respective values for the surviving coefficients 
of the three models. Note that the parameters presented here are in the 
standardized space defined by equation ( 1 ). Parameters are shown to three 
significant figures, sufficient to make the RMSE accurate to four significant 
figures. 

Coefficient Centrals Satellites Combined 

Constant 0.122 0.172 0.171 
lgM max 1.20 1.12 1.17 
(lgM max ) 2 −0.144 −0.154 −0.146 
(lgM max ) 3 0.00527 0.00633 0.00509 
FC 20 0.0435 – 0.0136 
FC 30 – – 0.0223 
FC 50 −0.0732 0.0603 0.0560 
FC 70 0.0803 0.110 0.0953 
FC 90 0.0262 0.100 0.190 
( FC 30 ) 2 – – 0.0107 
lgM max × FC 20 −0.0392 – −0.0224 
lgM max × FC 30 – – −0.00508 
lgM max × FC 50 – −0.0595 −0.0263 
FC 20 × FC 90 – – −0.0220 
FC 30 × FC 90 – – −0.0192 
FC 50 × FC 90 – −0.0450 −0.0636 
FC 70 × FC 90 – −0.0121 −
( FC 20 ) 3 0.0106 – –
( FC 30 ) 3 0.00521 – –
(lgM max ) 2 × FC 30 – −0.00217 –
(lgM max ) 2 × FC 90 – −0.00521 −0.0124 
lgM max × ( FC 20 ) 2 – 0.00197 –
lgM max × ( FC 90 ) 2 – – −0.00433 
( FC 20 ) 2 × FC 70 − 0.00567 0.00875 
( FC 30 ) 2 × FC 20 – − −0.00186 
( FC 50 ) 2 × FC 20 −0.00158 – 0.0243 
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(lgM max ), the weight of a halo is defined as 

 

′ 
α = 

√ 

10 fl( μ) 

10 fl( lgM max α ) 
, (9) 

here μ is the median value of lgM max . As a final step, we normalize
he weights of a sample as follows: 

 α = 

N × w 

′ 
α∑ N 

α= 1 ( w 

′ 
α) 

. (10) 

We emphasize that in the combined model, the weighting scheme
oes not distinguish between central and satellite galaxies. 

 RESU LTS  

e start in Section 4.1 by comparing input and predicted stellar
asses, using the holdout data only. As mentioned in Section 2 ,

aloes in the holdout set were not used to train the model. Therefore,
omparisons with the holdout data enable the accuracy of our method
o be tested by making model predictions on EAGLE data that
he model has not seen before. In Section 4.2 , we present model
redictions using the full data set for the galaxy SMF and galaxy
lustering split by stellar mass. In Section 4.3 , we compare our
AGLE SRM predictions with an SHAM model (Chaves-Montero
t al. 2016 ) and an ML method (Lo v ell et al. 2022 ) applied to
AGLE as well. In Section 4.4 , we consider whether some of the
dditional parameters identified by the two aforementioned papers
ould impro v e our model. 

.1 Comparing input and predicted stellar masses 

e now present the results of each of our three models. The surviving
oefficients and their respective values are shown in Table 1 . In
rder to extract a fitting function that can be applied directly to the
nput variables, one first needs to transform the input data using
quation ( 1 ), which requires the mean and standard deviation values
f the dependent variables. The values of these parameters for our
ombined model are given in Table 2 . 3 

Fig. 3 shows a comparison between the stellar masses predicted
y the models for haloes in the holdout set and their actual values in
AGLE. This choice of sample enables the accuracy on the model

o be assessed by considering data that was not used in training
he model. The left-hand and right-hand panels show the results for
entral and satellite haloes, respectively. The figure shows that the
ean closely follows the one-to-one relation (black dashed line) for

ll models abo v e log 10 ( M 

� /M �) ∼ 8. The bottom panels highlight
ow accurate the models are, with the shaded area corresponding to
n estimate of the error on the mean. The latter is computed using the
entral 68 per cent range of the stellar mass distribution divided by
he square root of the number of galaxies in a given stellar mass bin.
he mean model stellar mass is predicted to per cent lev el accurac y

or all stellar masses of interest and al w ays within our estimate of
he error on the mean. 

Overall, the plot is encouraging and shows that the properties of
atellites, as well as centrals, can be accurately predicted by the SRM
pproach. This is an important prerequisite for constructing accurate
ock catalogues from dark matter simulations. We will explore the

erformance of the models in more detail below. 
NRAS 518, 2903–2920 (2023) 

 Note that the resulting stellar mass also needs to be converted from 

tandardized units, and we have therefore included the stellar mass parameters 
n Table 2 as well. 

t  
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S  
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A subsidiary aim, ho we ver, is to determine whether it was neces-
ary to explicitly distinguish between central and satellite galaxies
n constructing the model. We test this by comparing the model in
hich central and satellite galaxies are fitted separately with one

hat combines all galaxies into one single model and relies on the
ethodology to distinguish between satellite and central galaxies

nly on the basis of their different formation histories. The dashed
oloured lines in Fig. 3 show the mean stellar mass of the central (left-
and panel) and satellite (right-hand panel) galaxies in the holdout set
hen the combined model was used, i.e. a model that is trained on all
alaxies simultaneously with no binary distinction between satellites
nd centrals. Those dashed coloured lines are virtually identical to the
odels inferred using central and satellite information alone (solid

ines). 
Removing this binary condition should result in an algorithm that

s less dependent on the details of the SUBFIND algorithm, making
esults simpler to interpret. 

In order to compare the accuracy of the models, we use the root
ean square error (RMSE) statistic defined as follows: 

MSE = 

√ ∑ N 

α= 1 

(
M 

∗
pα( C) − M 

∗
α

)2 

N 

, (11) 

We find the same RMSE of 0.203 for the central galaxies in
he holdout set when we predict their stellar mass with either
ur combined model or the model run with central galaxies only.
imilarly, satellite galaxies in the holdout set have an RMSE of 0.236

n the individual model, and an RMSE of 0.243 in the combined
odel. This shows that a binary distinction between central and



Sparse r egr ession models of the stellar mass 2909 

Table 2. Normalization parameters used for the stellar mass and the DM halo variables. These 
parameters are for the model that mixes central and satellite galaxies. The μ and σ rows correspond 
to the mean and standard deviation of the variables, respectively, and are used in equation ( 1 ) to 
standardize the range of the variables considered. 

log 10 M 

∗/M � lgM max FC 

′ 
20 FC 

′ 
30 FC 

′ 
50 FC 

′ 
70 FC 

′ 
90 

μ 8.760 11.13 3.054 2.481 1.644 1.034 0.531 
σ 0.8002 0.4566 0.8311 0.8786 0.7666 0.6291 0.5206 

Figure 3. Comparison between the stellar masses of galaxies in EAGLE and those predicted by the models for all haloes within the holdout set. The coloured 
shaded areas on the top panels show the boundary encompassing 68 per cent of this holdout galaxies within bins of fixed model SM, and the solid lines are 
their mean values. The black dashed line corresponds to the one-to-one line. The black horizontal lines show the resolution limit of galaxies within the EAGLE 

simulation (Schaye et al. 2015 ). Below this line galaxies are defined by fewer particles and numerical noise starts to become an issue. The left-hand panel shows 
the result for the central haloes: the solid blue line and light blue shading corresponding to the model trained on centrals alone, while the green dashed line 
and light green shading to the combined model, trained using centrals and satellites. The right-hand panel is equi v alent to the left-hand panel but for satellite 
galaxies. The bottom panel shows the relative difference between our model prediction and EAGLE data, defined as ( y − x )/ x = [EAGLE(log 10 (( M ∗/M �)) −
Model(log 10 ( M ∗/M �))]/Model(log 10 ( M ∗/M �)). It represents the relati ve dif ference between the coloured lines and shades and the one-to-one line (black dashed 
line) shown in the top panel. 
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atellite galaxies does not impro v e significantly the accuracy of the
odels. 
We can also look at all centrals and satellites of the individual
odels used together which have a RMSE of 0.215. 
This is very comparable to the RMSE of the combined model 

hich is 0.216. 
This indicates that the individual models and the combined model 

ave comparable accuracies. Note that the combined model ends up 
ith 21 terms, while modelling satellites and centrals individually 

equires 14 and 12 terms, respectively (hence 26 terms in total). 
We would like to highlight that none of the three models shows a

ignificant difference between the RMSE of the holdout and training 
ets at the third significant figure. This suggests that our methodology 
s robust against o v erfitting, as o v erfitting would result in a difference
etween the RMSE of the holdout and training set. Hence our method
f selecting the hyperparameter λ in equation ( 3 ), designed to a v oid
 v erfitting, works as intended. 
In the rest of this work, we present our statistics using the whole

ata set. This is justified as we have shown that the accuracy of
he models is similar for galaxies in the training set and in the
 a
oldout set. The holdout set alone is rather small (about five thousand
alaxies typically), and therefore statistics like SMFs or galaxy 
orrelation functions would result with comparatively large statistical 
ncertainties, if the models are applied to the holdout data only. 
A significant appeal of the SRM approach is that the surviving

erms in Table 1 have a physical interpretation. Following the 
iscussion in Icaza-Lizaola et al. ( 2021 ), we note that there are four
ypes of surviving parameters: 

(i) A constant, or normalization, term. 
(ii) Terms that only include lgM max and no formation criteria 

arameter: these terms model the underlying relation between M max 

nd M 

∗. For central galaxies they should correspond to a model of
he SMHM relation. 

(iii) Terms that only include formation criteria parameters (e.g. 
C 50 and higher order combinations): these terms quantify the 
rowth history of the halo, capturing scatter in the relation. 
(iv) Terms that are a product of halo mass, lgM max , and forma-

ion criteria parameters: these terms model the dependence of the 
ssembly history on the final halo mass. 
MNRAS 518, 2903–2920 (2023) 
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Figure 4. The galaxy SMF of EAGLE, represented as the shaded areas, 
compared to the galaxy SMF of our models, shown as solid (combined 
model) and dotted (individual models) lines. The green line corresponds to 
combined samples of all galaxies, and the red and blue lines to the satellite 
and central subsets respectively. The shaded region shows the bootstrap 
error on the EAGLE SMF estimate. The bottom panel shows the relative 
difference of the model predicted SMFs compared to the EAGLE SMF, with 
the same line styles and colours as in the top panel. The SMFs are shown to 
log 10 ( M ∗/M �) = 8.8, the threshold below which the EAGLE galaxy sample 
starts to be incomplete due to our halo mass cut. 

i  

(  

s  

a  

1  

s  

i  

t  

h  

a  

a  

w  

s
 

f  

f  

t  

i  

p
 

b  

c  

t  

o  

T  

g  

c  

O  

s  

T  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/2/2903/6825494 by U
niversity of D

urham
 user on 08 February 2023
Comparing the models, we see that the constant term and the
oefficients that depend only on the lgM max coefficients are similar
etween all three models. This reflects the similar underlying shape
f the M max and M 

∗ relation. 
In the combined model, central and satellite galaxies are treated

n an equal footing and their offset is captured by the more
omplex dependence on formation time parameters. The combined
odel needs 21 parameters, which are less free parameters than

he combination of the two separate models, which each require 12
nd 14 parameters to model centrals and satellites, respectively. One
oticeable difference is that the combined model relies on terms of
he shape FC i × FC 90 which measure the time it takes a halo to
volve into their maximum mass with respect to the time it took
hem to reach a smaller percentage of that mass. 

It is interesting to compare the central galaxy model with the one
resented in Icaza-Lizaola et al. ( 2021 ). It is important to stress that
e do not expect identical models, since we have broadened the range
f masses considered and weighted the cost function to emphasize
he importance of predicting stellar masses well o v er the full halo

ass range. These changes resulted in a slightly simpler model. 
The number of free parameters selected by the algorithm has

ecreased from 17 to 12. Ho we ver, a close inspection of the surviving
arameters of both models reveals a lot of striking similarities
etween the two. Many of the surviving terms are similar despite the
ifferences in the definition of the halo mass term and, to some extent,
he formation criteria definition (see Section 3.2 ). Here, we use
gM max , while it was log ( M 

c 
200 )( z = 0) in Icaza-Lizaola et al. ( 2021 ).

oth models have surviving coefficients of similar amplitudes for
he constant , the log ( M ) x and the FC 

x 
j terms (with x < 3), with a

if ference no w that FC 20 is selected instead of FC 30 . In summary,
he main difference between both models is that the model in Icaza-
izaola et al. ( 2021 ) required more cross terms between the mass
nd the formation criteria parameters while now we only require one
 lgM max × FC 20 ). 

One difficulty becomes apparent when comparing the models
n greater detail, ho we ver. Because of the significant correlation
etween parameters, models of almost equi v alent accuracy and com-
lexity can vary in the final parameters chosen if these parameters are
orrelated. F or e xample, the current central model includes strong
ependencies on terms in FC 20 , while the model of Icaza-Lizaola
t al. ( 2021 ) had most terms as function of FC 30 . 

It is difficult to decide on the significance of these differences
ecause of the underlying correlations of FC 20 and FC 30 . As men-
ioned in Section 3.2 , future investigations could consider methods
ike principal component analysis to transform our input functions
nto a parameter space where they are uncorrelated. Ho we ver, this
ould lose the benefit of having a simple physical interpretation of

he input parameters and the resulting model. 

.2 Predicting clustering and the SMF 

n this section, we explore the SMF and the clustering of the stellar
opulation generated by applying our model to the haloes in our DM
nly simulation. We compare our resulting statistics to the ones we
et from the stellar population of the full EAGLE hydrodynamical
imulation. All of the statistics presented here include all haloes in the
M only simulation, even those that were not matched in Section 3.1 .
ig. 4 shows how the SMF of our models, split by galaxy type (total

n green, centrals in blue and satellites in red) compares to those
rom the EAGLE hydrodynamical simulation. The plot shows the
MF of the combined model (solid lines), of the individual models
dotted lines) and of the EAGLE data (shaded area), with the shading
NRAS 518, 2903–2920 (2023) 
ndicating a bootstrap error estimate to account for sampling effects
Efron 1979 ). The different model SMFs are all comparable, as they
eem to agree all similarly well with the EAGLE SMFs, with the
greement worsening somewhat for masses around log 10 ( M 

� /M �) =
0.5, as identified already in Icaza-Lizaola et al. ( 2021 ). As we
uggested in that work, one possible reason behind this disagreement
s the stochasticity of certain baryonic processes which might affect
he stellar mass, for example the feedback from supermassive black
oles (Martizzi et al. 2012 ; Bower et al. 2017 ). While this would be
 challenging phenomenon to predict using input parameters from
 DM only simulation, it should be possible to develop, in a future
ork, SRM models that estimate both a central value and a stochastic

catter in the predicted quantities. 
In what follows we show different predictions of galaxy correlation

unctions and analyse how do they compare with the original statistics
rom EAGLE. We emphasize that our model is not tuned to reproduce
he clustering of EAGLE. Therefore, any success that we may find
s a consequence of correlation functions being preserved when
opulating the correct haloes with galaxies of a given stellar mass. 
Fig. 5 shows the galaxy correlation functions of our models, split

y the predicted galaxy stellar mass. The figure also includes the
orrelation function of galaxies when split by their stellar mass in
he EAGLE simulation. As with Fig. 4 we have included an estimate
f the error due to sampling effects using the bootstrap method.
he correlation function of both models with central and satellites
alaxies (green lines) agrees within the errors with the EAGLE
orrelation function. The same is true for central galaxies (blue lines).
n the other hand, satellite galaxies (red lines) are slightly more

trongly clustered compared to EAGLE in the lowest stellar mass bin.
here seem to be no discrepancies in the correlation functions when
atellites and central galaxies are modelled together or separately.
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Figure 5. Correlation function of EAGLE galaxies split into different stellar mass bins (as indicated in the title of each panel). The solid (dotted) lines show 

the correlation function of all galaxies in our combined (individual) models. Like in Fig. 4 , the colour coding refers to the galaxy sample type: all, central, 
and satellite galaxies are in green, blue, and red, respectively. The shaded area corresponds to the correlation function of the corresponding EAGLE galaxies 
including bootstrap errors. The bottom panels show the relati ve dif ference of the model predicted correlation function compared to the EAGLE one, with the 
same line styles and colours as in the top panels. 
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his is encouraging as it implies that the binary distinction between 

entral and satellite galaxies becomes unnecessary to model the 
 v erall correlation function using our prescription. 
One of the advantages of our methodology o v er standard ML

echniques is the fact that our solution is expressed as a simple
quation of state with 21 free parameters fitted by the algorithm. This
s important as the model coefficients can be modified so that other
ata sets (different from EAGLE) can be fit. This would be needed
hen for example one wants to populate DM only simulations with 
AGLE informed physical processes to create mocks that mimic 
bservational data set. This could not be achie v able by a more
omplex black box model. 
.3 Comparison with other models 

.3.1 Comparison with SHAM 

e have stated that we are interested in using our methodology as
n alternative for populating haloes in DM only simulations with 
alaxies. To test if our methodology is adequate, we first need to
ompare our accuracy to that obtained from standard methods like 
ubhalo abundance matching (SHAM; e.g. Vale & Ostriker 2004 ; 
onroy et al. 2006 ) that makes a one-to-one matching between
aloes and galaxies, based on a property that correlates with the
tellar mass. More recent implementations of SHAM add some 
MNRAS 518, 2903–2920 (2023) 
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Figure 6. Correlation functions of the combined model produced with our SRM method (green solid lines), of the SHAM results presented in Chaves-Montero 
et al. ( 2016 ) (blue solid lines), and of the EAGLE hydrodynamical simulation (red dashed line and shading). The correlation functions are computed for galaxies 
in the stellar mass bins indicated in the title of each panel. The shading correspond to bootstrap errors. The bottom panels show the relative difference of the 
model predicted correlation functions compared to the EAGLE ones, with the same line styles and colours as in the top panels. 
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tochasticity to the methodology to account for the scatter in the
orrelation (e.g. Behroozi, Conroy & Wechsler 2010 ; Zentner,
earin & van den Bosch 2014 ). Therefore, regular SHAM imple-
entations produce models that depend on only one free parameter

nd one subhalo property, which makes them simpler than our
RM models that consider six halo properties and fit several free
arameters. 
In what follows, we compare the correlation function from our

ombined model to the one presented by Chaves-Montero et al.
 2016 ). They used a SHAM methodology to populate galaxies in
he EAGLE simulation by studying the relation between the stellar

ass of a galaxy and the maximum circular velocity of a halo once
t reaches equilibrium after a merger. 

Fig. 6 sho ws ho w our correlation functions (blue lines) compare
o the ones from Chaves-Montero et al. ( 2016 ). The right-hand
anel shows that for larger stellar masses, both methods agree with
AGLE within the bootstrap errors, while they provide reasonable
ccurac y in reco v ering the correlation function for smaller stellar
asses (as shown by the left-hand panel). Ho we v er, Chav es-Montero

t al. ( 2016 ) seems to struggle to reco v er the EAGLE correlation
unction on the smaller scales. They report differences of 20 per cent
o 30 per cent , as confirmed in the bottom left-hand panel of Fig. 6 .
ur SRM model shows a slight impro v ement on these smaller scales

nd agrees better with the EAGLE correlation function. For stellar
asses larger than the ones shown in Fig. 6 , we continue to agree
ith the EAGLE simulation within errors. 

.3.2 Comparison with ML tree methods 

e have stated that our goal is to develop an explainable ML
ethodology. Ho we ver, for this to be of use we need to make sure that

he accuracy of our model is comparable to that of more established
L methods. With this in mind, in what follows we compare our
odel with the ML model presented in Lo v ell et al. ( 2022 ), which
NRAS 518, 2903–2920 (2023) 
ses ERTs (Geurts et al. 2006 ) to model galaxy properties from
AGLE halo information. ERT methods are emerging as a popular
nd highly accurate ML method to model the relations between
alaxies and host haloes (e.g. Kamdar, Turk & Brunner 2015 ; Jo &
im 2019 ). 
The model of Lo v ell et al. ( 2022 ) is trained using data from the

A GLE and the C-EA GLE simulations (Barnes et al. 2017 ; Bah ́e
t al. 2017 ). The latter is a set of zoom-in hydrodynamical simulations
f massive galaxy clusters. The calibration of C-EAGLE is slightly
ifferent from the standard EAGLE one, with changes in the values
f the parameters determining the AGN feedback and the black hole
ccretion rates. This new parametrization is usually referred to as
GNdT9 (Schaye et al. 2015 ). The EAGLE data used in Lo v ell et al.
 2022 ) comes from a smaller box of 50 comoving Mpc that has the
ame resolution and cosmology as the standard 100 Mpc box, but
ses the AGNdT9 parametrization of C-EAGLE. 
We decided to compare with the model of Lo v ell et al. ( 2022 ), as

t was also constructed using the EAGLE simulation and therefore
t shares the same cosmology and resolution and was built using the
ame algorithm that our data, which makes a direct comparison of
he models more straightforward. ML methods that have been trained
n other simulations might have differences in the accuracy of the
odels that could be a consequence of the training data and not of

he methodology itself. 
Lo v ell et al. ( 2022 ) uses either eight or twelve properties of the

ost DM haloes to model the stellar properties of galaxies (depending
n the specific model). Hence, the number of input parameters they
onsider is comparable to our work, as we use six halo properties.
heir properties include information that parametrize the host halo
ass at z = 0, like the total mass of the halo M FoF , and properties that

re more correlated with the assembly history, like V max or the radius
t which V max is reached. On the other hand, our formation criteria
arameters contain a more direct parametrization of the assembly
istory. 
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The top left-hand panel of Fig. 7 shows how the SMFs from our
odel and from Lo v ell et al. ( 2022 ) compare to the one from the
AGLE hydrodynamical simulation. The bottom left-hand panel of 
ig. 7 shows the relative difference of the model SMFs w.r.t. to

he EAGLE 100 Mpc. We note that both models have comparable 
ccuracy, with our SRM model being slightly more accurate for 
tellar masses between ∼10 9 and ∼10 10 M �. Ho we ver, we should
mphasize that given the Lovell et al. ( 2022 ) model is trained on
 combination of C-EAGLE and AGNdt9 data, it is less likely to
eproduce the SMF of EAGLE as accurately as a model that is
rained solely on EAGLE, like ours. 

McAlpine et al. ( 2016 ) show that the SMF of the AGNdt9
imulation agrees well with the one from the larger EAGLE 100 Mpc
imulation, with both SMFs being identical in all but the larger stellar
ass bins where AGNdt9 lacks volume to be representative, which 

s precisely what the C-EAGLE data used by Lo v ell et al. ( 2022 )
ompensates for. Therefore, it is reasonable to compare both models 
ith the SMF of the EAGLE 100 Mpc box, bearing in mind those

imitations. 
The right-hand panel of Fig. 7 shows the projected correlation 

unction ( w p ( r p )) 4 for a stellar mass selected sample as defined
y the panel title. The clustering of the 50 Mpc box built with the
GNdT9 parametrization is slightly different from the one built with 

he standard 100 Mpc box, as shown by the two dashed lines in
he right-hand panel of Fig. 7 . The AGNdT9 simulation (along with
-EAGLE data) was used to build Lo v ell et al. ( 2022 ) model and

herefore the correlation function of the model applied to the DMO 

hould be compared with the correlation function of the AGNdT9, 
hich is why the ratio of the bottom panel of the right plot is done
.r.t. the EAGLE AGNdT9 50 Mpc box. 
The two solid lines in the right-hand panel of Fig. 7 correspond

o two different models, as indicated by the key. We note that the
rojected correlation functions of our SRM model agrees well with 
he one from EAGLE: on all scales considered, the line from our
RM model is within the bootstrap errors of the EAGLE sample. 
Similarly, the clustering of Lo v ell’s model applied to the DMO

imulation agrees well with that of the EA GLE A GNdT9 simulation
sed to build the model. The accuracy with which this model 
eproduces the projected correlation function is similar to the one 
rom our model in all but the smallest scales. This is clear from the
ottom right panel of Fig. 7 where the relative clustering difference 
f the Lo v ell et al. ( 2022 ) model with respect to that of the EAGLE
GNdT9 sample is shown by the blue solid line. As the Lo v ell et al.
 2022 ) model was tuned to a combination of C-EAGLE and AGNdT9
ata, it is not straightforward to make a direct comparison with the
lustering of their training data, a comparison to the clustering of the
GNdT9 simulation is therefore the best alternative. 
We have shown that the projected correlation function and the 

MF resulting from our SRM methods are comparable to the ones 
btained by Lo v ell et al. ( 2022 ) using ERT methods. As we have
tated, the comparison between Lo v ell et al. ( 2022 ) and our model
annot be done fully accurately, as they use data from the C-EAGLE
imulation to build their models. Nevertheless, we consider the fact 
hat the models seem to have a similar level of accuracy as an
ncouraging result, especially as ERT methods are designed to be 
ccurate and cost-efficient (Geurts et al. 2006 ). Unlike our SRM
ethod, explainability is not an aim within the design philosophy of
RT models. 
 The projected correlation function (Davis & Peebles 1983 ) is defined 
s w p ( r p ) = 2 

∫ ∞ 

−∞ 

ξ ( r p , π)d π, where r p and π are the components of r 
erpendicular and parallel to the line of sight, respectively. 

3

f  

t

.4 Models with additional halo properties 

he parametrization of halo properties presented in Section 3.2 is 
ifferent from the parameters selected by other ML methods. For 
 xample, Lo v ell et al. ( 2022 ) uses e xclusiv ely properties at z = 0
o build a model with an accuracy comparable to ours. Lovell et al.
 2022 ) finds that the maximum circular velocity ( V max ), the half mass
atio ( R 1/2 ), the mass of the halo at z = 0 ( M 0 ), and the potential energy
f the halo ( E p ) are the parameters that have significant contributions
o their stellar mass model (see fig. 11 of Lo v ell et al. 2022 ). 

In this section, we explore whether some of these parameters could
mpro v e our baseline model, as presented in Section 4 . This is not
 trivial question, as some of these parameters, like V max and R 1/2 ,
ight be useful in other ML models as they are a better tracer of

he inner part of the halo than M max . Ho we ver, the halo e volution is
lready well tracked in our model by our parametrization of the halo
volution with the FC i parameters. 

Another issue when including additional parameters is that some 
ight be strongly correlated with each other. In Appendix C , we

how that parameters like M 0 and E p will provide essentially the same
nformation to our models. Including highly correlated parameters 
n our current implementation could reduce the explainability of the 
odel, as coefficients corresponding to different polynomial terms 

f correlated parameters can have different physical interpretations 
hile modeling the same underlying behaviour. 
In SRM, the standard approach for dealing with extra variables 

hat one does not know if they could impro v e a model or not is to add
hem as free parameters and to see if the algorithm discards them by
tself. This is one of the original design philosophies behind these
ethodologies, as discussed in Brunton et al. ( 2016 ). Hence, we run

ur methodology using our regular six halo parameters to which we
dd fiv e e xtra parameters: four free parameters defined at z = 0 and
uggested by Lo v ell et al. ( 2022 ) [ V max , R 1/2 , log 10 ( M 0 ) and log 10 ( E p )]
nd a fifth parameter V peak , defined in Section 3.2 . Throughout the
est of this work, we use the following unitless parameters: 

lgV peak = log 10 ( V peak / ( km s −1 )) 

lgV max = log 10 ( V max / ( km s −1 )) 

lgE p = log 10 ( E p / (M �(km s −1 ) 2 )) 

lgM 0 = log 10 ( M 0 / M �) . (12) 

Several of these new halo properties are correlated with each other,
s shown in Appendix C . As discussed in section 4.3 of Icaza-Lizaola
t al. ( 2021 ), correlated parameters have the effect of generating
ultiple local minima, resulting in a highly non-conv e x configuration

pace to be explored. In such spaces, our implementation of the
inimization algorithm struggles to find the global minimum, as it 

pends time exploring unstable local minima. This, in turn, has the
et effect of building models with slight variations in the surviving
oefficients, which depend on the starting point of the minimization 
nd on the specific selection of galaxies in the holdout set. To
ddress this limitation, we run our methodology five times, using 
he same initial set of galaxies, but modifying the random seed
o that the subset of galaxies selected for the holdout set and the
tarting points for the minimization algorithm change. These five 
uns provide an idea of the average model that can be built with
his new configuration. Finally, by adding five new parameters to the
odel, the number of coefficients to minimize o v er goes from 84 to

64, which increases significantly the dimensionality of the problem. 
These three observations, i.e. correlated parameters, the need 

or statistically equi v alent runs and the larger dimensionality of
he problem, have the net effect of increasing significantly the 
MNRAS 518, 2903–2920 (2023) 
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Figure 7. Left-hand panel: the SMF predicted by the ERT method of Lo v ell et al. ( 2022 ) (blue line) and our SRM model (green line) when applied to haloes 
within the EAGLE DMO simulation box. Right-hand panel: The projected correlation functions predicted by Lo v ell et al. ( 2022 ) (blue solid line) and by our SRM 

model (green solid line) when applied to haloes within the EAGLE 100 Mpc DMO simulation, using the stellar mass bin of Lo v ell et al. ( 2022 ). In both top panels, 
the red dashed lines (and shading) show the corresponding statistics (and bootstrap errors) measured directly from the EAGLE hydrodynamical simulation. 
The blue dashed line of the right-hand panel shows the projected correlation function of the EAGLE simulation built with the AGNdT9 parametrization. The 
bottom left-hand panel shows the relative difference of the model predicted SMF w.r.t. the EAGLE 100 Mpc box, with the same line styles and colours as in the 
corresponding top panels. The green line in the bottom right-hand panel shows the relati ve dif ference of the projected correlation functions of our SRM model 
w.r.t. the one from the EAGLE 100 Mpc box, while the blue line is the relati ve dif ference of the projected correlation function from Lo v ell et al. ( 2022 ) model 
w.r.t. the one from the EA GLE A GNdt9 50 Mpc box. We note that Lo v ell et al. ( 2022 ) model is trained on data from both the C-EAGLE and EAGLE AGNdt9 
simulations, and therefore, it is less likely to reproduce the SMF of EA GLE as accurately as our model that is trained solely on EA GLE. See the main text for a 
more detailed discussion. 
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omputational cost of running our algorithm. As a consequence,
e make the compromise of using only 4000 randomly selected
alaxies to run our models on (as opposed to the nominal 35 456
alaxies), as this keeps the o v erall computational running costs
anageable. In parallel, we run another set of five models that uses

ur standard configuration of 6 parameters from Section 4 , but built
ith the same 4000 galaxies and random seeds as these new models.
hese five models correspond to our baseline models throughout this
ubsection, and we refer to them as our 6 parameter models. In the
est of this section these models are contrasted with their equi v alent
odels built with extra parameters but the same random seeds, to
hich we refer to as our 6 + 5 parameter models. 
Before analysing the subset of parameters selected by the al-

orithm for the new 6 + 5 parameters models, we show that these
odels are as accurate as the models run with the nominal 6

arameter configuration. All five 6 + 5 parameters models have
 RMSE between 0.22 and 0.23, which is comparable to within the
ncertainty of the model fitting to the RMSE of the corresponding
ominal 6 parameter models, which is between 0.21 and 0.22. These
alues are also comparable with our final model from Section 4 ,
hat has an RMSE of 0.22 when estimated with the set of 4000
alaxies used in this section. We note that all five runs of the
 + 5 parameter models choose a similar number of surviving
oefficients, with two runs selecting 13 and 15 coefficients each,
hile the other three runs all selecting 10. This is in agreement with

he variance on the methodology due to variations in the holdout set
election found in Icaza-Lizaola et al. ( 2021 ). We find no correlation
NRAS 518, 2903–2920 (2023) 
etween the number of surviving coefficients and the RMSE of the
odels. 
Fig. 8 shows the values of each of the selected coefficients for

ur five new models using both our new configuration with 6 + 5
arameters (left) and the standard configuration with 6 parameters
right). 

Via the SRM methodology, most models will have a subset of their
llowed parameters discarded (when none of the coefficients associ-
ted with these parameters are chosen by the algorithm). In our case,
he five runs of the 6 + 5 parameter model end up keeping between
 and 9 parameters. The differences in the number of surviving
arameters between the runs show how correlated these parameters
re with each other, making them somewhat interchangeable. As
hown in the left-hand panel of Fig. 8 , the only new parameter
elected by all five runs is lgV peak , while four out of the 6 standard
odel parameters (lgM max , FC 30 , FC 70 , and FC 90 ) are kept in each

esulting new model. 
We note that all of the 6 parameter models keep all input parameters

ithout discarding any. This suggests that the information contained
nside the parameters used in our standard configuration is more
nique that the one from 6 + 5 parameter models used in this section.
his is further discussed in Appendix C , where we show how most
f the new parameters included are strongly correlated with each
ther and with lgM max , while the correlations between the formation
riteria parameters are comparably weaker and hence contain more
pecific information. The fact that the models that start with 11 free
arameters require in some cases a large number of parameters to

art/stac3265_f7.eps
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Figure 8. The left-hand panel shows the absolute values of all selected coefficients for each of the five statistically equivalent 6 + 5 parameter models (RS-1 to 
RS-5) trained and validated on a sample of 4000 galaxies. The right-hand panel shows similar information using the same data set, but for our standard 6 parameter 
model. The coloured labels at the right of each plot correspond to parameters that were used in at least three of the five models, while the labels inside of the plot 
correspond to parameters used only in one or two of the models. The grey shading shows the threshold below which coefficients are discarded by a given model. 
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each an accuracy similar to the model in Section 4 suggests that
he new parameters did not contain much additional (if any) new 

nformation that was not already present in our initial model. 
The five runs with our standard 6 parameter model selected 

etween 13 and 18 coefficients, less than the 21 coefficients of our
nal model from Section 4 . The differences in selected coefficients 

s due to these new models being built with less data. Given that the
RM method is very strict about a v oiding o v er fitting, it becomes
arder to justify a larger set of coefficients. As a test of this, we ran
nother set of five models using our standard 6 parameters but using
2 000 galaxies (3 times more than the data in this section and 3 times
ess than the nominal set) and we found that the selected models use
etween 16 and 19 coefficients. 

From the left-hand panel of Fig. 8 , we note that the five 6 +
 parameter models use between 10 and 15 coefficients, which is
lightly less than the 13–18 coefficients of the 6 parameter models. 
his suggests that, while the new parameters might not necessarily 
ontain much new information required to model the SMHM relation, 
hey might be more efficient at compressing the rele v ant information.

While the 6 + 5 parameter models select on average less coeffi-
ients, it is significantly less consistent in the subset of coefficients 
elected by any particular model. This is shown by the fact that only
 coefficients are selected in at least three models, while another 14
oefficients are selected once or twice only. This is in contrast with
he 6 parameters models, where most coefficients are present in at 
east three models and only 6 out of 21 coefficients are selected once
r twice. In fact, we note that even if the 6 + 5 parameter model uses
e wer coef ficients per model, the number of coef ficients selected by
t least one model (23 coefficients) is comparable to that from the
 parameter model (21 coef ficients). This sho ws ho w the inclusion
f correlated parameters increases the stochasticity of the method, 
hich in turn complicates the interpretation of the resulting models. 
Out of the 11 parameters, all 6 + 5 parameter models select

inear contributions from lgM max , lgV peak , FC 70 and FC 90 and cubic
ontributions from lgV peak and FC 30 , in order of decreasing linear
oef ficient v alue. Almost all models select some contribution from
 1/2 and FC 50 as well, except for one model, RS-4 in the left-hand
anel of Fig. 8 . That latter model has a comparable RMSE to the
ther models and requires 10 coefficients, the same number as two
ther models. 
This highlights the difficulties of using our current SRM imple- 
entation on spaces with highly correlated parameters: RS-4 has an 

ccuracy (RMSE) and simplicity (number of parameters) that are 
qui v alent to those of the other four models (within the variations of
he methodology due to different holdout sets). Therefore, it is neither 
etter nor worse than the other models within the standards that we
esigned our models to meet. Ho we ver, due to parameters being
trongly correlated and sharing similar information, we see that this 
odel requires two less free parameters and therefore would have a

impler physical interpretation than the others. 
As shown in Section C , out of all new input parameters, R 1/2 

s the one that is the least correlated with the rest of the new
arameters. This suggests that the R 1/2 information provided to the 
odel is possibly more unique than that from some of the other new

arameters, which might explain why four new models had some 
ontributions from the R 1/2 parameter. 

We note that all models discard contributions from lgV max and lgE p 

p to order 3, and that only one model (RS-2 in the left-hand panel of
ig. 8 ) includes a very minor contribution from lgM 0 in the form of

he coefficient lgM 

2 
0 R 1 / 2 . This suggests that the contribution to the

ccuracy of the model after including any of these three parameters
s negligible and that none of these parameters contributed additional 
nformation that was not already provided without them. 

FC 20 is only selected by two models, RS-1 and RS-2 in the left-
and panel of Fig. 8 . Those models are the two that have the largest
umber of coefficients, which suggest that the information that was 
reviously provided by FC 20 to our model is also contained in some
f the new set of parameters. 
MNRAS 518, 2903–2920 (2023) 
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Figure 9. The SMF as predicted by the five new models (blue lines) that 
are built by adding five new parameters to our method. The purple lines 
show the SMF of their corresponding SRM models built with our standard 
configuration of 6 parameters. We also include the SMF predicted by our 
final model from Section 4 (green line) when applied to the same subset of 
4000 galaxies. The EAGLE SMF of this subset is shown as the red line. The 
bottom panel shows the ratio of each model predicted SMF to the EAGLE 

SMF, with all models predicting the SMF to a similar level of accuracy. 
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In summary and as stated already, all five runs of the 6 + 5
arameter model selected contributions from lgM max , lgV peak , FC 70 ,
C 30 , FC 90 . Of these parameters, lgV peak is the only one that is
ot within our original set of parameters. Given that the five new
odels do not seem to be more accurate than the model presented in
ection 4 , the contribution provided by lgV peak could also be obtained
y a combination of the FC i parameters within our original model,
s shown in Appendix B . Ho we ver, the fact that these new models
equire in general less coefficients seems to indicate that including
gV peak is an efficient way of compressing some of the information
ontained in our FC i parameters. 

Fig. 9 shows the SMFs of the five 6 + 5 parameter models (blue)
nd the complementary 6 parameter models (purple). These SMFs
re built using a subset of 4000 galaxies and we account for this
ampling in the SMF estimates. The bottom panel indicates that all
odels have a similar accuracy (to within 25 per cent typically) when

redicting the SMF of EAGLE. This suggests that including the extra
arameters does not impro v e our ability to reproduce the stellar mass
istribution. In addition, while the corresponding 6 parameter models
o not have better accuracy than their 11 parameter counterparts, they
eem to be far more consistent with each other. This can be seen by
he purple lines being more similar to each other than the blue ones
n the bottom panel of Fig. 9 . This is due to the 6 parameter models
eing more consistent in their selection of surviving coefficients, as
hown in the right-hand panel of Fig. 8 . 

As mentioned already, these models are trained with a small subset
f the full data (4000 galaxies as opposed to 35 456 galaxies). Given
hat our model from Section 4 is trained using our full data set, we
ould expect its stellar mass predictions to be less accurate for this
maller subset of data, as it was constrained to model a larger data
NRAS 518, 2903–2920 (2023) 
et. Ho we ver, we see that both the RMSE and the SMF of the new
odels are comparable to the one from our final model in Section 4 .
he fact that our original model seems to do as well as these new
nes suggest that our method is robust against sample size variations,
nd that it is able to deal ef fecti vely with overfitting. 

Given that we see no improvement in accuracy using these new
odels, and given that they were not trained on our full data, we do

ot quote these new models as our final result, but keep the model of
ection 4 . 

 C O N C L U S I O N S  

n Icaza-Lizaola et al. ( 2021 ), we used a sparse regression methodol-
gy to fit the stellar mass of central galaxies as a function of properties
f their host halo. In this paper, we expand our study to co v er a wider
alo mass range and to model the properties of satellite galaxies. The
istinction between central and satellite galaxies relies on identifying
ubhaloes as self-bound substructures within larger haloes, for
xample by using the SUBFIND algorithm. This classification is
ncertain and may be inconsistent for the same subhaloes in adjacent
napshots outputs. We therefore explored whether we need to make
 fundamental distinction between haloes and subhaloes. With this
n mind, we use the maximum mass that a halo has ever reached
uring its evolution, denoted Max ( M total ( z)) and use this in place of
he final (sub)halo mass at z = 0. Given that central galaxies grow

onotonically then Max ( M total ( z)) ∼ M( z = 0) and this results in
ittle change. In subhaloes, ho we ver, it correspond to the mass of
heir main progenitor before merging with their central halo. In order
o quantify the prior growth history of the halo, we define a set of
ormation criteria parameters, that measure the redshift at which a
alo has formed a given percentage of its maximal mass and before
t reaches Max ( M total ( z)). 

Our data is taken from the EAGLE hydrodynamical simulation. In
rder to a v oid selection biases when predicting stellar mass, we use a
ijective matching between the EAGLE hydrodynamical simulation
nd a DM only simulation with the same cosmology and initial
onditions. We select all galaxies that have a halo mass larger than
ax ( M total ( z) / M �) > 10 10 . 66 , this value corresponds to the threshold

t which our matching methodology successfully matches more than
0 per cent of all galaxies. We use a total of 35 456 galaxies, 9967 of
hem live inside subhaloes and 25 489 inside central haloes. Because
ur sample has significantly increased the fraction of low-mass
alaxies considered compared to our previous work (Icaza-Lizaola
t al. 2021 ), we weight residuals according to stellar mass, giving a
arger incentive to the model to accurately fit less well represented
alaxy masses. 

We build our models only using information on the accretion
istory of the halo or subhalo and its maximum mass. Using these
arameters our methodology seem to predict the stellar mass of
alaxies in haloes and subhaloes with a singular model and without
eeding to distinguish between the two. We note that there are other
arameters that we have not tested for in our analysis that might
reak this symmetry, for example, the infall angle of subhaloes,
hich is not defined for central haloes, might impro v e our modelling
f subhaloes. 
The SMF of our models agrees well with that of EAGLE at all

tellar masses except at log 10 ( M 

∗/M �) = 10.5 where our models tend
o slightly underpredict the amount of galaxies when compared with
he EAGLE simulation. This could be related to the stochasticity
f baryonic processes that might alter the stellar mass of a galaxy,
hich could be hard to predict using parameters from a DM only

imulation. We also calculate the correlation functions of our models

art/stac3265_f9.eps
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plit by their predicted stellar mass, and find that they also agree well
ith the EAGLE correlation functions. The model that combines 

entral and satellite galaxies has comparable accuracy to the models 
n which central and satellites are treated independently, while using 
n o v erall smaller number of model parameters. This suggests that
 binary classification is unnecessary and the stellar mass of both 
alaxy types can be predicted by suitable measurement of their halo 
ass history. 
The SRM approach can be viewed as an ML algorithm. It can

ccurately model the stellar masses of EAGLE from the data itself and 
ithout requiring previous knowledge of physics behind the system. 
t the same time, the approach results in a prediction algorithm that

s explicit and simple (compared with the solutions of other ML
echniques), and the terms that are retained give physical insight into 
he important processes at work. 

We have seen that the correlation function and the SMF of our
odels agree well with the EAGLE data set. This is encouraging 

s both of these EAGLE statistics have been positively compared 
ith observational data. For example, Furlong et al. ( 2015 ) has

hown that the EAGLE SMF at z = 0 agrees reasonably well with
he ones observed by the SDSS (Li & White 2009 ) and GAMA
Baldry et al. 2012 ) surv e ys. Similarly, Artale et al. ( 2017 ) shows that
he EAGLE correlation function reproduces observations accurately 
etween 1 h −1 Mpc and 6 h −1 Mpc. Additional statistics, like Counts-
n-Cells and multipoles of the correlation function, were successfully 
eproduced by the models, but we leave to future work a more in depth
iscussion of their successes and limitations. 
Our method compares fa v ourably with the SHAM methodology 

rom Chaves-Montero et al. ( 2016 ), with both models being able to
eproduce well the correlation function of EAGLE at larger stellar 
asses with our SRM models being slightly more accurate on smaller

cales. 
We also compare our model with the one presented in Lo v ell et al.

 2022 ), using ERT which is a highly accurate ML methodology. ERT
akes accurate models but the resulting models are less explainable 

han our SRM models. Both methods reach comparable accuracy on 
he SMF predictions, with our model being slightly more accurate at 
maller stellar masses. We find similar predictions for the projected 
orrelation function of a stellar mass selected sample between both 
odels. We note that Lo v ell et al. ( 2022 ) data were trained using
-EAGLE zoom-in simulation data that is not identical to the 
AGLE data used in training our model, which might explain some 
f the small differences seen in the accuracy of the predictions of
oth models. 
Finally, we analyse the inclusion of additional halo properties into 

ur methodology. This is done by building new models with some 
f the halo parameters used in other successful ML models. We 
un five new models to account for differences due to variance in
ur methodology, which increases due to the correlations between 
he new parameters. We find no impro v ement in accurac y which
uggests that any information provided by the new parameters was 
lready present in our standard parametrization. We find a slight 
eduction in the number of surviving coefficients, which suggests 
hat some parameters, like lgV peak and R 1/2 , are possibly more 
fficient at summarizing some of the rele v ant information required 
o described the SMHM relation. Ho we ver, the number of free
arameters varies between five and nine depending on the model 
ealization, which complicates significantly the model interpretation, 
ne of the underlying aims of this SRM methodology. Due to this
act along with the reduced stability of the model as evidenced by the
ncrease in scatter on the predicted SMFs (Fig. 9 ), we do not quote
hese new models as final result. 
All of this suggests that our methodology could be a promising
pproach to populate N -body simulations with galaxies of the correct
tellar mass and spatial distribution. 

Ho we ver, se veral complications will make this an interesting
hallenge. First, EAGLE is run in a comparatively small volume 
ith respect to other DM simulations that means that the number
f massive haloes is comparatively small and it will be necessary to
est the accuracy of the resulting SMF at the larger stellar masses.
econdly, larger simulations normally produce large amounts of 
utput data, which generates challenges in storing the necessary 
alo history to build merger trees, some simulations either save only
 small number of redshifts or no halo evolution information at all.
inally, the distribution of our required input halo parameters such 
s lgM max or FC i might differ from simulation to simulation. All
f these reasons make populating larger simulations with galaxies 
sing our methodology a challenging endea v our that we will explore
n more depth in future papers. 

Our ultimate goal is to generate mock catalogues that provide an
ccurate representation of the observed Universe. An attractive idea 
s to iterate on the coefficients of the terms selected by comparison
o EAGLE (or another hydrodynamic simulation), creating an even 
loser match to target observations. This would retain the same 
hysical processes, but accept that their relative importance might 
iffer between the true Universe and the simulation used for the
raining. 
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Figure A1. The success rate of the matching methodology for haloes in the 
hydrodynamical simulation (green line) and in the DM only simulation (red 
and blue lines) as a function of halo mass. For the green and red lines, the 
halo mass is M total at z = 0, while for the blue line it is M max , the mass 
parameter used by our SRM model. The coloured shadings show the error on 
the matching rate assuming binomial statistics. 
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PPENDI X  A :  M AT C H I N G  FA I LURES  

s mentioned in Section 3.1 , the matching success rate of satellite
alaxies is around 80 per cent . With this in mind, we decided to
pply our model to all haloes in the DM only simulation (match and
nmatched) and compare the resulting statistics to the ones obtained
rom all galaxies in the EAGLE hydrodynamical simulation. 

Fig. A1 shows the success rate of the matching algorithm as a
unction of the halo mass M total at z = 0 for both the EAGLE-DMO
imulation (red line) and the EAGLE hydrodynamical simulation
green line). For haloes larger than log 10 ( M total /M �) = 11 the
ercentage of unmatched haloes is small ( < 2 per cent ) and similar
cross both simulations. This suggests that most of the haloes that
ere unmatched in the hydrodynamical simulation did have an

qui v alent halo in the DM only simulation, but the algorithm had
rouble matching them. This justifies the decision made in Section 3.1
o compare models applied to all haloes (match and unmatched) in
he DM only simulation to all haloes (match and unmatched) in the
ydrodynamical simulation. 

The matching algorithm runs at z = 0 and therefore the lines at
his redshift are adequate to show the success rate of the algorithm.
o we ver, we select our halo sample using M max , which is the
aximum mass reached by the halo at any redshift. The matching

uccess rate as a function of M max is shown as the blue line in Fig. A1 .
he matching success rate as function of M max is smaller than when
onsidering M total at z = 0. The success rate is around 88 per cent
t log 10 ( M max /M �) = 10.66 (our mas cut), and grows to around
4 per cent at log 10 ( M max /M �) = 11.5. These differences in success
ate are due to a significant fraction of haloes being disrupted after
 merger. These disrupted haloes would be smaller at z = 0 than at
he redshift of their maximum mass, and therefore their probability
f being matched decreases. This is consistent with other works that
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Figure B1. RMSE reached by our algorithm at different values of the 
hyperparameter � (equation 3 ) for the test and training sets of the k -fold 
method. The RMSE from the combined model of Table 1 with the free 
parameter lgM max are shown with green and purple lines, while those from 

a new model with lgV peak as a free parameter are shown with blue and red 
lines. The thin lines represent the RMSE for each of the k = 10 individual 
data sets of the k -fold method and the thick lines show their mean value. The 
vertical black dashed line correspond to the � value for which the model 
accuracy, described by the RMSE, is the same for both set of models. 

h
n

A

I  

V  

i  

p
V  

h  

o  

t  

t  

M
i  

i

f

�  

a  

h  

p  

f  

r  

t  

u
f  

s

s  

d
 

t  

W  

o  

F
r  

l
w  

t  

a  

j
t

A

F
t
S  

o  

f
P  

h
i
a

 

o

 

a  

a

g
a  

t

 

c
0  

T  

a
s  

h  

c  

p  

b  

d  

2
 

w  

i  

o  

s

s
t
m
o  

5 The Pearson correlation coefficient is defined as the ratio of the covariance 
of the parameters with the product of their standard deviations. 
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ave found that an accurate measurement of M max requires higher 
umerical resolution. 

PPEN D IX  B:  C O M PA R I N G  WITH  V P E A K 

n this section, we explore which one of the two halo properties
 peak and M max would be a better input for our models. As stated

n Section 3.2 , the consensus is that stellar mass models that use
roperties correlated with the circular velocity profile of haloes, like 
 max and V peak , tend to outperform those based on the mass of the
alo. This is due to V max being a good representation of the inner part
f the halo, which affects galaxies more directly and is less sensitive
o mass striping. Ho we ver, we note that the e volutionary history of
he halo is well tracked in our SRM model due to our definition of
 max and the inclusion of formation criteria parameters. Therefore, it 

s not trivial to know which of the two properties will perform better
n our model. 

We run our combined model from Table 1 , but substituting lgM max 

or the unitless parameter lgV peak defined in equation ( 12 ). 
As mentioned in Section 2 the optimal value of the hyperparameter 
 from equation ( 3 ) is found using a k -fold method, where the data

re separated into a training set and a test set k -times. We examine
ow well a model fitted to the training sets at different values of �
redicts the test sets. We refer the reader to Icaza-Lizaola et al. ( 2021 )
or an in-depth discussion of this process. Fig. B1 shows the RMSE
esulting from the exploration of the � space for both models and the
raining and test sets of all k -folds. The figure shows how models that
se lgM max as a parameter are more accurate than those using lgV peak 

or both training and test sets. We note that in this comparison the
ame set of formation criteria parameters were considered by both 
et of models and it is within this specific modelling context that we
raw our conclusions. 
The models that use lgV peak are less accurate, but they are simpler

han the one with lgM max , as the former require only 6 parameters.
e can build a simpler lgM max model by increasing the magnitude

f � beyond its nominal optimal value. The black dashed line in
ig. B1 shows the value of � at which a model built with lgM max 

eaches the same accuracy as the one with lgV peak . The resulting
gM max model built with this � contains seven free parameters, 
hich is very comparable with the six of the lgV peak model. With

his in mind, we conclude that models built with lgM max are more
ccurate and can be as simple as models built with lgV peak . This
ustifies our selection of lgM max as the mass parameter used in 
his work. 

PPENDI X  C :  CORRELATED  PA R A M E T E R S  

ig. C1 shows the correlations of most halo properties used 
hroughout this work, built from the 4000 haloes considered in 
ection 4.4 . For clarity, the parameters FC 30 and FC 70 have been
mitted, as they show similar correlation trends to the other three
ormation criteria parameters already included. Each panel includes 
 r , the value of the Pearson correlation coefficient 5 for each pair of
alo properties. The closer the absolute value of this coefficient 
s to unity, the more linearly correlated those two parameters 
re. 

Fig. C1 shows that parameters can be divided into two subgroups
f correlated halo properties: 

(i) The first subgroup includes lgM 0 , lgM max , lgV peak , lgV max , R 1/2 ,
nd lgE p . They are all strongly correlated with each other, with | P r |
round than 0.9 typically. 

(ii) The formation criteria parameters FC i form the second sub- 
roup. Their correlations, as measured by the Pearson coefficient, 
re weaker than those within the first group, with | P r | less than 0.7
ypically. 

Out of all of the parameters in the first group, R 1/2 is the least
orrelated with the rest, with Pearson coefficients between 0.61 and 
.88 with respect to the rest of the halo properties of this subgroup.
his might explains why most of the five models of Section 4.4 select
 small but noticeable contribution from R 1/2 after already having 
trong contributions from lgM max and lgV peak . It is also noticeable
ow correlated lgM 0 and lgE p are with each other, with a correlation
oefficient of 0.99. This suggests that the information that they could
rovide to a model is almost identical. The strong correlation between
oth parameters comes from the similarities in the way they are
efined and computed in EAGLE (see appendix D in McAlpine et al.
016 ). 
The fact that the parameters of this first subgroup are so correlated

ith each other might explain why the model of Section 4.1 , which
s built using only lgM max has comparable accuracy to the models
f Section 4.4 , which are made using all of the 6 parameters of this
ubgroup. 

The weaker correlations observed between parameters in the 
econd group, i.e. the formation criteria parameters FC i , suggest 
hat the information held by those halo properties is somewhat 

ore unique, especially when compared to the halo properties 
f the first subgroup. This might explain why all of the models
MNRAS 518, 2903–2920 (2023) 
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Figure C1. Correlations of most halo properties used in this work, as indicated by the axis labels of each panel. The Pearson correlation coefficient is indicated 
in each panel, as a measure of how correlated two halo properties are. 
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resented in this work select several parameters of this subgroup 
imultaneously. 

As we discuss in detail in Section 4.4 , the inclusion of correlated
arameters adds stochastisity to our resulting models. This can be
een in models selecting very different collections of surviving
oefficients when built with different subsets of training data. As
entioned this is due to correlated parameters making the parameter
NRAS 518, 2903–2920 (2023) 
pace non-conv e x, with sev eral local minima. Dealing with correlated

arameters is something that would need to be implemented into
ur methodology in future work, if uniqueness of the solution and
aximal parameter reduction is a priority. 
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