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Introduction: 

Glaucoma is an optic neuropathy characterized in part by cupping of the optic disc with 

corresponding visual field changes.1 Non-glaucomatous optic neuropathies (NGON) eventually 

produce optic disc changes that can appear similar to the changes seen in glaucomatous optic 

neuropathy (GON), including cupping.2 It is important to differentiate GON from NGON, as the 

evaluation and management of these two entities is completely different. GON is a danger to 

vision and requires ocular therapy alone, whereas NGON often have systemic and neurologic 

associations that not only are vision-threatening but also life-threatening. 

 

The clinical differentiation between GON optic disc changes and NGON-related disc changes 

can be difficult, particularly when there is optic disc cupping.3-6 Whereas optic disc cupping may 

be seen in NGON, such as methanol toxicity, intracranial tumors, optic neuritis, dominant optic 

atrophy, periventricular leukomalacia, and arteritic anterior ischemic optic neuropathy,3-6 the 

depth of cupping is reported to be more profound in eyes with glaucoma.7, 8 In addition, NGON 

that include cupping have a greater degree of neuroretinal rim pallor than GON.3, 5, 6 Conversely, 

moderate-to-severe glaucoma may produce not only cupping but also secondary optic disc pallor 

that easily can be confused with that seen in NGON.9 

 

Artificial intelligence (AI) has been used to detect a variety of optic disc abnormalities in neuro-

ophthalmology.10 Using deep learning (DL), The Brain and Optic Nerve Study with Artificial 

Intelligence (BONSAI) consortium was able to identify papilledema and other optic disc 

abnormalities.11 Several studies also have used DL for glaucoma detection and found that the 

performance of DL in detecting glaucoma compares favorably with that of experts.12-16 However, 
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only one study has used DL for differentiating GON from NGON. Yang et al.17 applied a 

ResNet-50 to the problem and reported a sensitivity of 93.4% and a specificity of 81.8% in 

distinguishing GON from NGON; however, the number of GON and NGON cases that were 

used in this study was fewer than the number of normal optic discs. In addition, the authors did 

not perform optic disc segmentation, nor did they perform external validation of the DL data set. 

Therefore, we elected to use much larger data sets using transfer learning and optic disc 

segmentation to see if we could corroborate the findings of Yang et al.17 or even improve the 

precision with which our algorithm differentiated GON from NGON. We also externally 

validated our algorithm with data from several other centers with patients of different ethnicities.  
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Methods:  

We performed a training, validation, and external-testing study using digital color ocular fundus 

photograph after approval by the institutional review board of Tehran University of Medical 

Sciences and at each contributing institution. All investigations adhered to the tenets of the 

Declaration of Helsinki. We retrospectively obtained fundus photographs from one or both eyes 

of patients with well-documented GON and NGON as well from persons with no evidence of 

ocular disease. For training and evaluation of classification networks, we used subject-wise 5-

fold cross-validation on images from the Farabi Eye Hospital as our “Single-Center data set”. 

The trained network then was evaluated using previously unseen data from four different data 

sets as “Multi-Center data set for external validation of classification algorithm”. A diagnosis 

was provided from medical records by three neuro-ophthalmologists (M.A.F, N.R.M, P.S.S) and 

two glaucoma specialists (M.M, Y.S). Fundus photographs were classified into three groups: 

normal optic disc, GON, and NGON. GON was defined as an enlarged vertical cup-to-disc ratio, 

diffuse or focal thinning of the neuroretinal rim, a pattern standard deviation on automated 

perimetry using a Humphrey Field Analyzer (Carl Zeiss Meditec AG, Jena, Germany)  outside 

95% normal limits (confirmed on at least two consecutive, reliable tests), a glaucoma hemifield 

test outside normal limits, and a with history of an intraocular pressure reading of >20 mm Hg on 

more than one visit.18  All severities of GON, from mild to severe, were included. NGON were 

defined as evidence of optic nerve dysfunction associated with optic disc pallor (with or without 

cupping) with intraocular pressures of <20 mm Hg and caused by an identifiable specific 

pathogenetic process, such as inflammation (ie, optic neuritis), ischemia, compression, or a 

genetic mutation known to cause an NGON (eg, Leber hereditary optic neuropathy, dominant 

optic atrophy). Clinically normal optic discs were defined as those from patients with no clinical 
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evidence of optic nerve or retinal dysfunction (ie, normal visual acuity, color vision, and visual 

fields), intraocular pressures <20 mmHg, and no clinical evidence of optic disc pallor. Normal 

discs were defined as those from patients without any clinical evidence of optic nerve 

dysfunction, regardless of the size of their cups; we did not perform optical coherence 

tomography 

 

Single-Center data collection for training and validation: To design and validate a learning-

based supervised system, we initially used a data set of 1,916 digital color ocular fundus 

photographs of GON (n=682), NGON (n=716), and normal discs (N=518) collected from Farabi 

Eye Hospital between 2011 and 2020. From these images, 94 were excluded due to low contrast 

and significant artifacts in the images. The final data set for training and validation consisted of 

1,822 digital color ocular fundus photographs of GON (n eyes= 676, n subjects=190), NGON (n 

eyes=660, n subjects=112), and normal optic discs (n eyes=486, n subjects=214). Examples from 

each group and different artifacts leading to exclusion of images are demonstrated in Figure 1A. 

Briefly, images with clear and identifiable structures despite minor low-quality artifacts (e.g., 

blur, insufficient illumination, shadows) were categorized as “usable”. Images with serious 

quality issues that could not be reliably diagnosed by an ophthalmologist were categorized as 

“reject”. No data were removed due to the proximity of the optic disc to the image border, and 

images were not excluded solely because of low image quality. 

 

Multi-Center data set for external validation: For extremal validation of the proposed model, 

we used the following data sets, the images from which had been obtained using different 

imaging devices and from different populations and ethnicities. 
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1. A publicly accessible data set [external data set 1] that included fundus images from 38 

healthy, 13 GON, and 12 NGON eyes of 63 subjects.19  

2. A glaucoma data set [external data set 2] from Ramathibodi Hospital (Mahidol University, 

Bangkok) that included 100 mild-to-severe GON fundus cases of 100 subjects. Ninety-nine 

images were used from this set.  

3. A data set of 159 NGON eyes from the Wilmer Eye Institute [external data set 3], from which 

123 eye images of 97 subjects were used, the rest not meeting the quality requirement for the 

segmentation stage. 

4. A data set of 96 eye images from the University of Colorado [external data set 4], from which 

eight healthy, 40 GON, and 28 NGON eyes of 78 subjects were enrolled in the analysis. 

 

One senior glaucoma specialist (W.S) who was not involved in the original analysis reviewed the 

GON and NGON fundus photographs from all four external-testing data sets and his prediction 

was compared with the findings using AI. 

 

Data set for training segmentation algorithm: To prepare a robust algorithm to detect the 

location of the optic disc as the first step of our algorithm, we used a number of publicly 

accessible data sets, including 52 images form RIM-ONE r1,20 159 from RIM-ONE r3,21 277 

from MESSIDOR, and 165 from Bin Rushed.22 

 

Data split, augmentation and implementation: We used K-Fold cross-validation to ensure that 

every observation from the original data set had a chance of appearing in the training and test set. 

For classification, we applied the K-fold in a subject-wise manner. Specifically, we considered 
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the possibility that multiple images might be acquired from a single subject. It was important that 

all images of an individual be only in the training or test data sets. We employed data 

augmentation to enable better generalization and prevent overfitting.23 Data augmentation 

techniques used in this study included rotation (15-degree range), zoom (0.05-degree range), 

width shift (0.2-degree range), height shift (0.2-degree range), and shear (0.05-degree range). 

After augmentation, we resized all images to the default input size of 224×224 pixels and 

performed 5-fold cross-validation to avoid biased selection of test images. We did not perform 

any manual annotation or additional image preprocessing (Figure 1-B). We performed 

implementation using TensorFlow (https://www.tensorflow.org/) 2.8.2. Our models were trained 

and validated using an NVIDIA Tesla T4 GPU with 15GB memory. All source codes used to 

develop the optimal model are publicly available on GitHub 

((https://github.com/mahsavali/NGOP-GON-Classification). 

 

Optic disc segmentation (OD-SEG) network: The OD-SEG network was designed to crop the 

original fundus images to make a cropped image that contained the informative ROI around the 

optic disc.24 Figure 1C shows a modified U-net25 model that we used with an input image size of 

256×256, initial channels of 16, and kernel size of 3×3. Using these 16 convolutional layers, we 

could recognize the location of the OD with an acceptable accuracy. The contracting, bottleneck 

and expansive paths of the U-Net consist of eight convolutional neural networks (CNN), two 

CNN with 0.2 dropout and six CNN blocks. We used dice coefficient loss for training. The 

model was trained and evaluated with 5-fold cross-validation on the “Data set for training 

segmentation algorithm”. To compensate for off-centered masks, we used a morphological 

mending strategy. In this strategy, the output of the OD-SEG is evaluated, and if the number of 

https://www.tensorflow.org/
https://github.com/mahsavali/NGOP-GON-Classification
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pixels in the mask is less than 200 (determined empirically), a morphological operation is 

applied to fit a circle to the segmented area and mend the miss-segmented OD (Figure 

supplement 1). We then evaluated its performance on unseen data on a limited number of 

manually segmented images from the “Single-Center data set”. After the localization step, we 

cropped a bounding box with a height of 3 times the optic disc radius, resized it to 224×224 

pixels, and used it as input to the next classification network.  

 

Classification network: As part of the proposed pipeline, we retrained and evaluated six 

architectures: VGG,26 ResNet,27 Inception,28 MobileNet,29 DenseNet30 and Vision Transformer.31 

We pre-trained all models on ImageNet32 and performed transfer learning on the smaller data set 

of medical images by adapting pre-trained features as initialization values and fine-tuning 

models using the new data set. To classify the fundus images into three classes, (healthy, GON, 

and NGON), we removed the last layer of each of the models and replaced it with a global 

average pooling layer with a softmax activation function. We used transfer learning to share the 

weight parameters (Figure 1D). We fine-tuned the transfer learning model by freezing the low 

layers but trained the top layers to update weight parameters. During the feature extractor and 

fine-tuning stages, we considered the number of frozen layers and the number of epochs as 

hyperparameters and changed them in accordance with the model's performance on the 

validation set to converge earlier and get higher recognition accuracy. In addition, we used 

ablation studies to measure the impact of each component of the overall system on the predictive 

performance of the pipeline by removing individual steps of the proposed framework. Finally, to 

provide visual explanations of image regions having a greater influence on the final predictions, 

we used gradient-weighted class activation mapping (Grad-CAM)33.   
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Statistical analysis: 

Evaluation of OD-SEG network: We used dice coefficient (F1 score for segmentation) as a 

measure of overlap between the ground truth and the predicted mask by the network. This 

measure yields a value ranging from 0.0 to 1.0, where the value of 1.0 denotes perfect overlap. 

  

Evaluation of Classification network: To assess the performance of the classification network, 

we provided confusion matrices. In the counting matrix, the columns represent the numbers of 

samples in the true class, and the rows contain the predictions of the network. Each diagonal 

element gives the number of correctly classified images in the corresponding class (i.e., column) 

and off-diagonal elements represent the number of misclassified images. The overall accuracy 

was determined by dividing the total number of correctly classified images by the total number 

of images. The normalized values (by dividing the counts in each cell by the total number of 

samples in that class) were presented in the confusion matrix. Furthermore, we used the one-

versus-rest strategy and reported the sensitivity, specificity, and F1 score.  
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Results:  

Performance of OD-SEG network on the data sets for training segmentation algorithm: An 

average dice value of 94.2% was achieved for 5-fold cross-validation on this data set.  

Figure 2 (a) depicts examples of the utilized data sets (first row), ground truth masks (second 

row), and performance of the trained OD-SEG network (third row).

 

Performance of OD-SEG network on the Single-Center data set: To evaluate the 

performances of the trained OD-SEG, 128 images (42 normal eyes, 31 GON eyes and 55 NGON 

eyes) from the “Single-Center data set” were manually segmented by an ophthalmologist and 

used as ground truth. Figure 2-(b) shows examples of unseen data from the “Single-Center data 

set” (first row) and the ground truth masks (second row). It is evident that the performance of the 

channel-wise thresholding method 17 (third row) is low, due to less similarity of the masks to the 

ground truth. However, the masks predicted by the trained OD-SEG network (fourth row) show 

confirming results and masks very similar to the ground truth. This also is numerically proven 

where the average dice coefficient between the ground truth masks and the predicted masks by 

OD-SEG is 93.8%, compared with the channel-wise thresholding method that gives 65.2%.  

 

Performance of the classification network on the Single-Center data set: Figure 3 

demonstrates the confusion matrices for each of the six fine-tuned CNNs with 5-fold subject-

wise cross-correlation. Table 1 is a numerical summary of sensitivity, specificity, precision, and 

F1-score for each network. DenseNet121 achieves the best performance with a sensitivity of 

95.36%, precision of 95.35%, specificity of 92.19% and F1 score of 95.40%. This network thus 

was selected as the best-performing network for the reported external validation results.   
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Ablation study: Based on the Table supplement, we used the best network (DenseNet 121) in 

this stage and studied by ablation analysis the two main components of the proposed framework, 

component 1 (augmentation step) and component 2 (using OD-SEG for cropping the ROI). Table 

supplement shows the performance of the best network without both components (first row), by 

adding only component 1 (second row), by adding only component 2 (third row) and, finally, by 

adding both components (the last row). The higher values of the classification metrics (Precision, 

F1-score, Sensitivity, and Specificity) in the last row demonstrate the effectiveness of both 

components on the final results obtained by the classifier.  

 

Performance of the classification network on the “Multi-Center data set for external 

validation of classification algorithm”: Table 2 shows sensitivity, specificity, precision, and 

F1-score of the DenseNet121 on Multi-Center data set for external validation, and Figure 1 

shows confusion matrices for external validation data sets in detecting GON, NGON, and 

healthy eyes.  

 

A comparison of network performance against a glaucoma specialist in detecting GON and 

NGON from multicenter data for external validation: Of the 152 GON optic discs included in 

the Multi-Center data set, the network correctly diagnosed 130 (85.5 %), whereas a senior 

glaucoma specialist correctly diagnosed 108 (71.05 %), misclassifying 44 (28.94%) as consistent 

with NGON. Of 163 NGON discs, the network diagnosed 145 (88.94 %) correctly, whereas the 

glaucoma specialist diagnosed 134 (82.20 %) correctly, with 29 (17.79 %) being misclassified as 

GON discs by the specialist. The glaucoma specialist thus had an overall sensitivity of 71.05% 



12 
 

and a specificity of 82.21%, whereas the DL method had a sensitivity of 85.53% and a 

specificity of 89.02%. The sensitivity of the CNN network exceeded that of the senior specialist 

(P=0.002, chi-square). The specificity was not different between them (P= 0.08, chi-square). 

 

Feature visualization 

Figure supplement 2 shows gradient class activation heatmaps for the best-performing-network 

on six images (two each of normal, GON and NGON). It is clear from this figure that the 

network is classifying the images according to the optic disc area by contrasting the normal, 

GON, and NGON images. The region that has the greatest influence on the decisions is located 

on the optic disc.  
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Discussion: 

The aim of this research was to assess the performance of a deep-learning system to differentiate 

GON from NGON using fundus images. In our study, DenseNet121 showed high performance 

with a sensitivity of 95.36% and specificity of 97.63% in the training data set. In the four 

external-testing data sets, the total precision of the network was 86.07%, which shows the 

generalizability of the method. In differentiating GON from NGON from multicenter data for 

external validation, the DL method had significantly better sensitivity (85.53%) than that of the 

glaucoma specialist (71.05%).  

 

Despite the differences in the pathogeneses of GON and NGON, several studies have indicated 

that differentiating NGON from GON based on the appearance of the optic disc can be 

challenging.3-8 Even though a major ophthalmoscopic hallmark of GON is optic disc cupping, 

NGON also can present with an increased cup-to-disc ratio. Trobe et al.4 showed that GON and 

NGON were difficult to distinguish. Indeed, these investigators noted that of 29 eyes with 

NGON, 13 (44%) were misdiagnosed as having GON by at least one observer. Consistent with 

this observation is that in our study, a senior glaucoma specialist who reviewed the GON and 

NGON fundus photographs from all four data sets in a masked fashion misclassified 28.9% of 

GON and 17.8% of NGON discs. To address this issue, AI has been used to distinguish among 

different optic neuropathies. Specifically, DL models have been used to distinguish between 

patients with and without glaucoma.12-16 Normal and abnormal discs (with atrophy, hypoplasia, 

papilledema, anterior ischemic optic neuropathy) also can be identified using DL.34-36 Only one 

study has used DL for differentiating GON from NGOP. Yang et al.17 achieved a sensitivity of 

93.4% and specificity of 81.8% in distinguishing GON from NGON using ResNet-50; however, 
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ROI selection and evaluation of the generalizability of this technique were not considered in that 

study. Furthermore, the number of GON and NGON cases was much lower than the healthy 

controls, thus producing a biased result with high accuracy for normal-appearing discs and, 

consequently, a high averaged accuracy. Finally, Yang et al. included only GON eyes with a 

cup-to-disc ratio >0.7 in their study and also did not use an external validation data set. Both 

factors could lead to poor generalization of the results to all glaucomatous eyes. For ROI and 

disc segmentation, instead of basic thresholding models, we used a modified U-net model in our 

study. We also included more GON (from mild to severe glaucoma) and NGON cases. In 

addition, in our study, we tested six different fine-tuned CNNs for classification with 5-fold 

subject-wise cross-correlation (Table 1). As seen in Table 1, the Vision transformer was not 

performing well. This is most likely due to the large number of parameters. It also cannot be 

fine-tuned on a hierarchical basis layer by layer and therefore requires a larger data set and 

longer training time. DenseNet121 and MobileNet have better performance compared with other 

models. The main element in the MobileNet is the depth-wise separable convolution. This has 

resulted in the MobileNet network having a higher convergence speed and acceptable accuracy 

compared with other networks despite MobileNet having 4.2 million parameters compared with 

the ResNet18 network that has 11 million and the VGG16 that has 14 million. DenseNet121 

works best, likely due to its connections among different layers, thus providing better feature 

transfer with different levels of granularity. Accordingly, we used DenseNet121 for external 

validation testing. Finally, and most importantly, we also compared the network performance 

against the ability of a senior glaucoma specialist to distinguish between GON and NGON using 

the same fundus photographs and found that the sensitivity and specificity of the CNN were 

higher than those of the specialist. 
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Our study does have some limitations. Even though the total number of photographs in our 

external data set was much larger than that of Yang et al.,17 it still was small. We plan to remedy 

this in future work. Also, although our network differentiated three classes (GON, NGON, and 

normal optic discs) in the four external-testing data sets, we asked the glaucoma specialist to 

differentiate between only GON and NGON in those data sets. 

 

In summary, using DL, we showed a high performance in correctly identifying GON and NGON 

on color fundus photographs—higher than that of a senior glaucoma expert. The performance of 

our system in the external-testing data is reliable, demonstrating the generalization capabilities of 

the proposed framework. In particular, we believe that this model can assist general 

ophthalmologists, glaucoma specialists, and neuro-ophthalmologists in correctly differentiating 

GON from NGON, resulting in appropriate and timely management.  
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Figure legends: 

Figure 1:  General view of the proposed method for automated Fundus image classification, (A): 

Examples from Helathy, GON, and NGON fundus images, (B):  Steps of the proposed 

framework, (C): OD-SEG network, and (D): Transfer Learning architecture. 

Figure 2: (a) Example fundus images from 4 different data sets used for training OD-SEG 

network (first row), ground truth masks (second row) and predicted masks by trained OD-SEG 

network (third row). Figure shows the acceptable similarity indicating good performance of the 

algorithm. (b) Examples from fundus images collected in the current study (first row), ground 

truth masks (second row), the performance of channel-wise thresholding method (third row), and 

the performance of the OD-SEG network (last row). 

Figure 3: Confusion matrices (average result between 5- folds) for different models. 

Figure 4: Confusion matrices for the external validation data sets. 

Figure supplement 1: A flowchart indicates image quality assessment of the optic disc 

segmentation (OD-SEG) network. 

Figure supplement 2: Features shown by the Grad-CAM algorithm to demonstrate that the 

correctly performance of network is functioning properly. 

 

 

 

 


