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1. Introduction

We report an experimental test of the Modigliani-Miller (MM) value-invariance

theorem of capital structure and the sensitivity of the value-invariance proposition

to dividend payment variations. Modigliani and Miller (1958) showed, through arbi-

trage arguments with perfectly correlated cash flows, that the law of one price applies

for identical assets invariantly of the capital structure of the firm. An early criticism

of this law of one price was the challenging question of market response to dividend

payment decisions (Durand, 1959; Modigliani and Miller, 1959); would dividend de-

cisions affect value-invariance? Given that real-world dividends are declared by the

board of directors, the empirical relevance of ”the value-invariance proposition would

seem to be narrow” if variations in dividend policies invalidated it (See Miller, 1988,

p. 103)

Modigliani and Miller emphasized that the dividend decisions of the firm do

not impact value-invariance. The second Modigliani-Miller theorem, the dividend-

irrelevance theorem (Miller and Modigliani, 1961), was developed to address this

issue. The market valuation depends on the firm’s dividends in the following way.

The more the investor gets in dividend payments, the less she gets in capital appre-

ciation and vice versa. Neglecting taxes, an investor should be indifferent between

dividend payments and price appreciation, and thus the value of the firm is indepen-

dent of the dividend policy. Different from the earlier contribution where arbitrage

implies value-invariance, Miller and Modigliani (1961) left open the question of how

the market would approach equilibration in the dividend-irrelevance theorem. Em-

pirical analyses of dividend payment policies suggest that dividend payments are

not independent of the market value of the firm. Real-world data show that the

company value increases at inception of dividend payments and decreases at its can-

cellation (See the survey of DeAngelo and DeAngelo, 2006); and experimental data

suggest that investor subjects with cash needs prefer dividend payments to asset

sales (Asparouhova et al., 2016).

In this paper we propose another empirical test of the dividend-irrelevance hy-

pothesis under controlled laboratory conditions, in which we examine arbitrage as

equilibration mechanism. We test the law of one price in the laboratory with two

simultaneously traded assets. The two assets pay four regular dividend amounts

which are known from the beginning, but the order of the dividend payments is ran-

dom. After the last regular dividend payment each asset pays a random liquidation

dividend. It is a complete market setting including two states and two assets. The

liquidation dividends of the assets differ by a constant amount; thus, the sums of
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cash flows are perfectly correlated1

We investigate two experimental treatment variations in a two-by-two design to

explore the empirically required dividend payment conditions for value-invariance.

The first treatment condition varies the regular dividend streams prior to the liq-

uidation dividend. According to this variation, the dividend payment order of the

two assets is identical or independent. When the order of dividends is identical, we

have one regular dividend draw without replacement for both assets in every period.

When the order of dividends is independent, the regular dividends of the assets are

independent draws without replacement. We test the question whether the law of

one price holds with identical and with independent dividend policies. According to

Modigliani and Miller (1958, 1959) value-invariance must hold in both conditions.

The identical dividend payment order implies a narrow test of the Modigliani and

Miller (1958) value-invariance theorem of the law of one price, and thus provides a

confirmation of the findings of Charness and Neugebauer (2019). The independent

dividend order implies a test of the broader implication including the irrelevance of

dividend payments. Since the difference between liquidation dividends is known with

certainty and the sum of remaining regular dividend payments is also known with

certainty, any price discrepancy offers a cross-asset arbitrage opportunity. With an

independent dividend order the value difference between assets is certain, but likely

varies across periods. We surmise this structure provides a simple setting for value-

invariance to succeed in the absence of identical dividends.

The second treatment condition varies the market participation of an algorithmic

arbitrageur. In one variation there is no algorithmic arbitrageur, and there is one in

the other. Based on the potential price discrepancies in the market we test the MM

law of one price with and without arbitrageur. This allows for finding an expansion

or limitation on the scope of Angerer et al. (2023) results regarding the effects of

high speed arbitration algorithms. This way we test the impact of arbitraging on

market equilibration.

According to our data, differences in dividend payments impact market prices of

equivalent assets. With an identical order of dividend payments, value-invariance

can be supported on average. When the orders of dividend payments are indepen-

1We note subjects only receive compensation, and therefore we presume, only derive value from

their final cash holdings. This set-up amounts to consumption only in the final market period and

provides a simplification of the decision task in the experiment. Alternatively we could have chosen

the more general setting of consumption each period as, for example, in the experimental study of

(Crockett et al., 2019). However, then our dividend process of sampling without replacement could

potentially lead to complicated optimal inter-temporal portfolio choices.
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dent, however, value-invariance seems to break down in absence of the algorithmic

arbitrageur. Only in presence of the algorithmic arbitrageur we can support the MM

law of one price on average if dividend payments are not identical. Active arbitraging

appears to be a sufficient behavioral condition to obtain the law of one price in our

experimental markets. Arbitrageurs help the market to reinstate the law of one price

on average in our data. That said, the result is on the average only. Throughout the

experiment, arbitrage opportunities do not completely disappear and, thus, pricing

discrepancies between the two assets remain. Hence, our data do not support the law

of one price in real time or on the level of average price in a period. This result oc-

curs in all treatments regardless of whether the algorithmic arbitrageur is present or

not. In this study we also look at the pricing of assets relative to fundamental value.

We find substantial deviations from fundamental dividend values. The algorithmic

arbitrageur seems to have no impact on these deviations.

The experimental literature on the Modigliani-Miller theorem of the law of one

price includes one study of single-asset pricing (Levati et al., 2012) and three studies

on pricing of perfectly correlated twin assets (Asparouhova et al., 2016; Charness

and Neugebauer, 2019; Angerer et al., 2023). The first study compares market valu-

ations of one asset for different levels of debt and equity to find a U-shaped valuation

pattern when the debt-equity ratio increases. The latter studies are closely related

to ours. Charness and Neugebauer (2019) show that Modigliani-Miller’s law of one

price holds on average in repeated experimental asset markets with a declining fun-

damental value when cash flows are perfectly correlated. Charness and Neugebauer

(2019) study an experimental asset market in which the dividends of the two shares

are always identical modulo a shift. Our treatment with identical dividends/without

arbitrageur is most closely related to that experimental design. The study confirms

the law of one price on average despite the fact that subjects do not exploit arbitrage

opportunities as suggested in the underlying theory (Modigliani and Miller, 1958).

On a more detailed level of analysis, similar to our results, Charness and Neugebauer

(2019) reject the law of one price on the period level as they find that pricing discrep-

ancies never disappear even in the repeated market setting. Angerer et al. (2023)

study different arbitrageur strategies with algorithms in the experimental design of

Charness and Neugebauer (2019), including the liquidity absorbing arbitrageur stud-

ied in this paper. Hence, our treatment with identical dividend/with arbitrageur is

most closely related to that design. The study shows that market quality vis-a-vis

the law of one price is clearly enhanced when an arbitrageur acts in the market. On

the period level, yet, the data in Angerer et al. (2023) still suggest failure of the law

of one price even when the arbitrageur is present, since average prices deviate from
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parity.

Asparouhova et al. (2016) study a two-period design in which two assets pay the

same sum of dividends but in different timely orders. Our treatment with an inde-

pendent dividend order/without arbitrageur, for which we reject the MM theorem,

is most closely related to that experimental design. In their setting, and in contrast

to our design, they induce different preferences for cash and cash dividends between

investor subjects. Their data suggest that, possibly as a consequence of investors’

cash preferences, the asset that pays the early dividend is priced at a premium rela-

tive to the asset that pays the late dividend. Thus, Asparouhova et al. (2016) reject

the Modigliani-Miller theorem. Asparouhova et al. (2016) have no treatment with an

algorithmic arbitrageur. Similarly to Asparouhova et al. (2016) and different from

Charness and Neugebauer (2019), and Angerer et al. (2023), the assets in our ex-

perimental design pay a fixed sum of dividends plus a random liquidation payment.

Similarly to Angerer et al. (2023), the presence of an algorithmic arbitrageur is varied

in one treatment condition of our study.

We contribute to the experimental testing of Modigliani-Miller MM law of one

price by examining the conditions under which the theorem holds and when it fails. A

key innovation in our study is the comparison of identical and independent dividend

payment orders. Thus, different from the above mentioned studies, our treatment

conditions vary the complexity of dividend streams across the two assets. In line

with the above mentioned studies, we find that Modigliani-Miller’s law of one price

can be supported on average with or without arbitrageur when the same dividend

policy is applied. When the dividend policy varies between assets, however, the law

of one price breaks down unless an algorithmic arbitrageur helps to keep prices in

balance. We conclude that arbitraging as equilibration mechanism helps to establish

the law of one price in the laboratory.

Our study also contributes to the growing body of experimental work on financial

markets, in particular to the line of research that investigates the effects of algorith-

mic trading in markets (for a review, see Bao et al., 2022) and for the exploita-

tion of arbitrage in general. The experimental literature on arbitrage in markets

documents that inexperienced subjects usually fail to exploit arbitrage opportuni-

ties (O’brien and Srivastava, 1991; Abbink and Rockenbach, 2006; Bossaerts et al.,

2018). Bossaerts et al. (2018) is an important reference for us, because our experi-

mental design implements a two-asset variation of their design. Their design involves

a single asset that is traded for 5 periods and that pays a dividend at the end of

each period which is drawn without replacement from a set of five known dividends.

We also contribute to the research evaluating the importance of arbitrage in the
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Modigliani-Miller world.2.

The paper is organized as follows. We start by presenting the experimental design

in the Section 2, before we briefly discuss the theory and the testable hypotheses in

Section 3. Section 4 reports the data, and Section 5 concludes.

2. Experimental design

The experimental session is organized in six market sequences. Each market

sequence lasts for four periods involving one cohort of eight subjects; see the timeline

of a market sequence in Figure 1. At the beginning of the sequence, subjects are

endowed with 4,000 cash units and five shares of two assets from the same risk class.

We refer to these assets as “the L-share” and “the U-share”, respectively.3 At the

end of the period, each asset pays a cash dividend from the set of -50, -50, +50, +50

cash units. The cash dividends are drawn without replacement, so that exactly two

dividend payments are positive and the other two are negative. Dividend payments

are added to the subject’s cash balance, and shares and cash carry over to the next

period. At the end of period 4, after four dividend payments, subjects receive a

liquidation payment for each share. The liquidation payment of the L-share is either

100 or 300 cash units, both outcomes being equally likely. The liquidation payments

are perfectly correlated; the liquidation payment of the U-share, QU , is 200 cash

units higher than the one of the L-share, QL. Following the liquidation payment, the

subject’s final cash balance is determined, and shares are cancelled. One of the six

market sequences is decisive for payment. Subjects are informed at the end of the

session about the decisive sequence. Their final payment is equivalent to the final

cash balance in the decisive sequence plus a lump-sum for participation.

It is crucial to note that the sum of regular dividends for each share is zero,

and the sum of remaining dividends, which varies from period to period, is known

with certainty for each asset always. The expected liquidation payment of the two

shares differs by a constant, i.e., 200 cash units. Accounting for differences in the

sum of remaining dividends and the liquidation payment differential, thus, any price

2Our study provides varying strands of the experimental finance literature on algorithmic trading

such approaches to randomized algorithms ”zero intelligence traders” of Gode and Sunder (1993),

behavioral aversion effects to trading with algorithms (Farjam and Kirchkamp, 2018; Leal et al.,

2018; Angerer et al., 2023), competitions of subject-employed algorithms (Asparouhova et al., 2020),

efficiency of market institutions and high frequency trading (Aldrich and Vargas, 2019), and, finally,

arbitrage algorithms (Rietz, 2005; Angerer et al., 2023)
3With the L, U notation we refer to “levered” and “unlevered” equity. In the experiment,

however, we refer to the A-share and the B-share, respectively.
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Figure 1: Timeline of experimental market sequence

discrepancies offer arbitrage opportunities, i.e., immediate riskless profits by selling

high and buying low.

In each period, the market opens where the two assets can be traded in a con-

tinuous double auction.4 Subjects submit limit orders (i.e., bids and asks) or accept

outstanding limit orders to close a transaction. Limit orders can be cancelled. Short

sales and purchases on loan are enabled; the minimum cash balance is -3,000 cash

units and the minimum holding of L-share and U-share is -5 each. Trading is free of

submission and transaction fees and interest rate and short sale fees are zero. The

trading time per period is three minutes in the first two market sequences and two

minutes per period thereafter.5 During the market period subjects observe in real

time the bids and asks in open order books and the market prices, including high,

low, average and opening prices. The received dividends and the remaining dividends

are announced throughout the sequence. Subjects see their cash balance, their share

holdings, they have a record of all their transactions, dividend incomes during the

market sequence.

The experiment varies two treatment conditions in a 2x2 design; see Table 1. The

treatments differ with respect to the dividend sequence (one-urn or two-urn variation)

and the participation of the algorithm in the market (no-bot or bot variation). If

the dividend sequence of the two assets is identical (i.e., the one-urn condition), the

dividends of the L-share and the U-share are the same in each period. If the sequences

4This is a quite widespread feature in asset market experiments (see, e.g., Lugovskyy, Puzzello,

Tucker Williams 2014, and the literature review therein). Other trading mechanisms are possi-

ble and have been implemented in asset market experiments (see, e.g., Attanasi, Centorrino and

Moscati 2016 and Baghestanian, Lugovskyy and Puzzello 2015 for over-the-counter and call market

experiments, respectively).
5Over the course of the experiment, subjects become increasingly familiar with the trading

mechanism and require less time for trading. Therefore, it is common to reduce the trading time

after several repetitions (see, e.g., Attanasi et al. (2016), Attanasi et al. (2021b), Attanasi et al.

(2021a) and the literature review therein).
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Table 1: Treatment conditions and treatment names

Algorithm participation

Dividend streams No algorithm Arbitrage algorithm

Identical dividends OneUrn/NoBot OneUrn/Bot

Independent dividends TwoUrn/NoBot TwoUrn/Bot

are independent (i.e., the two-urn condition), the sequence of dividends are drawn

independently for the L-share and U-share. When the algorithm participates (i.e.,

the bot condition), every arbitrage opportunity is instantaneously and automatically

exploited in real-time upon submission (equivalent to the fast bot in Angerer et al.

(2023)). In all treatments we announce the possible participation of the algorithm,

but we provide no information on the actual participation and on the strategy of the

algorithm to the experimental subjects.

Upon arrival at the laboratory, subjects were randomly seated in the labora-

tory. In each session, some cohorts were exposed to the arbitrage algorithm while

other cohorts were not. The written instructions, which were tape recorded and

played back, referred to the potential participation of the algorithm.6 Each subject

participated in exactly one cohort of eight in exactly one experimental treatment.

After having read the instructions, subjects interacted within their cohort in a prac-

tice session of three minutes. During the practice session, which never involved the

participation of the algorithm, no interaction had any payoff consequence. The div-

idend sequences, liquidation values and payment decisive sequence were pre-drawn

at once for all 32 cohorts on a spread-sheet and introduced into the software. The

pre-drawing procedure was explained to subjects in the instructions. The pre-drawn

random values were recorded on paper, put into an envelope placed at the wall of the

laboratory. After the last sequence of the experiment, the envelope was opened and

the pre-recorded values were announced to subjects. Subjects were able to compare

these values with the ones in their experiment which were recorded on their com-

6We have two main reasons motivating our design choice to present our statement regarding

potential algorithmic trader participation. First, in the experimental economics and finance com-

munity there is great sensitivity regarding deceiving participants. Second, in practice, there is

widespread participation of algorithmic traders in asset markets. The presence of such traders and

the details of their programmed behavior is opaque. There is a small literature that assesses the

impact of announcements of potential algorithmic trader participation in experimental markets and

the results are mixed. Farjam and Kirchkamp (2018) suggest that such announcement alone can

lead to more efficient market prices. In contrast, Leal et al. (2018), Angerer et al. (2023) and Peng

et al. (2022) found no announcement effect in market prices.
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puter screen. Thus, subjects were able to see that the instructor could not influence

their personal payments. At the end of the experiment we debriefed subjects in a

questionnaire, in which we collected socio-demographic data.

The experiment was computerized using zTree (Fischbacher, 2007). For the re-

cruitment of subjects we used ORSEE (Greiner, 2015). The experimental sessions

were conducted in the laboratory LEE at the University of Castellon in Spain. Our

experiment consisted of thirty-two cohorts of eight subjects each. Exactly eight co-

horts were randomly assigned to each of our four experimental treatment conditions.

3. Theoretical consideration, measures and testable hypotheses

3.1. Theoretical considerations

Modigliani and Miller (1958) showed that the market value of the corporation is

invariant to its capital structure. Let VU ≡ EU denote the market value of unlevered

equity of the company. Let VL denote the market value of the levered company

including the value of levered equity, EL, and the (constant) market value of bonds,

B. According to the Modigliani-Miller value-invariance theorem (without taxes), the

market value of the company with or without debt is the same.

VU ≡ EU = EL +B ≡ VL (1)

The crucial point of the arbitrage proof of the MM invariance theorem is that if

the value of unlevered equity and the value of levered equity differ by more or less

than the debt, the arbitrageur will sell the high-priced and buy the low-priced share

of equity and make an arbitrage gain. In the (no-arbitrage) equilibrium, thus, the

market value of unlevered equity and the market value of levered equity must differ

by the value of bonds, i.e., EU − EL = B.

How does our experimental design map into the Modigliani-Miller world? In the

experiment we assume a constant “synthetic value of debt” which can be thought of

as being represented by the constant difference in liquidation payments of the L-share

and U-share. In our setting, possible differences in the sum of remaining dividends

add to or subtract from the differences in liquidation payments. We denote the sum

of remaining dividend payments of L-share and U-share explicitly byDL andDU , and

QL and QU are the market values of the liquidation payments, where EL ≡ QL+DL

and EU ≡ QU +DU . Thus, value-invariance in our experiment implies the following

equation.

VU ≡ QU +DU = QU +DU +B ≡ VL (2)
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Equation (2) must be fulfilled in the no-arbitrage equilibrium, even with vary-

ing, independent dividend payments. This equation is the starting point for our

experimental tests.

3.2. Measures

In our analysis we apply (besides the measure of arbitrage value in real time)

also the measures proposed in Charness and Neugebauer (2019). So, we measure

deviations from the law of one price between the L-share and the U-share by the

deviations from average parity pricing (DPP ). The measure is similar to the one

formulated in Charness and Neugebauer (2019), where the time index indicates the

period t = {1, 2, 3, 4}, i.e.,

DPPt =
EU,t

EL,t +B
− 1 =

(EU,t − EL,t)−∆FVt

EL,t +∆FVt

(3)

∆FVt ≡ FVU,t − FVL,t is the difference in remaining payments between shares,

where FVL,t and FVU,t denote the sum of remaining dividends plus expected liquida-

tion payment of L-share and U-share, respectively. We measure the average deviation

from parity pricing per period over the course of one market sequence as follows.

DPP =
1

T

T∑
t=1

DPPt (4)

Deviations from parity pricing can average zero, although deviations from parity

pricing always exist. Therefore, we measure the average absolute deviation from

parity pricing (ADPP ) between the L-share and U-share as follows.

ADPP =
1

T

∑
|DPPt| (5)

ADPP denotes the average absolute deviation from parity pricing during the

course of a market sequence. If average prices in a period equal dividend value, or if

the average prices differ by dividend value, the ADPP measure is zero. Indeed even

with zero ADPP measure, average prices can deviate from fundamental dividend

values.

Even if ADPP = 0, it can be that many arbitrage opportunities arise in the

course of trading. Therefore, we measure (potential) arbitrage opportunities in two

ways. First, we count the number of limit orders that lead to arbitrage opportunities

(discrepant limit order flow, DLOF ) as well as the total number of limit orders (limit

order flow, LOF ) in each market sequence. Thus, the ratio DLOF/LOF measures

the proportion of limit orders that generate arbitrage opportunities (Charness and
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Neugebauer, 2019). As second measure we compute the size of the (potential) ar-

bitrage gains in real time, π. When the arbitrage algorithm is (not) present, the

arbitrage values equal the (potential) gains of the arbitrageur.

πt =
∑
τ

max(0, bL,τ − oU,τ +∆FVt) +max(0, bU,τ − oL,τ −∆FVt), (6)

where τ denotes time within period t, b·,τ and o·,τ denote the best outstanding limit

order bid and offer at time τ in the L-share and the U-share, respectively.

We measure the deviations from fundamental dividend values in two ways. First,

we measure the expected excess return of buying and selling off the fundamental

dividend value including the expected liquidation payment at the end of market

sequence (j = 1, 2 indicates L-share and U-share, J = 2):

DFj,t =
Ej,t

FVj,t

− 1; (7)

DF is the average relative deviation from fundamentals and ADF is the average

absolute relative deviation from fundamentals over the course of the market sequence:

DFt =
1

J

J∑
j=1

DFj,t; DF =
1

T

T∑
t=1

DFt (8)

ADFt =
1

J

J∑
j=1

|DFj,t|; ADF =
1

T

T∑
t=1

ADFt (9)

ADF can be compared to ADPP . If ADF exceeds ADPP then we have that

the price trajectories converge on parity rather than on fundamental payment values,

and vice versa. As second set of measures we use the relative deviation, RD, and the

relative absolute deviation, RAD, which has been applied as a mispricing measure

vis-à-vis fundamentals in single-asset market experiments (e.g, Stöckl et al., 2010).

RDj =
1

TFVj

T∑
t=1

Ej,t − FVj,t (10)

RADj =
1

TFVj

T∑
t=1

|Ej,t − FVj,t| (11)

Since L-share and U-share trade at the same time, we define the average of the

individual asset measures as the relative deviation RD = 0.5(RDL + RDU) and

relative absolute deviation, RAD = 0.5(RADL +RADU).
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3.3. Testable research questions

The Modigliani-Miller theorem implies the following testable hypotheses: DPP

= 0, ADPP = 0, π = 0. In fact, it would also be sufficient for the confirmation of the

MM theorem, if asset prices would always confirm fundamentals, that is, ADF =

0 and RADL = 0 = RADU . The test of the MM theorem in our experimental

environment is our main research question.

More detailed testable research questions follow:

Hypothesis I (Parity pricing): The law of one price holds, DPP = 0, when:

a. dividends are identical, with or without arbitrageur.

b. dividends are different, with or without arbitrageur.

The first hypothesis corresponds to our main research question on the required

conditions for value-invariance. We expect that Hypothesis Ia will be confirmed,

thus confirming closely related studies of a different environment (Charness and

Neugebauer, 2019; Angerer et al., 2023). Our expectations regarding the Two Urn

treatment (Hypothesis Ib) are less affirmative. Asparouhova et al. (2016) reject

Ib without algorithmic arbitrageur in a different but closely related design. Under

algorithmic arbitrage, Hypothesis Ib has not been tested before..

Hypothesis II (Parity pricing): The law of one price holds. There are no

price deviations from parity in any period, ADPP = 0, with or without arbitraging.

The second hypothesis is more demanding than the first one. The first hypothesis

is supported when positive and negative deviations from parity are equally likely. To

support the second hypothesis, no deviations from parity pricing should occur in

any period. We know of no experimental study that would show evidence of this

conjecture, and therefore we expect to reject this hypothesis. Still, it is interesting

to see how the deviations change across treatments, particularly, whether arbitraging

helps to reduce the deviations.

Hypothesis III: Potential arbitrage gains are unaffected by arbitraging, repetition

or characteristics of market participants, ∆π(treatment) = ∆π(t) = ∆π(subjects) =

0.

The third hypothesis looks at the law of one price from a set of more relaxed

criteria. It examines whether, amid arbitraging, subjects’ acuity or experience reduce

price discrepancies across assets or not. Charness and Neugebauer (2019) reported in

a different experimental setting that participants’ acuity helps to reduce mispricing,

but experience showed no clear impact; the relative frequency of discrepant orders

was unchanged. Experience could have a clear effect on pricing discrepancies in our
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setting, since subjects may perceive the economic environment as simpler than of

the earlier study given we have more market repetitions, each with fewer periods.

Hypothesis IV: Arbitraging has no impact on mispricing vis-à-vis fundamentals,

∆DF (treatment) = ∆ADF (treatment) = ∆RD(treatment) = 0.

The fourth hypothesis examines whether arbitraging can impact fair value pric-

ing. Angerer et al. (2023) reported pricing closer to fundamentals with a liquidity

providing arbitrageur, but not for the liquidity taking one. The question should be

explored within our study as fair value pricing in both assets can impact the law of

one price. However, we have no prior regarding the outcome.

Hypothesis V: Arbitraging has no impact on trading volume.

Angerer et al. (2023) found that trading volume increases with arbitraging. We

have no prior for our setting. An increased trading volume amid arbitraging could

indicate a great number of pricing discrepancies. Therefore, the question should be

explored.

Hypothesis VI: Cash/Asset ratio has no impact on price levels and transaction

volume.

The Cash/Asset ratio has shown to be a driver of mispricing in experimental

asset markets under varying conditions (see, e.g., Angerer and Szymczak, 2019). As

the cash/asset ratio changes over the course of a round, we are interested in whether

this effect impacts mispricing in our market experiment.

4. Results

The data of one cohort (of eight subjects) represent one independent observation,

such that we have 32 independent observations in total. Overall, 256 subjects partic-

ipated in the study, of which 47 percent were female. On average, subjects stated risk

aversion on a 7-point Likert scale was 3.59 (indicating risk neutrality). An overview

of our data preliminaries is presented by Table 2. We have organized this section

in three subsections. In each subsection we present our observations including the

supportive data analysis following the order of presentation of the six hypotheses of

section 3.3.

4.1. Law of one price

Our first test of the Modigliani-Miller theorem of the law of one price is based on

the deviations from parity pricing, DPP (Equation 4). The measured average devi-

ations from parity are reported in Table 3, organized chronologically by market and

treatment. The results of Wilcoxon-Mann-Whitney tests are indicated in columns
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Table 2: Descriptive statistics. Average values of relative deviations from price parity, DPP,

absolute deviations from price parity, ADPP, relative deviations from fundamental values, DF,

absolute deviations from fundamental values, ADF, (potential) arbitrage gains, π, and average-

subject characteristics stated in the questionnaire, organized by treatment condition. (Standard

deviations are reported in parentheses).

OneUrn TwoUrn

Bot (n=8) NoBot (n=8) Bot (n=8) NoBot (n=8)

DPP 0.015 0.112 -0.013 -0.037

(0.165) (0.375) (0.168) (0.197)

ADPP 0.123 0.204 0.128 0.149

(0.081) (0.220) (0.079) (0.083)

DF -0.130 -0.027 -0.105 0.002

(0.159) (0.239) (0.230) (0.174)

ADF 0.223 0.242 0.250 0.202

(0.096) (0.139) (0.131) (0.108)

π 125 362 135 364

(198) (844) (211) (554)

Average CRT score 1.16a 0.75a 0.875 0.656

(0.420)a (0.199)a (0.381) (0.353)

Average risk seeking 3.31 3.75 3.64 3.67

(0.456) (0.678) (0.572) (0.623)

Average female ratio 0.453 0.453 0.531 0.438

(0.234) (0.107) (0.241) (0.166)

aThese values are based on 4 instead of 8 cohorts.
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Table 3: Deviations from parity pricing - descriptive statistics. Average relative deviation

from parity pricing, DPP, by market and treatment condition in columns (1)-(2), and (4)-(5).

Columns (3) and (6) report p-values for Wilcoxon-Mann-Whitney tests; (z-statistics for one-sample

and two-sample tests are reported in parentheses).

OneUrn TwoUrn

Run Bot NoBot Bot vs. NoBot Bot NoBot Bot vs. NoBot

(1) (2) (3) (4) (5) (6)

Market 1 -0.01 0.12 0.74 -0.04 -0.06∗ 0.46

(-0.69) (-0.17) (-0.33) (-1.35) (-2.17) (0.73)

Market 2 0.02 0.14 0.48 -0.02 -0.06 0.76

(0.36) (1.48) (-0.71) (-1.09) (-1.39) (0.31)

Market 3 0.04 0.11 0.77 -0.03 -0.07∗∗ 0.14

(1.02) (1.31) (-0.30) (-0.81) (-2.71) (1.47)

Market 4 0.01 0.08 0.28 0.01 0.01 0.58

(0.77) (1.75) (-1.09) (-0.37) (0.48) (-0.55)

Market 5 0.02 0.12∗∗ 0.06 -0.03 -0.05∗ 0.34

(1.23) (3.26) (-1.89) (-1.31) (-1.98) (0.96)

Market 6 0.00 0.10∗∗ 0.07 0.04 0.02 0.83

(0.33) (2.63) (-1.82) (0.89) (0.57) (0.21)

Average 0.02 0.11 0.39 -0.01 -0.04∗ 0.39

(0.00) (0.00) (0.86) (-1.00) (-2.00) (0.86)

∗p<0.05; ∗∗p<0.01

(3) and (6).

Observation I (Parity pricing): Parity pricing cannot be rejected in three

out of four treatments. Only in the TwoUrn/NoBot treatment with no participation

of the algorithmic arbitrageur, the law of one price (Hypothesis I) is largely rejected.

Support: Table 3 reports average relative deviations from parity pricing, DPP,

by Market, sequence 1 to 6, for all treatments. Values for DPP are derived as

formulated in Equation 3. The average results are shown in the bottom line of the

table, see also Table 2. Table 3 indicates that average pricing in the TwoUrn/NoBot

treatment, see column (5) of the table, differs from parity significantly (Hypothesis

Ib). As indicated in the table, some deviations from parity pricing are also detected

in some markets of the OneUrn/NoBot treatment without algorithmic arbitrageur

participation. We find no significant deviation from parity pricing in any market

where the algorithmic arbitrageur participates (Hypothesis Ia).

Observation I adds to the supportive evidence of the Modigliani-Miller theorem,
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Figure 2: Average relative deviation from parity pricing (DPP) by treatment

but also shows its limitations. Charness and Neugebauer (2019) found that the dif-

ferences from parity pricing are not significantly different from zero, when dividends

are equal modulo a shift. It seems that we have been able to reproduce this effect in

the OneUrn treatment condition, where dividend streams for L-shares and U-shares

are identical and the differences in the liquidation payments are constant. This result

is perhaps not so surprising. For the TwoUrn treatment condition, where dividend

streams for L-shares and U-shares are independent, differences from parity pricing

are significant on average, unless the algorithmic arbitrageur is present. So what does

that tell us about the claim of Miller and Modigliani (1961) that the market value

of the firm is independent of its payment policy? Apparently, the Modigliani-Miller

law of one price is impacted by differences in the payment policy. This observa-

tion, maybe for different reasons or not, underlines the empirical evidence on the

relevance of dividend payment policy (DeAngelo and DeAngelo, 2006; Asparouhova

et al., 2016). To support the law of one price with independent dividends, we need

an algorithmic arbitrageur in the market. In the TwoUrn/Bot treatment, differences

from parity are not significant. The impact of the algorithm on parity pricing is also

shown in Figure 2 by period, aggregated over all six markets.

Figure 2 shows the differences from parity pricing, DPPt, by period and treat-

ment. (See also Figure 5 in the appendix where the average differences from parity

are shown for each dividend pattern of the L-share). The figure shows that markets

in the OneUrn treatment condition, i.e., with identical dividend streams for L-shares

and U-shares, appear to reach parity pricing (y=0, dotted line) when the algorithmic

arbitrageur is present (solid black line) but deviate from parity pricing where no al-
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Table 4: Deviations from parity pricing - regression results. Results from OLS regres-

sions with robust standard errors. Average relative deviation from price parity, DPP, and average

absolute deviation from price parity, ADPP, are derived as defined in Equations 4 and 5. Bot

and TwoUrn are treatment dummies. Market indicates the market sequence, ranging from 1 to

6. avRisk is the average self-reported willingness to take risks on a 7-point Likert scale for each

cohort. avFemale is the proportion of female participants within a respective cohort. avCRT is

the average score in a standard CRT test for each cohort, CRT-scores range from 0 to 3 according

to the number of correct answers. The mean has been subtracted from the last three measures to

allow for a more meaningful interpretation of the intercept.

Dependent variable:

DPP ADPP

(1) (2) (3) (4) (5) (6)

Bot −0.039 −0.026 0.022 −0.052∗∗ −0.055∗∗ 0.021

(0.024) (0.023) (0.021) (0.019) (0.018) (0.014)

TwoUrn −0.089∗∗ −0.090∗∗ −0.016 −0.025 −0.030 0.0005

(0.024) (0.025) (0.019) (0.019) (0.019) (0.012)

Market 0.005 0.005 0.008 −0.019∗∗ −0.019∗∗ −0.012∗∗

(0.007) (0.007) (0.005) (0.006) (0.006) (0.004)

avRisk 0.037∗ 0.033∗ 0.012 0.014

(0.016) (0.016) (0.013) (0.011)

avFemale −0.109∗∗ −0.154∗ 0.121∗∗ −0.060

(0.039) (0.063) (0.027) (0.040)

avCRT 0.016 −0.109∗∗

(0.035) (0.024)

Constant 0.068 −0.021 −0.104 0.254∗∗ 0.160∗∗ 0.233∗∗

(0.049) (0.055) (0.068) (0.038) (0.044) (0.042)

Observations 192 192 144 192 192 144

R2 0.081 0.103 0.141 0.102 0.141 0.251

Adjusted R2 0.066 0.079 0.103 0.088 0.117 0.218

F Statistic 5.488∗∗ 4.279∗∗ 3.751∗∗ 7.109∗∗ 6.085∗∗ 7.649∗∗

Note: ∗p<0.05; ∗∗p<0.01

gorithm is present (dashed black line). Similarly in the TwoUrn treatment condition,

the average prices are closer to parity pricing in the presence of the algorithm. In

the NoBot treatment condition (dashed red line), prices are further away from parity

pricing than in the Bot markets (solid red line). We now turn to a more demanding

test of the Modigliani-Miller law of one price, via the absolute deviations from parity

pricing, ADPP.
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Observation II (Absolute Deviation from Parity Pricing): ADPP

measures are significantly positive for all markets and treatment conditions. ADPP

measures are significantly smaller in the presence of the algorithmic arbitrageur, and

diminish with experience.

Support: Table 2 records average ADPP measures by treatment sequence, rang-

ing from 0.123 to 0.204. Table 4 reports regression results with and without control

variables. We estimate the impact of our treatment conditions using OLS regres-

sions with robust standard errors, clustered at cohort level. The regressions show

that ADPP is significantly smaller when the algorithmic arbitrageur is present than

when it is not. The regression results further show that the pricing discrepancies

get smaller with repetition, indicated by Market. Table 4 also suggest that absolute

deviation from parity pricing are smaller in cohorts with higher average CRT-scores.

Observation III (Potential arbitrage gains): The (potential) arbitrage

gains are smaller when the algorithmic arbitrageur is present. Repetition and market

acuity lead to a reduction in discrepant orders.

Support: Table 2 shows the (potential) gains from arbitrage π per market for

each treatment. The regression results in Table 5 show that the potential arbitrage

gains are significantly smaller in treatments with algorithmic arbitrageur than with-

out. The main reason is probably that discrepant limit orders remain outstanding

in the market for longer and thus trigger more discrepant limit orders subsequently

through competition. Interestingly, the (potential) arbitrage gains seem independent

of the treatment condition; it only matters if an arbitrageur is present or not. The

regression in Table 5 shows that the repetition, i.e. Market, and the CRT-score of the

market have a negative impact on (potential) arbitrage gains. The regression results

of the number of discrepant limit orders do not suggest that the relative frequency

of discrepant limit orders diminishes. Apparently, arbitrage opportunities diminish

in size but not in their relative frequency.

4.2. Cross asset dividend correlation and pricing efficiency

We are also interested in the determinants of market prices, in particular, in

the impact of the algorithmic arbitrageur on asset prices relative to fundamentals.

The traditional view on Wall Street is that the activity of well-paid professions who

engage in arbitrage pushes prices towards fundamentals. Recall we have various

measures of mispricing vis-à-vis fundamentals; DF, ADF, RD and RAD.
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Table 5: Arbitrage opportunities. Results from OLS regressions with robust standard errors.

The cumulative value of potential arbitrage gains π per market sequence and the proportion of

discrepant limit orders (DLOF ) of total limit orders (LOF ) in percent are measured as defined

in Equation 6. Bot and TwoUrn are treatment dummies. Market indicates the market sequence,

ranging from 1 to 6. avRisk is the average self-reported willingness to take risks on a 7-point Likert

scale for each cohort. avFemale is the proportion of female participants within a cohort. avCRT is

the average score in a standard CRT test within a cohort. The mean has been subtracted from the

last three measures to allow for a more meaningful interpretation of the intercept.

Dependent variable:∑
πt DLOF/LOF (in %)

(1) (2) (3) (4) (5) (6)

Bot −233.177∗∗ −261.482∗∗ −96.071 −2.088∗∗ −2.096∗∗ −1.902∗∗

(73.968) (77.694) (60.923) (0.480) (0.478) (0.612)

TwoUrn 6.281 1.603 58.100 0.732 0.761 0.802

(73.968) (78.029) (55.304) (0.480) (0.505) (0.671)

Market −76.563∗∗ −76.563∗∗ −50.545∗∗ −0.193 −0.193 −0.157

(27.640) (27.433) (18.472) (0.138) (0.138) (0.169)

avRisk −50.458 −34.406 −0.120 0.125

(70.936) (65.282) (0.637) (0.691)

avFemale 351.539∗ −230.079 −0.440 −2.807

(147.937) (232.353) (1.390) (2.373)

avCRT −353.804∗∗ −1.174

(133.985) (1.219)

Constant 627.748∗∗ 660.789∗∗ 924.434∗ 4.056∗∗ 4.685∗ 5.568

(177.973) (247.986) (363.267) (0.705) (1.998) (2.847)

Observations 192 192 144 192 192 144

R2 0.107 0.122 0.200 0.110 0.111 0.133

Adjusted R2 0.092 0.099 0.165 0.096 0.087 0.095

F Statistic 7.482∗∗ 5.179∗∗ 5.708∗∗ 7.724∗∗ 4.647∗∗ 3.497∗∗

Note: ∗p<0.05; ∗∗p<0.01
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Table 6: Deviation from fundamental values. Results from OLS regressions with clustered

standard errors. Standard errors are reported in parentheses. Absolute and relative deviation from

fundamental dividend values per period, ADFt and DFt, are defined in Equations 8 and 9. Bot and

TwoUrn are treatment dummies. Market indicates the market sequence, ranging from 1 to 6. The

cash/asset ratio is defined as the ratio between all available cash and the fundamental value of all

outstanding shares. avRisk is the average self-reported willingness to take risks on a 7-point Likert

scale for each cohort. avFemale is the proportion of female participants within a cohort. avCRT is

the average score in a standard CRT test within a cohort. The mean has been subtracted from the

last four measures to allow for a more meaningful interpretation of the intercept.

Dependent variable:

ADFt DFt

(1) (2) (3) (4) (5) (6)

Bot 0.017 −0.003 0.025 −0.098∗∗ −0.073∗∗ −0.058∗∗

(0.012) (0.011) (0.015) (0.019) (0.017) (0.022)

TwoUrn −0.004 −0.007 −0.014 0.027 0.026 0.094∗∗

(0.012) (0.012) (0.014) (0.019) (0.018) (0.021)

Market −0.013∗∗ −0.013∗∗ −0.009∗ −0.002 −0.008 0.001

(0.004) (0.003) (0.003) (0.006) (0.005) (0.006)

Cash/asset ratio 0.027 0.057 0.275∗∗ 0.242∗∗

(0.024) (0.030) (0.035) (0.045)

avRisk −0.037∗∗ −0.050∗∗ 0.089∗∗ 0.085∗∗

(0.009) (0.010) (0.015) (0.015)

avFemale 0.228∗∗ 0.209∗∗ −0.154∗∗ −0.152∗

(0.025) (0.044) (0.039) (0.070)

avCRT −0.014 0.020

(0.027) (0.038)

Constant 0.265∗∗ 0.303∗∗ 0.350∗∗ −0.026 −0.265∗∗ −0.372∗∗

(0.020) (0.031) (0.046) (0.028) (0.048) (0.071)

Observations 735 735 549 735 735 549

R2 0.019 0.094 0.140 0.040 0.165 0.169

Adjusted R2 0.015 0.086 0.128 0.036 0.158 0.158

F Statistic 4.788∗∗ 12.554∗∗ 12.535∗∗ 10.171∗∗ 23.986∗∗ 15.739∗∗

Note: ∗p<0.05; ∗∗p<0.01
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Table 7: Measures of market liquidity - regression results. Results from OLS regressions

with clustered standard errors. Standard errors are reported in parentheses. volt is the total number

of shares traded per period. Spreadt is the average percentage spread between the median best ask

and median best bid per period. Bot and TwoUrn are treatment dummies. Market indicates

the market sequence, ranging from 1 to 6. The cash/asset ratio is defined as the ratio between

all available cash and the fundamental value of all outstanding shares. avRisk is the average

self-reported willingness to take risks on a 7-point Likert scale for each cohort. avFemale is the

proportion of female participants within a cohort. avCRT is the average score in a standard CRT

test within a cohort. The mean has been subtracted from the last four measures to allow for a more

meaningful interpretation of the intercept.

Dependent variable:

Volt Spreadt

(1) (2) (3) (4) (5) (6)

Bot 4.562∗∗ 4.815∗∗ 7.293∗∗ −0.018 −0.020∗∗ 0.0002

(0.728) (0.709) (1.276) (0.728) (0.006) (0.009)

TwoUrn −0.021 −0.422 −0.816 −0.022 −0.021∗∗ −0.032∗∗

(0.728) (0.693) (0.827) (0.728) (0.006) (0.008)

Market −1.341∗∗ −1.413∗∗ −1.414∗∗ 0.004 −0.001 −0.003

(0.232) (0.227) (0.278) (0.232) (0.002) (0.002)

Cash/asset ratio 3.507∗∗ 3.864∗ 0.271∗∗ 0.279∗∗

(1.197) (1.534) (0.013) (0.016)

avRisk 2.279∗∗ 4.662∗∗ 0.011∗ 0.009

(0.778) (0.861) (0.005) (0.006)

avFemale 5.387∗∗ −10.249∗∗ 0.033 −0.020

(1.905) (3.183) (0.018) (0.028)

avCRT −11.329∗∗ −0.024

(2.045) (0.016)

Constant 16.777∗∗ 6.389∗ 13.085∗∗ 0.470 0.436∗∗ 0.492∗∗

(1.018) (2.922) (3.470) (1.018) (0.019) (0.029)

Observations 768 768 576 768 768 576

R2 0.094 0.133 0.179 0.019 0.450 0.429

Adjusted R2 0.090 0.127 0.169 0.015 0.445 0.422

F Statistic 26.310∗∗ 19.528∗∗ 17.741∗∗ 4.915∗∗ 103.621∗∗ 60.967∗∗

Note: ∗p<0.05; ∗∗p<0.01
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Observation IV (Deviation from fundamentals) The presence of the al-

gorithmic arbitrageur does not facilitate convergence of market prices towards fun-

damental values.

Support: Table 2 exhibits average measures of DF, ADF, RD and RAD. Note-

worthy, the ADF measures are larger than the ADPP measure in every treatment,

indicating that prices rather converge on parity than on fundamentals. Table 6

shows regression results with DF, ADF and Table B.8 in appendix B shows regres-

sion results with RAD and RD as response variables. Table 6 indicates no treatment

effect on the ADF measure, see columns (1)-(3). A significant determinant of the

ADF measure seems to be repetition; in later market sequences the ADF measure

is smaller. The cohort’s average risk aversion and its female share seem to have an

opposing effect. If the algorithm has an effect on ADF, then it is an increasing effect

as suggested in column (3) of Table 6. It seems that the algorithmic arbitrageur in

our design rather impacts a lower price level than moving towards fundamentals, see

columns (4)-(6). The cohort’s average risk aversion and its female share seem to have

an opposing effect. Similarly, the cohort’s average risk aversion and its female share

seem to have a negative price impact, see columns (5)-(6). Table B.8 in appendix

B confirms these effects for the market sequence level on the basis of RD and RAD

measures.

4.3. Algorithmic trading and market quality

In this section we summarize and address the effects of the algorithm in our data.

In the above observations, we have seen that the algorithmic arbitrageur amends

deviations from the law of one price. In particular, we found no market with partic-

ipation of the algorithm in which the deviations from parity pricing were significant.

In sharp contrast we found in absence of the algorithm that in the TwoUrn condition

the deviations from the law of one price are significant on average. We have reported

that algorithm participation reduces the price discrepancies in size and quantity,

both in real time and on period averages. Nonetheless, the absolute price deviations

from fundamentals were not impacted. Further impacts on market quality of the

algorithmic arbitrageur are described in the following.

Observation V (Trading Volume): The number of limit orders is not neg-

atively impacted and the number of transactions is significantly larger when the

algorithm is present.
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Support: Table 7 exhibits the regression results of the determinants of the num-

ber of transactions in our markets. The average number of limit orders per period

is 56 when the algorithm is present in the market and 51 when it is not. Hence,

the presence of the algorithm rather increases than decreases the number of limit

orders. As indicated in Table 7, the number of transactions is significantly larger

when the algorithmic arbitrager is present, i.e., by about two units per period. Fi-

nally, repetition has a negative impact on the number of transactions in our markets.

Observation VI (Cash/Asset ratio) Price level and transaction volume pos-

itively correlate with the cash amount in the market.

Support: Table 6 shows the price relative to fundamentals, and Table 7 shows

the number of transactions. In both regressions we report the cash/asset ratio as

explanatory variable. The cash/asset ratio is significant in these regressions. The

higher price level suggests that after a positive dividend payment, when we have a

higher cash/asset ratio and a decrease in fundamental value, prices are higher relative

to fundamentals, and vice versa. This effect can be impacted by price inertia, i.e.,

when investors’ price adjustments are too conservative re fundamentals.

5. Conclusion

We have reported experimental data on the question whether the Modigliani-

Miller law of one price is impacted by differences in dividend payments. On the

basis of our data analysis the following conclusions seem to be justified. We have

weakly positive support for the law of one price (our Observations I and II), but find

important limitations.

The average prices of our leveraged and unleveraged assets are not significantly

different from another when dividends are identical. When dividends are identical,

we cannot reject parity pricing on the overall data. However, when dividends are

independent, parity pricing can be supported only if an algorithm exploits the ar-

bitrage opportunities in the market and thus pushes prices to parity. This result is

quite interesting. It suggests that when the differences in fundamental values get

cognitively more demanding, then the law of one price can break down. It also

suggests that an arbitrageur in the market can help to support the law of one price

(Observation III). That result appears to us also interesting, because it explains what

kind of market forces are required at a minimum to support this important theoret-

ical result of Miller and Modigliani (1961) on the irrelevance of dividend policy for

market valuation. This study relies upon the use of experimental methodologies to
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impose exogeneity of dividend structures, algorithmic trader participation, traders’

preferences and information, etc., but we conclude by stating some caveats of this

methodology in general and our design in particular. We have been conservative

in our choices of observation unit, namely market iteration within an experimen-

tal session, used in our data analysis. However, in experiments with markets for

multiple assets there is a tendency for individual market to be thin in activity and

trade volume, (for example see, Bossaerts and Plott (2002, 2004)). This possibly

leads to varying sampling distributions across the observations used to construct our

test statistics and dependent variables of our regressions. Thus, we issue readers to

conservatively consider - as we attempt in our presentation - our statistical results.
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Appendix

Appendix A. Instructions

Welcome and thank you for participating in our experiment on decision-making

in asset markets. If you read these instructions carefully and make good decisions,

you might earn a considerable amount of money. This money will be paid to you in

cash after the session. Do not use hand phones, laptop computers, or use the lab’s

desktop computer except for the experimental software application. Please refrain

from talking for the duration of the experiment, or looking at others’ computer

monitors. If at some point you have a question, please raise your hand and we will

address it as soon as possible. You must observe these rules, otherwise we will have

to exclude you from this experiment and all associated payments, and ask you to

leave.

Appendix A.1. Shares, cash, and earnings

In this experiment, you will participate in a market of 8 participants. The iden-

tities of the other market participants will not be revealed to you. You will interact

with the same participants in 6 successive rounds of 4 periods.

At the beginning of each round we give each participant the following: 4000 units

of cash, 5 “A”-type shares, and 5 “B”-type shares. Every single share generates a

cash payment at the end of each trading period. This payment is called “dividend”.

A dividend will be +50 or -50 cash units. When dividends are paid on shares you hold

the amount is added to, or subtracted, from your cash balance. After 4 dividends

are paid, at the end of the round shareholders receive a liquidation payment on all

shares, and shares are cancelled thereafter. Liquidation payments are added to a

shareholder’s cash balance.

You will end each round with a final cash balance. The final cash balance is the

basis for your final earnings in this experiment. The timeline of the round is shown

in Figure A.3.

Figure A.3: Timeline of the round
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————————————————————————————————————

—–

Participants in the One Urn Treatment Condition read:

How dividends are determined:

We announce and pay dividends at the conclusion of each period. The A and B

share dividends are always equal.

Within a round, for exactly two periods the dividend will be +50, and for exactly

two periods the dividend will be -50 cash units. However, the order of the four

dividends is random.

The dividend process can be thought of as follows. There is an opaque urn

containing two balls marked with the symbol “+”, representing +50 dividends each,

and two balls marked with the symbol “-”, -50 dividends. After the first trading

period one of the balls is randomly selected to determine the period one dividend.

This ball is discarded, not returned to the urn. This selection is repeated for the

next three periods until all of the balls have been selected after trading period four

and no balls are left in the urn.

——

Participants in the Two Urn Treatment Condition read:

How dividends are determined:

We announce and pay dividends at the conclusion of each period. The A and B

share dividends may differ or be equal for a given period.

For a given share type and within a round, for exactly two periods the dividend

will be +50, and for exactly two periods the dividend will be -50 cash units. However,

the order of the four dividends is random. The order of the A share dividends and

the order of the B share dividends are also independent.

The dividend process can be thought of as follows. There are two opaque urns,

one for A shares and the other for B shares. The two urns both contain two balls

labelled with a “+”, representing +50 dividends, and balls labelled with a “–“, -50

dividends each. After the first trading period one of the balls is randomly selected

from the A share urn to determine the A share dividend of period 1. This ball is

discarded, not returned to the urn. We do the same with the other urn, randomly

select a ball from the B share urn to determine the B share dividend of that period.

These selections are repeated for the next three periods until all of the balls have been

selected from both urns after trading period 4 and no balls are left in the urns. —

————————————————————————————————————–

How liquidation payments are determined:

The liquidation payment is random. The liquidation payment per A share will be
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either 100 or 300 cash units; each having an equal chance of selection. The liquidation

payment per B share will be exactly 200 cash units more than the one per A share.

When the liquidation payment of the A share is 100, then the liquidation payment

of the B share will be 300 cash units. Likewise, when the liquidation payment of the

A share is 300, the liquidation payment of the B share will be 500 cash units.

We have used separate coin tosses to determine the liquidation payments for

the six rounds before the session. Also prior to the session, we have pre-drawn

the dividend series for all trading periods. We have recorded these dividend and

liquidation outcomes on paper and placed them in an envelope taped on the wall of

the room. At the end of the experiment, we will open the relevant envelopes and

project the recorded values for all to see they match those in the experiment. Note

that any actions taken in the experiment can not influence these values.

Appendix A.2. How to trade shares?

The experiment is divided into six rounds of 4 consecutive trading Periods. Each

trading period in the first two rounds will last 180 seconds, and 120 seconds in the

later rounds. In each trading period, you will participate in a market where the

Shares can be bought and sold between participants. You pay out of your Cash

when you buy a share, and you get Cash when you sell a share. When a period is

over, your Cash and Shares will carry over to the next period until the round ends.

We are interested in the price you are bidding to pay and the price you are asking

to sell. In order to buy shares, you need cash. If you run out of Cash, you can borrow

cash (with no interest) up to 3000 cash units. The cash you own is shown on the

screen. If you borrow Cash, your Cash holdings will be negative. In order to sell

shares, you need shares. The number of shares you own is indicated at the top of

your screen for “A” shares and “B” shares, respectively. If you do not own (enough)

shares and wish to sell (more) shares, you can borrow to sell up to 5 “A” shares AND

up to 5 “B” shares. If you sell more shares than you own your share holdings will be

negative. For a given negative share count at the end of the period, the dividend on

these negative shares will be subtracted from your cash, i.e., positive dividends will

be subtracted and negative dividends will be added. At the end of the round, the

liquidation payment for a given negative share count will be subtracted from your

cash balance.

During a period, you may buy or sell shares (see Figure 2 on the next page, and

at the end of the Instructions). You can also choose not to trade any shares and

simply wait and collect dividends. Note that you can only buy or sell one share at a

time.
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Figure A.4: Trading screen

1. Submit an ASK: An ask is a proposed selling price for one share. You offer a

share from your share holdings for sale by entering the asking price to sell one

share in the space underneath the button ASK: proposed selling price (see Fig-

ure A.4). You confirm the ask by a click on the button. The ask is then added

to the list of outstanding asks. The outstanding asks are publicly recorded in

increasing order, i.e. the best outstanding ask (the cheapest proposed selling

price) being placed at the top of the list. All market participants can see this

list.

Note: you can submit as many asks as you like to sell one share. Upon selling

one share, all your outstanding asks (for that share class) are cancelled. To sell

another share of that share class, you then must submit a new ask.

2. Submit a BID: A bid is a proposed buying price for one share. You bid to

purchase a share by entering your bidding price for one share in the space

underneath the button BID: proposed buying price. You confirm your bid by

a click on the button. The bid is then added to the list of outstanding bids.

The outstanding bids are publicly recorded in decreasing order, i.e., the best

outstanding bid (highest proposed purchase price) being placed at the top of

the list. All market participants can see this list.

Note: If two or more orders (bids or asks) are the same, they are listed in the

order of arrival, earlier orders being given priority over later ones. Upon pur-

chasing one share, all your outstanding bids (for that share class) are cancelled.

To buy another share for this share class you then must submit a new bid.
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3. Immediate BUY – accept an ask: The best outstanding ask of the other market

participants is marked on your screen. You can accept the asking price (i.e.,

entering in a purchase agreement of a share with the seller) by clicking the

button Immediate BUY, which is placed at the bottom of the list of outstanding

asks.

4. Immediate SELL – accept a bid: The best outstanding bid of the other market

participants is marked. You can accept the bid (i.e., entering in a sale agree-

ment of a share with the buyer) by clicking on the button Immediate SELL,

which is placed at the bottom of the list of outstanding bids.

5. Delete – you can delete your outstanding bids and asks. To do so, select your

outstanding bid or ask, which are displayed in the list in blue colour and click

the button Delete.

Note: Your own orders are displayed in blue, while the other orders are visible

to you in black. You cannot accept your own orders. You cannot delete orders

of others. You cannot purchase shares if the ask exceeds your cash plus credit

line. If your holding of “A” shares is -5, you cannot sell any further “A” shares.

If your holding of “B” shares is -5, you cannot sell any further “B” shares.

Appendix A.3. Transaction and price announcement

Upon acceptance of a bid or ask, via Immediate BUY or Immediate SELL, a

transaction is completed. The accepted order is the transaction price. The transac-

tion price is recorded on your screen in between the lists of bids and asks. Next to

the price you are informed if you participated as buyer or seller in the transaction.

The more recent prices are listed first. The most recent prices are also recorded for

each share class in the middle of the screen below the cash amount.

Upon transacting, the price is debited from the buyer’s cash balance and credited

to the seller’s cash balance. The purchased share is added to the buyer’s share

holdings and subtracted from the seller’s share holding.

Note: Immediately after these instructions, you are going to participate in a

Practice Session of trading to familiarize yourself with the trading environment. You

trade for 3 minutes on your screen with the other participants. There are NO payoff

consequences linked to trading in the Practice Session. During the Practice Session

please practice submissions of bids and asks, immediate selling and buying, and

deleting of your outstanding bids and asks. You may want to practice selling more

shares than you own to end up with a negative share count. You may also want to

practice buying more shares than you can pay with your own money to end up with
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a negative cash balance. During the Practice Session none of your actions will have

any payoff consequences. The payoff-relevant trading periods begin only after the

Practice Session.

Appendix A.4. Information

You will receive real-time updates on bids, asks and prices for both share classes

“A” and “B”. Information regarding the two share classes are given on the screen

on the left-hand and on the right-hand side, respectively. You will receive summary

information about the prices at opening of the period, the high, the low and the

average price during the period.

In each period, you will be reminded on screen about the remaining future div-

idends, and the possible liquidation payments at the end of the round. Finally, the

realized past dividends are shown. The latest paid out dividend of the prior period

is highlighted.

The experimenter recorded the order of the 4 dividends on sheets of paper. Then,

the experimenter put the paper into an envelope, which was placed on the wall. At

the conclusion of the experiment, the experimenter will show the list of predetermined

dividends to confirm they match the dividends observed during the market. You will

have a record of your dividend sequence at the final screen. You will be able to

compare the dividend sequence on your screen with the predetermined dividends at

that time.

The past prices are shown in a table on the bottom of the screen, including

the prices at opening, closing, the high, low and average of each past period. Al-

ternatively to the past prices, you receive past information on your share and cash

holdings at the end of the period, buys and sells during a period, and the past period

dividends. You can alternate the past information with the past prices by clicking

on the button.

Appendix A.5. Endowment and earnings

Your earnings in this experiment will be based on your final cash balances which

include Cash holdings as well as liquidation payments for A and B shares at the end

of a round.

Note: If you have negative Cash holdings after the final period of a round, the

amount you borrowed will be subtracted from the total liquidation payment of your

shares. If you have negative share holdings, the liquidation payment of the shares

you borrowed will be subtracted from your Cash holdings.

The final cash balance of one of the six rounds will be paid out to you at the

end of the experiment. The round to be paid out is chosen randomly. The result
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of this random draw has been determined before the session, and has been recorded

on a sheet of paper in the envelope on the wall, which will be revealed to you after

the final round. You will also be informed about the decisive round on the screen to

confirm that the two numbers match.

At the end of the experiment, cash units (CU) will be converted to Euro, at an

exchange rate of €1 = 300 CU. Your final payment will be equal to your final cash

balance at the end of the decisive round plus a €5 payment for your participation.

The final payment will be made to you in private; you will receive an envelope

delivered to your seat in exchange for your signed receipt.

Appendix A.6. Trading algorithm

Besides the participants in the room, a computerized trading algorithm may

participate in the market. The computerized algorithm can take the same actions as

you, that is, it can buy and sell in the market. The details of the strategy followed

by the algorithm are not revealed to you, and you will not be informed whether the

computerized trading algorithm actually acts in the market or not.

Appendix A.7. Summary

1. You will be given an initial 4000 units of cash, 5 “A” shares, and 5 “B” shares

at the beginning of each round. Over the course of a round, each A-share

and each “B” share pays the owner a dividend of either +50, or -50. Exactly

two dividend payments of each share are positive (+50) and two dividends are

negative (-50).

2. At the end of the round, each share pays a liquidation payment. The liquidation

payment per A-share is either 100 (if the flip of the coin is heads) or 300 cash

units (if the flip of the coin is tails). The liquidation payment per B share is

200 cash units more; that is: 300 (if the flip of the coin is heads) or 500 cash

units (if the flip of the coin is tails).

3. In each period the market will be open for trading, 180 seconds in the first two

rounds and 120 seconds in later rounds. You can submit offers to BUY shares

and offers to SELL shares. You can make immediate transactions by buying

at the lowest ask (offer to sell) or selling at the highest bid (offer to buy). You

can delete your offers while outstanding.

4. You will participate in 6 rounds of 4 periods. At the end of the experiment, one

round of four periods is selected for payment. The decisive round is determined

randomly and is recorded on a sheet of paper in an envelope on taped to the
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wall, which will be revealed to you after the final round. The decisive round is

the same for all participants in a market of eight.

5. Note that if you borrow cash or shares you may end a round with a negative

cash balance. If a round is chosen for payment in which you incur losses, you

will earn nothing.

6. A computerized trading algorithm may participate in the market. However,

you will never be told whether the algorithm acts in the market and, if it does,

what it is programmed to do.

7. The instructions are over. If you have any question, raise your hand and consult

the monitor. Otherwise, please wait for the following Practice Session of three

minutes.
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Appendix B. Additional figures and tables
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Figure B.5: DPPt by L sequence

7
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Table B.8: Relative and absolute mispricing. OLS regressions for relative and relative absolute

period-level deviations from fundamental values with robust standard errors. RADU,L,t and RDU,L,t

are averages of values for L-shares and U-shares.

Dependent variable:

RADU,L,t RDU,L,t

(1) (2) (3) (4) (5) (6)

Constant 0.294∗∗∗ 0.298∗∗∗ 0.358∗∗∗ −0.066 −0.228∗∗∗ −0.345∗∗∗

(0.028) (0.051) (0.066) (0.043) (0.079) (0.105)

Bot 0.010 −0.009 0.020 −0.091∗∗∗ −0.066∗∗ −0.052

(0.018) (0.016) (0.025) (0.028) (0.026) (0.034)

TwoUrn −0.010 −0.014 −0.024 0.037 0.035 0.109∗∗∗

(0.018) (0.017) (0.019) (0.028) (0.027) (0.030)

Market −0.015∗∗∗ −0.015∗∗∗ −0.012∗∗ −0.003 −0.003 0.006

(0.006) (0.005) (0.006) (0.009) (0.008) (0.009)

avRisk −0.030∗∗ −0.048∗∗∗ 0.067∗∗∗ 0.074∗∗∗

(0.015) (0.018) (0.024) (0.022)

avFemale 0.245∗∗∗ 0.242∗∗∗ −0.196∗∗∗ −0.236∗∗

(0.034) (0.058) (0.062) (0.099)

avCRT −0.005 −0.001

(0.040) (0.054)

Observations 192 192 144 192 192 144

R2 0.042 0.170 0.233 0.063 0.121 0.191

Adjusted R2 0.026 0.148 0.200 0.048 0.097 0.156

F Statistic 2.714∗∗ 7.627∗∗∗ 6.950∗∗∗ 4.230∗∗∗ 5.124∗∗∗ 5.401∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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