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a b s t r a c t

In this paper, we present an adaptive spectral projection based finite element method to
numerically approximate the solution of the wave equation with memory. The adaptivity
is not restricted to the mesh (hp-adaptivity), but it is also applied to the size of the
computed spectrum (k-adaptivity). The meshes are refined using a residual based error
estimator, while the size of the computed spectrum is adapted using the L2 norm of
the error of the projected data. We show that the approach can be very efficient and
accurate.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Adaptivity is a key ingredient in modern finite element methods (FEMs), because it improves the accuracy of
omputations at a reasonable computational cost. The two main types of adaptivity are h-adaptivity, which consists in
ubdividing or ‘‘refining’’ a portion of the elements in the mesh to improve the solution, and hp-adaptivity, which also
djusts the order of the polynomials on a portion of the mesh [1–4].
In [5], the authors presented a discontinuous Galerkin (DG) spectral projection-based method to solve the wave

quation with memory. In this paper, an adaptive version of the method is presented.
The model problem considered in the paper is the wave equation with memory, which is a source problem. However,

he focus of this paper is the adaptive strategy to compute a portion of the spectrum of the eigenvalue problem which
s used for spectral projection. A posteriori error estimators for eigenvalue problems [6–9] started to appear much later
ompared to source problems.
The present paper extends the concept of hp-adaptivity adding a new dimension of k-adaptivity. k-adaptivity is the

rocess of automatically adapting the size k of the computed spectrum. The accuracy of a spectral projection method does
ot depend only on the quality of the mesh as for standard finite element methods applied to steady state problems, but
lso on the size and quality of the computed spectrum used to construct the numerical solution. If the computed spectrum
s too small, the numerical solution might be poor because the number of modes used in the approximation is very limited.
n the other hand, if the computed spectrum is too large, the method is computationally very expensive to run and a lot
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of the modes may not add much to the numerical solution. For these reasons, it is a good idea to adapt the size of the
computed spectrum to every problem.

The model problem considered in this paper is the following wave equation problem with memory

utt (x, t) − ∆u(x, t) +

∫ t

0
κ(t − s)∆u(x, s) ds = q(x, t) , in Ω × (0, T ] ,

u(x, t) = 0 , on ∂Ω × (0, T ] , (1)
u(x, 0) = u0(x) , in Ω ,

ut (x, 0) = v0(x) , in Ω ,

where Ω is a bounded connected Lipschitz domain in R2 and T > 0. Problem (1) can be used to model a variety of physical
systems like heat transfer with finite propagation speed, systems with thermal memory, viscoelastic materials with a long
memory, and acoustic waves in composite media [10,11]. Several authors have considered numerical methods based on
the inverse Laplace transform [12,13]. This is understandable because the Laplace transform of a differential equation in
time becomes an algebraic equation. However, there are important differences between the diffusion equation and wave
equations (with or without memory).

The Laplace transform of the diffusion equation ut − ∆u = f with u(x, 0) = u0(x) can be written in the form
1(s)û = f̂ + u0, with û the Laplace transform of u and where A1(s) = s − ∆. It is then clear that A1(s)−1

= (s − ∆)−1

an be defined everywhere except at a discrete set of points on the negative real axis (at the eigenvalues of ∆). Hence,
ˆ = A(s)−1(f̂ + u0) if s is not an eigenvalue of ∆ and we have for r > 0 the following representation

u(x, t) =
1

2π i

∫ r+i∞

r−i∞
estA1(s)−1h(x, s) ds, h(x, s) = f̂ (x, s) + u0(x),

n terms of the standard (Bromwich) integral. This integral oscillates rapidly, which causes numerical difficulties. Talbot’s
pproach is to deform the standard contour in the Bromwich integral into Γ , where the contour Γ begins and ends in
he left half-plane. Let s : (−π, π ) → C denote a parametrization of Γ , such that Re s(α) → −∞ when |α| → π and
ssume that Γ is a contour around the spectrum of A1. Then, we have a representation of the form

u(x, t) =
1

2π i

∫ π

−π

es(α)ts′(α)A−1
1 (s(α))h(x, s(α)) dα,

where, since A1(s)−1 is defined everywhere of R−, we have large freedom in choosing Γ .
The situation changes completely for the wave equation utt −∆u = f . The Laplace transform of the wave equation can

e written in the form A2(s)û = f̂ +su0+v0, where A2(s) = s2−∆. It is then clear that A2(s)−1
= (s2−∆)−1 can be defined

verywhere except at a discrete set of points on iR. Hence, a contour Γ that crosses the imaginary axis at a finite point
annot go around the spectrum of A2. Moreover, it is possible for the corresponding discrete problem to choose a contour
round the spectrum of A2, but it will in general be numerically very inefficient. The situation with a memory term (1)
s similar to the standard wave equation, but the spectral properties depend on κ [14]. In the letter [5] we showed that
egardless of the above spectral properties it is possible to apply Talbot’s approach to (1).

The paper is organized as follows. In Section 2 we present the numerical methods used to approximate the inverse
aplace transform and the adaptive algorithm. In Section 3 numerical results are presented exploring the challenges of
umerically inverting the Laplace transform using Talbot’s method and a series of examples of the application of the
daptive methods to the wave equation with memory. Conclusions are stated in Section 4.

. The method

Under the assumption of separation of variables between time and space, problem (1) is solved using the same method
s in [5].
For the purpose of clarity, let us consider a simpler problem:

utt (x, t) − ∆u(x, t) = 0 , in (0, 1)2 × (0, T ] ,

u(x, t) = 0 , on ∂(0, 1)2 × (0, T ] , (2)

u(x, 0) = u0(x) , in (0, 1)2 ,

ut (x, 0) = v0(x) , in (0, 1)2 .

Problem (2) is simpler than (1) in the sense that there is no memory term, the rhs is zero and the domain is the unit
square.

By applying the Laplace transform with respect to time to the PDE in (2) we obtain the time-independent problem

s2û − su − v − ∆û = 0 . (3)
0 0

2
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The solution û can be expressed as a linear combination of the eigenfunctions φj of the Laplace operator with Dirichlet
oundary condition

û =

∞∑
j=1

T̂j(s)φj(x) =

∞∑
j=1

T̂j(s) sin(πnjx) sin(πmjy) ,

with x ≡ (x, y).
Similarly, also the initial data can be projected onto the spectrum of the Laplace operator

u0(x) =

∞∑
j=1

ajφj(x) ,

v0(x) =

∞∑
j=1

bjφj(x) .

Substituting the expansions back into (2) we obtain

(s2T̂j(s) − saj − bj + λjT̂j(s))φj(x) = 0 , (4)

where λj is the eigenvalue of φj. From (4) is clear that T̂j(s) =
saj+bj
s2+λj

for any value j. Then, the solution u can be found by
applying the inverse Laplace transform

u(x, t) =

∞∑
j=1

Tj(t)φj(x) ,

where Tj is calculated from T̂j. Note that T̂j is singular at s = ±i
√

λj. The singularities are important for choosing of
contour for the numerical inverse Laplace transform considered in the following subsection. For the more general case
(1), the same method can be applied as described in [5]. When q, the rhs of problem (1), is not zero, we have to assume
that q̂(x, s), the Laplace transform of q, can be expressed as q̂(x, s) =

∑R
i=1 q̂i(s)gi(x), using a finite number of functions gi

epending only on x, see [5].

.1. The numerical inverse Laplace transform

The inverse Laplace transform is for r > r0, |f (t)| ≤ Cer0t given by the Bromwich integral

f (t) =
1

2π i

∫ r+i∞

r−i∞
f̂ (s)est ds. (5)

Talbot’s approach to numerically computing the inverse Laplace transform is to deform the standard contour in the
Bromwich integral. The choice of the contour has implications for the numerical stability of the resulting numerical
method. Several contours and quadrature formulas have been proposed; see [15,16] and the references therein. In this
paper, we will use Talbot’s original contour [17] since it is already widely used in the community. However, the most
efficient contour will in particular depend on the spectrum of T̂ where the Laplace transform of problem (1) can be
written as T̂ (s)û = q̂. Note that we target wave equations with memory terms. The optimal contour will then depend on
the particular kernel used in the memory term.

In Section 3.1, numerical instability due to a poorly chosen contour is analysed. It is clear that the method can be saved
by increasing the numerical precision of the machine. The algorithm used in this paper is based on [18], but the projection
approach for the numerical solution of the time-dependent problem is independent on which method to approximate the
Bromwich integral is used. Assume that r = 0 and consider Talbot’s contour parametrized by

s(α) = βα(cot(α) + i), −π < α < π.

Furthermore, we assume that |f̂ (s)| → 0 uniformly in ℜs ≤ 0 as |s| → ∞. Then

f (t) =
1

2π i

∫ π

−π

f̂ (s(α))es(α)ts′(α) dα. (6)

The parameter β should, if possible, be chosen such that no singularity of f̂ is crossed in the deformation of the original
integration path. According to Cauchy’s theorem, the integrals (5) and (6) are equal.

In the following, we will use β = 2M/(5t), which is taken from [18] and when necessary adjust M such that s encloses
all relevant singularities in the inverse Laplace transform. Note that s(0) = β , s(π/2) = iβπ/2, s(3π/2) = 3π (−1+ i)β/4.

Assume that f is real-valued. Then, the Talbot algorithm for numerically approximating f (t) can be written as

fM (t) =
2
5t

M−1∑
Re

(
γk f̂

(
δk

t

))
,

k=0

3
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where for k = 0, 1, . . . ,M , we have

δ0 =
2M
5

, δk =
2kπ
5

(
cot

(
kπ
M

)
+ i

)
,

γ0 =
1
2
eδ0 , γk =

[
1 + i

kπ
M

(
1 + cot2

(
kπ
M

))
− i cot

(
kπ
M

)]
eδk

he described algorithm is presented in pseudo-language in Algorithm 1.

Algorithm 1 The Talbot Algorithm for Inverting the Laplace Transform from [18]
Input

M number of terms to use.
Value of t to use in approximating the inverse of the Laplace transform.
Coordinates x for which invert the Laplace transform.
F function to use in the inverse of the Laplace transform.

Output
fM (t) approximation of the inverse of the Laplace transform of F at t using M terms.

1: Define δ0 :=
2M
5 and δj :=

2jπ
5 (cot(jπ/M) + i), for 0 < j < M and where i is the imaginary unit.

2: Define γ0 :=
1
2 e

δ0 and γj :=
(
1 + i(jπ/M)

(
1 + (cot(jπ/M))2

)
− i cot(jπ/M)

)
eδj , for 0 < j < M and where i is the

imaginary unit.
3: Compute fM (x, t) :=

2
5t

∑M−1
j=0 Re

(
γjF (x, δj/t)

)
.

To explain how to apply the Talbot method, problem (2) is considered for simplicity. Assuming that (λh,j, φh,j)Kj=1 are
omputed approximations of the K lowest eigenpairs of the Laplace operator with Dirichlet boundary conditions, then
e have that for any value x and t , the solution u(x, t) is approximated using

uh(x, t) =

K∑
j=1

TalbotM (Fj(x, s), x, t) , Fj(x, s) = T̂h,j(s)φh,j(x) (7)

where TalbotM is Algorithm 1 using M terms and T̂h,j is the numerical approximation of T̂j in (4). The Talbot method has
to be applied every time a new value of x or t is considered.

Due to its simple structure, the computational complexity of Algorithm 1 can be analysed. The computationally most
expensive part is step 3, which becomes dominant for large M . It has to be noted that an efficient way to evaluate Fj(·, ·)
can decrease the overall computational time. Denoting nt,x the number of distinct pairs (t, x) to be used as input for
Algorithm 1, we have that the asymptotic complexity of a sequential implementation of algorithm is O(Mnt,x). Since the
approximation of the solution is computed independently for each pair (t, x), it is straightforward to run multiple instances
of Algorithm 1 on different pairs (t, x) at the same time to reduce the computational time. Also, step 3 in Algorithm 1
can be parallelized, but a reduction operation is needed.

The advantage of this method compared to standard FEMs for non-stationary problems is that the solution can be
approximated for any value of t without the need to go through all time steps from the initial time to t . To compute an
approximation of the solution u on the entire domain and for a given value of t , the function u is projected onto the L2(Ω)
space using (7) to sample the values of the function.

2.2. The SIPG method

The spectrum of the operator is approximated using the symmetric interior penalty discontinuous Galerkin (SIPDG)
method [19]. We assume that the domain Ω is partitioned into a shape-regular mesh T consisting of either triangles or
quadrilaterals. At most we allow one hanging node per edge. Let us define h = { hτ : τ ∈ T } the vector containing all
the elemental diameters in the mesh. Denote by E an interior edge of T if E = ∂τ+

∩∂τ ′
− for two neighbouring elements

τ+, τ−
∈ T whose intersection has a positive measure. The set of all interior mesh edges is denoted by EI (T ).

Analogously, assume that the intersection E = ∂τ ∩ ∂Ω of the boundary of an element τ ∈ T and ∂Ω is of positive
easure. Then, the set of all boundary mesh edges of T is denoted by EB(T ) and we set E(T ) = EI (T ) ∪ EB(T ).
The diameter of an edge E is denoted by hE .
The jumps of an elementwise smooth scalar function v and the averages of an elementwise smooth vector function g

cross interior edges of the mesh T are defined as

{{g}} =
1
2
(g+

|E + g−
|E), [[v]] = v+

|E n+
+ v−

|E n−,

where n+ and n− denote the unit outward normal vectors on the boundary of elements τ+ and τ−, respectively.
Moreover, v+

|E and v−
|E are the trace on E taken from inside either τ+ and τ−. The traces are defined similarly for

g+
| and g−

| .
E E

4
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On a boundary edge E ∈ EB(T ), we accordingly set {{g}} = g and [[v]] = vn, with n denoting the unit outward normal
vector on ∂Ω .

Let us define pτ the order of the element τ . The order of the elements is allowed to vary across the mesh under the
assumption that its variation across neighbour elements is not more than 1. For a mesh edge E ∈ E(T ), we introduce the
ace polynomial degree pE by

pE =

{
max{pτ+ , pτ−}, if E = ∂τ+

∩ ∂τ−
∈ EI (T ),

pτ , if E = ∂τ ∩ ∂Ω ∈ EB(T ).
(8)

The DG finite element space with the degree vector p = { pτ : τ ∈ T } is defined as

Sp(T ) = { v ∈ L2(Ω) : v|τ ∈ Hpτ (τ ), τ ∈ T } , (9)

or triangular elements, Hpτ (τ ) ≡ Ppτ (τ ) is the space of polynomials at most of order pτ on τ , and for quadrilateral
lements, Hpτ (τ ) ≡ Qpτ (τ ) is the space of polynomials at most of order pτ in each directions.
In view of (1), the spectrum of the operator can be approximated by solving numerically the problem

− ∆φ = λφ, in Ω, (10)
φ = 0, on ∂Ω.

he SIPDG discrete version of the eigenvalue problem (10) is: find (λh, φh) ∈ R × Sp(T ) such that

A(φh, vh) = λh b(φh, vh), ∀ vh ∈ Sp(T ), (11)

ith ∥φh∥0,Ω = 1. The bilinear form A(·, ·) is given by

A(w, v) =

∑
τ∈T

∫
τ

∇w · ∇v dx −

∑
E∈E(T )

∫
E

(
{{∇w}} · [[v]] + {{∇v}} · [[w]]

)
ds

+

∑
E∈E(T )

γ p2E
hE

∫
E
[[w]] · [[v]] ds,

(12)

here the broken gradient operator ∇ is defined elementwise and the parameter γ > 0 is the interior penalty parameter,
nd where the bilinear form b(·, ·) is the inner-product of L2(Ω).
The DG norm can therefore be defined as:

∥ φ ∥
2
DG,T =

∑
τ∈T

∥∇φ∥
2
0,τ +

∑
E∈E(T )

γ p2E
hE

∥[[φ]]∥
2
0,E , (13)

here ∥ · ∥0,τ and ∥ · ∥0,E are respectively the L2 norm on an element τ and on an edge E.

2.3. khp-adaptive algorithm

In [5], we proved an error estimator for the solution of the wave equation in L2(Ω) for any given value of t:

∥u(t) − uh(t)∥0 ≲ C0(t)ε0 + C1(t)ε1 +

R∑
i=1

Cgi (t)εgi , (14)

where ε0, ε1 and εgi for all i are computable quantities defined as:u0 −

K∑
j=1

Ph
j u0


0

≤ ε0 ,

v0 −

K∑
j=1

Ph
j v0


0

≤ ε1 ,

gi − K∑
j=1

Ph
j gi


0

≤ εgi ,

where ∥ · ∥0 is the L2 norm on the entire domain Ω and where Ph
j is the projection operator onto the eigenspace of the

computed eigenpair (λh,j, φh,j). The functions C0(·), C1(·) and Cgi (·), for i from 1 to R, do not depend on the size of the
elements or the order of polynomials used, but they depend on t , on the portion of spectrum computed and on κ(·),
see [5] for more details.

The error estimator (14) inspired the khp-adaptive algorithm, Algorithm 2. From (14), the projection errors of the data
must be controlled in order to control the error of the solution. From now on, the projection error onto the computed

spectrum of a function w is going to be called total error in view of the fact that it is going to be decomposed into parts.

5
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Considering the total error for a function w:w −

K∑
j=1

Ph
j w

2

0  
Total Error

=

w −

N∑
j=1

ch,jφh,j

2

0

≲

 K∑
j=1

(cj − ch,j)φj +

+∞∑
j=K+1

cjφj

2

0  
Truncation Error

+

 K∑
j=1

ch,j(φj − φh,j)
2

0  
Approximation Error

,

where ch,j are the coefficients projecting w onto the eigenspaces of the computed eigenpairs (λh,j, φh,j) and where cj are
the coefficients projecting w onto the eigenspaces of the exact eigenpairs (λj, φj). The first term on the last line is called
truncation error in view of the fact that taking the limit on the mesh refinements:

lim
h→0,p→+∞

 K∑
j=1

(cj − ch,j)φj +

+∞∑
j=K+1

cjφj


0

=

 +∞∑
j=K+1

cjφj


0

.

Algorithm 2 is designed to control the total errors for all projected functions and the approximation errors. This is
because even if the total errors are what is used to construct the upper bound in (14), good approximations cannot be
found without a good approximation of the spectrum to start with. The approximation error can be controlled not only
with the L2 norm. In [20], an asymptotically reliable error estimator for the DG norm for problem (11) is presented:

∥ φj − φh,j ∥DG,T ≲ ηh,j ,

where

η2
h,j =

∑
τ∈T

η2
j,τ , η2

j,τ = η2
j,Rτ

+ η2
j,Fτ + η2

j,Jτ . (15)

The terms in (15) are define as:

η2
j,Rτ

= p−2
τ h2

τ∥λh,jφh,j + ∆φh,j∥
2
0,τ ,

η2
j,Fτ =

1
2

∑
E∈EI (τ )

p−1
E hE∥[[∇φh,j]]∥

2
0,E ,

η2
j,Jτ =

1
2

∑
E∈EI (τ )

γ 2p3E
hE

∥[[φh,j]]∥
2
0,E +

∑
E∈EB(τ )

γ 2p3E
hE

∥[[φh,j]]∥
2
0,E,

here EI (τ ) is the set of faces of the element τ in the interior of the domain and EB(τ ) is the set of faces of the element
on the boundary of the domain.
In Algorithm 2, the definition of the total error for a function w is:

etotal,K (w) =

w −

K∑
j=1

ch,jφh,j


0

,

nd the definition of the approximation error is:

eapprox,K (w) =

K∑
j=1

|ch,j|ηh,j .

approx,K uses the projection coefficients ch,j to focus on those eigenpairs that are more important for the approximation of
. In this way, little computational power is used to improve the accuracy of eigenpairs not carrying much of the energy
f w.
In Algorithm 2, there are two points to exit the algorithm, namely lines 12 and 18. Line 12 is used when the accuracy

s reached before exhausting the number of meshes. Line 18 is used when the maximum number of meshes is reached
efore getting to the required accuracy. The FE space Sp(T ) is adapted until the approximation errors for all functions
i are below the tolerance. At that point, if the total error is still not below the tolerance, the size of the spectrum is

ncreased since clearly more eigenfunctions are needed to approximate the functions wi. The spectrum and projection
oefficients computed in Algorithm 2 are used in (7) to compute an approximation of the solution to the wave equation.
The method can also be implemented in a different way called online/offline, designed specifically for solving several

imes the same wave equation on the same domain for a series of different initial conditions. This version takes advantage
f the fact that the spectrum remains the same no matter the initial conditions. The online part consists in using (7) to
6
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Algorithm 2 khp-adapt Algorithm for the Spectrum
Input

Initial FE space Sp(T ).
Maximum number of adaptive steps nmax.
Tolerance tol.
Initial size of the computed spectrum K .
Increment size of the compute spectrum Kinc.
List of functions {wi} to approximate using the spectrum.

Output
Approximated spectrum.
Projection coefficients for each wi.

1: n := 1
2: while n < nmax do
3: Computing K eigenpairs for the problem.
4: for all wi do
5: Compute the projection coefficients for wi.
6: Compute the total errors etotal,K (wi).
7: Compute the approximation errors eapprox,K (wi).
8: end for
9: if For at least one wi, eapprox,K (wi) > tol then

10: hp-adapt Sp(T ) using as error estimator ηh =

√∑K
j=1 η2

h,j.
11: else if For all wi, etotal,K (wi) < tol then
12: Return current spectrum and projection coefficients for each wi.
13: else
14: Increase K by Kinc
15: end if
16: n := n + 1
17: end while
18: Return current spectrum and projection coefficients for each wi.

compute an approximation of the solution to the wave equation for any given set of initial conditions. In the online/offline
algorithm, the spectrum has to be adapted without knowing what functions wi are going to be approximated. For this
eason, we cannot use any more the above definition of the approximation error eapprox,K .

In Algorithm 3, only the error estimators from eigenpairs still above the tolerance are used to refine the mesh. If
Algorithm 3 is successful, all returned eigenpairs are approximated using an accuracy of at least tol. Algorithm 3 also
returns the error estimators ηh,j for the entire computed spectrum to control the error during the online part. In the online
art, the functions wi to approximate are know, therefore, using the values ηh,j, the approximation errors eapprox,K (wi) and

the total errors etotal,K (wi) can be computed. This can be used to check if the computed spectrum is delivering a good
approximation of the functions wi and to decide whether to accept the computed solutions.

3. Numerics

All the simulations are run using ARPACK [21] to compute the eigenpairs and MUMPS [22] to solve the linear systems
as part of the iterative loop of ARPACK. For simplicity, all simulations are run on the sequential version of the code, i.e. only
one core of the CPU has been used. For consistency, all simulations are run on a 100 MHz Intel Xeon CPU E5-2620 with
64GiB of DDR3 RAM.

3.1. The Talbot Algorithm

In [18], it is stated that Algorithm 1 might push to the limit the precision of the machine for large values of M . In
this section, numerical instability due to a poorly chosen contour is analysed. In exact arithmetic, the accuracy of the
Talbot method increases with M and decreases with t . For a fixed t , there is a minimum value of M to get accurate
results. In order to keep the results accurate when t increases, M might have to be increased. In practice, small values
of M can deliver accurate results in double precision. However, to compute accurately values of the solution for larger
t , M has to be increased and this might lead to bad accuracy due to the limitation of double precision. In order to
better understand this issue, we tested the Talbot method on the wave equation on the unit square (0, 1)2 without
memory with initial velocity zero and initial displacement equals to a u (x) = u(x, 0) = sin(πx) sin(πy). The exact
0
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Algorithm 3 khp-Adapt Algorithm for the Spectrum for the Offline version
Input

Initial FE space Sp(T ).
Maximum number of adaptive steps nmax.
Tolerance tol.
Size of the computed spectrum K .

Output
Approximated spectrum.
Error estimators ηh,j.

1: n := 1
2: while n < nmax do
3: Computing K eigenpairs for the problem.
4: R := ∅.
5: for all Eigenpair j with ηh,j > tol do
6: Add j to R
7: end for
8: if R not empty then
9: hp-adapt Sp(T ) using as error estimator ηh =

√∑
j∈R |ch,j|η2

h,j.
10: else
11: Return current spectrum and current ηh,j for the entire computed spectrum.
12: end if
13: n := n + 1
14: end while
15: Return current spectrum and current ηh,j values for the entire computed spectrum.

solution is u(x, t) = cos(
√

λt) sin(πx) sin(πy), where λ = 2π2. Therefore, the function passed to the Talbot method
is T̂ (s) := 1/(s2 + λ)s for the approximated solution. We tested the impact of different implementations of the Talbot
method in different precisions: double precision, quad precision, and arbitrary precision using the algorithm in [23]. In
Fig. 1, we reported the relative error on the value of the solution at (0.5, 0, 5) for different values of t and M . The issue is
very clear in Fig. 1(a) where double precision is used. For the same value of t , the error increases with M . This is clearly
not supposed to happen and it does not happen in exact arithmetic. Exactly the opposite is supposed to happen, i.e. the
accuracy should increase as M is increasing. But, because of the limitations of double precision to cope with the terms in
the series in the Talbot method, accuracy is poor for large enough M . The worse case is for M = 100 or higher, where for
no values of t , the error is small. Switching to quad precision, Fig. 1(b), the situation is not improved. In Fig. 1(c), 1200
digits are used to compute the Talbot method, and errors behave correctly. For the same t , we see smaller errors increasing
M and even for large t , there are values of M that deliver good results. It is important to notice that in all simulations,
only the Talbot method has been implemented in different precisions. Terms used in the method like the projection of u0
nd the eigenvalues are still computed in double precision only. This is because it is not feasible to assume that for real
roblems, the entire adaptive algorithm can be implemented and run in any precision.
In Fig. 2, the same tests have been repeated for an initial solution u0 equal to the 200th lowest eigenpair of the Laplace

perator. The higher frequency of the solution is amplifying the issues. To keep a good accuracy for large t , more than 100
erms are needed. This is not a problem since we are far away from the limit of the used arbitrary precision. In conclusion,
he Talbot algorithm may be unstable in double precision for large t for problems of engineering interest. However, the
ossibility to switch to arbitrary precision removes the issue. In the worst-case scenario, the arbitrary precision can be
ushed much higher than the 1200 digits used here.

.2. Problem on the unit circle without memory

In this example, the domain is a disk of radius 1 centred in the origin with homogeneous Dirichlet boundary conditions
nd we assume zero initial velocity and initial displacement

u0(x) = u(x, 0) = J0(α|x|) ,

ith J0 denoting the Bessel function of the first kind and α the first zero of J0. We also assume q and κ in (1) to be zero.
nder these assumptions, the analytical solution is

u(x, t) = J (α|x|) cos(αt) .
0

8
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Fig. 1. Precision of the Talbot algorithm (a) in double precision, (b) in quad precision and (c) in arbitrary precision with 1200 digits for a problem
involving the lowest eigenpair of the Laplace operator.

For any computed eigenpair (λh,j, φh,j), we can define the function

F (x, s) = T̂j(s)φh,1(x) =
1

s2 + λj
sPh

j u0(x) ,

here Ph
j is the projection operator on the eigenspace of the jth computed eigenpair.

To correctly approximate the shape of the domain, the transfinite interpolation method [24] is used to bend the edges
f the elements to exactly match the boundary of the domain.
The focus of this test is on the decay of the total errors etotal,K (u0) using adaptivity. h-adaptivity is compared to hp-

daptivity using Algorithm 2 to adapt the spectrum targeting u0, i.e. w1 ≡ u0 in Algorithm 2. The function u0 belongs to
he eigenspace of the lowest eigenpair, therefore, the lowest computed eigenpair is the most important in this example.
or this reason, the size of the spectrum K is not increased from its initial value of 5.
In Fig. 3, we can see the comparison for the total error using different adaptive schemes. Clearly, hp-adaptivity is much

etter than just h-adaptivity.
For each approximation of the spectrum, we compute the relative error of the approximated solution uh at the origin

ith t = 1.0 using the Talbot method, Algorithm 1, with M = 35. In Fig. 4, the comparison between the two adaptive
chemes is presented. Clearly, better accuracy for the total error translates into a better approximation for uh. This is
urther confirmed by Fig. 5 where the ratio between the total error for u0 and the relative error for uh are presented.
he two errors look to be linearly dependent no matter what adaptive scheme is used. Fig. 5 seems to suggest that the
otal error can also be used to control point-wise error. This is very interesting because it seems to extend the result (14)
hich holds for the L2 norm of the error.
In Tables 1 and 2, the cumulative time for the most computational demanding parts of Algorithm 2 are reported for

he two adaptive strategies. It is interesting to notice that even if the total computational time is similar for both h-
nd hp-adaptivity, the delivered accuracy is vastly different, see Figs. 4 and 5. Also, the most computationally demanding
asks are different for the two strategies. For h-adaptivity, most of the time is spent computing the residuals due to a
arge number of elements, while for hp-adaptivity, the approximation of the spectrum is the most demanding task.
9
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3

κ

Fig. 2. Precision of the Talbot algorithm (a) in double precision, (b) in quad precision and (c) in arbitrary precision with 1200 digits for a problem
involving the 200th lowest eigenpair of the Laplace operator.

Fig. 3. Total error for the adaptive methods for the problem on the unit disk with no memory.

.3. Problem on the unit circle with memory

In this example, we consider the same setting as in the previous example except that this time we have that
(t) =

1
2 e

−t . This implies that the analytical solution is

u(x, t) = (−t2e−t
+ 1)J (α|x|) ,
0

10
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Fig. 4. Relative error for the adaptive methods for the problem on the unit disk with no memory.

Fig. 5. Ratios between the total and relative error for the problem on the unit disk with no memory.

Table 1
Timing of the most demanding tasks in Algorithm 2 using h-adaptivity.
Total computational time 1082.67 s

Task Cumulative time (s) Cumulative time (%)

Calculation of the residuals 771.24 71.24
Mesh adaptation 136.94 12.65
Approximation of the spectrum 135.91 12.55

Table 2
Timing of the most demanding tasks in Algorithm 2 using hp-adaptivity.
Total computational time 1636.90 s

Task Cumulative time (s) Cumulative time (%)

Approximation of the spectrum 929.15 56.76
Calculation of the residuals 392.29 23.97
Mesh adaptation 274.33 16.76

and
2 −t
q(x, t) = −t e + 1 .

11
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Fig. 6. Total error for the adaptive methods for the problem on the unit disk with memory.

Fig. 7. Relative error for the adaptive methods for the problem on the unit disk with memory.

For any computed eigenpair (λh,j, φh,j), we can define the function

Fj(x, s) = T̂j(s)φh,j(x)

=
1

s2 + µj(1 − κ̂(s))

(
q̂(s)s2Ph

j u0(x) − (κ̂(s) − 1)q̂(s)λh,jPh
j u0(x)

)
,

here

q̂(s) =
1
s

−
2

(s + 1)3
, κ̂(s) =

1
2(s + 1)

,

re respectively the Laplace transforms of q and κ .
For this example K = 5 which is not changed during the simulation because the solution is proportional to the first

eigenfunction.
In Figs. 6–8 the behaviours of the total error, the relative error at the origin with t = 1 and their ratio are presented.

he presence of memory does not affect the results much.
In Tables 3 and 4, the cumulative time for the most computational demanding parts of Algorithm 2 are reported for

he two adaptive strategies. The same observations discussed in the previous example are applicable here.
In Tables 3 and 4, the inverse of the Laplace transform is calculated in double precision. The reported running times

ave to be interpreted in view of the fact that the delivered accuracy is very high. In view of the results in Section 3.1,
n Table 5 the computational time to run Algorithm 1 on one pair of values (x, t) and with M = 35 is reported for
12
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Fig. 8. Ratios between the total and relative error for the problem on the unit disk with memory.

Table 3
Timing of the most demanding tasks in Algorithm 2 using h-adaptivity.
Total computational time 1045.62 s

Task Cumulative time (s) Cumulative time (%)

Calculation of the residuals 738.59 70.64
Mesh adaptation 134.53 12.87
Approximation of the spectrum 134.20 12.83

Table 4
Timing of the most demanding tasks in Algorithm 2 using hp-adaptivity.
Total computational time 1617.08 s

Task Cumulative time (s) Cumulative time (%)

Approximation of the spectrum 924.24 57.16
Calculation of the residuals 375.89 23.25
Mesh adaptation 275.41 17.03

Table 5
Timing to run Algorithm 1 in different precisions. 1200
digits is the default accuracy in the library [23].
Precision Time (s)

Double 4.00e−4
Quadruple 1.20e−3

Precision Digits Time (s)

Arbitrary 34 2.00e−1
Arbitrary 100 2.91e−1
Arbitrary 500 1.29
Arbitrary 1200 4.96

different accuracies. Arbitrary precision makes the code much slower especially considering that 34 digits is about the
same precision as quadrupole precision. The main reason for the discrepancy is the fact that quad precision is supported
by the hardware of modern CPUs while arbitrary precision is done in software.

3.4. Error estimator for the wave equation

In [5] an asymptotic error estimator for the error ∥u − uh∥0 in the L2 norm was presented for the spectral projection
ased method without adaptivity, see Theorem 2 in [5]. The following results show the accuracy of the error estimator
n the adaptive case. The problem considered here is the wave equation with memory on the square domain (0, 1)2 with
homogeneous Dirichlet boundary conditions and with zero initial velocity and initial displacement

u (x) = u(x, 0) = sin(2πx) sin(2πy) ,
0

13
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Fig. 9. Approximation error for the adaptive methods for the problem on the unit square with memory.

Table 6
Timing of the most demanding tasks in Algorithm 2 using h-adaptivity.
Total computational time 1421.07 s

Task Cumulative time (s) Cumulative time (%)

Talbot method 1217.05 85.64
Approximation of the spectrum 95.90 6.74
Calculation of the residuals 77.34 5.44

We also assume that κ(t) =
1
2 e

−t and q(x, t) = −t2e−t
+ 1. Under these assumptions, the analytical solution is

u(x, t) = (−t2e−t
+ 1) sin(2πx) sin(2πy) .

For any computed eigenpair (λh,j, φh,j), we can define the

Fj(x, s) = T̂j(s)φh,j(x)

=
1

s2 + µj(1 − κ̂(s))

(
q̂(s)s2Ph

j u0(x) − (κ̂(s) − 1)q̂(s)λh,jPh
j u0(x)

)
,

here

q̂(s) =
1
s

−
2

(s + 1)3
, κ̂(s) =

1
2(s + 1)

,

re respectively the Laplace transforms of q and κ .
To adapt the spectrum, we used Algorithm 2 with tol = 1e−50, nmax = 30, K = 10, Kinc = 10 and w1 ≡ u0. The values

f nmax and tol are chosen in such a way that the tolerance is never reached before running out of meshes. In particular,
ol is so small that is unreachable in double precision using 30 meshes, giving full control on the number of meshes used
n the simulation. The initial mesh is structured consisting of 64 square elements and the initial order of polynomials is
wo. The function u0 belongs to the eigenspace of the fourth lowest eigenpair, for this reason, the size of K remains equal
o 10 and it is not increased by Algorithm 2 during the simulation.

In the following figures, the performances of Algorithm 2 using either h-adaptivity or hp-adaptivity are compared.
In Fig. 9, the approximation error eapprox,K (u0) for the different adaptive scheme is presented. Clearly, the hp-adaptive

ethod outperforms the h-adaptive method.
Similar conclusions can be drawn by looking at the comparison for the total error etotal,K (u0) in Fig. 10.
The error estimator in [5] bounds the L2 of the error for the wave equation. The Talbot method, Algorithm 1, with
= 35, is then used to compute an approximation uh of the solution for t = 1 on the entire domain. In Fig. 11, for each

pproximation of the spectrum, we compute the Error of the approximated solution uh. As before, there is a clear gap
etween the performances of the two adaptive schemes, but more interesting is the fact that the error estimator is very
ccurate in both schemes.
In Tables 6 and 7, the cumulative time for the most computational demanding parts of Algorithm 2 are reported for

he two adaptive strategies. Compared to the previous examples, here the two strategies have different run times. The
14
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Fig. 10. Total error for the adaptive methods for the problem on the unit square with memory.

Fig. 11. Error and error estimator values for the adaptive methods for the problem on the unit square with memory.

Table 7
Timing of the most demanding tasks in Algorithm 2 using hp-adaptivity.
Total computational time 125.48 s

Task Cumulative time (s) Cumulative time (%)

Approximation of the spectrum 82.79 65.98
Mesh adaptation 19.12 15.23
Calculation of the residuals 11.6 9.27

hp-adaptivity is about ten times faster compared to the h-adaptivity delivering also much better results. For the h-adaptive
method, the most demanding task is the Talbot method. This is understandable since to compute the L2(Ω) of the error
or t = 1, the solution is calculated on all integration points for all elements, resulting in a very large number of calls to
he Talbot method on a fine mesh. As in previous examples, the approximation of the spectrum is the most demanding
ask for the hp-adaptive method. In contrast, the inversion of the Laplace transform takes only 2.16s (1.72%) of the time
or the hp-adaptive method.

.5. k-adaptivity

In this next example, the focus is on the k-adaptivity. In order to do that, the problem is designed to include a high
umber of eigenpairs. In practice, this is rarely the case since for most applications only a limited number of frequencies
15
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Table 8
Timing of the most demanding tasks in Algorithm 2.
Task Cumulative time (s) Cumulative time (%)

Approximation of the spectrum 6648.08 92.65
Calculation of the residuals 400.59 5.58
Projection of the spectrum 50.98 0.71

have to be considered. However, in this section, we want to push the algorithm to the limit. The problem considered here
is the wave equation with memory on the square domain (0, 1)2 with homogeneous Dirichlet boundary conditions and
with zero initial velocity and initial displacement

u0(x) = u(x, 0) = (xy)2(1 − x)2(1 − y)2 ,

We also assume that κ(t) =
1
2 e

−t and q(x, t) = −t2e−t
+ 1. Under these assumptions, the analytical solution is

u(x, t) = (−t2e−t
+ 1)(xy)2(1 − x)2(1 − y)2 .

For any computed eigenpair (λh,j, φh,j), we can define the function

Fj(x, s) = T̂j(s)φh,j(x)

=
1

s2 + µj(1 − κ̂(s))

(
q̂(s)s2Ph

j u0(x) − (κ̂(s) − 1)q̂(s)λh,jPh
j u0(x)

)
,

here

q̂(s) =
1
s

−
2

(s + 1)3
, κ̂(s) =

1
2(s + 1)

,

re respectively the Laplace transforms of q and κ .
To adapt the spectrum, we used Algorithm 2 with hp-adaptivity and with tol = 1e− 6, nmax = 100, K = 50, Kinc = 50

and w1 ≡ u0. The initial mesh is structured consisting of 64 square elements and the initial order of polynomials is two.
In contrast to previous examples, the function u0 does not belong to any eigenspace but it takes contributions from many
of them. For this reason, Algorithm 2 expands the size of the computed spectrum trying to capture enough of u0 to reach
the tolerance, see line 14 in Algorithm 2.

In Fig. 12, the behaviour of the total error in terms of the size of the computed spectrum and the number of DOF
is presented. Looking at Fig. 12(a), it is clear that the decay of the error is linked to the number of eigenpairs used to
approximate u0. For the first few meshes, K is not changed. Instead Algorithm 2 is refining the mesh. The plateaus in
Fig. 12(b) correspond to those iterations in the main loop of Algorithm 2 when the method is refining the mesh rather
than increasing K . In Fig. 12(c), the results are reported in terms of DOF times the number of eigenpairs computed which
is interesting since K is adapted during the simulation.

In Table 8, the cumulative time for the most computational demanding parts of Algorithm 2 are reported for this
example. The approximation of the spectrum, line 3 in Algorithm 2, is clearly the bottleneck of the method in the current
implementation. The remaining part of the Algorithm 2 takes less than 8% of the time to run the code.

3.6. Concentrated peak

In this next example, the method is applied to a problem without memory and with initial data concentrated in a
small region in the domain (0, 1)2

u0(x) = u(x, 0) = e
−(x−x0)

2c2 sin(πx) sin(πy) ,

with x ≡ (x, y), x0 ≡ (0.5, 0.5) and with c > 0. The exponential is multiplied by the function sin(πx) sin(πy) to enforce
0 = 0 on the boundary of the domain. We also assume q and κ in (1) to be zero. The solution of this problem is
nknown, therefore the results are compared to a reference solution u computed using the projection method on a very
ine structured mesh of 4225 elements with order of polynomials 4 using K = 500 and for t = 1. In Table 9, we reported
the L2 norm of the error for t = 1 using the projection method on a structured mesh of 1089 elements with order of
polynomials 3 for different choices of c and K . Clearly, the strength of the peak impacts the convergence of the method
in terms of both DOF and K .

Remark 1. We finish the discussion on k-adaptivity by recalling the paper(s) by S. Sauter [25], and the references therein.1
The goal of the series of papers was to ascertain how many eigenvalues can be trusted for a given FEM space. Or better

1 See also https://www.math.uzh.ch/fileadmin/math/preprints/17_07_rev.pdf
16
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Fig. 12. Decay of the total error (a) in terms of the size K of the computed spectrum and (b) in terms of DOF and (c) in terms of DOF times the
umber of eigenpairs computed on each mesh.

Table 9
Error measured in the L2 norm for t = 1.
c K ∥u − uh∥0

0.1 50 7.9527E−3
0.1 100 4.7307E−4
0.1 200 2.4513E−6
0.05 50 3.9207e−2
0.05 100 1.5648e−2
0.05 200 3.3528e−3
0.01 50 1.7146e−2
0.01 100 1.6512e−2
0.01 200 1.5508e−2

to say, how far are we allowed to go with k. To avoid the technical details, we quote the result [25, Remark 6.1] in
he case of p = 1 and using h-adaptivity. In this case, only eigenvalue approximations computed from the space whose
< λ−1

k can be trusted to be approximate eigenvalues of the Laplace operator (or stated in another way, to have a physical
eaning). In [25, Remark 6.1, Table 2] there are bounds related to other choices of the polynomial degree p. This should
e interpreted in a way that this paper does not give an asymptotic result (in k), but rather a practical algorithm that is
imited by the size of the finite element space (and the associated mass and stiffness matrices) which can be fitted into
he memory and subsequently the class of functions which can be resolved by such a piecewise polynomial space.

. Conclusions

We have presented an adaptive numerical method for the wave equation with memory. The proposed method projects
he data on the span of approximated eigenvectors. Both the meshes used to approximate the eigenvectors and the portion
f the spectrum approximated by the method are automatically adapted to improve efficiency.
The proposed method can be used for 3D problems without modifications, the only difference is that a 3D eigenvalue

roblem must be solved. The Talbot method (Algorithm 1) is the same for all numbers of dimensions. The computational
17
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cost of running Algorithm 1 for given pair (x, t) is determined by the number of terms M and not the number of
imensions. The adaptive method (Algorithm 2) applies to 3D problems because the error estimator 2 works in both
D and 3D.
The method can also be extended to variable diffusion coefficient in space since residual based error estimators, like

15), are reliable as shown in [26,27].
As discussed in Section 2, the method can be divided into an offline part approximating the spectrum only once and

n online part approximating the solution of the problem for multiple values of t and x and possibly for various initial
onditions. As seen in the examples, the computation of spectra can be computationally demanding compared to the
pplication of the Talbot method. Therefore, it makes sense to relegate the offline part to HPC machines and the online
n desktop machines.
The proposed method is particularly efficient for applications where the spectrum computed in the offline part can be

eused several times. For example, the optimization of initial conditions or the right-hand-side of problem (1) to achieve
ertain aims can be solved by computing the spectrum only once and then running the optimization only on the online
art. Different initial conditions or right-hand-side candidates can be quickly tested by projecting them onto the computed
pectrum and running Talbot’s method to approximate the solution.

ata availability

No data was used for the research described in the article.

cknowledgements

LG was supported by the Hrvatska Zaklada za Znanost (Croatian Science Foundation) under the grant IP-2019-04-6268
Randomized low-rank algorithms and applications to parameter dependent problems. CE was supported by the Swedish
esearch Council under Grant No. 2021-04537.

eferences

[1] S. Giani, L. Grubišić, J.S. Ovall, Benchmark results for testing adaptive finite element eigenvalue procedures part 2 (conforming eigenvector and
eigenvalue estimates), Appl. Numer. Math. 102 (2016) 1–16.

[2] P. Solin, S. Giani, An iterative adaptive finite element method for elliptic eigenvalue problems, J. Comput. Appl. Math. 236 (18) (2012) 4582–4599.
[3] P. Solin, S. Giani, An iterative adaptive hp-FEM method for non-symmetric elliptic eigenvalue problems, Computing 95 (2013) 183–213.
[4] S. Giani, L. Grubis̆ić, J.S. Ovall, Benchmark results for testing adaptive finite element eigenvalue procedures, Appl. Numer. Math. 62 (2) (2012)

121–140.
[5] C. Engström, S. Giani, L. Grubis̆ić, A spectral projection based method for the numerical solution of wave equations with memory, Appl. Math.

Lett. 127 (2022) 107844.
[6] R.G. Durán, C. Padra, R. Rodríguez, A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. Models

Methods Appl. Sci. 13 (8) (2003) 1219–1229.
[7] V. Heuveline, R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems, J. Adv. Comp. Math.

15 (2001) 107–138.
[8] M.G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J.

Numer. Anal. 38 (2000) 608–625.
[9] T.F. Walsh, G.M. Reese, U.L. Hetmaniuk, Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures, Comput.

Methods Appl. Mech. Engrg. 196 (37) (2007) 3614–3623.
[10] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1, Springer-Verlag, Berlin, 1990, p.

xviii+695, Physical origins and classical methods, With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky
and Hélène Lanchon, Translated from the French by Ian N. Sneddon, With a preface by Jean Teillac.

[11] M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal. 31 (2) (1968) 113–126.
[12] W. Mclean, V. Thomée, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl. 22 (1)

(2010) 57–94.
[13] S.-L. Wu, Laplace inversion for the solution of an abstract heat equation without the forward transform of the source term, J. Numer. Math.

25 (3) (2017) 185–198.
[14] C. Engström, Spectra of gurtin-pipkin type of integro-differential equations and applications to waves in graded viscoelastic structures, J. Math.

Anal. Appl. 499 (2) (2021) 125063, 14.
[15] J.A.C. Weideman, Gauss-Hermite quadrature for the bromwich integral, SIAM J. Numer. Anal. 57 (5) (2019) 2200–2216.
[16] N. Guglielmi, M. López-Fernández, G. Nino, Numerical inverse Laplace transform for convection-diffusion equations, Math. Comp. 89 (323)

(2020) 1161–1191.
[17] A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23 (1) (1979) 97–120.
[18] J. Abate, W. Whitt, A unified framework for numerically inverting Laplace transforms, INFORMS J. Comput. 18 (4) (2006) 408–421.
[19] D. Arnold, F. Brezzi, B. Cockburn, L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39

(5) (2002) 1749–1779.
[20] S. Giani, E.J.C. Hall, An a posteriori error estimator for hp-adaptive discontinuous galerkin methods for elliptic eigenvalue problems, Math.

Models Methods Appl. Sci. 22 (10) (2012) 1250030.
[21] G. Acosta, T. Apel, R.G. Durán, A.L. Lombardi, Anisotropic error estimates for an interpolant defined via moments, Computing 82 (1) (2008)

1–9.
[22] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods in Appl. Mech.

Eng. 184 (2000) 501–520.
[23] D.H. Bailey, A thread-safe arbitrary precision computation package, 2022, https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf. (Online;

Accessed 28 September2022).
18

http://refhub.elsevier.com/S0377-0427(23)00156-5/sb1
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb1
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb1
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb2
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb3
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb4
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb4
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb4
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb5
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb5
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb5
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb6
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb6
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb6
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb7
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb7
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb7
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb8
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb8
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb8
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb9
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb9
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb9
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb10
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb10
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb10
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb10
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb10
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb11
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb12
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb12
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb12
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb13
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb13
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb13
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb14
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb14
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb14
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb15
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb16
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb16
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb16
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb17
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb18
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb19
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb19
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb19
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb20
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb20
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb20
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb21
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb21
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb21
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb22
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb22
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb22
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf


S. Giani, C. Engström and L. Grubišić Journal of Computational and Applied Mathematics 429 (2023) 115212
[24] P. Solin, K. Segeth, I. Dolezel, Higher-Order Finite Element Methods, Chapman and Hall/CRC, 2003.
[25] S. Sauter, hp-finite elements for elliptic eigenvalue problems: Error estimates which are explicit with respect to λ, h, and p, SIAM J. Numer.

Anal. 48 (1) (2010) 95–108.
[26] S. Giani, Reliable anisotropic-adaptive discontinuous Galerkin method for simplified P N approximations of radiative transfer, 337 (2018)

225–243.
[27] S. Giani, An a posteriori error estimator for hp-adaptive continuous Galerkin methods for photonic crystal applications, 95 (5) (2013) 395–414.
19

http://refhub.elsevier.com/S0377-0427(23)00156-5/sb24
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb25
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb25
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb25
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb26
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb26
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb26
http://refhub.elsevier.com/S0377-0427(23)00156-5/sb27

	khp-adaptive spectral projection based discontinuous Galerkin method for the numerical solution of wave equations with memory
	Introduction
	The method
	The numerical inverse Laplace transform
	The SIPG method
	khp-adaptive Algorithm

	Numerics
	The Talbot Algorithm
	Problem on the unit circle without memory
	Problem on the unit circle with memory
	Error Estimator for the Wave Equation
	k-adaptivity
	Concentrated peak

	Conclusions
	Data availability
	Acknowledgements
	References


