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ABSTRACT 
The majority of the Northwest Territories of mainland Canada was covered by the Laurentide 
Ice Sheet during the Last Glacial Maximum. The increasing coverage of high resolution 
remotely sensed data provides new opportunities to map the glacial geomorphology and 
study the glacial history of this remote location. Here we present a comprehensive map of 
glacial landforms within the northern Interior Plains and adjacent areas of the Canadian 
Shield, comprising around 6% of the Laurentide Ice Sheet bed. Twelve landform types were 
mapped from the high resolution ArcticDEM: ice flow parallel lineations, subglacial ribs, 
crevasse-squeeze ridges, major and minor moraine crests, hummocky terrain complexes and 
ridges, shear margin moraines, major, minor and lateral and submarginal meltwater 
channels, esker ridges and complexes, glaciofluvial complexes, perched deltas, raised 
shorelines and aeolian dunes. Together, these landforms provide a record of the highly 

ARTICLE HISTORY 
Received 17 October 2022 
Revised 9 February 2023 
Accepted 11 February 2023 

KEYWORDS 
Laurentide Ice Sheet; glacial 
landforms; remote sensing; 
ArcticDEM; Northwest 
Territories; glacial history 

dynamic behaviour of the northwest sector of the Laurentide Ice Sheet. 

1. Introduction 

The Laurentide Ice Sheet (LIS) was the largest ephem­
eral Pleistocene ice sheet to grow and almost comple­
tely disappear during the last glacial cycle. At the Last 
Glacial Maximum (LGM) the LIS coalesced with the 
Cordilleran Ice Sheet (CIS) east of the Rocky Moun­
tains, while the northwest sector of the LIS reached 
its all-time maximum extent along the eastern range 
fronts of the Mackenzie and Richardson mountains 
during the local LGM, around 22.1 cal ka BP (Figure 
1; Kennedy et al., 2010). While the ice dynamics of 
this sector of the ice sheet and formation of glacial 
lakes along the retreating ice sheet margin have been 
interpreted on a broad scale (Lemmen et al., 1994; 
Dyke, 2004; Kleman & Glasser, 2007; Brown, 2012), 
a detailed understanding of the ice sheet configuration 
and the ice-drainage network, and how it changed 
through the ice advance and deglacial stages, remains 
incomplete (Margold et al., 2018). 

The glacial geomorphology of the northwest sector 
of the LIS has been mapped by a number of research­
ers at a variety of scales. At a local to regional scale, 
much of the Northwest Territories is covered by 
detailed National Topographic System (NTS) surficial 
geological maps (see Figure 2 and references therein). 
At a broader scale, Brown et al. (2011) produced a gla­
cial geomorphological map of the northwest sector of 

the LIS and Duk-Rodkin (2022) recently published a 
compilation map of the Mackenzie Mountains and 
foothills. 

Prest et al. (1968) produced the Glacial Map of 
Canada, which was the first ice-sheet-wide map of gla­
cial landforms. More recently, Shaw et al. (2010) and 
Kleman et al. (2010) both produced generalized ice 
flow maps of the entire North American Ice Sheet 
Complex, comprising the Cordilleran, Laurentide 
and Innuitian ice sheets at the LGM. However, large 
gaps remain in the spatial coverage of the surficial 
maps, while the broad scale map of Brown et al. 
(2011) lacks detail due to limited data resolution at 
the time of mapping. Thus, our knowledge of the gla­
cial geomorphology of the northwest LIS can be aug­
mented using newer high resolution digital elevation 
models (DEMs) now available for the region (Chand­
ler et al., 2018; Stokes et al., 2015). 

Recent work has focused on determining the timing 
of the deglaciation of the northwest sector of the LIS 
and subsequent opening of the ice-free corridor, 
which allowed for the exchange of flora and fauna 
between North America and unglaciated Beringia 
(Stoker et al., 2022; Clark et al., 2022; Reyes et al., 
2022). However, our understanding of the glacial 
dynamics in this region remains poor, particularly 
with regards to the behaviour of the major ice streams 
(Margold et al., 2018) and the configuration of the ice 
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divides over time (Bednarski, 2008). Here, we use the 
high resolution ArcticDEM v3 mosaic (2 m resolution; 
Porter et al., 2018) to produce a detailed glacial land­
form map of the northwest sector of the LIS. The 
resulting glacial geomorphological map will underpin 
future investigations into the advance and retreat 
dynamics of this sector of the LIS. 

2. Methods 

2.1 Map area 

The glacial landform map covers an area of approxi­
mately 900,000 km2 and is bounded by the 60°N par­
allel to the south, the 110°W meridian to the east, the 
coastline of the Northwest Territories and Nunavut to 
the north (comprising the Beaufort Sea, Amundsen 
Gulf, Dolphin and Union Strait, and Coronation 
Gulf), and the edge of the Canadian Cordillera to 
the west (encompassing the Richardson and Macken­
zie mountains; see the red outline in Figure 1). The 
map area is made up of two physiographic regions: 
(1) the Interior Plains on the western side, which con­
tains the contemporary Mackenzie River Valley and 
Mackenzie Delta; and (2) the Canadian Shield on the 
eastern side, which is composed of Precambrian 
igneous and metamorphic rocks (Bostock, 2014; Slay-
maker & Kovanen, 2017). The Precambrian shield 
boundary divides these two physiographic regions 
(Figure 1) and the eastern map boundary, along the 
110°W meridian, was chosen so that the map covers 
the transition onto the shield area and subsequent 
change in subglacial bed composition. The map area 
covers approx. 6% of the LIS bed. 

2.2. Data 

Glacial geomorphological mapping was undertaken in 
ArcMap 10.6.1 using hill-shaded imagery derived 
from the ArcticDEM v3 mosaic with 2 m vertical res­
olution (Porter et al., 2018) and the Image Mosaic of 
Canada v1, which consists of Landsat bands 7 (red), 
4 (green) and 2 (blue) with 30 m horizontal resolution 
(Government of Canada, 2013). Figure 2(b) shows the 
coverage of the ArcticDEM across our study area at 
the time of map production. All publicly available 
surficial geological maps were georeferenced in an 
ArcMap environment to assist with the identification 
of landforms (Figure 2(a)). These maps include the 
following: 1:50,000 scale surficial geological maps 
(Bednarski, 2002; Bednarski, 2003a, 2003b, 2003c, 
2003d, 2003e, 2003f, 2003g, 2003h, 2003i, 2003j, 
2003k, 2003l, 2003m, 2003n, 2003o), p. 1:100,000 
scale surficial geological maps (Duk-Rodkin, 2009a, 
2009b, 2010a, 2010b, 2011a, 2011b, 2011c, 2011d; 
Duk-Rodkin & Huntley, 2018; Smith et al., 2021; 
Hagedorn et al., 2022); 1:125,000 scale surficial 

geological maps (Klassen, 1971; Rutter et al., 1980; 
St-Onge, 1988; Olthof et al., 2014; Geological Survey 
of Canada, 2014a, 2014c, 2015, 2016c, 2016d, 2017b, 
2017c, 2018a, 2018b, 2019a, 2019b, 2019c, 2019d, 
2022b, 2022c; Ednie et al., 2014; Kerr, 2014, 2018, 
2022a, 2022b, 2022c, 2022d, 2022e; Kerr et al., 2014, 
2016, 2017a, 2017b; Kerr & O’Neil, 2017, 2018a, 
2018b, 2019a, 2019b, 2019c, 2020, 2021; Morse et al., 
2016; Stevens et al., 2017; Paulen & Smith, 2022); 
1:250,000 scale surficial geological maps (Duk-Rodkin, 
1989, 1992; Duk-Rodkin & Hughes, 1992a, 1992b, 
1992c, 1992d, 1992e, 1992f, 1993a, 1993b; Duk-Rod­
kin & Couch, 2004; Veillette et al., 2013a, 2013b; Geo­
logical Survey of Canada, 2014b, 2016a, 2016b, 2017a, 
2022a), 1:500,000 scale surficial geological maps (Rut­
ter et al., 1993) (see Figure 2(a) for map locations). In 
addition, district-scale geomorphological maps (Craig, 
1960, 1965; Rampton, 1988), geomorphological and 
sedimentological studies (e.g. Huntley et al., 2008; 
Evans et al., 2021), a compilation map of the Macken­
zie mountains and foothills at the 1:1,000,000 scale by 
Duk-Rodkin (2022) and the glacial landform map of 
Brown et al. (2011) were also consulted. 

2.3 Landform mapping 

The study area was divided in half along the 65°N par­
allel and the two halves were mapped independently 
by the first two authors. To ensure consistency, a 
trial area was initially chosen for both researchers to 
map simultaneously. Their resulting maps were then 
compared by all team members and the glacial land­
form categories were defined using both polygon 
and polyline shapefiles. Following best-practice 
(Chandler et al., 2018), both researchers then used a 
repeat-pass method to identify each landform in 
their respective study areas using a variety of scales 
between 1:50,000 and 1:100,000. To ensure further 
consistency, once mapping was completed, the two 
researchers switched map areas and checked each 
other’s mapped landforms. The resulting landform 
shapefiles were then combined into a single map. 
Each landform has been identified from the imagery 
based on its morphology, spatial arrangement and 
association with other landforms as outlined below. 
The map does not include glacial landforms produced 
by local montane ice masses in the Mackenzie 
Mountains. 

2.3.1 Ice flow parallel lineations 
Ice flow parallel lineations include drumlins, flutes, 
mega-scale glacial lineations, streamlined bedrock 
and crag-and-tails (see Figure 3 for examples). 
These landforms represent a variety of depositional 
and erosional ridges formed subglacially that are 
elongate parallel to palaeo-ice flow (Boulton & 
Clark, 1990a, 1990b; Clark, 1993, 1999; King et al., 
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Figure 1. (a) Map showing the extent of the glacial geomorphological map produced in this study (red outline). Elevation data 
from the 30 Arc-Second DEM of North America (EROS, 2010). Major physiographic features and place names are shown (Natural 
Resources Canada, 2012). The dashed black line delineates the two major physiographic regions: the Interior Plains to the west 
and the Canadian Shield to the east. The location of Figures 3–8 are shown by the black boxes. (b) Inset map showing northwes­
tern sector of the North American Ice Sheet Complex at 22.1 cal ka BP drawn from Dalton et al. (2020) with the approximate 
position of the ice divides and the Keewatin ice dome (K) drawn in dark blue and the coalescence between the LIS and CIS 
shown by the blue dashed line (Margold et al., 2018). 

2009). Additionally, this category includes lineations 
that were identified by a distinct colour change in 
the Image Mosaic of Canada v1, and which may be 
related to a subtle topographic expression (Figure 
4). Each landform crest was drawn as a single line 
and the ice flow direction was drawn with an arrow 
where the stoss and lee side of the lineation could 
be identified. Ice flow parallel lineations usually 
occur in fields or swarms made up of hundreds of 
lineations with similar morphology, spacing and 
orientation. 

2.3.2 Subglacial ribs 
Subglacial ribs, also termed ribbed moraine, traction 
ribs or Rogen moraine, consist of large ridges of sedi­
ment that are formed subglacially and usually occur in 
swarms (Aylsworth & Shilts, 1989; Lundqvist, 1989; 

Hättestrand & Kleman, 1999; Dunlop & Clark, 
2006). Individual ribs may be curved and may have 
an asymmetric cross-profile (Figure 3(e, f)). Subglacial 
ribs often occur in fields made up of multiple ribs, and 
although the morphology and size of subglacial ribs is 
highly variable (Dunlop & Clark, 2006; Stokes et al., 
2016), ribs belonging to the same field often have a 
regular shape. 

2.3.3 Crevasse-squeeze ridges 
Crevasse-squeeze ridges are linear, curvilinear or 
inverted v-shaped ridges of glacial sediment (Figure 
5(a, b)) (Boulton et al., 1996; Norris et al., 2017). Cre­
vasse-squeeze ridges often form geometrical ridge net­
works, with straight or slightly arcuate ridges 
intersecting at right angles (Evans et al., 2016). Cre­
vasse-squeeze ridges can cross-cut each other. 
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Figure 2. (a) Map showing the extent of the glacial geomorphological map produced in this study (red outline) and previously 
published maps. The national topographic tiles that intersect the mapped area are labelled. The coverage of 1:250,000 (blue shad­
ing), 1:125,000 (green shading), 1:100,000 (purple shading) and 1:50,000 (orange shading) surficial geology maps from the Geo­
logical Survey of Canada are shown. The 1:100,000 scale maps are from Duk-Rodkin (2009a,2009b, 
2010a,2010b,2011a,2011b,2011c,2011d), Duk-Rodkin and Huntley (2018), Smith et al. (2021) and Hagedorn et al. (2022). The 
black boxes correspond to broad-scale glacial geomorphological maps. The yellow line shows the eastern extent of the glacial 
geomorphological map of Brown et al. (2011). (b) Map showing the coverage of the ArcticDEM. Hillshade imagery derived 
from the ArcticDEM is shown in grey (Porter et al., 2018) and the pink colour highlights the voids in the current coverage of 
the DEM. 

2.3.4 Moraines 
Terminal moraines occur as broadly linear, straight or 
arcuate-shaped ridges that form by the deposition or 
deformation of glaciogenic sediment at the margins 
of active glaciers (Figure 5(c, d)) (Benn & Evans, 
2010). Moraines can exhibit both sharp and broad 
ridge crests. Where the moraine is >200 m wide it 
was mapped as a polygon (moraine crest major) and 
where it is <200 m wide it was mapped as a polyline 
(moraine crest minor). Where the identification of 
the moraine is more speculative, it was mapped as 
an uncertain moraine. 

2.3.5 Hummocky terrain 
Hummocky terrain is an irregular undulating surface 
consisting of mounds of sediment alternating with 

depressions (Figure 6) (Brown et al., 2011; Stroeven 
et al., 2013; Lindholm & Heyman, 2016). Hummocky 
terrain displays a diverse range of morphologies, 
which can appear chaotic and irregular. Where 
distinct linear and curvilinear ridges occur 
within hummocky terrain they were marked with a 
polyline. 

2.3.6 Shear margin moraines 
Shear margin moraines consist of long (10–30 km), 
broad ridges of sediment located at the edge of 
a field of highly attenuated streamlined 
landforms (Figure 6) (Dyke & Morris, 1988; Stokes 
& Clark, 2002). Shear margin moraines were 
mapped as a polyline along the crest or center of 
the ridge. 
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Figure 3. Examples of different types of ice flow parallel lineations. (a) ArcticDEM-derived hillshade imagery and (b) geomorpho­
logical mapping of crag-and-tails and streamlined bedrock on the Canadian Shield. The stoss and lee side of the crag-and-tail can 
be inferred, giving the ice flow direction. Additionally, linear depositional ridges and flat-top accumulations of sediments are inter­
preted as eskers. (c) ArcticDEM-derived hillshade imagery and (d) geomorphological mapping of drumlins and mega-scale glacial 
lineations. (e) ArcticDEM-derived hillshade imagery and (f) geomorphological mapping of ice flow parallel lineations with a vari­
able direction superimposed on subglacial ribs. Meltwater channels, eskers and glaciofluvial complex are also mapped. (g) Arc­
ticDEM-derived hillshade imagery and (h) geomorphological mapping of wavy groove-plough lineations at lower elevations 
and drumlins at higher elevations. Note that the ridge crest between the groove-plough has been digitized. The location of 
these figures is shown in Figure 1. The incident light azimuth is 315°, the incident light angle is 35° and the vertical exaggeration 
is 2 across all DEM images. 
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Figure 4. Example of ice flow parallel lineations identified within the Image Mosaic of Canada v1. (a) ArcticDEM-derived hillshade 
imagery (incident light azimuth: 315° and angle: 35°; vertical exaggeration is 2) (b) Landsat satellite imagery with Landsat bands 7 
(red), 4 (green) and 2 (blue) (Image Mosaic of Canada v1; Government of Canada, 2013) and (c) geomorphological mapping. The 
location of this figure is shown in Figure 1. 

2.3.7 Meltwater channels meltwater channels form by water flowing along ice mar-
Meltwater channels form in three main locations in gins; subglacial meltwater channels are formed by chan­
relation to an ice mass: lateral and submarginal nelized flow at the bed of the ice sheet; and proglacial 
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Figure 5. (a) ArcticDEM-derived hillshade imagery and (b) geomorphological mapping of crevasse-squeeze ridges. (c) ArcticDEM­
derived hillshade imagery and (d) geomorphological mapping of major and minor moraine crests. Ice flow parallel lineations, 
meltwater channels and raised shorelines are also mapped. The location of these figures is shown in Figure 1. The incident 
light azimuth is 315°, the incident light angle is 35° and the vertical exaggeration is 2 across all DEM images. 

meltwater channels are formed by water draining away 
from the ice sheet terminus (Mannerfelt, 1949; Green­
wood et al., 2007, 2016; Margold et al., 2011). Here, we 
map subglacial and proglacial meltwater channels as 
one meltwater channel category as they can be difficult 
to distinguish based on geomorphology alone and, in 
many cases, the channels may transport different sources 
of meltwater at different stages of the ice sheet evolution. 
Thus, these meltwater channels have a wide range of 
sizes, morphologies and sinuosities, and contain bifur­
cating and anastomosing channels. Where the meltwater 
channel is <1 km wide we draw a polyline in the center of 

the incised topography and where it is >1 km wide we 
draw a polygon encompassing the entire channel. 

Lateral and submarginal meltwater channels are 
distinguished in our map as a regular series of parallel 
or subparallel channels that dip in the same direction 
and have low to medium sinuosity (Figure 6) (Green­
wood et al., 2007, 2016). Lateral and submarginal 
meltwater channels often occur as a sequence of chan­
nels perched on the valley sides and sub-parallel to 
local contours. Channel networks are uncommonly 
observed and they may terminate in downslope 
chutes. Lateral and submarginal meltwater channels 
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Figure 6. (a) ArcticDEM-derived hillshade imagery (incident light azimuth: 315° and angle: 35°; vertical exaggeration is 2) and (b) 
geomorphological mapping. The irregular undulating surfaces at high elevations is mapped as hummocky terrain (purple poly­
gon) and shear margin moraines mark the transition between the corridor of highly attenuated bedforms and the hummocky 
terrain. The two different categories of meltwater channels and eskers are also mapped. The location of this figure is shown in 
Figure 1. 

are drawn as a polyline in the center of the incised 
topography. 

2.3.8 Eskers 
Eskers are sinuous depositional ridges of glaciofluvial 
sand and gravel (Shreve, 1985; Hebrand & Åmark, 

1989; Storrar et al., 2014). Individual esker ridges 
often align to form networks up to 200 km long, but 
the morphology along the network may vary from 
continuous esker ridges to large esker complexes or 
deltas (Figure 7) (Margold et al., 2011; Storrar et al., 
2020). Individual esker ridges were mapped as a 
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Figure 7. Example of the glacial meltwater landforms. (a) ArcticDEM-derived hillshade imagery (incident light azimuth: 315° and 
angle: 35°; vertical exaggeration is 2) and (b) geomorphological mapping of flat topped deltas, esker ridges and complexes and 
glaciofluvial complexes. Meltwater channels and ice flow parallel lineations were also mapped. The location of this figure is shown 
in Figure 1. 

polyline along the ridge crest and eskers with a com­
plex morphology were mapped as a polygon around 
the esker complex. 

2.3.9 Glaciofluvial complex 
Glaciofluvial complexes are deposits of glaciofluvial 
sand and gravel that can have a wide variety of mor­
phologies, including flat topped, channelized, pitted 
or ridged deposits (see Figure 7). Glaciofluvial com­
plexes also form in a wide variety of environments, 
including within or at the terminus of meltwater 

channels, proximal to or associated with eskers, or 
perched on valley walls (known as kame terraces). 

2.3.10 Perched deltas 
Deltas form when sediment that is transported by a 
river or stream is discharged into a body of water 
(e.g. a lake). Deltas can be identified by flat top sur­
faces and steeply dipping frontal beds (Figure 7). 
Perched deltas are deposited into transient 
ice-dammed lakes that form when the natural water 
drainage path is blocked by a retreating ice margin 
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Figure 8. Examples of raised shorelines and aeolian dunes. (a), (c) ArcticDEM-derived hillshade imagery (incident light azimuth: 
315° and angle: 35°; vertical exaggeration is 2) and (b), (d) geomorphological mapping. The raised shorelines consist of beach 
ridges deposited parallel to the topography. The aeolian dune ridges are straight ridges that sometimes form a zig-zag pattern 
and can cross-cut the glacial landforms. The location of this figure is shown in Figure 1. 

(Mannerfelt, 1949; Stroeven et al., 2016; Dulfer & Mar-
gold, 2021). These deltas remain perched on the valley 
slopes once the glacial lake drains. 

2.3.11 Raised shorelines 
Raised shorelines are small (<200 m wide) continuous 
linear ridges or benches that form parallel to topogra­
phy but may be tilted over time due to differential gla­
cial isostatic uplift (Figure 8). Raised shorelines usually 
occur as a series and may stretch for tens of kilo­
meters. Raised shorelines form by the erosion or depo­
sition of sediment along a former shoreline, forming a 
wave-cut cliff or beach ridge. 

2.3.12 Aeolian dunes 
Longitudinal and parabolic aeolian dunes are distinctive 
ridges of aeolian sediment that range in size from a few 
hundred meters to tens of kilometers (Figure 8). Aeolian 
dunes often have sharp crests and they can occur as a field 
of dunes or as single longitudinal landforms. Fields of 
aeolian dunes have been previously identified across the 
once glaciated regions of Canada (Koster, 1988; Wolfe 
et al., 2004; Bateman & Murton, 2006; Norris et al., 
2017). We choose to include aeolian dunes as the only 

non-glacial landform in our map because, in northern 
Canada, they are relict features that likely formed by the 
windblown re-deposition of glaciofluvial and glaciolacus­
trine sediment within cold environments directly follow­
ing deglaciation. The dune crest is digitised as a polyline. 

2.4 Accuracy and completeness 

Our large study area (∼900,000 km2) is covered by 
high resolution remotely sensed data (2 m resolution) 
and, therefore, it is not possible to capture every glacial 
landform (for example, every ice flow parallel linea­
tion within a swarm of lineations). However, we 
believe our repeat pass mapping method using a var­
iety of scales has allowed us to map the representative 
distribution of landforms across the entire study area. 
We acknowledge that some of the mapped glacial 
landforms may be misinterpreted. For example, in 
some cases eskers can be difficult to distinguish from 
moraines, dykes and dunes, but, they are usually 
differentiated based on their high sinuosity and associ­
ation with other meltwater landforms. Similarly, small 
recessional moraines and crevasse-squeeze ridges can 
be difficult to differentiate. We acknowledge that our 
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record of the smaller glacial landforms, such as cre­
vasse-squeeze ridges, may be incomplete as their size 
is often at or below the resolution of our mapping 
data. However, our map can be used in combination 
with existing surficial geological maps that may cap­
ture these smaller glacial landforms, as they were 
often mapped with stereo pairs of aerial photographs. 

3. Results 

3.1 Ice flow parallel lineations 

In total, 76,630 ice flow parallel lineations were mapped 
throughout the study area. In general, our ice flow par­
allel lineations match, but add considerable detail to, 
the generalized flow maps of both Kleman et al. 
(2010) and Shaw et al. (2010) and the glacial geomor­
phological map of Brown et al. (2011). The mapped 
ice flow parallel lineations usually occur in discrete 
swarms of lineations with similar size, spacing and 
orientation, which can collectively form convergent 
and divergent patterns. Cross-cutting lineations occur 
in a number of locations and ice flow parallel lineations 
can be superimposed on subglacial ribs (Figure 3(e, f)), 
indicating that ice flow direction varied over time. 

The mapped lineations range in size from tens of 
meters to 30 km in length, with the longest of these linea­
tions having the dimensions of mega-scale glacial linea­
tions (MSGLs), which typically have elongation ratios 
>10:1 (Stokes & Clark, 1999)  and  range in length from  
a few thousand metres to tens of kilometres (Spagnolo 
et al., 2014) (Figure 3(c, d)). A wide variety of ice flow 
parallel lineations occur across the map area that may 
represent varying subglacial depositional and erosional 
environments, including drumlins, flutes, crag-and­
tails (Figure 3(a, b)), and MSGLs (Figure 3(g, h)). 

3.2 Subglacial ribs 

In total, 2396 subglacial ribs were mapped across the 
study area. The subglacial ribs vary in length (trans­
verse to flow) from 0.1 km to 15 km and they have a 
variety of shapes. However, ribs belonging to the 
same swarm usually have a regular size and mor­
phology. Subglacial ribs are located at a variety of 
elevations, occurring on the valley floors as well as 
on the high elevation plateaus. Ice flow parallel linea­
tions are often superimposed on subglacial ribs and 
the varying orientation of the ribs and lineations can 
indicate the ice flow direction has varied over time 
(Figure 3(e, f)) (Ely et al., 2016). 

3.3 Crevasse-squeeze ridges 

In total, 2110 crevasse-squeeze ridges have been 
mapped. They generally occur in fields as short (<3 
km), narrow, straight or wavy ridges of sediment 

with irregular spacing. They are sometimes superim­
posed on other subglacial bedforms, such as drumlins, 
and they are often orientated perpendicular to the sur­
rounding ice flow parallel lineations. 

3.4 Moraines 

A total of 44 major moraine crests (polygon) and 768 
minor moraine crests (polyline) have been mapped 
across the study area. Additionally, 210 uncertain mor­
aine crests have been mapped (polyline). Multiple mor­
aine crests can be linked together to form a moraine 
complex that is up to 70 km long and 2 km wide. The 
geometry of moraine crests is influenced by the topo­
graphy and they are often aligned with other ice mar­
ginal glacial landforms (Figure 5(c, d)). Moraine crests 
consist of both terminal and lateral moraines and they 
sometimes occur as a series of recessional moraines. 

3.5 Hummocky terrain 

Within our map, the majority of hummocky terrain is 
located in the northwest (Main Map) where large areas 
of hummocky terrain up to 250 km wide have been 
mapped. In the south, hummocky terrain is mapped 
on many of the high elevation plateaus of the Interior 
Plains, while it has a limited distribution the Canadian 
Shield to the east, where it is mapped north of Lac de 
Gras. Within the hummocky terrain polygons, 330 
ridges have been mapped along their crestline and 
these ridges display a wide variety of morphologies 
from broad ridges of hummocky sediment up to 5 
km wide to narrow, sharp-crested ridges (<200 m 
wide). We note that these ridges are sometimes 
mapped as moraine crests within the surficial maps 
from the Geological Survey of Canada (e.g. Duk-Rod­
kin & Hughes, 1992b,1992f). 

3.6 Shear margin moraines 

Seven shear margin moraines have been mapped in 
the study area and they range in length from 5.5 km 
to 13 km. All mapped shear margin moraines occur 
at the edge of hummocky terrain and mark the tran­
sition between attenuated bedforms and hummocky 
terrain (Figure 6). The mapped shear margin moraines 
occur at the edge of previously mapped paleo-ice 
streams (Margold et al., 2015a, 2015b). 

3.7 Meltwater channels 

In total, 42 major meltwater channels (>1 km wide), 
4266 minor meltwater channels (<1 km wide) and 
1338 lateral and submarginal meltwater channels 
have been mapped across the study area. These chan­
nels display a wide range of morphologies, occur 
across all elevations, and can be several hundred 
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kilometers long. The mapped meltwater channels are 
evenly distributed across the study area, but the 
majority of the major meltwater channels are located 
in the northern section. 

3.8 Eskers 

In total, 290 esker complexes and 9543 esker ridges 
have been mapped. While the eskers display a full 
range of orientations, a large majority of mapped 
eskers have an east–west orientation. Esker ridges 
have been mapped throughout the study area, how­
ever, more than half of these ridges (∼5200) occur 
on the Canadian Shield on the eastern side. Here, 
esker ridges often link together to form an esker net­
work several hundred kilometers in length. 

3.9 Glaciofluvial complex 

In total, 218 glaciofluvial accumulations have been 
mapped within the study area. They range in size 
from a few hundred meters to 20 km in length and 
are up to 1 km wide. They occur throughout the 
study area and are often associated with other degla­
cial meltwater landforms, such as eskers and perched 
deltas (Figure 7). 

3.10 Perched deltas 

In total, 57 perched deltas have been mapped across 
the study area. They range in size from a few hundred 
meters up to 5 km in length and width and sometimes 
occur as a series of successive deltas at different 
elevations. Perched deltas occur throughout the 
study area. 

3.11 Raised shorelines 

In total, 16,401 raised shorelines have been mapped. 
They usually occur as a series of parallel ridges or 
notched flat surfaces that range in size from a few hun­
dred meters to 30 km in length and they can be super­
imposed on other glacial landforms, such as drumlins 
and eskers. Raised glaciomarine shorelines have been 
mapped along the coastline of Nunavut and the 
Northwest Territories where they record the relative 
fall in sea level since the LGM. Inland, raised glaciola­
custrine shorelines have been extensively mapped 
through the center of the study area and these mark 
the former extent of glacial lakes in the region, includ­
ing glacial lakes McConnell and Mackenzie (Lemmen 
et al., 1994; Dyke, 2004). 

3.12 Aeolian dunes 

In total, 496 aeolian dunes have been mapped and they 
range in size from a few hundred meters to 22 km in 

length. The mapped aeolian dunes have a wide variety 
of morphologies, but usually occur as a field of dunes 
that have a regular size and morphology (Figure 8). 
Within our map area, aeolian dunes are mapped in 
small fields across the Interior Plains but we could 
not detect any on the Canadian Shield. 

4. Conclusions and implications 

The accompanying Main Map provides a detailed 
record of the glacial landforms of the northwest sector 
of the LIS. Supplementary figures S1 to S3 show that 
our map considerably adds to the landform record 
described in the existing literature (see Figure 2 and 
references therein) because it contains a high level of 
detail, similar to the landform content of many of 
the surficial geological maps produced by the Geologi­
cal Survey of Canada, but covers a much greater area 
(more than 82 NTS map tiles), allowing the mapped 
surficial glacial geomorphology to be interpreted on 
an ice-sheet-wide scale. Furthermore, this is the first 
broad-scale map of this region for many of our land­
form categories, including crevasse-squeeze ridges, 
shear margin moraines, lateral and submarginal melt­
water channels, glaciofluvial complexes, perched del­
tas, raised shorelines and aeolian dunes, which adds 
considerable detail when compared with the broad-
scale glacial landform map of Brown et al. (2011) 
(see supplementary figures) and the Glacial Map of 
Canada (Prest et al., 1968). Thus, this glacial geomor­
phological map provides additional information that 
augments our understanding of the complex history 
of the northwest sector of the LIS during the last degla­
ciation. Using the glacial inversion method, which is 
the standard approach employed in empirical 
palaeo-ice sheet reconstructions (e.g. Kleman & Borg­
ström, 1996; Kleman et al., 1997, 2006; Dulfer et al., 
2022), the map data can now be used to determine 
the configuration of the northwest sector of the LIS 
over time, and in particular, understand the dynamics 
of this sector of the ice sheet during the last 
deglaciation. 

Software 

The hillshade surfaces were produced from the Arctic-
DEM data within ESRI ArcMAP 10.6.1. On-screen 
digitizing of landforms was also undertaken in Arc-
MAP 10.6.1 in the ESRI shapefile format. Once map­
ping was complete, a pdf map was exported from 
ArcMAP 10.6.1 and the final map was created in 
Adobe Illustrator 2022. 

Availability of data 

The ESRI shapefiles produced for each landform cat­
egory are supplied with this paper. 
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