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Abstract 

We review and analyze the farming (upstream agribusiness supply chain) research literature since 1965 to 

identify farming research opportunities for operations management (OM) researchers. A majority of reviewed 

papers in our corpus, until the turn of the 21st century, primarily focus on improving operational efficiency and 

effectiveness of farming using optimization techniques. However, during the last two decades, farmers’ welfare 

and the interests of other stakeholders have drawn OM researchers’ attention. This expanded focus on farming 

research has become possible due to the proliferation of mobile communication devices and the Internet, as well 

as advancements in information technology platforms and social media. Our review also shows that there is a 

paucity of OM literature that leverages increased data availability from the emergence of precision agriculture 

and blockchain to address major challenges for the farming sector emanating from climate change, natural 

disasters, food security, and sustainable and equitable agriculture, among others. Big data, in conjunction with 

opportunities for field-based experimentation, artificial intelligence and machine learning, and integration of 

predictive and prescriptive analytics, can be leveraged by OM scholars engaged in farming research. We zero in 

on specific questions, issues, and opportunities for research in farming.  
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1. Introduction  

The motivation for this paper is grounded in the importance of farming as an important sector of the 

economy in all countries. The United Nations has articulated Sustainable Development Goal 2 as “End hunger, 

achieve food security and improved nutrition and promote sustainable agriculture [...] These worrying trends 

coincide with the diminishing availability of land; increasing soil and biodiversity degradation; and more 

frequent and severe weather events. The impact of climate change on agriculture compounds the situation.” 

Thus, the agribusiness sector is expected to face daunting challenges in the upcoming decades that include but 

are not limited to climate change, food security, disruptions from sustained or erratic shifting patterns of floods 

and famine in agricultural regions, forest fires, and other natural disasters. Additional challenges will emanate 

from ever-increasing demand due to the growth in global population, notwithstanding shifts in consumption 

away from meat-based protein to plant-based protein, largely to alleviate the environmental burden imposed by 

the animal husbandry industry (Aschemann-Witzel et al. 2021). Advancing equitable and sustainable agriculture, 

while also warding off any regional geo-political and social conflicts arising from disputes associated with 

securing the availability of water, energy, and land resources for agriculture, will pose major challenges (Serraj 

and Pingali 2018, Basso and Antle 2020). These challenges will shape future operations management (OM) 

research to leverage technology advances and facilitate more transparent, timely, dynamic, and targeted 

decision-making for various stakeholders in the agribusiness sector.  

Increased digital connectivity and emerging technologies will create data-rich environments for 

facilitating future OM research on farm operations. Major sources of data in this environment will include 

satellite-based remote sensing data, secondary data collected by governmental agencies, big data on soil and 

crop characteristics via precision agriculture, crop imaging data through the use of drones, weather data, social 

media data, data gathered via information technology platforms, and transaction data in value chains through 

blockchain technology. Big data, in conjunction with opportunities for field-based experimentation, can be 

leveraged by OM scholars in using both predictive and prescriptive analytics in an integrated manner to address 

major challenges for this sector. 

All these factors motivated us to review research in agribusiness. Agribusiness is a vast topic of study 

that includes farming, processing of produce, and distributing to the end consumer. However, the scope of this 

paper is limited to farming operations - the upstream end of the agribusiness supply chain - due to space 

constraints. Our study primarily focuses on farm produce, but we also briefly discuss forest planning, planting, 

and harvesting of timber primarily to keep this area under the radar of POM researchers. 

OM researchers are the primary audience of this paper. Therefore, we review published literature and 

provide directions to OM researchers for future research opportunities in farming. We searched for the relevant 

papers in operations management (OM) and related journals, and a recently published book, “Agricultural 

Supply Chain Management Research Operations and Analytics in Planting, Selling, and Government 

Interventions'', edited by Boyabatli, Kazaz, and Tang (2022). We found 298 papers, whose details are given in 
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Endnote1. The farming-related research in OM has gone through an evolutionary process during the last six 

decades in terms of topical and methodological coverage. Until the end of the last century, the primary focus of 

OM farming research was to improve operational efficiency and efficacy. However, at the turn of the century, 

the research landscape started changing with increased focus on stakeholder management that also entails farmer 

welfare and sustainability issues while recognizing the opportunity to leverage the Internet and proliferation of 

mobile communication devices to empower marginal farmers2. The launch of e-Choupal by ITC Limited is a 

good example of the earliest intervention envisioned two decades ago to develop a rural digital infrastructure in 

India to create an e-marketplace to empower the farmers (Annamalai and Rao 2007, Chen et al. 2013). In the 

ensuing years, researchers also realized the potential for the enhanced role of emerging technologies, precision 

farming, new data collection and sharing techniques, and artificial intelligence and machine learning to address 

major challenges for agriculture (Spanaki et al. 2021, Rejeb et al. 2022). Issues related to Internet of Things 

(IoT), satellite imagery, drone imaging, blockchain, risk assessment, sustainability concerns, and government 

intervention in the presence of strategic farmers and cooperatives also emerged in the farming-research portfolio 

(Mondal et al. 2019, Pranto et al. 2021, Zhang et al. 2021).   

The remainder of this paper is divided into four sections. In Section 2, we present an evolution of farming 

research. Section 3 discusses the ‘Stakeholder Engagement for Farming in a Digital Era’. ‘Operational 

Efficiency’ is discussed in Section 4. At the end of each sub-section in Sections 3 and 4, we also identify some 

specific opportunities for future research based on identified gaps in the literature. In section 5, the paper 

concludes by identifying and discussing emergent themes for future research that have not been addressed well 

in the extant literature. 

2. Evolution of Farming Research 

We group the farming literature into two major categories: “stakeholder engagement for farming in a 

digital era” and “operational efficiency in farming’’. Figure 1 gives the road map of this paper and lists various 

functions covered in these two categories. 

 

Figure 1: Road Map of the Paper 
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In this section, we provide the evolution of the research literature in farming. We searched for relevant 

research in operations management (OM) and related journals and selected 256 relevant papers (called corpus 

in this paper). Figure 2 shows the research growth using a 5-year moving average of the published papers 

spanning almost six decades, from 1965 to 2021. The growth rate is slow and steady, with an increase of about 

0.62 paper per year over the last 15 years. However, this growth rate seems rather low for this sector of the 

economy. We hope this paper will open avenues for more research. 

We also analyzed the evolution based on the following three criteria: purpose of analysis (predictive vs. 

prescriptive), analysis techniques, and type of data used. Overall, based on the corpus, prescriptive research 

(80.5%) attracted more attention from researchers than predictive research (19.5%). Figure 3 shows that 

prescriptive analytics always outnumbered predictive analytics. A possible reason for this may be the 

unavailability of data required for predictive analytics, discussed further in the rest of this manuscript. On the 

other hand, the figure also shows that the prescriptive curve has recently plateaued, indicating saturation of stand 

alone prescriptive analytics in farming operations. We believe that emerging OM research focused on 

prescriptive analytics in farming operations will increasingly involve integration with predictive analytics.  

 

Figure 2: 5-Year Moving Average of Evolution of Upstream Agribusiness Research 

From a data perspective, we use the commonly accepted categories of data type in OM research, which 

include: archival (secondary data), hypothetical (simulated), real (data for setting model parameters based on a 

real example or studying an actual event or case), and survey (primary). See for example, Gupta et al. (2016). A 

term of recent origin is “big data,” and we have added this term as another category. Figure 4 shows the growth 

of publications based on data type. Based on the corpus, papers most commonly used real data (41%), followed 

by hypothetical (24.6%), no data (20.7%), archival data (12.1%), survey data (1.2%), and big data (0.40%).  
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Figure 3: Growth of Publication Based on Purpose of Analysis           Figure 4: Growth of Publications Based on Data Type (Five-year Count) 

Table 1: Distribution of Papers for Purpose of Analysis, Data Type, and Analysis Technique Perspectives 
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An analysis of the techniques used shows that mathematical programming is used in the maximum 

number of papers (57.0%), followed by statistical analysis (10.5%), decision analysis (9.8%), game theory 

(10.5%), heuristics (4.7%), simulation (3.9%), meta-heuristics (3.1%), and artificial intelligence (AI) and 

machine learning (0.4 %). In Table 1, we further illustrate the distribution of papers mentioned in Figure 1 from 

the perspective of data type and analysis techniques. 

In the next section, we provide an overview of the emerging farming-research era, wherein scholars 

have largely focused on understanding and influencing stakeholder interactions (e.g., the role of government 

intervention, contracting, and cooperatives) and leveraging technology and platforms to address challenges in 

the areas of finance, insurance, and sustainability to improve farmers’ welfare. 

3. Stakeholder Engagement for Farming in a Digital Era 

Technological developments, concerns for farmers, focus on ending hunger, achieving food security, 

improved nutrition, and promoting sustainable agriculture are fueling the recent developments in agribusiness 

research. Several researchers have focused on understanding and shaping the role of government intervention 

and leveraging information technology and platforms to enhance farmers’ welfare. Studies in loan and insurance 

management for farmers, as well as contracting between farmers and other stakeholders, have also been a 

significant area of research over the last decade. Increased attention to issues such as climate change, food 

security, and welfare of marginal farmers has also led to significant research on sustainable agriculture. In this 

section, we discuss these developments under the following five categories: (1) Government Policy and 

Interventions, (2) Technology and Platforms, (3) Farm Finance and Insurance, (4) Sustainability, and (5) 

Contracting and Cooperatives. 

3.1. Government Policy and Interventions 

Farming policies established by governments generally provide subsidies to supplement farmers’ 

income, pricing to influence commodities' cost and supply, and guidelines on sharing information or managing 

information systems. The goals of these policies include maximizing farmers' profits and social welfare. The 

majority of papers (twenty papers) on this topic use prescriptive analytics, followed by predictive analytics (eight 

papers). Research focused on public policy and government intervention has started considering stakeholders to 

be strategic and hence relied predominantly on game-theoretic frameworks. Among prescriptive works, eleven 

papers have not used any data, and the rest have used real data. Among predictive ones, four studies utilize real 

data, and four use archival data.  

The following studies investigate various policies using predictive analytics in conjunction with archival 

data. Amores and Contreras (2009) use data envelopment analysis to develop an allocation structure for 

government subsidies that improve the production quality and the environmental and social values of agriculture. 

Serra et al. (2014) consider a sample of arable crop farms in the Catalan region and propose farm-level technical 

and ecological efficiency measures that can account for the uncertain conditions faced during farm production. 
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Their findings indicate that technical efficiency is a little lower in adverse conditions than in the right growing 

conditions. They also find that nitrogen pollution can be substantially lower under good vis-à-vis terrible 

growing conditions. Minviel and De Witte (2017) use robust conditional frontier modeling along with 

nonparametric econometrics to estimate the influence of subsidies on farm efficiency. Their findings from using 

an unbalanced panel data from 313 French farms suggest that subsidies negatively affect farms’ technical 

efficiency (i.e., efficient use of conventional inputs and outputs). Ayouba et al. (2019) introduce a price 

advantage measure as the difference among efficiency scores calculated with quantity-based and value-based 

data. This measure captures the increase in the farm’s profit rate because of a favorable input and output price 

setting. They show the application of this measure using a French farm’s dataset in the context of successive 

common agricultural policy reformations.  

The following studies utilize real data in conjunction with predictive analytics. Sumpsi et al. (1997) use 

the data on family farms in Spain to study farmers’ behavior to government policies. They find that the behavior 

of farmers (regarding cost minimization of working capital, hired labor, and risk) depends on multiple functions 

and cannot be explained by a simple objective function. Using a dataset from farm cooperatives in Japan, 

Sueyoshi (1999) investigates distribution functions of efficiency among two groups of farmers for new policies. 

To do so, he proposes a ranking system using data envelopment analysis (DEA) in conjunction with efficiency 

analysis and index measurement. Cherchye and Van Puyenbroeck (2007) use non-parametric DEA to estimate 

the profit when the government or policy-makers do not provide or share complete information on prices and 

technology used in different farms. They show the application of their technical contribution using German farm 

data, wherein the information on technology and prices are not complete. García-Alonso et al. (2010) use 

artificial neural network models to predict the gross margin of farms that can be used by governments to improve 

subsidy allocation. The authors examine the effectiveness of their approach vis-à-vis using multiple linear 

regression models.  

Another stream of research employs prescriptive analytics using no data. Cabrini et al. (2004) utilize 

portfolio theory in conjunction with nonlinear integer programming to identify an efficient combination of 

specific advice to farmers on how to market their products and support them in their attempts to manage price 

risk. Tang et al. (2015) examine whether farmers should directly use information (e.g., market information) to 

improve their production plans or adopt agricultural advice from the government or non-governmental 

organizations (NGOs) to enhance their operations. They model this interaction with a Cournot competition for 

two farmers under uncertain market demand and process yield. Their result shows that in equilibrium, farmers 

use market information to increase their profits. In a follow-up paper, Chen and Tang (2015) investigate whether 

the above information creates economic value for farmers. By analyzing a similar Cournot competition game, 

they show that private signals produce value by increasing farmers' welfare. Nevertheless, this value declines as 

the public signal becomes available. Liao and Chen (2017) consider a problem wherein they study asymmetric 

information structures of farmers’ information management and utilization instead of focusing on private and 
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public information. They assume that farmers obtain information indirectly from local social networks or directly 

from the government or NGOs. Hence, they may have very different information channels. The results of Liao 

and Chen’s (2017) game theoretic model show that a farmer may be more (less) productive when seeing a 

negative (positive) signal, and she may benefit from the improvement of a signal she cannot see. Additionally, 

the farmer may become worse off when another farmer provides a signal to her. He et al. (2018) study a Cournot 

model under asymmetric market information and examine the formation of informational coalitions between 

farmers. Their findings provide guidance on how farmers' efforts link farmers in developing countries by 

integrating market information. Their results indicate that the government or NGO should give the right amount 

of market information to the right farmer, and providing too much information leads to more ineffective 

production.  

Liao et al. (2019) examine the effect of information provision policies on farmer welfare in developing 

economies wherein producers lack appropriate and timely information for decision-making about their 

production strategies and marketing. When market information is given free of charge, their results show that 

giving information is always helpful to farmers at the individual level. However, giving information to all 

farmers may not be welfare-maximizing for all farmers. Jiang et al. (2021) analyze the effectiveness of two 

government subsidy programs designed for farmers producing bioenergy to increase their supply for sale to a 

power plant. The subsidy programs include schemes, wherein farmers are offered subsidies a) based on quantity 

of bioenergy; b) to cover losses when market price for bioenergy falls below a trigger price. Chintapalli and 

Tang (2021a and 2021b) investigate the effectiveness of credit-based minimum support prices (MSP) wherein 

the government credits risk-averse farmers, in case the prevailing market price were to fall below the stated 

MSP. In Chintapalli and Tang (2021a), the authors analyze the impact on both net benefit to farmers and net 

social value after accounting for the cost of implementing MSP. In Chintapalli and Tang (2021b), the authors 

analyze the impact of cost subsidy and MSP on net benefit to farmers and net surplus. Ye et al. (2021) analyze 

the impact of a farmer subsidy program vis-à-vis a producer subsidy program in a setting wherein risk-averse 

farmers with limited land capacity and yield uncertainty produce biomass feedstock to supply to a bioenergy 

producer. The strategic interaction between the government, farmer, and producer of bioenergy is analyzed while 

also considering subsidy budget constraints and environmental benefits. Guda and Dawande (2021) develop a 

model to evaluate the efficacy of guaranteed support price schemes offered in developing countries to small 

farmers and underprivileged consumer populations. They analyze a Stackelberg game between a social planner 

and small farmers while incorporating the strategic behavior of the farmers and the consuming population that 

falls into two categories, i.e., above and below the poverty line. 

Another body of prescriptive analytics utilizes real data. Wade and Heady (1978) study a governmental 

agency that evaluates multiple alternative sediment control policies to provide optimal planning on technical, 

regional, and cost distributions of agricultural production. Their results support decision-makers to form national 

sediment control plans. Focusing on pricing and related policies, Baum et al. (1984) introduce a joint application 
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of optimization and simulation methods to develop a recursive programming model that considers the 

uncertainty of market prices and government policies in managing production strategies and decision-making in 

farms. They assess their model's quality by running two simulations with stochastic commodity prices and yields 

for a Texas farm and provide credible and different results for the various economic environments. Owsiński 

and Romanowicz (1985) develop a linear programming model and use sensitivity analysis to examine the 

rationalization of agriculture policies in a country and its impact on pricing the commodities. Their mathematical 

contributions provide guidance on excluding the impacts of specific parameters on some variables in the 

sensitivity analysis. Önal (1988) uses a mathematical model to investigate the social and economic results of 

government intervention policies (i.e., pricing and allocation of resources) in agriculture. The result shows that 

various support policies lead to welfare transfers among the business environment participants, keeping the 

sectoral production and overall social welfare almost unchanged. Their findings also explain that for a cogent 

allocation of scarce resources, specific weight should be given to those proposals supporting farmgate demand 

for increasing agricultural incomes and the agribusiness contribution to the national economy. Önal et al. (1995) 

examine the effect of increasing government subsidies for small farmers on their farm productivity and income 

distribution. Their mathematical model results show that a significant increase could be created in farmers' 

performance (i.e., growth in their output) and welfare distribution (i.e., equity) by reallocating subsidized 

government credits (i.e., agricultural loans at a subsidized rate). Teich et al. (1995) consider a negotiation 

between the government and the agriculture union to deal with income policy for Finland's agriculture industry. 

Their decision support system provides guidance on how meditation techniques can help structure the 

preferences and pricing policies and find an agreement for a negotiation problem. Sueyoshi et al. (1998) employ 

data envelopment analysis to propose a new approach for bilateral performance comparison of farming 

cooperatives using production and cost features. Using a dataset from farm cooperatives in Japan, they perform 

a bilateral performance comparison to provide policy-makers a basis to reorganize the Japanese agriculture 

industry. Alizamir et al. (2019) use game theory to examine (1) market price drops below a specific price (i.e., 

to offer price loss coverage) and (2) when farmers' revenue falls below a threshold (i.e., to provide agriculture 

risk coverage). The authors find that the first subsidy policy always prompts farmers to plant more plots (i.e., 

pieces of land, lots). However, farmers may plant fewer plots under the second subsidy policy, driving a lower 

crop supply. Both farmers and consumers may be better off under price loss coverage for an extensive range of 

parameter values, even when the reference price depicts the past average market price. They confirm with the 

data that their guidelines are backed by farmers' enrollment statistics for each subsidy program. Akkaya et al. 

(2021) examine the impact of policy instruments of taxes and subsidies on the adoption of innovative production 

methods in agribusiness, wherein there is significant uncertainty faced with the adoption of the innovative 

method that also entails learning-by-doing. The authors consider a setting wherein an agribusiness has access to 

both traditional and innovative methods and consumers have a higher valuation for the output using the new and 

innovative method. In the next section, we present papers on the technology and platforms.  
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Judicious adoption of agricultural innovation can benefit farmers by enhancing their productivity; 

lowering their environmental impact; and handling the challenges related to soil, weather, and market 

requirements. Fostering innovation usually demands the government set policies that incentivize farmers to 

experiment with new technologies and practices. Further research is needed to understand the determinants of 

farmers' willingness to experiment with the adoption of specific agricultural innovation in a dynamic setting 

where communication among farmers may result in farmers' learning from each other. This in turn can inform 

the government in a timely manner to make any changes in their policy required to achieve the desired impact.  

3.2. Technology and Platforms 

The emerging era is witnessing enhanced use of technology, precision farming, and IT platforms 

facilitated by new data collection and sharing techniques (e.g., Chen et al. 2015, Zhou et al. 2020). While satellite 

imaging for agriculture has been prevalent over several decades, Internet of Things (IoT), drone imaging, and 

blockchain are beginning to permeate farming operations. Over the upcoming decade, big data is expected to 

lead to better predictive and prescriptive modeling in support of farm operations, resource management, and 

other critical functions that support farming. Since the advent of the 21st century, farmers’ welfare has moved 

towards taking the center stage amongst stakeholders in agribusiness, in both developing and developed 

economies. e-Choupal is a good early example of the impact of technology on the benefit of farmers in a 

developing economy. e-Choupal in India is an initiative of ITC Limited that provides real-time information to 

farmers to align their farm output with market demand. This also helps ITC in its procurement activities. 

Developments in information technology are helping farmers to get information about price shifts, changing 

weather patterns, crop production techniques, and new practices to produce crops. We find nine papers in the 

literature that are related to information technology. Four of these studies use predictive analytics, and five 

papers use prescriptive analytics.  

We first present studies using predictive analytics. Aubert et al. (2012), based on survey data, develop 

a model explaining the difficulties in adopting precision agriculture technology. They utilize technology 

acceptance and diffusion of innovation theories. Their empirical analysis employs survey data from farms in 

Canada. Their findings emphasize the value of compatibility among precision agriculture technology elements 

(such as ease of use, observability, perceived resources, and perceived usefulness) and the central role of farmers' 

expertise. Two papers used archival data with a focus on predictive analytics. Parker et al. (2016) show that, in 

addition to improving market efficiency, timely and reliable information acquired through information and 

communication technologies decreases the geographic price dispersion of crops and also the rate at which prices 

converge. They utilize a data set from a text message service in India that gives daily price information to market 

partners. Petridis et al. (2020) determine factors that influence the ability of firms to innovate or imitate in 

agribusiness using information technologies. They find that innovation is positively correlated with income, 

female employment, export practices, and the level of training of farmers. In contrast, imitation is improved in 

nations whose cultures are distinguished by uncertainty avoidance.   



 

 

11 

We next focus on studies using prescriptive analytics. Using prescriptive analysis with hypothetical data, 

Zhang and Goddard (2007) develop a Web-based Decision Support System (DSS) wherein a layered software 

structure helps design the Web-based DSS, and a component-based framework executes the Web-based DSS in 

a distributed environment. They apply this Web-based DSS to the National Agricultural System. For example, 

this system develops an index indicating the moisture departure for a region, executing a simple supply-and-

demand model for a water balance equation. 

The following three studies use prescriptive analytics with no data. Lowe and Preckel (2004) discuss 

the challenges in agriculture and farming and see a need for efficiency and modern decision technology tools 

(such as computers and sensor technology). They propose some new and significant issues such as product 

proliferation and precision production facing the industry that could be resolved by new technology. Chen et al. 

(2013) develop a game theoretic model to study the ITC's network platform for farmers in India. They examine 

ITC's incentive for farmers, which is trading the products directly to ITC at the market price in the regional 

market, and investigate the farmers' strategic quantity decisions. They find that the implicit agreement functions 

as a formal contract, despite the price elasticity of the regional market. Chen et al. (2015) develop a stylized 

model to study the peer-to-peer interactions among farmers when both knowledge learning and sharing are 

possible through online forums. An expert constantly watches the platform and answers the farmers’ questions 

but may be non-responsive sometimes due to the limited capacity. Their results show that employing more 

workers to monitor the platform regularly damages peer-to-peer cooperation. Kurkalova and Carter (2017) 

employ the resource-based view to evaluate a specific green technology (i.e., yield monitors to reduce the use 

of liquefied petroleum as a source of energy) using a five-step simulation modeling approach to estimate the 

benefits of this technology represented as dollars saved and decreased greenhouse gas emissions in agriculture 

businesses. Zhou et al. (2021) analyze an asymmetric two-stage game to understand whether a wider 

dissemination of market information, facilitated by government and non-governmental organizations in 

developing countries, is always beneficial to farmers. They find that optimal information dissemination policy 

depends on the nature of competition, uncertainty in yield, source of funding, and the overarching goal of the 

social planner.  

While recent research provides a foundational start, there is a need for future research in OM to develop 

economic models that can offer more targeted insights for farmers by capturing the strategic interactions between 

farmers, buyers, platform providers, and government interventions in an increasingly transparent and data-rich 

environment facilitated by precision technologies and platforms. There is a need to understand what would drive 

the adoption of a specific portfolio of precision agriculture technologies by farmers in their operations and 

facilitate farmers’ requisite engagement with platforms, particularly for marginal and small farmers in 

developing or underdeveloped countries. Empirical research can help estimate the impact of the adoption of 

precision agriculture technologies, information technologies, and platforms on metrics of interest to 

stakeholders.  



 

 

12 

3.3. Farm Finance and Insurance  

Farm finance papers focus on investment in farm resources, crowdfunding, factors affecting the return 

on investment, and farmers' income using empirical as well as mathematical models. Scholars use predictive 

analytics (in two papers) and prescriptive analytics (in six papers) to examine these topics. Data sources for these 

studies include archival data (one paper), real data (three papers), no data (four papers), and primary data (one 

paper).  

Among studies that use predictive analytics, Martins and Lucato (2018) examine the effect of the 

production factors, and their empirical analysis of 152 agriculture cooperatives shows no significant correlations 

between the production structures and the financial performance of cooperatives. da Silva et al. (2020) develop 

a two-part fractional regression model with conditional free disposal hull efficiency (i.e., a non-parametric 

method to measure the efficiency of production) responses to support two-stage regression analysis. Output is 

gross income, and inputs are land and labor expenses and other technological inputs.  

Papers undertaking prescriptive analytics using real data include Colin (2009), Heikkinen and Pietola 

(2009), and Viaggi et al. (2010). Colin (2009) develops a simulation for a financial valuation model to study the 

impact of the acceleration of the sugarcane factory implementation on the value of the sugarcane agro-industrial 

complex. Heikkinen and Pietola (2009) develop a dynamic stochastic programming model for a Finnish farm to 

find the optimal investment in crop production. They consider the loss due to income uncertainty for each period. 

Viaggi et al. (2010) use an integer programming model to simulate investment management in various policy 

and price scenarios, focusing on the decoupling of the Common Agricultural Policy (CAP). Their multi-objective 

farm-household dynamic integer programming model considers the features of individual assets, including aging 

and persistence, through the explicit consideration of transaction costs.  

The following four papers perform prescriptive analytics without using any data. Zhou et al. (2020) 

examine how crowdfunding, the practice of funding a project or venture by raising many small amounts of 

money from a large number of people, can help poor farmers. Their result, derived from a game-theoretic model, 

shows that the optimal choice depends on the interplay between the customer’s willingness to pay and the cost 

coefficient for a quality investment. Using a Markov decision process, Qian and Olsen (2020) examine the 

coordination of operational and financial choices of agricultural cooperatives. In this model, producers’ equity 

is expected to be in proportion to their crop supplied. They characterize the optimal solution and provide insights 

into how the co-ops manage the risk and cash position.  

Insurance mitigates the risk of lending to the farmers and enables repayment of loans, lessens budget 

variations of expenditures by shifting climatic risk to the private sector, raises fiscal period during shock cycles, 

and helps maintain agriculture growth, which likely provides job creation. Assa et al. (2021) propose a revenue 

insurance policy that can increase investment in agriculture and also be a substitute for government subsidies. 

They use total profit (Pareto optimal) and the Stackelberg game to show the impact of commodity price insurance 
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on risk management and find that insurance will enhance the impact of the investment. Yi et al. (2021) compare 

financing options for a cash-constrained farmer using mathematical programming. They find that the presence 

of an intermediary finance platform has a positive impact on the welfare of the farmer and the total profit of the 

supply chain.  

There is a significant opportunity to understand the interplay between financial decisions and equity 

redemption for marginal and small farmers in a cooperative. Receiving a loan can be difficult because co-op 

members’ equity is not static and guaranteed; defaulting on a loan could also make this problem more serious. 

Also, governments have indicated that activities that do not deliver punctual redemption of previous equity are 

unfair. Researchers are encouraged to investigate how constraining the liquidity condition on loan repayment, 

and equity redemption may impact the operational and financial decisions within proportional investment 

cooperatives, wherein a farmer’s equity is based on the amount produced at a farm. In the next section, we 

present papers on sustainability in farming.  

3.4. Sustainability 

Farming operations impact the natural environment as well as societal aspects. Ecological considerations 

include building and maintaining healthy soil; managing the water system; decreasing air, water, and climate 

pollution; and promoting biodiversity (Dalsgaard et al. 1995, and Darnhofer et al. 2010). From the social aspect, 

farms and agribusinesses need to plan to manage and improve health and social equity, human rights, labor 

rights, working conditions, social responsibility and justice, community well-being, and resilience (Bacon et al. 

2012). We find five papers that use prescriptive analytics with no data, or with hypothetical and real data. Two 

papers utilize predictive analytics in conjunction with archival data, with a focus on the environmental issues or 

the issues at the environment-economic interface. 

Using prescriptive analytics with no data, Hosseini-Motlagh et al. (2020) utilize an evolutionary game 

to study the behavior of financially constrained farmers who receive financial support from a distributor, based 

on their sustainability and investment decisions. They study how farmers strategically make decisions regarding 

environmental issues (i.e., emission reduction) considering the time value of money. They find that providing 

financial support to promote sustainability leads to a win-win situation for farmers and a distributor. Generally, 

financial support for sustainability improves the farm's environmental sustainability and the demand for the 

farm’s output, while it supports financially weak farmers to remain in the market and enjoy higher social welfare.   

The following two papers employ hypothetical data in conjunction with prescriptive analytics. 

Prabodanie et al. (2014) consider the tradable nitrate permit market for farmers and investigate a set of alternative 

linear programming models to find optimal permit prices in advance. They find the market price structures for 

different environmental conditions and obtain the physical and economic conditions required to assure consistent 

prices. Wang et al. (2020) develop a Quality Improvement Activities (QIA) framework to study the tradeoffs 

between carbon emission, quality, and time in perishable food production. Their multi-objective optimization 
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model generates the three-dimensional Pareto front to facilitate decision-making. Their results show that farmers 

can mitigate quality uncertainty but cannot change the farm's random nature. Randomness here refers to the 

amount of random time needed to process a task on a farm and the amount of carbon emission created.  

The following two papers utilize real data to run their prescriptive analytics. Elfkih et al. (2009) use goal 

programming to examine sustainability issues of irrigated agriculture. The motivation for this research comes 

from the European “Water Framework Directive.” They observe that solutions acceptable for environmental 

sustainability do not seem reasonable for profitability, and vice versa. Thus, they suggest looking for best-

compromise solutions among the solutions to design sustainable cropping patterns. dos Santos et al. (2010) study 

a farm production problem wherein they must meet the demand and optimize both the division of areas in plots 

and crop rotation plan while considering ecological constraints. The ecological constraints include the 

interdiction of particular crop sequences and the regular insertion of manures. Their proposed linear formulation 

helps farmers to maximize land occupation while considering the ecological constraints.  

Gomes et al. (2009) and Picazo-Tadeo et al. (2012) use archival data for predictive analytics. Focusing 

on a group of farmers in the Brazilian Amazon and using DEA models, Gomes et al. (2009) examine the 

sustainability performance of those farms. They find that the maintenance of production systems to keep the 

efficiency of both cultivation processes and labor at a high level is the primary factor in agricultural 

sustainability. Picazo-Tadeo et al. (2012) assess the ecological performance of Spanish olive-growing farms 

using directional distance functions and data envelopment analysis. In the next section, we present papers on 

contracting and cooperative farming.  

Future research can focus on leveraging big data and integrating predictive analytics with prescriptive 

analytics to enable targeted government subsidies and other interventions to minimize the impact of agricultural 

runoff of pesticides and fertilizers into lakes, streams, and groundwater. As one examines past research focused 

on sustainability in agriculture, it is also clear that OM research in agriculture needs to pivot considerably 

towards enabling the achievement of the United Nations’ Sustainable Development Goals set up in 2015. Studies 

on the social or socio-economic aspects of sustainable farming are significantly lacking in OM literature. Topics 

such as agricultural and labor management, education and housing conditions for the workforce, safety and 

health hazards caused by pesticide spraying for the farm workforce, and improvement of rural areas around 

farms and their community are emerging topics in other management fields. One needs to utilize the data at the 

farm level or within co-ops to investigate mentioned social aspects of sustainability in future research. 

3.5. Contracting and Cooperative Farming 

Contracts between farmers and buyers are established to guarantee fair compensation for farmers while 

ensuring the supply of products with specified characteristics is delivered on time to the buyers. Seven papers 

in this section use prescriptive analytics while using no data, whereas only one paper uses predictive analytics 
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in conjunction with archival data. We divide papers into two categories: papers focusing on contracting features 

and those focusing on contracts for cooperative farming. 

We first present the contracting papers that focus on prescriptive analytics. Ryan (1999) models a 

bargaining scenario between a farmer and a landowner, wherein any agreed production plans and weather 

forecasts play an intervening role. Results show that the two players may agree on the details of contingent 

production plans, contingent resource evaluations, and weather forecasts to enhance profits not only relative to 

those plans but also in a manner relative to each other. Burer et al. (2009) investigate contracts with specific 

bonus and penalty features in the seed industry. By considering the assumption of uniform demand, they fully 

characterize all coordinating contracts. Niu et al. (2016) consider firm–farmer and firm–cooperative–farmer 

channel structures to examine how each contract type affects the coordination of efforts and utilities by members 

in the channel. They consider wholesale price and cost-sharing contracts for the firm–farmer channel and observe 

that the latter can result in a win-win result for both the farmer and the firm when the firm's cost-sharing is lower 

than a threshold level. Further, they investigate the firm–cooperative–farmer structure using two bargaining 

models based on the cooperative's commission contracts with the farmer. Hu et al. (2019) study how strategic 

and naive farmers with different production costs, under price variations, make crop planting decisions to 

maximize their welfare. Their equilibrium results show that naive farmers' decisions may create recurring 

overproduction or underproduction, causing price volatility. Federgruen et al. (2019) study a Stackelberg game 

wherein a manufacturer (leader) chooses a set of farmers to extend a menu of contracts, and each farmer 

(followers) picks a contract from this menu in advance of the growing season. They find that when finalizing 

the contract menu, the manufacturer can limit the option to relatively simple menus, depending on the farmer 

pool's heterogeneity. Rajput and Venkataraman (2021) develop a Stackelberg game between a firm and a farmer 

and propose a pricing mechanism that adjusts the market price to accommodate extreme price fluctuations that 

can enable both parties to avoid violation of the contract. Ayvaz-Çavdaroğlu et al. (2021) analyze policies for a 

for-profit cooperative that offers quality-based payments to risk-averse farmers who operate under yield 

uncertainty, quality requirements, and open market prices. They find that farmers consistently underinvest in 

crop quality when the quality-based incentive payments mimic open market prices. They propose easy-to-

implement policies that can lead to gains for farmers when used in conjunction with crop insurance. Chen and 

Chen (2021) study the impact of contracting between the buyer and farmers in developing economies, wherein 

the buyer firm commits to an ex-ante procurement price and promises to buy the high-value agricultural product. 

The analysis focuses on the buyer’s cost reduction efforts and its impact on suppliers’ participation and economic 

benefit for contract farmers vis-à-vis non-contract farmers. 

We found only one paper that uses predictive analytics. Puchalsky et al. (2018) examine the problem of 

price variations and their impact on contract farming. Their models predict variations in the price of products 

and services for farmers. They use five optimization techniques (i.e., Differential Evolution (DE), Artificial Bee 
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Colony (ABC), Glowworm (GSO), Gravitational Search (GSA), and Imperialist Competitive (ICA)) to achieve 

the best time-series forecast for prices. 

The next topic in this section covers cooperative farming, wherein three papers use prescriptive analytics 

with no data. Palsule-Desai (2015) studies the competition between fringe farmers and a two-tier cooperative 

network (i.e., contract farmers and a coordinator). The author investigates the coordinator and profit-sharing 

roles in allocating costs/benefits of externalities in improving network performance, using a non-cooperative 

game theory framework. An et al. (2015) study five game-theoretic models to investigate the effect of formal or 

informal co-ops on reducing production cost, increasing/stabilizing process yield, increasing brand awareness, 

eliminating unnecessary intermediaries, and eliminating price uncertainty. Considering pricing concerns in 

farming, Tang et al. (2016) study contracts with partially-guaranteed prices between farmers and agri-food 

companies (i.e., buying firms). In their Stackelberg game (i.e., leader-follower game), the buying firm (leader) 

commits to purchase the product when harvested, offers a guaranteed unit price for any specific portion of the 

product, and consequently provides the market price prevailing upon delivery for the remainder. Then, the farmer 

(follower) chooses that particular portion. They characterize the optimal solution under various conditions, such 

as when the purchased quantity is exogenous or endogenous and when the buying firm provides advisory 

services to the farmer. Lastly, Shi et al. (2019) consider the storable agricultural product inventory problems for 

farmer cooperatives by examining a class of stochastic and dynamic inventory models with randomly varying 

but known supply and price. They characterize the optimal selling policies to maximize the farmer cooperatives’ 

expected profit under various cost functions. Using prescriptive analytics by utilizing hypothetical data, Qian 

(2021) proposes a two-stage model of a cash-constrained farmer who has the option to convert a raw commodity 

into a value-added product by joining an agricultural cooperative. As the cooperative is a closed membership, 

the farmer has to decide whether to join it or not and if one opts to join then decide the production capacity and 

equity investment. 

There are several avenues for future research in this area. One can utilize data collected from farms/co-

ops to determine or predict the pre-planting fixed buying price (or formula) for crops in contracts, design a 

repeated contract based on the timing of planting/harvesting seasons, develop contract terms based on the 

prediction of environmental (weather, soil humidity, etc.) and local/international political issues. Further, one 

could investigate how the buyers can use contract farming to create farmer pools and thus aggregate the input 

procurement, services, and labor requirements.  

In the next section, we discuss the literature on “Operational Efficiency in Farming”. While research in 

the emerging era has largely focused on understanding and influencing stakeholder interactions, leveraging 

technology platforms, and sustainability to improve farmers’ welfare; the issues of concern in traditional era 

research have been predominantly on facilitating decision-making for improving performance in farm 

operations, albeit being largely devoid of leveraging field-data.   
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4. Operational Efficiency in Farming 

The research focusing on improving operational efficiency in farming includes both predictive and 

prescriptive techniques. We discuss this research in the following four groups: (1) Pre-farming Decisions (crop 

mix, crop rotation, and land use), (2) Farm Operations (sowing/planting, irrigating, and harvesting), (3) Resource 

Management (farm inputs [fertilizers, manure, seeds, pesticides], farm machinery, and workforce), and (4) Farm 

Performance (productivity and risk management). The details of the papers on operational efficiency in farming 

are included in Table E1 in the E-Supplement. The table summarizes each paper's data type, analysis technique, 

and source title. In the following subsections, in addition to presenting the broad research areas in each group, 

we discuss how recent technological development may introduce new research opportunities. 

4.1. Pre-Farming Decisions 

Pre-farming decisions are made before sowing starts. We include crop mix, crop rotation, and land use 

in this category as described below.  

Crop Mix: Crop mix specifies the proportion of different types of crops to be planted on a given land to maximize 

revenue/profit. Factors that influence crop mix decisions include land productivity, soil type, and yield response 

to fertilizer/pesticide applications (Rǎdulescu et al., 2014).   

Crop Rotation: Crop rotation identifies the sequence of different crops to be planted in a field over several 

planting cycles. Rotation helps in maintaining soil health, reduces dependence on synthetic fertilizers and 

nutrients, and helps in maintaining environmental sustainability.  

Land Use: Land is one of the most important resources in farming, directly contributing to overall farm output. 

Farmers need to decide on land use, based on the season and demand-expectation, the type of crops to grow to 

get maximum return on assets. Land-use decisions also include considerations for factors such as farm inputs 

and sustainability, which have a direct impact on soil health and thus on present and future crop yield from the 

farm. The proportion of land allocated to different crops is important for maintaining soil health, improving crop 

productivity and yield, and the operational profitability.  

We list all the papers in the above sub-categories in Table E1 in the E-supplement. We give below an 

overview of the models and techniques used in pre-farming decisions, followed by future research directions.  

Modeling approaches have analyzed pre-farming decisions in both deterministic and stochastic 

scenarios. The input parameters include market price (forecast), market demand, yield, irrigation availability, 

etc. Pre-farming decisions are influenced by crop life, farm size, government subsidies, and minimum support 

prices. There is scope for frequent decision making in medium- to short-life crops such as wheat, rice, or many 

horticulture crops. The large farms may be more amenable to also investing in technology infrastructure that 

uses scientific decision making to optimize yield or profits whereas small farms (less than 5 hectares) are not 

able to realize the benefits of such approaches. Government subsidies and minimum support prices for selected 

crops also influence farmers’ decisions about the type of crop to be planted.  
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Technological developments are going to influence pre-farming decisions. With the increase in social-

media networks, farmers are exposed to larger peer-discussion and advisory groups that influence pre-farming 

decisions. Future research can estimate drivers of the diffusion of social media interactions among farmers and 

examine its influence on their pre-farming decisions and ensuing performance. There is also a rise in the amount 

of data available through satellites, drones, and the Internet of Things. This data can be analyzed using artificial 

intelligence and machine learning for better pre-farming decisions. Advances in machine learning can be used 

to estimate the impact of pre-farming decisions on yields and other economic and environmental metrics for the 

farm. For example, in a study supported by the World Bank, Deininger et al. (2020) use machine learning to 

analyze the crop and yield data collected using satellites, to examine the impact of crop rotation on yields and 

the ensuing financial performance of farms in Ukraine. With the advent of precision farming, future research 

can engage in big data analytics to further analyze this impact by controlling for soil conditions, rainfall, 

temperature, application of fertilizer, irrigation, and timing of harvesting, among others. Similarly, with free 

Earth Observation (EO) data availability, scholars are now able to address questions that they were not able to 

before. For example, by utilizing EO and geographic information system (GIS) data, Poortinga et al. (2020) run 

simulations to examine the effect of traditional drivers of change on land use and predict the chance of changes 

in different areas and how it may affect the agriculture and sustainability practices in those regions. Changes in 

climatic conditions too will behoove farmers to seriously examine their pre-farming decisions and look for less 

resource/water-intensive alternatives. For instance, there exist data on several factors including but not limited 

to land use and boundaries, forest cover, monitoring of environmental interactions, crop yield and production, 

etc (see https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php). Understanding the impact 

of crop mix and crop rotation on yield and financial performance at farms under changing climatic conditions 

can also enable land use decisions, particularly when water resources become scarce. 

The models proposed in pre-farming decisions are based on deterministic market conditions such as 

demand or price while broader but very relevant issues such as droughts, unemployment, currency fluctuations, 

diseases, etc. are not incorporated into the models (Brulard et al., 2019, Albornoz et al., 2020, Cervantes-Gaxiola 

et al., 2020). In addition, the present models are tested by either simulated data or limited real data from farms. 

There is a need to get larger volumes of quality data from multiple farms to build a realistic model that can be 

tested and used by farmers (Ridier et al., 2016, Brulard et al., 2019). Thus, models developed in the literature 

have severe limitations in terms of lack of real-life application and thus farmers’ confidence in these models 

(Brulard et al., 2019). Emerging technologies, such as 4G/5G-enabled smartphones, water and soil sensors, 

drones, and satellites, may be able to provide farm-level data to facilitate pre-farming decisions for small and 

marginal farmers that consider terrain, soil, weather, climatic, and economic conditions in the region. Next, we 

briefly introduce the body of the literature on farm operations.  

4.2. Farm Operations 
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Planting, irrigation, and harvesting activities constitute the bulk of what has been termed farm operations 

in this paper. We describe them below and list the relevant papers for each activity in Table E1 in the E-

supplement.  

Planting: Planting activities focus on scheduling of tilling of lands, plowing, and planting of seeds and saplings. 

See for example Wijngaard (1988) and Aliano Filho et al. (2019).  

Irrigation: Irrigation research focuses on irrigation strategies, policies, and network design. Irrigation has a 

major influence on the final crop yield and it has a major environmental impact due to the usage of groundwater 

and as a medium for fertilizer runways, which pollute water bodies. Building dams and canals to support 

irrigation influences costs. Other infrastructure costs from an individual farmer’s perspective include pipes, 

pumps, and fuel (electricity, diesel). Irrigation network design addresses questions about water distribution 

system and channels, irrigation pumping capacity, area to be irrigated, pump and machinery life, and 

maintenance situation (Gonçalves and Vaz Pato., 2000; Zhang et al., 2009; Gonçalves et al. 2014).  

Harvesting: Harvesting includes identifying ripened/ready/mature crops and cutting/chopping/separating them 

from the origin. The nature of the crop, soil conditions, and terrain can impose special considerations for the 

planning and scheduling of harvesting. Planning for harvesting entails the allocation of specific time periods to 

harvest a section of the forest, farm, or orchard. The scheduling of harvesting periods is done in conjunction 

with the allocation of labor and equipment required for harvesting, loading of the harvest for transportation, and 

scheduling of transportation to post-processing facilities, markets, or storage facilities. 

Timber harvesting, a major part of forest planning, considers the impact on wildlife habitat, among other 

considerations (Carvajal et al., 2013; Constantino and Martins, 2018). In the case of crops such as sugarcane, 

ensuring supply of the crop to the sugar mills requires coordination between scheduling harvesting in specific 

sections of each farm while simultaneously loading the sugarcane crop (also termed as harvest fronts) and 

transporting it to the sugar mill to meet its production needs in a timely manner (Álvarez-Miranda et al., 2018). 

Fruits and vegetables, due to their perishable nature, provide a distinct harvesting challenge wherein each type 

of produce has a different ripening curve (Escallón-Barrios et al., 2020; Gómez-Lagos et al., 2020). Hence, one 

has to schedule harvesting of these different types of produce in specific periods that match their corresponding 

ripening characteristics. At the same time, one is constrained by having to harvest all the fruits in a relatively 

short time in order to avoid any loose fruit picking, over-ripeness, or rotten fruit. Harvesting grains that are 

considered to be more non-perishable entails relatively fewer challenges of coordination with downstream stages 

in the agribusiness supply chain.  

The cultivators have to establish schedules for sowing, irrigating, and harvesting these activities under 

resource constraints. The objective is to maximize the yield or profit. The important input variables in model 

building include market price, market demand, estimated yield, etc. Most of the papers use market price as a 

very important variable, and thus the effectiveness of the model is indirectly dependent on price forecasting 

accuracy. Price sensitivity is missing in most of the papers. The majority of the papers provide incremental 



 

 

20 

improvement on or deviation from earlier research with slight new ideas or thoughts. Most of these models are 

based on either simulated or static/dated data collected weeks/months ago. 

Large timber or sugarcane plantations, which have professional management handling the farm 

decisions, are the most likely users of the available models. Small farmers who may not have professional 

management can get support for targeted solutions from research institutions that can be facilitated via 

cooperatives. The large plantations are generally linked to a processing unit such as a sugar mill or a paper mill; 

thus the demand is a very important but less volatile variable in comparison to the crops being sold in open 

market scenarios. The models can provide optimal decisions at an aggregate level, but it is difficult to build 

models at the individual crop level by incorporating variables such as optimal maturity level. This limits the 

application of robots/machines for these activities.  

There is an increase in the application of emerging computer vision technologies coupled with machine 

learning models to assist farm decisions. Scholars are encouraged to utilize machine learning and deep learning 

algorithms on images from trees (i.e., image processing) to identify patterns of efficient harvesting for vegetables 

and provide guidance to farmers for real-time fruit detection within a tree, fruit classification, and guide the 

operation of fruit harvesting robots. Some of these techniques are discussed in Meshram et al. (2021). Future 

research can focus on estimating the value of increased ability for farmers to leverage the imaging data on crops 

and produce that is captured in real-time during automated harvesting of crops, in commanding better prices 

based on actual grade/quality. 

There is also an increase in the availability of soil health and crop images captured by satellite or drones, 

which can help estimate crop maturity and thus influence irrigation and harvesting decisions. Scholars can utilize 

big data extracted from new technology in the sugarcane harvesting process to run an analysis for identifying 

sugarcane harvest periods. This analysis could be based on predictive analytics fed by images of large areas and 

publicly available optical satellite data (Kavats et al. 2020). Few researchers are addressing strategic questions 

such as infrastructure investment decisions for building roads, irrigation infrastructure, etc. We next introduce 

the research on resource management in farming.  

4.3. Resource Management 

Farm resources management mainly considers management of physical resources (e.g., fertilizers, 

pesticides, and farm machinery) and workforce management. We describe them below and list the relevant 

papers for each resource in Table E1 in the E-supplement. The objective is mainly to increase yield or reduce 

losses in managing these resources. The input parameters in various models include market price and cost of the 

inputs.   

Physical resources: Some of the important issues in managing physical resources are procurement challenges 

with seeds and fertilizers, such as supplier selection, ensuring quality and quantity, discount and pricing, etc.; 

issues related to machinery include farm machinery selection, automation, maintenance, capacity utilization, 

remote operations, tracking, and scheduling. The advancement of technology has made it possible to run several 
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remote operations such as monitoring and tracking, which have opened huge opportunities for farm machinery 

and equipment management in a more targeted and timely manner (Coble et al. 2016). However, there is limited 

research in this area from an OM perspective. Farm resources are heavily subsidized by governments across the 

globe. Fertilizers and pesticides also have a major environmental impact on soil, water, and air and, therefore, 

are heavily controlled by governments by regulating the supplies as well as by subsidies (Kaygusuz 2010). We 

discuss this issue in detail in the Government Policy and Interventions sub-section. In the agribusiness research, 

there is less emphasis on market factors such as demand and more emphasis on usage and maintenance. There 

is also less emphasis on the optimization of machinery usage or automation of farm activities. The scheduling 

of equipment use is intertwined with maintenance, as the rate, load, and duration of equipment use influence the 

need for maintenance. Using real-time data collected through sensors from farm machines and equipment, 

researchers can investigate the opportunity to optimize machine usage in conjunction with predictive 

maintenance. For farm input resources, some important questions need to be explored. These include ‘when to 

apply the inputs’, ‘which inputs to apply’, ‘how to optimally use the machinery’, and ‘what the challenges are 

of technology adoption’, etc. Note that the ability to collect real-time data relies on investment in new 

technology, and one may consider this also as a drawback in small farms. 

Workforce: Most of the farm activities are very labor-intensive mostly because the farms are small or 

inaccessible via machines. The labor requirement is seasonal. For example, huge demand is experienced during 

sowing and harvesting while there is less demand during the growth period. Most farms depend on seasonal 

(temporary) labor for farm activities (Klocker et al. 2020). The crop being perishable in nature and having a 

limited window for optimal sowing and harvesting make it very challenging for the farmers to get the right 

capacity at the right time. Thus, labor acquisition, labor planning, and labor scheduling are some of the core 

activities. Lastly, workforce and staffing decisions have to be made for farm activities such as tilling the soil, 

sowing seeds, spreading fertilizer, sprinkling pesticides, killing weeds, and threshing crops. Workforce 

requirement depends on environmental conditions, crop rotation, demand, and market prices (Nettle et al. 2010).  

The workforce-related literature focuses primarily on manual labor, and there is less emphasis on 

workforce planning for human-controlled or human-assisted machinery (Pratley 2008). The availability of labor 

in this sector is often affected by the demand for shared labor in other sectors. Advances in mechanization and 

skills for labor-assisted mechanization in farming are evolving at an increased pace (Qing et al. 2019). Adopting 

precision farming and mechanization technologies such as robotics, drones, and autonomous devices will be 

increasingly crucial to a farm’s survival and competitive advantage. Each farm needs to evaluate whether it has 

the workforce to take full advantage of these technologies or develop a plan to obtain these skills, considering 

the restrictions on the budget and farm size. There is opportunity to consider the role of platforms in matching 

demand for labor and equipment with third-party suppliers who can pool their machinery and labor resources 

for situations wherein there is considerable fragmentation in the presence of numerous small and marginal 

farmers (Wishon et al. 2015). In conjunction with more granular data captured from the farm, predictive and 



 

 

22 

prescriptive analytics can help researchers find the gap between the current status of labor skills and what to do 

to close the gap. Based on guidance from analytics, one can hire and schedule the workforce to enhance 

productivity and yield. Thus, the above-mentioned considerations bring added dimensions for research wherein, 

in particular small farmers too in the future may have to pool in input resources of farm machinery and labor, 

and coordinate via cooperatives or outsource some aspects to third-party contractors.  

The research in resource management addresses existing problems, including fertilizer allocation, 

machinery maintenance, and workforce allocations, but places very limited attention on the inclusion of 

advanced technology such as IoT and drones for farm inputs or machinery maintenance. There is a need to 

explore existing cases on technology use in farming and address issues related to maintenance, human-machine 

work coordination, and new machine data. Input prices, finance options, and workforce availability are very 

much dependent on the political region and thus there is a need to compare and analyze the impacts of 

government policies on resource management. We next present a brief overview of the farm performance 

literature.  

4.4. Farm Performance 

Farm performance topics mainly focus on productivity and risk management. We describe them below 

and list the relevant papers in Table E1 in the E-supplement.  

Productivity: Research on farm productivity has explored several factors that might influence it including 

policies, social norms, and technology. Productivity in general is measured as a ratio of aggregate output to 

input. In farm productivity, researchers want to understand the factors (i.e., inputs) that will impact the output 

(e.g., yield and production).   

Risk management: Risk in agribusiness emanates due to uncertainties in weather, the incidence of pests and 

diseases, yields, government or NGO policies, prices, and other market conditions. Kahan (2008) classifies 

agribusiness risk into the following five categories: (1) production, due to uncertainty of factors that affect the 

quantity and quality of farm produce; (2) marketing, driven by the variability and uncertainty of prices; (3) 

financial, stemming from risks associated with borrowing money to finance the farm business; (4) human, caused 

by illness and other personal situations impacting labor availability; and (5) institutional, caused by 

unpredictable changes in governmental policies. Risk management strategies include spare parts management 

for farm machinery to minimize the risk of delays during breakdowns, working with labor agencies to ensure 

uninterrupted supply of labor, insurance to cover the financial risk, and forming cooperatives to cover the 

uncertainty of government policy affecting farming, such as price support and subsidies (i.e., institutional risk).  

The farming cycle is limited, and delays in insurance claim payments can often prevent a farmer’s 

prospects for the next farming cycle. Usually, insurance organizations manage to dispute yield loss data sent by 

states. Various processes related to the insurance systems or governmental platforms that handle the jobs are 

manual, leading to backlogs and delays in claim processing and payments (Baskaran and Maher 2021). This 
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problem creates an opportunity for researchers to use artificial intelligence and machine learning to further 

support the processes related to current crop insurance systems, both avoiding claim delays and lessening the 

timeline in claim reimbursements. Lin et al. (2020) shed light on how one can use ML and AI to help process 

claims and make the insurance business efficient in the agriculture business. Further, researchers may use the 

data on an aggregate level (i.e., farm co-ops) to analyze how a new policy by the local government can help 

farmers receive the required financial support to develop their farms and keep their operations going. For 

example, through the Farm Service Agency, the United States Department of Agriculture provides microloans 

to farmers serving regional food markets for small-scale and diversified operations (USDA 2017). Most of the 

farm decisions are made based on the information available at a village level. Agricultural productivity depends 

a lot on the social fabric of the villages as it will determine the workforce availability, input prices, area under 

production, and crop variety sowed. There is a need to explore how this social fabric of the village can be 

improved to achieve higher productivity and economic benefits (Serra and Poli, 2015). Productivity also heavily 

depends on the climate conditions, and thus a change in climate to higher temperatures or frequent extreme 

weather conditions can have a major impact on productivity. There is a need to investigate the impact of possible 

climate change scenarios on food production and food security (Zhan et al., 2020). We next focus on emerging 

themes and opportunities for future research. 

5. Emerging Opportunities for Future Research and Conclusion 

Overall, we recognize that increased digital connectivity and adoption of emerging technologies will 

create data-rich environments for facilitating future OM research on farm operations. At the end of each sub-

section in Sections 3 and 4, we identify some specific opportunities for future research based on identifying gaps 

in the literature. In this section, we identify and discuss emergent themes for future research that have not been 

hitherto addressed as well in the extant literature. We hone in on specific questions, issues, and opportunities for 

research in the following four domains: Operational Efficiency, Emerging Technologies and IT Platforms, 

Policy Development and Interventions, and Farmers’ Welfare and Support Functions. In particular, it is 

important to understand how to facilitate the adoption of precision agriculture, IoT, and blockchain to create a 

data-rich environment with opportunities for targeted intervention for farming. Future research needs to address 

whether, when, and how small and marginal farmers can also benefit from these technologies. 

We summarize specific opportunities for future research in Table 2. In the following subsections, we 

further elaborate and expand our discussion on these issues.  

Table 2: Major Future Research Opportunities 

Research Theme 

Predictive Analytics 

Archival and Field-based Empirical 

Research 

Prescriptive Analytics 

Economic Model-based Research 
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Operational Efficiency 

  

Permeation of Big Data and 

Emerging Technologies in 

Improving Operational Efficiency 

Assess the impact of crop rotation, crop 

mix, and land use decisions on soil 

health, crop yield, and farmer welfare 

Develop economic models for crop mix, crop rotation, 

land use, and harvest scheduling that leverage the 

estimation of key parameters related to soil and crop 

characteristics to improve crop yield and resiliency, 

using granular data generated by emerging 

technologies (e.g., data from sensors, drones, and 

satellite images) 

Emerging Technologies and IT 

Platforms 

  

Blockchain, Big Data, Drones, 

IoT, and AI/ML 

Use AI/ML techniques to understand the 

drivers and enablers of farmer 

participation in agri-platforms and assess 

their impact on farmer welfare  

  

Study the drivers, enablers, and barriers 

for farmers’ adoption of blockchains and 

precision agriculture, and their ensuing 

impact on farmer welfare 

Develop targeted incentive mechanisms for farmer 

participation in agri-platforms and adoption of 

precision agriculture and blockchains based on farmer-

type (i.e., marginal, small, and large), soil, crop, and 

market characteristics, and government subsidies 

Policy Development & 

Interventions 

  

Transparency, Accountability, 

and Sustainability 

Assess how transparency via 

blockchains can influence the 

accountability for government 

interventions for sustainability and 

farmer welfare 

  

Develop government intervention mechanisms for 

effective adoption of precision agriculture and 

blockchains 

 

  

Develop mechanisms for guiding public policy to 

incentivize farmers to make suitable crop rotation and 

mix decisions to counteract challenges of climate 

change and any geo-political conflicts 

Farmers’ Welfare and Support 

Functions 

  

Insurance, Finance, and Human 

Resources 

Predict yield for crops at farm level and 

evaluate the impact of customized 

financing schemes, and insurance 

schemes that ensure timely damage 

verification using granular data 

generated by emerging technologies on 

farmer welfare 

Develop customized financing and insurance scheme 

for farmers that are specific to crop mix, prevalent soil 

and weather conditions, risk of damage from inclement 

weather, and yield 

  

Develop risk mitigation strategies related to the 

management of farm labor (e.g., accidents, illness, and 

death of personnel which can disrupt farm 

performance) 

5.1. Operational Efficiency 

An important theme emerges for future research as one is faced with the adoption of precision agriculture 

or lack thereof in operations of small, medium, and large farms in underdeveloped, developing, and developed 

countries. How can one estimate key parameters and predict outcomes to economically justify and facilitate the 

judicious adoption of precision agriculture and increase permeation of technologies for creating data-rich 

environments equitably to offer targeted guidance for pre-farming decisions and farm operations to influence 

the metrics of efficiency, effectiveness, resilience, and sustainability, among others? Predictive and prescriptive 

analytics for facilitating pre-farming and farming decisions will increasingly continue to be of importance 
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because they can influence the quality, quantity, and cost of the farm produce. The emerging technologies 

provide opportunities to collect farm data at a more granular level and in a timely manner that will help in 

offering more targeted guidance to farmers. OM researchers can focus on developing dynamic prescriptive 

models that leverage the improved ability to estimate or predict rainfall, temperature, humidity, soil health, crop 

growth, fruit maturity, crop quality, pest infestation, crop yield, demand, and market price for crops/produce in 

a timely manner. Researchers can analyze historical data on sowing patterns, associated weather data, and crop 

yields to offer guidance to farmers to decide which crop variety and sowing pattern would result in optimal yield. 

Scholars can assess the impact of crop rotation, crop mix, and land use decisions on soil health, crop yield, and 

farmer welfare. They can develop economic models for crop mix, crop rotation, land use, and harvest scheduling 

that leverage the estimation of key parameters related to soil and crop characteristics, using granular data 

generated by emerging technologies (e.g., data from sensors, drones, and satellite images). For example, they 

can develop models to offer dynamic guidance for harvesting based on smart sensing of crop maturity. 

5.2. Emerging Technologies and IT Platforms 

The advent of precision agriculture technology, 5G telecommunication networks, and IT platforms are 

expected to facilitate interactions between stakeholders in farming in a dynamic manner. The telecom revolution 

has reached remote locations, providing an Internet connection to rural farmers over mobile devices. The new 

technological developments impacting farmers and farm operations include but are not limited to blockchain, 

big data, drones, IoT, and AI/ML. Using blockchain in conjunction with IoT can enhance transparency in 

agribusiness (see for example Mondal et al. 2019). 

OM Researchers can use AI/ML techniques to understand the drivers and enablers of farmer 

participation in agri-platforms and assess their impact on farmer welfare. Researchers can study the drivers, 

enablers, and barriers related to farmers’ adoption of blockchains and precision agriculture, as well as their 

ensuing impact on farmer welfare. OM researchers should develop incentive mechanisms for farmer 

participation in agri-platforms and adoption of precision agriculture and blockchains based on farmer type (i.e., 

marginal, small, and large farmers); soil, crop, and market characteristics; and government subsidies. 

Researchers can focus on how timely visibility of pricing and other market information, facilitated by 

increased network connectivity via the use of mobile devices in conjunction with IT platforms, and social media 

can provide even small and marginal farmers with fair and equitable prices. Scholars can investigate how the 

increased availability of big data can facilitate cooperation, coordination, group decision making, and bargaining 

for farmers in a dynamic environment. 

5.3. Policy Development and Interventions 

Government policies need to facilitate farm productivity to address not only how to feed the growing 

population but also how to cater to the changing demand. OM researchers need to recognize the changing global 

trends in demand and supply for both staple and specialty crops. Scholars need to recognize any overdependence 
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on regions that risks the resiliency of their supply (e.g., disruptions on account of geo-political differences and 

disputes). They need to understand its implications for crop planning, crop rotation, and farm productivity at 

regional and national levels to ensure food security in an environment that depends on global trade while meeting 

the needs at national, regional, and local levels. Research on understanding these implications is clearly 

intertwined with issues such as public policy, land use, irrigation, technology, risk management, and 

sustainability, among others.  

It is important for OM researchers to address many key questions for policy development in a rigorous 

manner. These questions include but are not limited to: a) what is the impact of government policies on 

economic, social, and environmental goals for agribusiness? b) how can government policies facilitate the 

participation of farmers in agribusiness platforms and adoption of emerging technologies (e.g., precision 

agriculture and blockchains)? c) how can increased transparency from blockchain technology be used to enable 

sustainability in farm operations? d) what is the impact of increased transparency on the sustenance of small and 

marginal farmers? and e) to what extent, and how, does big data analytics in conjunction with transparency 

improve the accountability of government agencies for enhancing productivity in the agriculture sector?    

Researchers can leverage the availability of big data to develop guidance for governments to develop 

agricultural policies in a more targeted manner, based on geographical region, size of farms, and type of crop, 

among others. The increased focus on sustainability and resilience in agriculture, along with the advent of big 

data, access to e-marketplaces, transparency, and traceability, provides new opportunities for understanding the 

implications of government interventions for improving the welfare of farmers. Researchers may use the data 

on an aggregate level (i.e., farm co-ops) to analyze how a new policy by the local government can help farmers 

receive the required financial support to develop their farms and keep their operations going.  

5.4. Farmers’ Welfare and Support Functions  

Farmers’ welfare is becoming an important concern (Chintapalli and Tang 2021, Tang et al. 2016, 

Boyabatli et al. 2022). We identify the following important functions that support farmers and add to their 

welfare, namely, insurance, finance, and human risk management at farms.  

Researchers can focus on issues and opportunities related to tailored design and management of farm 

insurance and finance schemes based on analytics using granular data at the farm level. Based on a recent report 

by the Global Partnership for Financial Inclusion (GPFI), an inclusive platform for all G20 countries on financial 

plans and programs, there is a lack of research and use of data on agricultural insurance (GPFI 2015). Usually, 

insurance organizations manage to dispute yield loss data sent by states. High administrative costs for claims 

verification lead to more expensive premiums, and insurance requires farmers' certification to reduce false 

claims, resulting in delayed payouts and low customer satisfaction. Researchers can utilize data collected from 

drones/unmanned aerial vehicles, which supply high-definition (HD) imagery of soil and crop status and 

presence of pests (Tran 2018). This helps to expedite the process of evaluating damages and loss. This also can 
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prevent fraud by verifying that the crop was planted on the farm where the farmer has submitted a claim. 

Researchers can also take weather and soil quality data over time using the planted sensors in the field to enable 

insurers to underwrite risk and accurately price the insurance product. 

Another application of data analytics and AI/ML in agribusiness and insurance is crop-cutting 

experiments. Crop-cutting experiment is a procedure for determining the crop yield  for an area. Crop insurance 

standards need multiple crop-cutting experiments at every location/farm, leading to millions of experiments 

across a country to estimate yields. Deep learning (image analytics) can help decrease the requisite number of 

crop-cutting experiments and facilitate quick claim settlements. Thus, farm research can support agribusiness 

insurance to provide accurate and timely data required for claims settlement, reduce administrative delays, and 

minimize false claims. Research is needed for analyzing crop data during adverse periods of drought, floods, 

fire, or pest infestation, in near real time, to help the insurance companies provide fair and timely compensation 

to the farmers.  

In regard to farm finance, lenders see an increased risk of lending to a new farmer, and they are also less 

familiar with small, diversified farming operations. Hence, they prefer to collect data at the farm level to learn 

more about the associated risks, prior to lending (Song 2021). Financial institutions and lenders are also not as 

comfortable with uncertain and seasonal cash flows, which vary from crop to crop and cycle to cycle, depending 

on the weather and other agricultural risks. These fluctuations and uncertainty can be discouraging for traditional 

lenders and financial organizations, in turn limiting funding for marginal farmers or subjecting them to 

considerably higher lending rates. To deal with this uncertainty, lenders prefer to restrict their lending portfolio 

to fewer crops, collect data, and understand better these crop cycles and the factors that influence them. Going 

forward, lenders can leverage big data and analytics to identify and approach these risks better for a wider variety 

of crops and also for small and diversified farms. 

Researchers can help lenders identify and evaluate the risk factors and prescribe how farmers can 

effectively mitigate seasonal risks to increase productivity and market value. It can also enable lenders to better 

understand the risks and benefits associated with crop planning, crop rotation, and land use and facilitate farmers’ 

decision-making to mitigate the risk associated with crop cycles.  

Lastly, there is also a paucity of research in the OM journals on institutional and human risk management 

in farming. Researchers need to investigate risk mitigation strategies related to the management of labor and 

human resources (e.g., accidents, illness, and death of personnel, which can disrupt farm performance) and 

institutional risk (e.g., food quality regulations for exporting crops and the level of price or income support 

payments).  

In the end, we want to re-emphasize that agribusiness research undertaken by OM researchers should 

support Sustainable Development Goal 2 of the Food and Agriculture Organization of the United Nations. The 

excerpt of this goal also stated at the outset in the introduction is: “End hunger, achieve food security and 
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improved nutrition and promote sustainable agriculture……. These worrying trends coincide with the 

diminishing availability of land; increasing soil and biodiversity degradation; and more frequent and severe 

weather events. The impact of climate change on agriculture compounds the situation.” Given the daunting 

challenge, the agribusiness sector will also benefit greatly from a multidisciplinary research approach that 

includes OM researchers, agricultural scientists, experts in finance and insurance, and information technology. 

Gaining access to requisite data will also require collaboration between universities, governments, NGOs, 

farmers, and IT platform providers, among others. The focus of this paper is on the upstream operations of the 

agribusiness supply chain. We suggest that similar review papers should be undertaken on the downstream end 

of the agribusiness supply chain. 

Endnotes 

1.  There are 298 papers that have been included in our paper. Of these, we list 88 papers in the main 

manuscript and 210 papers in the E-supplement. The 298 papers include 256 papers that we have analyzed, 17 

previous survey papers, and 25 papers we have used for clarifications and future research agendas. The 

research on stakeholder engagement for farming in a digital era is emerging as more data is available. Thus, to 

help POM readers explore more research opportunities in this area, the authors mainly focused on 88 papers 

related to stakeholder engagement for farming in a digital era in the main manuscript. Hence, the discussion on 

operational efficiency in farming is shortened and mainly relegated to the appendix. 

2.  In India, a farmer with a bare subsistence level of income who may also work as an agricultural laborer for 

cultivation of one’s own land that is no larger than 2.5 acres is termed a marginal farmer, see 

https://www.rbi.org.in/scripts/BS_CircularIndexDisplay.aspx?Id=4190#:~:text='Marginal%20Farmer'%20mea

ns%20a%20farmer,2%20hectares%20(5%20acres). 
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