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Abstract
1. Species distribution models (SDM) are widely applied to understand changing
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species geographical distribution and abundance patterns. However, existing

SDM tools are inherently static and inadequate for modelling species distribu-
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tions that are driven by dynamic environmental conditions.
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. byNnaMIcSDM provides novel tools that explicitly consider the temporal dimen-

sion at key SDM stages, including functions for: (a) Cleaning and filtering species

occurrence records by spatial and temporal qualities; (b) Generating pseudo-
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University, Durham, UK absence records through space and time; (c) Extracting spatiotemporally buffered

explanatory variables; (d) Fitting SDMs whilst accounting for temporal biases and
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autocorrelation and (e) Projecting intra- and inter- annual geographical distribu-
tions and abundances at high spatiotemporal resolution.
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species; compatible with other SDM tools; and, by utilising Google Earth Engine
and Google Drive, to have low computing power and storage needs. We illustrate
pyNamicSDM functions with an example of a nomadic bird in southern Africa, the
red-billed quelea Quelea quelea.

Handling Editor: Sarah Goslee 4. As pynamicSDM functions are flexible and easily applied, we suggest that these

tools could be readily applied to other taxa and systems globally.
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1 | INTRODUCTION distribution modelling (SDM), in which species occurrence records
are statistically related to environmental conditions (Guisan &
Simulating changing species geographical distributions (henceforth Thuiller, 2005). Such conditions are typically represented in SDMs

abbreviated to ‘distributions’) is usually carried out via species by readily available remote sensing datasets, or from heavily
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extrapolated field data (Baker et al., 2017), which usually represent
annual or longer-term averages, and sometimes are poorly tempo-
rally matched with species occurrence records. From static SDMs,
the drivers of species occurrence can be inferred, and it is assumed
that by applying these relationships over space and time, patterns of
distribution suitability can be projected, and some have even used
this information to project distribution changes (Elith et al., 2010).
Therefore, SDMs have become fundamental tools for,amongst other
topics, biogeographic, evolutionary and applied-ecological research
to inform biodiversity and species management (Zimmermann
et al., 2010).

To predict sedentary species distributions, ecological the-
ory and empirical data support the use of long-term (e.g. multi-
decade), averaged climate variables (Elith & Leathwick, 2009).
However, these data have been shown to be inadequate for sim-
ulating rapidly changing species distributions that are driven by
short-term (e.g. annual and even sub-annual) ecoclimatic condi-
tions (Bateman et al., 2012; Fernandez et al., 2017). Moreover,
recent studies have demonstrated an improvement in SDM accu-
racy and precision by incorporating temporally dynamic explan-
atory variables when modelling distributions of mobile species
(Abrahms et al., 2019; Reside et al., 2010) and in landscapes with
high inter-annual environmental variability (Andrew & Fox, 2020;
Fernandez et al., 2017).

Yet, to date, examples of dynamic SDMs remain scarce. Static
or long-term average explanatory variables continue to be em-
ployed, even when modelling distributions of species that are
highly mobile and responsive to short-term conditions, including
birds (Williams et al., 2017), mammals (Wieringa et al., 2021) and
insects (Kimathi et al., 2020). This is despite the availability of high
spatiotemporal resolution, remote-sensed datasets for numerous
environmental variables, from which dynamic explanatory vari-
ables can be derived. Utilisation of such datasets is rare proba-
bly due to a combination of the more ready-availability of static
datasets, the associated analytical packages available, and the
perceived added computational overheads of dynamic modelling
with high resolution datasets.

Moreover, these barriers are likely to be exacerbated by exist-
ing SDM tools that are not optimised for incorporating temporally
dynamic explanatory variables. Many SDM functions in R packages
lack functionality for explicit consideration of the temporal dimen-
sion at key modelling stages. For instance, when modelling with
temporally dynamic explanatory variables, temporal biases in oc-
currence datasets could over- or under- represent conditions at a
given time and impact SDM performance. However, existing R pack-
age functions typically only account for spatial biases, offering tools
to spatially thin records (Aiello-Lammens et al., 2015) or generate
spatial buffered background points (Thuiller et al., 2016). Without
appropriate tools, our ability to generate spatiotemporally dynamic
SDMs is limited. The Spatiotemporal Observation Annotation Tool's
rsTOAT package (https://mol.org) can extract spatiotemporally buff-
ered data for species occurrence records, but lacks the functions for
developing and projecting dynamic SDMs with these data. Here, we

present byNamMICSDM, an R package that includes user-friendly and
flexible functions for extracting and incorporating dynamic explana-
tory variables into species distribution models and projecting distri-

bution patterns at high spatiotemporal resolution.

2 | PACKAGE OVERVIEW
The main features of pynamicSDM functions are:

e Dynamism: Fill gaps in existing static SDM package tools to ac-
count for both spatial and temporal dimensions at key modelling
stages.

o Flexibility: Function arguments are highly flexible to target meth-
ods to the species and environment of interest.

e Computer-friendly: Explanatory variable extraction functions uti-
lise Google Earth Engine and Google Drive to minimise computing
power and storage demands.

e Compatibility: Function inputs and outputs can be used inter-

changeably with other SDM packages.

The pynamicSDM package workflow is presented in Figure 1 and
the included functions are detailed in the following section. Table 1
outlines the novel functionality of pynamicSDM functions for gen-
erating high spatiotemporal resolution SDMs compared to existing
SDM R packages.

3 | RESPONSE DATA
3.1 | Clean and filter species occurrence data

We provide three functions that encompass the spatial and temporal
dimension when checking that species occurrence records match
the study's scope and quality requirements. First, spatiotemp_check
checks the formatting, completeness and validity of record co-
ordinates and dates, with optional use of package CoorDINATECLEANER
for additional spatial checks (Zizka et al., 2019). Second, spatiotemp_
extent excludes records outside a given spatial and temporal
extent, typically dictated by the study's scope or the coverage of
environmental datasets. Third, spatiotemp_resolution filters records
by a specified spatial and temporal resolution (e.g. dates must
be given to daily resolution). As pynamicSDM functions require
occurrence data in a standardised format, convert_gbif transforms
records from the Global Biodiversity Information Facility (GBIF,
https://www.gbif.org/) into this format.

3.2 | Assess and account for spatial and
temporal biases

spatiotemp_bias assesses spatial and temporal biases in occur-
rence records, which are prevalent due to various factors including
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FIGURE 1 Overview of bynamicSDM package functions across species distribution modelling (SDM) stages. (1) Response data; functions
for filtering species occurrence records by spatiotemporal quality, extent and resolution, generating pseudo-absence dates and co-ordinates,
and exploring spatiotemporal biases in response data. (2) Explanatory data; functions for extracting spatiotemporally buffered explanatory
variables using Google Earth Engine. (3) Model relationships; functions for fitting SDMs whilst accounting for spatial and temporal
autocorrelation. (4) Dynamic projections; functions for generating high resolution projection covariates and projecting dynamic species

distribution and abundance patterns.

temporal variation in sampling effort or species detectability. For
temporal biases, spatiotemp_bias returns a histogram plot of record
frequency over time, and performs a chi-squared test for significant
difference between the observed temporal distribution of records
compared to random. For spatial biases, spatiotemp_bias returns a
scatter plot of record co-ordinates for visual assessment of clus-
tering and performs a t-test for significant difference between
observed nearest neighbour distance and that of random points
simulated at the same density. Users can limit spatiotemp_bias to a
specific area. This may improve the reliability of bias assessments
for range-shifting species where uneven record distribution at range
peripheries may be underpinned by ecological process and not sam-
pling bias.

Multiple correction methods exist for spatial bias, including
spatial thinning of records (Aiello-Lammens et al., 2015) or weight-
ing by sampling effort (Stolar & Nielsen, 2015). We adapted these
methods for temporal biases. spatiotemp_thin temporally thins oc-
currence records by removing records within a temporal distance
of each other. Temporal distance between records can be measured
by two methods: absolute number of days, or days apart within
the annual cycle. For instance, temporally thinning two records
with dates “2010-01-01" and “2015-01-04" by 10days through
the “absolute” method would retain both records, but the “annual
cycle” method would remove one. To prevent spatially distant but
temporally close records from being excluded, only records within
a set grid cell size are temporally thinned. Then, spatiotemp_thin
thins remaining records by a spatial distance using spTHIN package
functions (Aiello-Lammens et al., 2015). Alternatively, we include
the spatiotemp_weights function that calculates total sampling
events (input data) across a spatial and temporal buffer from each
occurrence record.

3.3 | Generate pseudo-absences through
space and time

Paucity of species absence records may necessitate the generation
of pseudo-absence records or “background” points, which are
inferred absences based upon known presence sites. We provide
spatiotemp_pseudoabs that generates pseudo-absence co-ordinates
and dates, either randomly within a spatiotemporal extent or
buffer from occurrence records. Following pseudo-absence spatial
buffering theory (VanDerWal et al., 2009), temporal buffering could
reveal more fine-scale temporal drivers because presence-absence
comparisons are at short time scales. Moreover, buffered pseudo-
absences may be more suitable because randomly generated
pseudo-absences have been shown to inflate SDM performance
metrics (Acevedo et al., 2012).

4 | EXPLANATORY DATA

4.1 | Extract spatiotemporally dynamic
explanatory variables

Within pynamicSDM there are two functions for extracting dynamic
explanatory variables using Google Earth Engine (GEE). GEE is a
cloud platform developed for remotely processing remote sensing
datasets (Figure 2). These functions require the installation of the
GEE API R package rcee (Aybar et al., 2020) and an associated Google
Drive account. By utilising GEE and Google Drive, we minimise
computing power and storage demands.

extract_dynamic_coords extracts temporally dynamic explana-
tory variables. Users must input species occurrence records and
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@ Example of available datasets

MYD11A1.061 Aqua Land Surface
Temperature and Emissivity Daily
Global 1km

The MYD11A1 V6.1 product provides daily
land surface temperature (LST) and
emissivity values in a 1200 x 1200
kilometer grid. The temperature value is
derived from the MYD11_L2 swath product.
Above 30 degrees latitude, some pixels may
have multiple observations where the
criteria for clear-sky ...

aqua daily emissivity global

Ist modis

Global lkm Q-

MYD14A1.061: Aqua Thermal
Anomalies & Fire Daily Global 1km

The MYD14A1 V6.1 dataset provides daily
fire mask composites at 1km resolution
derived from the MODIS 4- and 11-
micrometer radiances. The fire detection
strategy is based on absolute detection of a
fire (when the fire strength is sufficient to
detect), and on detection relative to ...

aqua daily fire global

modis myd14a1l

Daymet V4: Daily Surface Weather
and Climatological Summaries

Daymet V4 provides gridded estimates of
daily weather parameters for Continental
North America, Hawaii, and Puerto Rico
(Data for Puerto Rico is available starting in
1950). It is derived from selected
meteorological station data and various
supporting data sources. Compared to the
previous version, Daymet ...

climate daily daylight

daymet flux geophysical

®» Example dataset
MYD11A1.061 Aqua Land Surface Temperature and Emissivity Daily

Dataset Availability

Dataset Provider

Earth Engine Snippet

2002-07-04T00:00:00Z2-2022-11-26T00:00:00

NASA LP DAAC at the USGS EROS Center

ee.ImageCollection("MODIS/061/MYD11A1") [4

NOAA CDR AVHRR AOT: Daily
Aerosol Optical Thickness Over
Global Oceans, vO3

&y

The NOAA Climate Data Record (CDR) of
Aerosol Optical Thickness (AOT) is a
collection of global daily 0.1 degree derived
data from the PATMOS-x AVHRR level-2b
channel 1 (0.63 micron) orbital clear-sky
radiance. The aerosol product is generated
from AVHRR imagery in cloud-free
conditions during ...

aerosol aot atmospheric

avhrr cdr daily

Tags
aqua daily emissivity global Ist modis myd11al nasa
surface-temperature usgs
Description Bands Terms of Use Citations DOls
Resolution
1000 meters
Bands
Name Units Min Max Scale Offset Description
LST_Day_1km ‘ Kelvin 7500 65535 0.02 Daytime Land Surface Temperature

FIGURE 2 Google Earth Engine catalogue snapshots illustrating examples of remote sensing datasets available (a) and a dataset catalogue
page (b). Numerical labels indicate dataset features: 1, temporal resolution; 2, spatial extent; 3, temporal extent; 4, dataset name; 5, spatial
resolution; and 6, band names. See https://developers.google.com/earth-engine/datasets/catalog for available datasets.

specify the variable through highly flexible arguments (Table 2). exporting returned data. Function speed will depend on us-

The function iterates through each record's co-ordinate and er's internet connection, the spatiotemporal resolution of ex-

date, submitting the request to GEE for remote processing and tracted data and the number of occurrence records. Output for
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TABLE 2 Arguments for the

pyNAMICSDM function extract_dynamic_ Arguments
coords to extract a temporally dynamic datasetname
explanatory variable for each species

occurrence record. Example input would bemdlane

extract MODIS mean land surface
temperature across the 10days prior to
each occurrence record.

spatial.res.metres

temporal.res
temporal.direction
GEE.math.fun

varname

multiple variables can be combined into one data frame using
extract_coords_combine.

Additionally, we provide extract_buffered_coords for extracting
temporally and spatially buffered explanatory variables. Spatial
buffering allows explanatory variables to represent the suitability or
connectivity of environmental variables in the area surrounding the
occurrence record. Such variables could better explain distribution
patterns in dynamic landscapes than variables correlated to the co-
ordinate alone. Therefore, extract_buffered_coords requires a spatial
buffer size in the form of a “moving window” matrix, which specifies
the neighbourhood of cells to calculate the variable across (e.g. three
by three matrix calculates the variable across the eight surrounding
cells plus the cell the record falls within). The matrix is required be-
cause extract_buffered_coords utilises the focal function in package
RASTER (Hijmans et al., 2015) to standardise the calculation and im-
prove projection raster generation time. If the traditional approach
of a circular buffer from record co-ordinates is used, then generating
high resolution projection rasters can be computationally heavy. The
“moving window” matrix size will vary with radial distance of interest
and the resolution of environmental data, so we include get_moving_

window that calculates an optimal matrix by balancing these factors.

5 | MODEL RELATIONSHIPS

5.1 | Assessand account for spatial and temporal
autocorrelation

spatiotemp_autocorr tests explanatory data for spatial and temporal
autocorrelation, where samples taken closer in space and time are
more similar than those more distantly sampled. For temporal au-
tocorrelation, spatiotemp_autocorr returns a scatterplot of the rela-
tionship between the variable at consecutive observations and tests
for significant correlation. For spatial autocorrelation, the function
returns Moran's | test statistic. To account for spatial autocorrela-
tion in SDMs, blocking is an established method that involves split-
ting occurrence data into sampling units based upon non-contiguous
ecoregions, and grouping these into spatially disaggregated blocks
of approximately equal sample size, within which the mean and

Description Example
Google Earth Engine dataset catalogue name “MODIS/061/
MOD11A1”
Name of the dataset band LST_Day_1km
Spatial resolution in metres for data extraction 1000
Temporal resolution in days to calculate the 14
variable across
Direction from record date to calculate across Prior
(“prior” or “post”)
Mathematical function to compute across the Mean
period.
Unique variable name. “mean_two_
week_temp”

range of covariate data are similar (Bagchi et al., 2013). Following
this, blocks are left out in turn in a jack-knife approach for model
fitting and testing. spatiotemp_block adapts this approach to account
for temporal autocorrelation by splitting records into sampling units

by a temporal step too (e.g. year).

5.2 | Model fitting

To model the relationships between species occurrence and dynamic
conditions, we include brt_fit for fitting Boosted Regression Tree
models using the gbm.fit algorithm from cem R package (Greenwell
et al., 2019). brt_fit takes optional arguments, including for fitting
jack-knife models to spatiotemporal blocks and weighting records
by spatiotemporal sampling effort. We include brt_fit only for
completeness as an SDM package. We suggest pynamicSDM could
be easily integrated with alternative modelling approaches because
pre-modelling functions generate a simple response and explanatory

dataset, and post-modelling functions accept various model types.

6 | DYNAMIC PROJECTIONS

6.1 | Extract dynamic projection covariates

The dynamic_proj_dates function generates dates at given intervals
within an extent. Then extract_dynamic_raster and extract_buffered_
raster functions iterate through each date and extract variable rasters
at a given extent and resolution. To minimise storage demands, these
rasters are stored on Google Drive. dynamic_proj_covariates stacks

rasters for each date and exports either data frames or raster stacks.

6.2 | Project and visualise spatiotemporal patterns
The dynamic_proj function projects species distribution and abun-
dance models onto each covariate data frame or stack and exports
projection rasters. To visualise spatiotemporal patterns, we include
dynamic_proj_GIF that combines projections into an animated GIF.
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7 | EXAMPLE-THE RED-BILLED QUELEA
QUELEA QUELEA

We illustrate the application of pynamicSDM to model the highly
variable intra- and inter-annual distribution and abundance of the
granivorous and nomadic weaver bird, the red-billed quelea Quelea

quelea; a major pest of small grain cereals in sub-Saharan Africa.

71 | Response data

Species occurrence and abundance data were collated from GBIF
(Gbif Occurrence Download, 2021) and pest control organisations
(Table S1). Occurrence data were filtered to exclude records con-
taining anomalous or missing values using spatiotemp_check. Using
spatiotemp_resolution, records not given to a spatial resolution of
four decimal places or a temporal resolution that was >1-day were
excluded due to being of an inadequate resolution to study intra-
annual, local-scale distribution patterns. Then spatiotemp_extent
filtered occurrence data to 2001-2017, the temporal extent of ex-

planatory datasets, and the spatial extent of southern Africa to

Spatial distribution
@ Unfiltered

40 | B - " |
%Y ﬁwJWJM _ | "g10,000
L ! N s)
DS =
20 o £ 1,000
BT 5
@ (8 (&)
] o 100-
g0 Y
3 o
Record type 2 10-
Occurrence §
pd 1-
-20 0 20 40
Longitude
(b) Filtered
-5 10,000-
()}
o
» 1,000
T
3
g o 100-
3 ‘G
Record type g 10-
Occurrence g
®- )
seudo-absence
-20 0 20 40

Longitude

focus solely on the subspecies Q. quelea lathamii (Figure 3). Paucity
of absence records necessitated pseudo-absence generation using
spatiotemp_pseudoabs, which randomly generated pseudo-absence
co-ordinates within a 250-500km spatial buffer and dates within a
6-12week buffer. Buffer sizes were informed by quelea movement
capabilities (Elliott, 1990) and typical rates of change in their habitat
(Cheke et al., 2007). Spatial and temporal biases in occurrence records
were detected by spatiotemp_bias. Therefore, spatiotemp_weights
summed e-Bird records (Auer et al., 2022 https://ebird.org) across a
14 day buffer and 100km radius from each record. These were trans-
formed into scaled weights for model fitting. Buffer sizes were chosen
to reflect the spatiotemporal scale of avian sampling bias in southern
Africa. Occurrence data were split into breeding or roosting life-cycle

stages for separate modelling (Supplementary Materials 1).

7.2 | Explanatory data

For each record, explanatory variables were extracted using ex-

tract_dynamic_coord and extract_buffered_coord, which represented

short-term (8-week) and longer-term (52-week) weather conditions,

Temporal distribution

o Ll

1900 1950 2000
Occurrence record dates
2005 2010 2015

Occurrence record dates

FIGURE 3 Spatiotemporal distribution of red-billed quelea Quelea quelea occurrence records a) before filtering (N = 342,434) and b) after
filtering (N = 66,740) using pynamicSDM response data functions. Purple points represent spatiotemporally buffered pseudo-absence records

(N = 66,740) generated with function spatiotemp_pseudoabs.
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TABLE 3 Dynamic explanatory variables in red-billed quelea
Quelea quelea species distribution and abundance models.
Accessible area is a “moving window” matrix matching quelea's
100km dispersal radius generated by pynamicSDM function

get_moving_window.

Type Variable

Environmental Precipitation

Temperature

Productivity
Resource Surface water

Nesting trees

Habitat
connectivity

Seed availability

FIGURE 4 Projected intra- and inter-
annual distribution and abundance of red-
billed quelea Quelea quelea in southern
Africa. Coloured cells indicate projected
quelea presence (distribution suitability

over 0.5) and the colour gradient

represents projected quelea abundance
in these cells (humber of individuals, log,,

scale).

Description
Precipitation sum in 8 and
52 weeks prior

Temperature mean and standard
deviation in 8 and 52 weeks
prior

Productivity mean in 8 weeks prior

Total annual land cover ‘water bodies’
cells within accessible area

Total annual land cover ‘deciduous
tree’ cells within accessible area

Total suitable habitat (‘grassland’
and ‘cereal cropland’) annual
land cover cells within
accessible area

Total grass and crop seed available
within accessible area, derived
from vegetation phenology

January

April

July

October

2015

and the availability of resources governing quelea distribution and
abundance (Ward, 1971; Table 3). Spatial buffer size was generated
by get_moving_window using quelea's 100 km dispersal radius to ac-
cess resources (Elliott, 1990). Variable selection and extraction is
detailed in Supplementary Materials 2.

7.3 | Model relationships

spatiotemp_autocorr revealed significant spatial and temporal auto-
correlation in explanatory variable data. Therefore, spatiotemp_block
split records into six blocks by record year and contiguous sections of
a terrestrial ecoregion in southern Africa for jack-knife model fitting

using function brt_fit (model details in Supplementary Materials 3).

74 | Dynamic projections

dynamic_proj_dates generated dates at monthly intervals for a 5year

period (2013-2017). Rasters for each variable were extracted to

Google Driveusingextract_dynamic_rasterandextract_buffered_raster

2016

Projected
abundance
(no. of
individuals)

1,000

10,000
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and then combined into data frames by dynamic_proj_covariates.
Using dynamic_proj a binary distribution was projected onto covari-
ates and then projected abundance was stacked onto positive oc-
currence cells (Figure 4, Supplementary Materials 4). The maximum
projected abundance across life-cycle stages was taken to produce a
single projection for each month. dynamic_proj_GIF generated a GIF
to visualise the intra- and inter- annual distribution suitability and
abundance patterns of quelea (Supplementary Figures S1 and S2).
For comparison, we also fitted and projected models using long-term

average ecoclimatic variables (Supplementary Materials 5).

8 | CONCLUSION

Overall, bynamicSDM provides users with flexible and easily applied
tools to model the dynamic distributions and abundances of species
worldwide and advance SDM-based research.
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Supporting Information section at the end of this article.

Supplementary Figure S1. GIF of projected intra- and inter-
annual distribution suitability for redbilled quelea Quelea quelea
in southern Africa at monthly intervals across a 5year period
(2013-2017), created using R package pynamicSDM projection
functions. Distribution suitability ranges between O, representing
no suitability for quelea and 1, representing the highest projected
suitability for quelea.

Supplementary Figure S2. GIF of projected intra- and inter-annual
abundance for red-billed quelea Quelea quelea in southern Africa
at monthly intervals across a 5year period (2013-2017), created
using R package bpbynamicSDM projection functions. Coloured
cells indicate projected quelea presence (distribution suitability
over 0.5) and the colour gradient represents projected quelea
abundance (number of individuals, log,, scale) in these cells.
Supplementary Figure S3. Projected distribution suitability
and abundance of red-billed quelea Quelea quelea in southern
Africa onto long-term average or static ecoclimatic variables.
(a) Distribution suitability, ranges between O, representing no
suitability for quelea and 1, representing the highest projected
suitability for quelea. (b) Abundance, coloured cells indicate
projected quelea presence (distribution suitability over 0.5) and
the colour gradient represents projected quelea abundance
(number of individuals, log,, scale) in these cells.

Supplementary Materials 1. Response data.

Supplementary Materials 2. Explanatory data.

Supplementary Materials 3. Model relationships.

Supplementary Materials 4. Dynamic projections.

Supplementary Materials 5. Static projections.
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