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1  |  INTRODUC TION

Simulating changing species geographical distributions (henceforth 
abbreviated to ‘distributions’) is usually carried out via species 

distribution modelling (SDM), in which species occurrence records 
are statistically related to environmental conditions (Guisan & 
Thuiller, 2005). Such conditions are typically represented in SDMs 
by readily available remote sensing datasets, or from heavily 
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Abstract
1. Species distribution models (SDM) are widely applied to understand changing 

species geographical distribution and abundance patterns. However, existing 
SDM tools are inherently static and inadequate for modelling species distribu-
tions that are driven by dynamic environmental conditions.

2. dynamicSdm provides novel tools that explicitly consider the temporal dimen-
sion at key SDM stages, including functions for: (a) Cleaning and filtering species 
occurrence records by spatial and temporal qualities; (b) Generating pseudo- 
absence records through space and time; (c) Extracting spatiotemporally buffered 
explanatory variables; (d) Fitting SDMs whilst accounting for temporal biases and 
autocorrelation and (e) Projecting intra-  and inter-  annual geographical distribu-
tions and abundances at high spatiotemporal resolution.

3. Package functions have been designed to be: flexible for targeting specific study 
species; compatible with other SDM tools; and, by utilising Google Earth Engine 
and Google Drive, to have low computing power and storage needs. We illustrate 
dynamicSdm functions with an example of a nomadic bird in southern Africa, the 
red- billed quelea Quelea quelea.

4. As dynamicSdm functions are flexible and easily applied, we suggest that these 
tools could be readily applied to other taxa and systems globally.
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extrapolated field data (Baker et al., 2017), which usually represent 
annual or longer- term averages, and sometimes are poorly tempo-
rally matched with species occurrence records. From static SDMs, 
the drivers of species occurrence can be inferred, and it is assumed 
that by applying these relationships over space and time, patterns of 
distribution suitability can be projected, and some have even used 
this information to project distribution changes (Elith et al., 2010). 
Therefore, SDMs have become fundamental tools for, amongst other 
topics, biogeographic, evolutionary and applied- ecological research 
to inform biodiversity and species management (Zimmermann 
et al., 2010).

To predict sedentary species distributions, ecological the-
ory and empirical data support the use of long- term (e.g. multi- 
decade), averaged climate variables (Elith & Leathwick, 2009). 
However, these data have been shown to be inadequate for sim-
ulating rapidly changing species distributions that are driven by 
short- term (e.g. annual and even sub- annual) ecoclimatic condi-
tions (Bateman et al., 2012; Fernandez et al., 2017). Moreover, 
recent studies have demonstrated an improvement in SDM accu-
racy and precision by incorporating temporally dynamic explan-
atory variables when modelling distributions of mobile species 
(Abrahms et al., 2019; Reside et al., 2010) and in landscapes with 
high inter- annual environmental variability (Andrew & Fox, 2020; 
Fernandez et al., 2017).

Yet, to date, examples of dynamic SDMs remain scarce. Static 
or long- term average explanatory variables continue to be em-
ployed, even when modelling distributions of species that are 
highly mobile and responsive to short- term conditions, including 
birds (Williams et al., 2017), mammals (Wieringa et al., 2021) and 
insects (Kimathi et al., 2020). This is despite the availability of high 
spatiotemporal resolution, remote- sensed datasets for numerous 
environmental variables, from which dynamic explanatory vari-
ables can be derived. Utilisation of such datasets is rare proba-
bly due to a combination of the more ready- availability of static 
datasets, the associated analytical packages available, and the 
perceived added computational overheads of dynamic modelling 
with high resolution datasets.

Moreover, these barriers are likely to be exacerbated by exist-
ing SDM tools that are not optimised for incorporating temporally 
dynamic explanatory variables. Many SDM functions in R packages 
lack functionality for explicit consideration of the temporal dimen-
sion at key modelling stages. For instance, when modelling with 
temporally dynamic explanatory variables, temporal biases in oc-
currence datasets could over-  or under-  represent conditions at a 
given time and impact SDM performance. However, existing R pack-
age functions typically only account for spatial biases, offering tools 
to spatially thin records (Aiello- Lammens et al., 2015) or generate 
spatial buffered background points (Thuiller et al., 2016). Without 
appropriate tools, our ability to generate spatiotemporally dynamic 
SDMs is limited. The Spatiotemporal Observation Annotation Tool's 
rstoat package (https://mol.org) can extract spatiotemporally buff-
ered data for species occurrence records, but lacks the functions for 
developing and projecting dynamic SDMs with these data. Here, we 

present dynamicsdm, an R package that includes user- friendly and 
flexible functions for extracting and incorporating dynamic explana-
tory variables into species distribution models and projecting distri-
bution patterns at high spatiotemporal resolution.

2  |  PACK AGE OVERVIE W

The main features of dynamicSdm functions are:

• Dynamism: Fill gaps in existing static SDM package tools to ac-
count for both spatial and temporal dimensions at key modelling 
stages.

• Flexibility: Function arguments are highly flexible to target meth-
ods to the species and environment of interest.

• Computer- friendly: Explanatory variable extraction functions uti-
lise Google Earth Engine and Google Drive to minimise computing 
power and storage demands.

• Compatibility: Function inputs and outputs can be used inter-
changeably with other SDM packages.

The dynamicsdm package workflow is presented in Figure 1 and 
the included functions are detailed in the following section. Table 1 
outlines the novel functionality of dynamicsdm functions for gen-
erating high spatiotemporal resolution SDMs compared to existing 
SDM R packages.

3  |  RESPONSE DATA

3.1  |  Clean and filter species occurrence data

We provide three functions that encompass the spatial and temporal 
dimension when checking that species occurrence records match 
the study's scope and quality requirements. First, spatiotemp_check 
checks the formatting, completeness and validity of record co- 
ordinates and dates, with optional use of package coordinatecleaner 
for additional spatial checks (Zizka et al., 2019). Second, spatiotemp_
extent excludes records outside a given spatial and temporal 
extent, typically dictated by the study's scope or the coverage of 
environmental datasets. Third, spatiotemp_resolution filters records 
by a specified spatial and temporal resolution (e.g. dates must 
be given to daily resolution). As dynamicsdm functions require 
occurrence data in a standardised format, convert_gbif transforms 
records from the Global Biodiversity Information Facility (GBIF, 
https://www.gbif.org/) into this format.

3.2  |  Assess and account for spatial and 
temporal biases

spatiotemp_bias assesses spatial and temporal biases in occur-
rence records, which are prevalent due to various factors including 
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temporal variation in sampling effort or species detectability. For 
temporal biases, spatiotemp_bias returns a histogram plot of record 
frequency over time, and performs a chi- squared test for significant 
difference between the observed temporal distribution of records 
compared to random. For spatial biases, spatiotemp_bias returns a 
scatter plot of record co- ordinates for visual assessment of clus-
tering and performs a t- test for significant difference between 
observed nearest neighbour distance and that of random points 
simulated at the same density. Users can limit spatiotemp_bias to a 
specific area. This may improve the reliability of bias assessments 
for range- shifting species where uneven record distribution at range 
peripheries may be underpinned by ecological process and not sam-
pling bias.

Multiple correction methods exist for spatial bias, including 
spatial thinning of records (Aiello- Lammens et al., 2015) or weight-
ing by sampling effort (Stolar & Nielsen, 2015). We adapted these 
methods for temporal biases. spatiotemp_thin temporally thins oc-
currence records by removing records within a temporal distance 
of each other. Temporal distance between records can be measured 
by two methods: absolute number of days, or days apart within 
the annual cycle. For instance, temporally thinning two records 
with dates “2010- 01- 01” and “2015- 01- 04” by 10 days through 
the “absolute” method would retain both records, but the “annual 
cycle” method would remove one. To prevent spatially distant but 
temporally close records from being excluded, only records within 
a set grid cell size are temporally thinned. Then, spatiotemp_thin 
thins remaining records by a spatial distance using spthin package 
functions (Aiello- Lammens et al., 2015). Alternatively, we include 
the spatiotemp_weights function that calculates total sampling 
events (input data) across a spatial and temporal buffer from each 
occurrence record.

3.3  |  Generate pseudo- absences through 
space and time

Paucity of species absence records may necessitate the generation 
of pseudo- absence records or “background” points, which are 
inferred absences based upon known presence sites. We provide 
spatiotemp_pseudoabs that generates pseudo- absence co- ordinates 
and dates, either randomly within a spatiotemporal extent or 
buffer from occurrence records. Following pseudo- absence spatial 
buffering theory (VanDerWal et al., 2009), temporal buffering could 
reveal more fine- scale temporal drivers because presence- absence 
comparisons are at short time scales. Moreover, buffered pseudo- 
absences may be more suitable because randomly generated 
pseudo- absences have been shown to inflate SDM performance 
metrics (Acevedo et al., 2012).

4  |  E XPL ANATORY DATA

4.1  |  Extract spatiotemporally dynamic 
explanatory variables

Within dynamicSdm there are two functions for extracting dynamic 
explanatory variables using Google Earth Engine (GEE). GEE is a 
cloud platform developed for remotely processing remote sensing 
datasets (Figure 2). These functions require the installation of the 
GEE API R package rgee (Aybar et al., 2020) and an associated Google 
Drive account. By utilising GEE and Google Drive, we minimise 
computing power and storage demands.

extract_dynamic_coords extracts temporally dynamic explana-
tory variables. Users must input species occurrence records and 

F I G U R E  1  Overview of dynamicsdm package functions across species distribution modelling (SDM) stages. (1) Response data; functions 
for filtering species occurrence records by spatiotemporal quality, extent and resolution, generating pseudo- absence dates and co- ordinates, 
and exploring spatiotemporal biases in response data. (2) Explanatory data; functions for extracting spatiotemporally buffered explanatory 
variables using Google Earth Engine. (3) Model relationships; functions for fitting SDMs whilst accounting for spatial and temporal 
autocorrelation. (4) Dynamic projections; functions for generating high resolution projection covariates and projecting dynamic species 
distribution and abundance patterns.
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specify the variable through highly flexible arguments (Table 2). 
The function iterates through each record's co- ordinate and 
date, submitting the request to GEE for remote processing and 

exporting returned data. Function speed will depend on us-
er's internet connection, the spatiotemporal resolution of ex-
tracted data and the number of occurrence records. Output for 

F I G U R E  2  Google Earth Engine catalogue snapshots illustrating examples of remote sensing datasets available (a) and a dataset catalogue 
page (b). Numerical labels indicate dataset features: 1, temporal resolution; 2, spatial extent; 3, temporal extent; 4, dataset name; 5, spatial 
resolution; and 6, band names. See https://devel opers.google.com/earth - engin e/datas ets/catalog for available datasets.
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multiple variables can be combined into one data frame using 
extract_coords_combine.

Additionally, we provide extract_buffered_coords for extracting 
temporally and spatially buffered explanatory variables. Spatial 
buffering allows explanatory variables to represent the suitability or 
connectivity of environmental variables in the area surrounding the 
occurrence record. Such variables could better explain distribution 
patterns in dynamic landscapes than variables correlated to the co-
ordinate alone. Therefore, extract_buffered_coords requires a spatial 
buffer size in the form of a “moving window” matrix, which specifies 
the neighbourhood of cells to calculate the variable across (e.g. three 
by three matrix calculates the variable across the eight surrounding 
cells plus the cell the record falls within). The matrix is required be-
cause extract_buffered_coords utilises the focal function in package 
raster (Hijmans et al., 2015) to standardise the calculation and im-
prove projection raster generation time. If the traditional approach 
of a circular buffer from record co- ordinates is used, then generating 
high resolution projection rasters can be computationally heavy. The 
“moving window” matrix size will vary with radial distance of interest 
and the resolution of environmental data, so we include get_moving_
window that calculates an optimal matrix by balancing these factors.

5  |  MODEL REL ATIONSHIPS

5.1  |  Assess and account for spatial and temporal 
autocorrelation

spatiotemp_autocorr tests explanatory data for spatial and temporal 
autocorrelation, where samples taken closer in space and time are 
more similar than those more distantly sampled. For temporal au-
tocorrelation, spatiotemp_autocorr returns a scatterplot of the rela-
tionship between the variable at consecutive observations and tests 
for significant correlation. For spatial autocorrelation, the function 
returns Moran's I test statistic. To account for spatial autocorrela-
tion in SDMs, blocking is an established method that involves split-
ting occurrence data into sampling units based upon non- contiguous 
ecoregions, and grouping these into spatially disaggregated blocks 
of approximately equal sample size, within which the mean and 

range of covariate data are similar (Bagchi et al., 2013). Following 
this, blocks are left out in turn in a jack- knife approach for model 
fitting and testing. spatiotemp_block adapts this approach to account 
for temporal autocorrelation by splitting records into sampling units 
by a temporal step too (e.g. year).

5.2  |  Model fitting

To model the relationships between species occurrence and dynamic 
conditions, we include brt_fit for fitting Boosted Regression Tree 
models using the gbm.fit algorithm from gbm R package (Greenwell 
et al., 2019). brt_fit takes optional arguments, including for fitting 
jack- knife models to spatiotemporal blocks and weighting records 
by spatiotemporal sampling effort. We include brt_fit only for 
completeness as an SDM package. We suggest dynamicSdm could 
be easily integrated with alternative modelling approaches because 
pre- modelling functions generate a simple response and explanatory 
dataset, and post- modelling functions accept various model types.

6  |  DYNAMIC PROJEC TIONS

6.1  |  Extract dynamic projection covariates

The dynamic_proj_dates function generates dates at given intervals 
within an extent. Then extract_dynamic_raster and extract_buffered_
raster functions iterate through each date and extract variable rasters 
at a given extent and resolution. To minimise storage demands, these 
rasters are stored on Google Drive. dynamic_proj_covariates stacks 
rasters for each date and exports either data frames or raster stacks.

6.2  |  Project and visualise spatiotemporal patterns

The dynamic_proj function projects species distribution and abun-
dance models onto each covariate data frame or stack and exports 
projection rasters. To visualise spatiotemporal patterns, we include 
dynamic_proj_GIF that combines projections into an animated GIF.

Arguments Description Example

datasetname Google Earth Engine dataset catalogue name “MODIS/061/
MOD11A1”

bandname Name of the dataset band LST_Day_1km

spatial.res.metres Spatial resolution in metres for data extraction 1000

temporal.res Temporal resolution in days to calculate the 
variable across

14

temporal.direction Direction from record date to calculate across 
(“prior” or “post”)

Prior

GEE.math.fun Mathematical function to compute across the 
period.

Mean

varname Unique variable name. “mean_two_
week_temp”

TA B L E  2  Arguments for the 
dynamicSdm function extract_dynamic_
coords to extract a temporally dynamic 
explanatory variable for each species 
occurrence record. Example input would 
extract MODIS mean land surface 
temperature across the 10 days prior to 
each occurrence record.
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7  |  E X AMPLE— THE RED - BILLED QUELE A 
QUELE A QUELE A

We illustrate the application of dynamicSdm to model the highly 
variable intra-  and inter- annual distribution and abundance of the 
granivorous and nomadic weaver bird, the red- billed quelea Quelea 
quelea; a major pest of small grain cereals in sub- Saharan Africa.

7.1  |  Response data

Species occurrence and abundance data were collated from GBIF 
(Gbif Occurrence Download, 2021) and pest control organisations 
(Table S1). Occurrence data were filtered to exclude records con-
taining anomalous or missing values using spatiotemp_check. Using 
spatiotemp_resolution, records not given to a spatial resolution of 
four decimal places or a temporal resolution that was >1- day were 
excluded due to being of an inadequate resolution to study intra- 
annual, local- scale distribution patterns. Then spatiotemp_extent 
filtered occurrence data to 2001– 2017, the temporal extent of ex-
planatory datasets, and the spatial extent of southern Africa to 

focus solely on the subspecies Q. quelea lathamii (Figure 3). Paucity 
of absence records necessitated pseudo- absence generation using 
spatiotemp_pseudoabs, which randomly generated pseudo- absence 
co- ordinates within a 250- 500 km spatial buffer and dates within a 
6– 12 week buffer. Buffer sizes were informed by quelea movement 
capabilities (Elliott, 1990) and typical rates of change in their habitat 
(Cheke et al., 2007). Spatial and temporal biases in occurrence records 
were detected by spatiotemp_bias. Therefore, spatiotemp_weights 
summed e- Bird records (Auer et al., 2022 https://ebird.org) across a 
14 day buffer and 100 km radius from each record. These were trans-
formed into scaled weights for model fitting. Buffer sizes were chosen 
to reflect the spatiotemporal scale of avian sampling bias in southern 
Africa. Occurrence data were split into breeding or roosting life- cycle 
stages for separate modelling (Supplementary Materials 1).

7.2  |  Explanatory data

For each record, explanatory variables were extracted using ex-
tract_dynamic_coord and extract_buffered_coord, which represented 
short- term (8- week) and longer- term (52- week) weather conditions, 

F I G U R E  3  Spatiotemporal distribution of red- billed quelea Quelea quelea occurrence records a) before filtering (N = 342,434) and b) after 
filtering (N = 66,740) using dynamicSdm response data functions. Purple points represent spatiotemporally buffered pseudo- absence records 
(N = 66,740) generated with function spatiotemp_pseudoabs.
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and the availability of resources governing quelea distribution and 
abundance (Ward, 1971; Table 3). Spatial buffer size was generated 
by get_moving_window using quelea's 100 km dispersal radius to ac-
cess resources (Elliott, 1990). Variable selection and extraction is 
detailed in Supplementary Materials 2.

7.3  |  Model relationships

spatiotemp_autocorr revealed significant spatial and temporal auto-
correlation in explanatory variable data. Therefore, spatiotemp_block 
split records into six blocks by record year and contiguous sections of 
a terrestrial ecoregion in southern Africa for jack- knife model fitting 
using function brt_fit (model details in Supplementary Materials 3).

7.4  |  Dynamic projections

dynamic_proj_dates generated dates at monthly intervals for a 5 year 
period (2013– 2017). Rasters for each variable were extracted to 
Google Drive using extract_dynamic_raster and extract_buffered_raster 

TA B L E  3  Dynamic explanatory variables in red- billed quelea 
Quelea quelea species distribution and abundance models. 
Accessible area is a “moving window” matrix matching quelea's 
100 km dispersal radius generated by dynamicSdm function 
get_moving_window.

Type Variable Description

Environmental Precipitation Precipitation sum in 8 and 
52 weeks prior

Temperature Temperature mean and standard 
deviation in 8 and 52 weeks 
prior

Productivity Productivity mean in 8 weeks prior

Resource Surface water Total annual land cover ‘water bodies’ 
cells within accessible area

Nesting trees Total annual land cover ‘deciduous 
tree’ cells within accessible area

Habitat 
connectivity

Total suitable habitat (‘grassland’ 
and ‘cereal cropland’) annual 
land cover cells within 
accessible area

Seed availability Total grass and crop seed available 
within accessible area, derived 
from vegetation phenology

F I G U R E  4  Projected intra-  and inter- 
annual distribution and abundance of red- 
billed quelea Quelea quelea in southern 
Africa. Coloured cells indicate projected 
quelea presence (distribution suitability 
over 0.5) and the colour gradient 
represents projected quelea abundance 
in these cells (number of individuals, log10 
scale).
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and then combined into data frames by dynamic_proj_covariates. 
Using dynamic_proj a binary distribution was projected onto covari-
ates and then projected abundance was stacked onto positive oc-
currence cells (Figure 4, Supplementary Materials 4). The maximum 
projected abundance across life- cycle stages was taken to produce a 
single projection for each month. dynamic_proj_GIF generated a GIF 
to visualise the intra-  and inter-  annual distribution suitability and 
abundance patterns of quelea (Supplementary Figures S1 and S2). 
For comparison, we also fitted and projected models using long- term 
average ecoclimatic variables (Supplementary Materials 5).

8  |  CONCLUSION

Overall, dynamicSdm provides users with flexible and easily applied 
tools to model the dynamic distributions and abundances of species 
worldwide and advance SDM- based research.

AUTHOR CONTRIBUTIONS
Rachel Dobson wrote the r package and conducted the package 
tests. All authors wrote the package website and function documen-
tations; Rachel Dobson led the manuscript writing, and all authors 
wrote the manuscript. All authors contributed critically to the drafts 
and gave final approval for publication.

FUNDING INFORMATION
This work was supported by the Leeds- York- Hull Natural Environment 
Research Council (NERC) Doctoral Training Partnership (DTP) 
Panorama under grant NE/S007458/1. This work was also supported 
by the Biotechnology and Biological Sciences Research Council 
through UK Research and Innovation as part of the Global Challenges 
Research Fund, AFRICAP programme, grant number BB/P027784/1.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interests.

PEER RE VIE W
The peer review history for this article is available at https://
w w w.w e b o f  s c i e n  c e . c o m /a p i /g a t e w  ay/w o s/p e e r-  r e v i e 
w/10.1111/2041- 210X.14101.

DATA AVAIL ABILIT Y S TATEMENT
Data and code from this manuscript's case studies are archived 
through Zenodo at https://doi.org/10.5281/zenodo.7670393 
(Dobson et al., 2023).

ORCID
Rachel Dobson  https://orcid.org/0000-0003-3990-267X 
Andy J. Challinor  https://orcid.org/0000-0002-8551-6617 
Robert A. Cheke  https://orcid.org/0000-0002-7437-1934 
Stewart Jennings  https://orcid.org/0000-0002-1267-8623 
Stephen G. Willis  https://orcid.org/0000-0002-8656-5808 
Martin Dallimer  https://orcid.org/0000-0001-8120-3309 

R E FE R E N C E S
Abrahms, B., Welch, H., Brodie, S., Jacox, M. G., Becker, E. A., Bograd, S. 

J., Irvine, L. M., Palacios, D. M., Mate, B. R., & Hazen, E. L. (2019). 
Dynamic ensemble models to predict distributions and anthro-
pogenic risk exposure for highly mobile species. Diversity and 
Distributions, 25, 1182– 1193.

Acevedo, P., Jiménez- Valverde, A., Lobo, J. M., & Real, R. (2012). 
Delimiting the geographical background in species distribution 
modelling. Journal of Biogeography, 39, 1383– 1390.

Aiello- Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & 
Anderson, R. P. (2015). spThin: An R package for spatial thinning 
of species occurrence records for use in ecological niche models. 
Ecography, 38, 541– 545.

Andrew, M. E., & Fox, E. (2020). Modelling species distributions in dy-
namic landscapes: The importance of the temporal dimension. 
Journal of Biogeography, 47, 1510– 1529.

Auer, T., Barker, S., Borgmann, K., Charnoky, M., Childs, D., Curtis, J., 
Davies, I., Downie, I., Fink, D., Fredericks, T., Ganger, J., Gerbracht, 
J., Hanks, C., Hochachka, W., Iliff, M., Imani, J., Johnston, A., Lenz, 
T., Levatich, T., … Wood, C. (2022). EOD –  eBird observation data-
set. Cornell Lab of Ornithology. Occurrence dataset. https://doi.
org/10.15468/ aomfnb accessed via GBIF.org on 2021- 07- 21.

Aybar, C., Wu, Q., Bautista, L., Yali, R., & Barja, A. (2020). rgee: An R 
package for interacting with Google earth engine. Journal of Open 
Source Software, 5, 2272.

Bagchi, R., Crosby, M., Huntley, B., Hole, D. G., Butchart, S. H. M., 
Collingham, Y., Kalra, M., Rajkumar, J., Rahmani, A., Pandey, 
M., Gurung, H., Trai, L. T., Van Quang, N., & Willis, S. G. (2013). 
Evaluating the effectiveness of conservation site networks under 
climate change: Accounting for uncertainty. Global Change Biology, 
19, 1236– 1248.

Baker, D. J., Hartley, A. J., Pearce- Higgins, J. W., Jones, R. G., & Willis, 
S. G. (2017). Neglected issues in using weather and climate infor-
mation in ecology and biogeography. Diversity and Distributions, 23, 
329– 340.

Bateman, B. L., VanDerWal, J., & Johnson, C. N. (2012). Nice weather 
for bettongs: Using weather events, not climate means, in species 
distribution models. Ecography, 35, 306– 314.

Cheke, R. A., Venn, J. F., & Jones, P. J. (2007). Forecasting suitable breed-
ing conditions for the red- billed quelea Quelea quelea in southern 
Africa. Journal of Applied Ecology, 44, 523– 533.

de Andrade, A. F. A., Velazco, S. J. E., & Júnior, P. D. M. (2020). 
ENMTML: An R package for a straightforward construction 
of complex ecological niche models. Environmental Modelling 
Software, 125, 104615.

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'amen, M., 
Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., 
Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: 
An R package to support spatial analyses and modeling of species 
niches and distributions. Ecography, 40, 774– 787.

Dobson, R., Challinor, A., Cheke, R. A., Jennings, S., Willis, S., & Dallimer, 
M. (2023). Species distribution and abundance modelling with dy-
namicSDM: A case study analysis of the red- billed quelea (Quelea 
quelea). Zenodo, https://doi.org/10.5281/zenodo.7681373

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range- 
shifting species. Methods in Ecology and Evolution, 1, 330– 342.

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review of 
Ecology, Evolution, Systematics, 40, 677– 697.

Elliott, C. C. H. (1990). The migrations of the red- billed quelea Quelea 
quelea and their relation to crop damage. Ibis, 132, 232– 237.

Fernandez, M., Yesson, C., Gannier, A., Miller, P. I., & Azevedo, J. M. 
(2017). The importance of temporal resolution for niche model-
ling in dynamic marine environments. Journal of Biogeography, 44, 
2816– 2827.

 2041210x, 2023, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14101 by T
est, W

iley O
nline L

ibrary on [31/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14101
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14101
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14101
https://doi.org/10.5281/zenodo.7670393
https://orcid.org/0000-0003-3990-267X
https://orcid.org/0000-0003-3990-267X
https://orcid.org/0000-0002-8551-6617
https://orcid.org/0000-0002-8551-6617
https://orcid.org/0000-0002-7437-1934
https://orcid.org/0000-0002-7437-1934
https://orcid.org/0000-0002-1267-8623
https://orcid.org/0000-0002-1267-8623
https://orcid.org/0000-0002-8656-5808
https://orcid.org/0000-0002-8656-5808
https://orcid.org/0000-0001-8120-3309
https://orcid.org/0000-0001-8120-3309
https://doi.org/10.15468/aomfnb
https://doi.org/10.15468/aomfnb
https://doi.org/10.5281/zenodo.7681373


    |  1199Methods in Ecology and Evolu
onDOBSON et al.

Gbif Occurrence Download. (06 July 2021). https://doi.org/10.15468/ 
dl.qza9ty

Greenwell, B., Boehmke, B., Cunningham, J., & GBM Developers. (2019). 
Package ‘gbm’. R package version 2.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering 
more than simple habitat models. Ecology Letters, 8, 993– 1009.

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). Package ‘dismo’. 
Circles, 9, 1– 68.

Hijmans, R. J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., 
Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & 
Shortridge, A. (2015). Package ‘raster’. R package, 734.

Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla- Buitrago, G. E., 
Boria, R. A., Soley- Guardia, M., & Anderson, R. P. (2021). ENMeval 
2.0: Redesigned for customizable and reproducible modeling of 
species' niches and distributions. Methods in Ecology and Evolution, 
12, 1602– 1608.

Kimathi, E., Tonnang, H. E. Z., Subramanian, S., Cressman, K., ABDEL- 
Rahman, E. M., Tesfayohannes, M., Niassy, S., Torto, B., Dubois, T., 
Tanga, C. M., Kassie, M., Ekesi, S., Mwangi, D., & Kelemu, S. (2020). 
Prediction of breeding regions for the desert locust Schistocerca 
gregaria in East Africa. Scientific Reports, 10, 11937.

Reside, A. E., VanDerWal, J. J., Kutt, A. S., & Perkins, G. C. (2010). 
Weather, not climate, defines distributions of vagile bird species. 
PLoS ONE, 5, e13569.

Shipley, B. R., Bach, R., Do, Y., Strathearn, H., McGuire, J. L., & Dilkina, 
B. (2022). megaSDM: Integrating dispersal and time- step analyses 
into species distribution models. Ecography, 2022, e05450.

Stolar, J., & Nielsen, S. E. (2015). Accounting for spatially biased sampling 
effort in presence- only species distribution modelling. Diversity and 
Distributions, 21, 595– 608.

Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). Package ‘bio-
mod2’. R package.

VanDerWal, J., Shoo, L. P., Graham, C., & Williams, S. E. (2009). Selecting 
pseudo- absence data for presence- only distribution modeling: 
How far should you stray from what you know? Ecological Modelling, 
220, 589– 594.

Ward, P. (1971). The migration patterns of Quelea quelea in Africa. Ibis, 
113(3), 275– 297.

Wieringa, J. G., Carstens, B. C., & Gibbs, H. L. (2021). Predicting migra-
tion routes for three species of migratory bats using species distri-
bution models. PeerJ, 9, e11177.

Williams, H., Willemoes, M., & Thorup, K. (2017). A temporally explicit 
species distribution model for a long distance avian migrant, the 
common cuckoo. Journal of Avian Biology, 48, 1624– 1636.

Zimmermann, N. E., Edwards, T. C., Jr., Graham, C. H., Pearman, P. B., & 
Svenning, J.- C. (2010). New trends in species distribution model-
ling. Ecography, 33, 985– 989.

Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, 
D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., 
Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: 
Standardized cleaning of occurrence records from biological collec-
tion databases. Methods in Ecology and Evolution, 10, 744– 751.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Supplementary Figure S1. GIF of projected intra-  and inter- 
annual distribution suitability for redbilled quelea Quelea quelea 
in southern Africa at monthly intervals across a 5 year period 
(2013– 2017), created using R package dynamicsdm projection 
functions. Distribution suitability ranges between 0, representing 
no suitability for quelea and 1, representing the highest projected 
suitability for quelea.
Supplementary Figure S2. GIF of projected intra-  and inter- annual 
abundance for red- billed quelea Quelea quelea in southern Africa 
at monthly intervals across a 5 year period (2013– 2017), created 
using R package dynamicsdm projection functions. Coloured 
cells indicate projected quelea presence (distribution suitability 
over 0.5) and the colour gradient represents projected quelea 
abundance (number of individuals, log10 scale) in these cells.
Supplementary Figure S3. Projected distribution suitability 
and abundance of red- billed quelea Quelea quelea in southern 
Africa onto long- term average or static ecoclimatic variables. 
(a) Distribution suitability, ranges between 0, representing no 
suitability for quelea and 1, representing the highest projected 
suitability for quelea. (b) Abundance, coloured cells indicate 
projected quelea presence (distribution suitability over 0.5) and 
the colour gradient represents projected quelea abundance 
(number of individuals, log10 scale) in these cells.
Supplementary Materials 1. Response data.
Supplementary Materials 2. Explanatory data.
Supplementary Materials 3. Model relationships.
Supplementary Materials 4. Dynamic projections.
Supplementary Materials 5. Static projections.
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