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Abstract—Benefiting from the fusion of communication and
intelligent technologies, network-enabled robots have become
important to support future machine-assisted and unmanned
applications. To provide high-quality services for robots in wide
areas, hybrid satellite-terrestrial networks are a key technology.
Through hybrid networks, computation-intensive and latency-
sensitive tasks can be offloaded to mobile edge computing (MEC)
servers. However, due to the mobility of mobile robots and unreli-
able wireless network environments, excessive local computations
and frequent service migrations may significantly increase the
service delay. To address this issue, this paper aims to minimize
the average task completion time for MEC-based offloading
initiated by satellite-terrestrial-network-enabled robots. Different
from conventional mobility-aware schemes, the proposed scheme
makes the offloading decision by jointly considering the mobility
control of robots. A joint optimization problem of task offloading
and velocity control is formulated. Using Lyapunov optimization,
the original optimization is decomposed into a velocity control
subproblem and a task offloading subproblem. Then, based on
the Markov decision process (MDP), a dual-agent reinforcement
learning (RL) algorithm is proposed. The convergence and com-
plexity of the improved RL algorithm are theoretically analyzed,
and the simulation results show that the proposed scheme can
effectively reduce the offloading delay.

Index Terms—Mobile edge computing, reinforcement learning,
satellite-terrestrial network, task offloading, velocity control.

I. INTRODUCTION

With the rapid development of communication and in-
telligent technologies, network-enabled robots have become
an important application for the advancement of the future
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society, such as in assisted-living, industry, and transport
environments [1]–[5]. When robots operate in wide areas, the
hybrid satellite-terrestrial network is key to provide ubiquitous
coverage and information perception [6], [7]. Since robots,
especially mobile robots, always have limited computing ca-
pabilities and storage capacities, their computation-intensive
and delay-sensitive tasks can be uploaded to powerful edge
servers with the aid of hybrid networks. This is known as task
offloading in mobile edge computing (MEC) [8]. Meanwhile,
to efficiently complete specific missions within a given time,
such as in cooperation among multiple robots, these robots
also need to perform some constrained movements. However,
due to the mobility of robots and time-varying requirements of
task offloading, hybrid satellite-terrestrial networks are highly
dynamic. A service migration occurs when a robot moves
away from its original location, and thus, its current MEC
server that provides mobile service is different from the previ-
ous MEC server [9]. Furthermore, compared with conventional
clouds, MEC systems have limited computation and storage
resources [8]. On the other hand, wireless environments are
unreliable [10]–[15]. In this regard, when a large number
of mobile robots access the hybrid network, frequent service
migrations may deteriorate the hybrid network environment,
such as network overload and packet loss. As a result, the
service delay of offloaded tasks for hybrid satellite-terrestrial-
network-enabled robots will be significantly increased.

Many methods have been proposed to address the migration
problem in MEC-based terrestrial networks [16]–[21]. In [16],
considering distributed user mobility, a multi-agent reinforce-
ment learning (RL) algorithm was presented. To minimize the
task offloading delay with the accumulated service migration
cost, the MEC-based digital twin network was optimized by
RL in [17]. To balance the high quality of services (QoS) and
migration cost, [18] proposed a deep RL enabled optimization
scheme in a vehicular network. Furthermore, according to
predictable trajectories and mobility-induced communication
rates, a mobility-aware task offloading policy was designed
in [19]. By assigning velocity-based access priorities to mo-
bile devices [20], speed-aware task offloading was optimized
by RL. Leveraging mobility, [21] devised a microservice
coordination scheme to minimize the overall service delay.
However, when the satellite communication is incorporated,
the heterogeneity between satellite and cellular communication
systems, such as different propagation delays and different
communication rates, may result in higher service latencies.

Thus, an increasing number of studies on MEC based
on satellite-terrestrial networks have been conducted for co-
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operative offloading [22]–[26] and service migrations [27]–
[30]. In [22], a cooperative computation offloading model was
designed to provide high-speed services. In [23], to minimize
energy consumption in computation offloading, a cloud-edge
collaboration problem was optimized by RL and successive
convex approximation algorithms. By considering user pref-
erence and evolved satellite processing capabilities, [24] pro-
posed satellite-terrestrial cooperation-based double-edge net-
works to relieve terrestrial backhaul burdens. To efficiently
allocate the distributed MEC servers, the joint optimization
of energy consumption and delay was considered in double-
edge networks [25]. To jointly optimize the user association,
resource allocation, and offloading policy in Internet of Things
(IoT) networks using multiple satellites and their gateways,
the cost of delay and energy consumption was minimized by
the Lagrange multiplier and RL algorithms [26]. In addition,
to reduce the migration cost, a service migration model was
devised in [27] based on task characteristics to make a tradeoff
between task completion time and energy consumption. In
[28], the live migration of a virtual network function (VNF)
with its reinstantiation and scheduling was studied. Then, two
Tabu search-based algorithms were employed for dynamic
VNF mapping and scheduling. For low-delay airplane ap-
plications in [29], the in-flight service provisioning problem
was formulated by routing and reconfiguration and solved
by the online heuristic algorithm. Furthermore, a distributed
two-layer decomposition model was proposed to minimize the
migration cost in [30]. These existing works consider how to
optimize task offloading based on the mobility of devices, but
they do not consider how to optimize task offloading based on
mobility control.

Even in MEC-based terrestrial networks, most mobility-
related network optimization works for task processing and
resource allocation are from the supply side that involve
resource scheduling [31]; wireless control [32], [33]; and task
offloading [34], [35]. In these methods, the use of mobility
includes mobility prediction [31]; mobility state sharing [32];
mobility control and its stability [33]; and velocity-based task
classification [34], [35]. Additionally, in [36], Wu et al. studied
computation offloading in multi-access MEC to minimize
the overall offloading delay of mobile users. In [37], using
wireless power transfer for mobile devices with limited energy
capacities, a joint optimization of total energy consumption
and the learning convergence latency was proposed. Although
the effect of mobility control has been analyzed in [33], task
offloading and service migration in hybrid satellite-terrestrial
networks have not been considered, and the case of no wireless
network coverage caused by damage to network infrastructures
or heavy network loads is not included either.

Different from conventional network optimization ap-
proaches [31]–[37], a demand shaping-based approach was
designed from the user side in [38]–[41]. Based on the
willingness of users to move, a closed-loop system model
for spatial control and temporal control was developed. In
spatial control, users are encouraged to move from a severely
congested location to a less congested location. In temporal
control, an incentive design for reducing the data demand of
users in a severely congested location is proposed. However,

these approaches are intended for humans, not robots. Fur-
thermore, when all wireless channels are unavailable, mobility
control for mobile robots with offloading requirements is not
considered. The channel unavailability might be due to a large
number of mobile robots accessing limited communication
resources, severe channel fading, damage to the access point
(AP), and so on. In this case, in the AP coverage where all
channels are unavailable, the low-speed movements of mobile
robots increase local computations. When wireless channels
are available in the AP coverage, high-speed movements of
mobile robots lead to more service migrations. As a result,
the total service delay is significantly increased.

Motivated by the above observations, in this work, we
develop a joint velocity control and MEC-based offloading
strategy to improve the QoS in hybrid satellite-terrestrial net-
works. We consider a scenario where multiple mobile robots
cooperate with each other to complete the assigned mission.
At the same time, they periodically sense their surroundings,
offload data to cellular/satellite MEC servers for process-
ing, and receive computational results from selected MEC
servers. Among the surrounding information, the availability
of wireless communication is the crucial state information for
velocity control, where wireless communication refers to radio
communication in this paper. Our objective is to minimize the
average task completion time for MEC-based offloading when
a mobile robot travels an entire trip. We formulate the long-
term offloading problem as a Markov decision process (MDP)
problem and propose a joint optimization for velocity control
and task offloading. Our main contributions are summarized
as follows.

• A joint optimization problem of task offloading, veloc-
ity control, and service migration is proposed in this
paper, which is formulated to minimize the average
task completion time. The non-deterministic polynomial-
time hardness (NP-hardness) of the optimization problem
is proven. Then, the relationship between the velocity
control and task offloading is explored.

• According to the coverage regions of APs, a Lyapunov
optimization-based decomposition is employed, which
can achieve task offloading optimization and velocity
control optimization. Then, based on the MDP, a dual-
agent RL algorithm is employed to obtain the effective
decision-making of task offloading and velocity control.
Furthermore, the convergence and complexity of the
improved RL algorithm are analyzed in terms of Q func-
tions. Finally, simulation results show that compared with
conventional offloading schemes, the proposed scheme
can save up to 40% of the average task completion time.

The rest of this paper is organized as follows. In Section
II, the system model of task offloading and velocity control
for satellite-terrestrial-network-enabled robots is introduced. In
Section III, the optimization model and its NP-hardness are
given, and the dual-agent RL algorithm and its convergence
are proposed. In Section IV, simulation results are provided.
Finally, in Section V, conclusions are drawn.
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Fig. 1. System model for multiple robots in the hybrid satellite-terrestrial-network with MEC, where vn denotes the average moving velocity in the nth AP
coverage region.

II. SYSTEM MODEL

A. System Description

As shown in Fig. 1, a hybrid satellite-terrestrial network
with MEC is considered, which can enable multiple robots.
Through the hybrid network, these robots intelligently co-
operate to complete a specific mission within a given time.
To avoid collisions and to complete the collaborative mission
on time, efficient control of robot mobility is needed, such
as velocity control. Using appropriate velocity control, these
robots can move to their designated positions to complete the
collaborative mission in time. During the movement, mobile
robots also need to complete other tasks to make autonomous
decisions. For example, to handle computation-intensive or
latency-sensitive tasks, they periodically offload these tasks
(such as sensor data) to and receive the computational re-
sults from MEC servers through APs. Thus, these robots are
multitasking robots that not only complete mobility-controlled
cooperative missions but also execute MEC-empowered of-
floading. For the multi-mobile robot scenario, we focus on a
mobile robot moving from one place to another place within
a given time in a complex network environment. The reasons
include the following. 1) The joint optimization of velocity
control and MEC-powered offloading for a satellite-terrestrial-
network-enabled robot has not been studied in existing works.
Since joint optimization involves two different systems, a
hybrid network system and a motion control system, it is also
a complex optimization problem. 2) The autonomous decision-
making behaviors and mobility behaviors of other robots
may complicate the network environment, such as generating
the dynamic network load and intermittent communication
environment. Hence, other robot-induced network dynamics

are regarded as an important part of the complex network
environment. A severely degraded network environment will
significantly affect data uploading and result downloading. As
a result, the velocity control and task offloading decisions of
the selected mobile robot cannot be executed in time.

The availability of wireless communication is also included
in the periodically perceived surrounding information of the
mobile robot. When wireless communication is available,
periodic offloading is executed by the mobile robot. Each
period is referred to as an offloading interval ∆T . The wireless
communication system has N APs, including N1 cellular
APs and N2 satellites, i.e., N = N1 + N2. When wireless
communication is unavailable, the mobile robot can process
tasks using its limited computing capability. When the velocity
of the robot is too low, it cannot reach the destination on time
and complete the cooperative mission with other robots. Thus,
an average velocity should be maintained by the appropriate
velocity control to guarantee that the moving time of the
mobile robot is smaller than or equal to the due time Tmove in
the whole trip. To coordinate offloading and mobility, we focus
on the joint optimization of task offloading and velocity control
as a complement to conventional offloading approaches.

In the sequel, we focus on cellular AP-based MEC servers
and satellite-based MEC servers, indexed by N1 and N2

(N1 ∪ N2 = {1, 2, . . . , N}), respectively. For each cellular
AP/Earth station, an independent MEC server is equipped,
where the MEC server equipped with the Earth station has
more computing capabilities than the MEC server equipped
with the cellular AP. The MEC server receives and computes
the offloaded tasks, and sends the computational results back
to the mobile robot. Optical connections are assumed between
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MEC servers, between APs, and between APs and MEC
servers. It is noted that the satellite MEC servers and cellular
MEC servers are connected through the Internet.

In each AP coverage region, when the mobile robot is
assumed to move a fixed distance, the number of offloading
intervals depends on its moving velocity. A low velocity
increases the offloading intervals as well as the moving time.
As a result, the mobile robot may not be able to reach the
destination on time. More importantly, when wireless commu-
nication is unavailable in the current AP coverage region, more
computational tasks are undertaken by the selected mobile
robot. Since the mobile robot has much smaller computational
resources than the MEC server, the task completion time will
be significantly increased. On the other hand, a high velocity
increases the handover of the mobile robot between multiple
APs. In this case, we assume that the information of all
robots (in terms of locations and offloading requests) served
by different MEC servers is available [42]. Based on such
global information, the incomplete task in the current MEC
server may be migrated to another MEC server closest to the
mobile robot. As a result, the migration time is increased [17],
[42], [43]. Therefore, due to the uncertainty of wireless link
availability, inappropriate velocities could increase the task
completion time in MEC-based offloading.

An example of task offloading and velocity control is shown
in Fig. 1. A mobile robot periodically generates tasks (e.g., in
each offloading interval). In the (n − 1)th coverage region,
the mobile robot with vn−1 = 10 m/s has twice as many
offloading intervals as the mobile robot with vn = 20 m/s.
As a result, when wireless communication is unavailable in
the (n−1)th AP, a slower movement will further increase the
offloading intervals and the number of local computations. In
contrast, in the nth AP with available wireless communication,
the rapid movement reduces the dwell time of the mobile
robot. In this case, some tasks offloaded to the nth MEC
server may not be fully processed, and their computational
results cannot be returned by the nth AP. Based on the
global information of the robot-located coverage region and
offloading request, the uncompleted tasks can be migrated
from the nth MEC server to the (n + 1)th MEC server, and
their computational results will be sent back by the (n+1)th
AP. As a result, the rapid movement increases the number of
service migrations. According to [34], the low velocity has
a high delay tolerance, and the high velocity has a low delay
tolerance. Thus, considering the velocity control of the mobile
robot and wireless communication availability, we focus on
minimizing the process-oriented average task completion time
in MEC-based offloading using the hybrid satellite-terrestrial
network.

B. Offloading Model

For the task offloading of the mobile robot, the local
computation, wireless communication, MEC computation, and
service migration are described below.

1) Local computation model: When wireless communica-
tion is unavailable in the current AP, the task is computed by

the mobile robot. The local computation delay Tlocal(t) in the
tth interval is expressed as

Tlocal(t) = (1− 1α(m, t))
D(t)Φ

flocal(t)
, (1)

where the indicator function 1α(m, t) stands for the offloading
decision in the tth interval, 1α(m, t) = 1 for m ∈ α =
{1, 2, . . . , N} denotes that all data are offloaded to the mth
MEC server in the tth interval, 1α(m, t) = 0 for m = 0
indicates the local computation, D(t) is the data size generated
by the mobile robot in the tth interval, Φ is the required CPU
cycles per bit, and flocal(t) denotes the CPU frequency at the
mobile robot.

2) Communication model: We assume that the same com-
munication rate exists in the uplink and downlink. When
wireless communication is available in the current cellular AP,
the task generated from the mobile robot can be offloaded to
an MEC server over wireless channels. In the tth interval, the
communication delay Tcom(t) is expressed as

Tcom(t) =
1α(m, t)

(
D(t) + D̄(t)

)
W log2

(
1 + ph2

σ2

) , (2)

where D̄(t) is the data size of the computational results, p is
the transmit power, and h, W , and σ2 denote the channel gain,
bandwidth, and noise power, respectively.

When the offloaded task is transferred from the satellite to
the Earth station, the communication delay Tcom(t) is

Tcom(t)=1α(m, t)

(
2
dGS+dSE

c
+
(
D(t)+D̄(t)

)( 1

rGS
+

1

rSE

))
,

(3)

where dGS and dSE denote the distances from the mobile
robot to the satellite and from the satellite to the Earth
station, respectively, c is the speed of light, and rGS =

WGS log2

(
1 +

pGSh
2
GS

σ2
GS

)
and rSE = WSE log2

(
1 +

pSEh
2
SE

σ2
SE

)
denote the communication rates in the links between the
mobile robot and the satellite and between the satellite and
the Earth station, respectively. WGS (or WSE), pGS (or pSE),
hGS (or hSE), and σ2

GS (or σ2
SE) stand for bandwidth, transmit

power, channel gain, and noise power in robot-satellite (or
satellite-Earth station) transmission.

3) MEC model: With the aid of wireless transmission in
the current AP, when the task is offloaded to the mth MEC
server in the tth interval, the computation delay TMEC(t) is
given by

TMEC(t) =
1α(m, t)D(t)Φ

fMEC,m(t)
, (4)

where fMEC,m(t) is the CPU frequency of the mth MEC
server.

4) Migration model: Due to the mobility of the robot, the
corresponding service provider (e.g., virtual machine (VM)) is
migrated from the initial MEC server to the current counterpart
through one- or multi-hop optical communications. In this
case, the service downtime may cause a delay that cannot be
ignored. In our model, when the MEC server in the (t− 1)th
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interval is different from the MEC server in the tth interval,
a migration delay will be incurred, which is expressed as

Tmig(t) =I
{
M(t−1) ̸= M(t) ∩ (M(t−1) ̸= 0 ∪M(t) ̸= 0)

∩ (M(t−1) ∈ N1 ∪M(t) ∈ N1)
}
C

+ I
{
(M(t−1) ∈ N1 ∩M(t) ∈ N2)

∪ (M(t−1) ∈ N2 ∩M(t) ∈ N1)
}
∆C, (5)

where M(t) ∈ N1 ∪ N2 ∪ {0}, M(t) = 0 denotes the local
computing, M(t) = 1, 2, . . . , N denotes the MEC server, and
I{·} = 1 if the condition in {·} is satisfied and otherwise,
I{·} = 0. C denotes the migration time cost, which is replaced
by ρTMEC(t) with the scaling factor ρ (ρ ∈ [0, 1]) in this
paper. ∆C is the extra migration cost between the cellular
MEC server and the satellite-based MEC server.

C. Velocity Control Model

We first assume that the robot has a preplanned timestamped
reference trajectory to reduce its mobility model to one-
dimensional motion, that is, velocity control without consider-
ing direction. Then, we assume that vn(l0) and vn(lend) are the
initial velocity and final velocity in the nth AP coverage region
(n = 1, 2, . . . , N), respectively. We also assume vn(lend) =
vgoal,n with the target velocity vgoal,n ∈ [vmin, vmax] and a
given acceleration a > 0. Note that the target velocity vgoal,n
is not known in advance and needs to be solved in the joint
optimization problem in the next section. When the mobile
robot enters the nth AP coverage region, its velocity control
policy should be first determined by the relationship between
vn(l0) and vgoal,n. Thus, the instantaneous velocity vn(l) in
the lth interval of the nth AP coverage region can be expressed
as

vn(l)=


min {vn(l0) + al, vgoal,n}, vn(l0) < vgoal,n,

vn(l0), vn(l0) = vgoal,n,

max {vn(l0)− al, vgoal,n}, vn(l0) > vgoal,n,

(6)

where vn(l0) < vgoal,n, vn(l0) = vgoal,n, and vn(l0) > vgoal,n
correspond to the velocity controls of acceleration, constant
movement, and deceleration, l ∈ Ln = {1, 2, . . . , Ln}, and Ln

is the number of offloading intervals in the nth AP coverage
region, which is calculated by

Ln =

⌊
Tgoal,n

∆T

⌋
, (7)

where Tgoal,n is the travel time across the nth AP coverage
region, given as

Tgoal,n=


1

vgoal,n

(
cn+

(vgoal,n−vn(l0))
2

2a

)
, vn(l0) ⩽ vgoal,n,

1
vgoal,n

(
cn− (vn(l0)−vgoal,n)

2

2a

)
, vn(l0) > vgoal,n,

(8)
where cn is the moving distance in the nth AP coverage region.

Therefore, when the mobile robot passes through the nth
AP, for t = 1, 2, . . . ,

∑N
n=1 Ln, the task completion time Tn(t)

in the tth interval can be formulated as

Tn(t)=Tlocal(t)+µn (Tcom(t)+TMEC(t)+Tmig(t)), (9)

where µn = 0 and 1 denote the states when all wireless
channels in the nth AP are unavailable or available, respec-
tively. In the entire journey, the average task completion time
is expressed as

Tmean =
1

N∑
n=1

Ln

N∑
n=1

Ln∑
l=1

Tn(l). (10)

III. JOINT MOBILITY CONTROL AND MEC OFFLOADING

A. Optimization Problem

To enhance the QoS for delay-sensitive applications, the
optimization problem is formulated as

min
vgoal,n,1α(m,t)

Tmean (11a)

s.t. Tn(t) ⩽ Tn,max(t) (11b)
N∑

n=1

Tgoal,n ⩽ Tmove (11c)

N∑
m=1

1α(m, t) ⩽ 1 (11d)

vgoal,n ∈ [vmin, vmax] (11e)
1α(m, t) ∈ {0, 1} (11f)

Constraint (11b) indicates that the task completion time cannot
be larger than the maximal completion time, where Tn,max(t)
is the computation time for all data to be computed locally.
Constraint (11c) denotes the tolerable total moving time across
the whole journey. Constraint (11d) guarantees that only
one MEC server is selected or only one local computation
is performed per offloading interval. Constraints (11e) and
(11f) involve the decisions of the velocity control and task
offloading.

Theorem 1: The problem in (11) is NP-hard.
Proof: See Appendix A.

Furthermore, for the process-oriented optimization prob-
lem (11), due to the robot’s mobility, time-varying wireless
channel, and dynamic computing capability, conventional op-
timization methods are computationally inefficient. Machine
learning is a promising alternative [44], [45], such as Q-
learning. However, the conventional Q-learning method cannot
be directly employed to solve Problem (11). The first reason
is the curse of dimensionality caused by the large-scale state
space and action space. The second reason involves asyn-
chronous actions, where the offloading decision is updated
per offloading interval, and the velocity control decision is
made per AP coverage region. Thus, based on Lyapunov
optimization [17], decomposing the optimization problem (11)
over the whole journey into multiple subproblems over each
AP coverage region yields

min
vgoal,n,αm(l)

1

Ln

Ln∑
l=1

Tn(l) (12a)

s.t. Tgoal,n ⩽ knTmove (12b)
(11b), (11d) − (11f) (12c)
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Fig. 2. The framework of dual-agent Q-learning.

where kn = cn/
∑N

n=1 cn.
Theorem 2: Problem (12) is NP-hard.

Proof: See Appendix B.

B. Optimization Based on Dual-Agent Q-Learning

In this subsection, as shown in Fig. 2, a general framework
of dual-agent Q-learning is provided to optimize the decision-
making of offloading and velocity control in (12). In the nth
AP coverage region, Agent1 makes the offloading decision.
Via accumulating the offloading reward and observing the
channel state, the target velocity is determined by Agent2.
It is implied that Agent1 is the local agent, and Agent2 is the
global agent.

Based on the MDP, the states, actions, and rewards for
offloading-related Q-learning and mobility-related Q-learning
are modeled below.

In offloading-based Q-learning, the state includes: the cur-
rent AP coverage region AP(t), current channel state µn, data
size D(t), CPU frequency of the mobile robot flocal(t), current
velocity vn(t), and previous MEC server M(t−1), given as

sn(t)={AP(t), µn, D(t), flocal(t), vn(t),M(t−1)}. (13)

The action includes the offloaded data ratio and current MEC
server, which is expressed as

an(t) = {1α(m, t)} . (14)

In the reward design, the same reward is obtained in
the velocity control when all possible target velocities
vgoal,n satisfy the moving constraint (12b). Thus, the in-
stantaneous reward for the velocity control is designed as
max

{
1
Ln

(Tgoal,n−knTmove) , 0
}

. According to (7), this re-

ward can be simplified as max
{
∆T− kn

Ln
Tmove, 0

}
. By com-

bining the offloading reward and velocity control reward, the
instantaneous reward r̄n(t) is given as

r̄n(t) =(1− θ) exp

(
1− Tn(t)

Tn,max(t)

)

+ θ exp

1−
max

{
∆T − kn

Ln
Tmove, 0

}
kn

Ln
(Tlow − Tmove)

 , (15)

where θ is the preference factor between offloading and veloc-
ity control, Tlow =

∑N
n=1 cn/vmin. Finally, when legal action

is obtained in the training, the reward in (15) will be employed.
On the contrary, when an illegal action occurs, the reward

value is set to -1. Thus, in the training, the instantaneous
reward is expressed as

r̄n(t) =

{
(15), legal action,
−1, illegal action.

(16)

In mobility-controlled Q-learning, the state includes: the
previous AP coverage region APn−1, the current AP coverage
region APn, and the initial velocity vn(l0), which is expressed
as

sn = {APn−1,APn, vn(l0)} . (17)

The action is the target velocity, expressed as

an = {vgoal,n} . (18)

The reward is the accumulated instantaneous reward r̄n(t) in
an AP coverage region, formulated as

rn =

Ln∑
l=1

r̄n(l). (19)

The details of the dual-agent Q-learning algorithm for joint
velocity control and task offloading are shown in Algorithm 1.
In this algorithm, the information of the robot-located coverage
region (sequentially increasing from 1 to N ) and offloaded
data size is leveraged for service migration.

Remark: The relationship between task offloading and
robot mobility is shown by the difference knTmove −∆TLn.
Since the increased velocity decreases the number of of-
floading intervals Ln, when the reduced offloading time is
smaller than the moving time per AP coverage region, that
is, ∆TLn < knTmove, a positive reward can be obtained.
Otherwise, a negative/zero reward will be incurred.

In the following, the convergence of Algorithm 1 will
be analyzed. According to [46], when

∑TEpi

j=1 λj = ∞ and∑TEpi

j=1 λ2
j < ∞, the Q function can converge to the optimal

Q function Q∗ based on the following update rule

Qj+1(sj , aj) =Qj(sj , aj) + λj

(
rj +max

b∈A
Qj(sj+1, b)

−Qj(sj , aj)
)
, (20)

where A is the set of action spaces. In our proposed Al-
gorithm 1, two Q functions are updated, where one is for
task offloading and the other is for velocity control. Since
the update rule in (20) is utilized for two Q functions and
λj = λ (0 < λ < 1), the optimal Q functions can be
obtained separately from these two Q tables. Thus, Algorithm
1 is convergent. In the sequel, we specify the convergence of
Algorithm 1.
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Algorithm 1 Joint Task Offloading and Velocity Control Based on
a Dual-Agent Q-Learning Algorithm

Input: Initialize the table entry Q1(s, a) = 0 and Q2(s, a) =
0, velocity range [vmin, vmax], moving distance cn, learn-
ing rate λ, greedy factor ϵ, discount factor γ.

Output: Offloading decision 1α(m, t), target velocity vgoal,n.
1: for j = 1, 2, . . . , TEpi do
2: Reset t = 1 and sn(t);
3: for n = 1, 2, . . . , N do
4: Observe state sn;
5: Chose action an with ϵ-greedy algorithm;
6: while AP(t) = n do
7: Observe state sn(t);
8: Chose action an(t) with ϵ-greedy algorithm;
9: Calculate reward r̄n(t) and next state sn(t+ 1);

10: Update the Q-table for task offloading:

Q1(sn(t), an(t)) =Q1(sn(t), an(t))+λ
(
r̄n(t)+γ

·maxQ1(sn(t+1), an(t+1))

−Q1(sn(t), an(t))
)

(21)

11: Update state sn(t) = sn(t+ 1);
12: t = t+ 1;
13: end while
14: Calculate reward rn and next state sn+1;
15: Update the Q-table for velocity control:

Q2(sn, an) =Q2(sn, an) + λ
(
rn −Q2(sn, an)

+ γmaxQ2(sn+1, an+1)
)

(22)

16: Update state sn = sn+1.
17: end for
18: end for

According to [47], we have the first convergence theorem
as follows.

Theorem 3: Assume that ∥Q1,1(sn(t), an(t))∥ ⩽ rmax

1−γ and
∥Q2,1(sn, an)∥ ⩽ Lmaxrmax

1−γ . Then, one has

∥Q1,j(sn(t), an(t))∥ ⩽
rmax

1− γ
, (23)

∥Q1,j(sn(t), an(t))−Q∗
1∥ ⩽

2rmax

1− γ
, (24)

∥Q2,j(sn, an)∥ ⩽
Lmaxrmax

1− γ
, (25)

∥Q2,j(sn, an)−Q∗
2∥ ⩽

2Lmaxrmax

1− γ
, (26)

where rmax = max
n

∥r̄n(t)∥, Lmax = max
n

Ln, j =

1, 2, . . . , TEpi, n = 1, 2, . . . , N , Q∗
1 and Q∗

2 denote the optimal
functions of Q1,j(sn(t), an(t)) and Q2,j(sn, an), respectively.

Proof: Mathematical induction is employed to prove
Theorem 3. First, for j = 1, the two initialized Q tables satisfy
∥Q1,1(sn(t), an(t))∥ ⩽ rmax

1−γ and ∥Q2,1(sn, an)∥ ⩽ Lmaxrmax

1−γ .
For example, the initial values of two Q tables can be from the
intervals

[
− rmax

1−γ ,
rmax

1−γ

]
and

[
−Lmaxrmax

1−γ , Lmaxrmax

1−γ

]
. When

∥Q1,j(sn(t), an(t))∥ ⩽ rmax

1−γ , for the (j + 1)th iteration, we
derive

∥Q1,j+1(sn(t), an(t))∥
⩽ (1− λ)∥Q1,j(sn(t), an(t))∥+ λ∥r̄n(t)∥
+ λγ max

an(t+1)∈A1

∥Q1,j(sn(t+ 1), an(t+ 1))∥

⩽
rmax

1− γ
+ λrmax + λγ

rmax

1− γ

=
rmax

1− γ
. (27)

Thus, (23) is proven.
Similarly, when ∥Q2,j(sn, an)∥ ⩽ Lmaxrmax

1−γ , for the (j +
1)th iteration, we obtain

∥Q2,j+1(sn, an)∥ ⩽ (1− λ)∥Q2,j(sn, an)∥+ λ∥rn∥
+ λγ max

an+1∈A2

∥Q2,j(sn+1, an+1)∥

⩽
Lmaxrmax

1− γ
+λLmaxrmax+λγ

Lmaxrmax

1− γ

=
Lmaxrmax

1− γ
. (28)

Thus, (25) is proven.
Based on the above proof, (24) and (26) can be proven as

∥Q1,j(sn(t), an(t))−Q∗
1∥ ⩽ ∥Q1,j(sn(t), an(t))∥+ ∥Q∗

1∥

⩽
2rmax

1− γ
, (29)

∥Q2,j(sn, an)−Q∗
2∥ ⩽ ∥Q2,j(sn, an)∥+∥Q∗

2∥ ⩽
2Lmaxrmax

1− γ
.

(30)
This completes the proof.
Theorem 3 shows that, with the reduced value of γ, the

convergence performance of Algorithm 1 will be improved.
Based on [48], Theorem 3 can be extended to the second
convergence theorem. First, the Bellman operation T {·} is
defined as

T {Q(s, a)}=
∑
s′∈S

pa(s, s
′)
(
r(s, a)+γmax

a′∈A
Q(s′, a′)

)
, (31)

where pa(s, s
′) is the state transition probability from State

s to State s′ and S is the set of state spaces. Then, an
approximation error θi,j (i = 1, 2, j ∈ [1, TEpi]) is defined
as

E
{
∥Qi,j+1 − T {Qi,j}∥22

}
⩽ θi,j . (32)

Based on Theorem 3, we assume that θ2,j = Lmaxθ1,j .
Theorem 4: The convergence of the improved Q-learning in

Algorithm 1 can be expressed as

E
{∥∥Q1,TEpi(sn(t), an(t))−Q∗

1

∥∥
∞

}
⩽

TEpi∑
j=1

γTEpi−j
√
θ1,j+γTEpiE

{
∥Q1,0(sn(t), an(t))−Q∗

1∥∞
}
,

(33)
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E
{∥∥Q2,TEpi

(sn, an)−Q∗
2

∥∥
∞

}
⩽

TEpi∑
j=1

γTEpi−j
√
Lmaxθ1,j+γTEpiE

{
∥Q2,0(sn, an)−Q∗

2∥∞
}
.

(34)

When θ1,j = θ, (33) and (34) can be rewritten by

E
{∥∥Q1,TEpi

(sn(t), an(t))−Q∗
1

∥∥
∞

}
⩽

√
θ

1− γ
+ γTEpiE

{
∥Q1,0(sn(t), an(t))−Q∗

1∥∞
}
, (35)

E
{∥∥Q2,TEpi

(sn, an)−Q∗
2

∥∥
∞

}
⩽

√
Lmaxθ

1− γ
+ γTEpiE

{
∥Q2,0(sn, an)−Q∗

2∥∞
}
. (36)

Proof: Considering the γ-contraction property of the
Bellman operator and Q∗

i = T {Q∗
i } in [47], we can derive

E
{
∥Qi,j+1 −Q∗

i ∥∞
}

⩽ E
{
∥Qi,j+1 − T {Qi,j}∥∞

}
+ E

{
∥T {Qi,j} −Q∗

i ∥∞
}

⩽

√
E
{
∥Qi,j+1−T {Qi,j}∥22

}
+E

{
∥T {Qi,j}−T {Q∗

i }∥∞
}

⩽
√
θi,j+1 + γE

{
∥Qi,j −Q∗

i ∥∞
}
. (37)

Based on (37), we can derive

E
{∥∥Qi,TEpi −Q∗

i

∥∥
∞

}
⩽

√
θi,TEpi + γE

{∥∥Qi,TEpi−1 −Q∗
i

∥∥
∞

}
⩽

√
θi,TEpi

+γ
(√

θi,TEpi−1+γE
{∥∥Qi,TEpi−2−Q∗

i

∥∥
∞

})
· · ·

⩽
TEpi∑
j=1

γTEpi−j
√
θi,j + γTEpiE

{
∥Qi,0 −Q∗

i ∥∞
}
. (38)

Since θ2,j = Lmaxθ1,j , based on (38), (33) and (34) can be
obtained.

When θi,j = θ, (38) is simplified as

E
{∥∥Qi,TEpi −Q∗

i

∥∥
∞

}
⩽

1− γTEpi

1− γ

√
θ + γTEpiE

{
∥Qi,0 −Q∗

i ∥∞
}
. (39)

Since 0 ⩽ γ < 1, when TEpi → ∞, we have γTEpi → ∞.
Thus, (39) is reduced to

E
{∥∥Qi,TEpi−Q∗

i

∥∥
∞

}
⩽

√
θ

1−γ
+γTEpiE

{
∥Qi,0−Q∗

i ∥∞
}
. (40)

Finally, according to (40), (35) and (36) can be proved.
Theorem 4 shows that the convergence of the proposed

algorithm is affected by four factors: 1) the approximation
error for Q1; 2) the approximation calculation of the Bellman
operator for Q1; 3) the approximation error for Q2; and 4) the
approximation calculation of the Bellman operator for Q2.

In the following, the complexity of the proposed dual-agent
Q-learning is analyzed in terms of sample complexity. The
sample complexity is referred to as the total number of samples
needed to yield an entrywise ξ1-accurate approximation of the

optimal Q-function, to satisfy maxs,a ∥Q(s, a)−Q∗(s, a)∥ ⩽
ξ1 (or E{maxs,a ∥Q(s, a)−Q∗(s, a)∥} ⩽ ξ1) with probability
at least 1 − ξ2 for any ξ2 ∈ (0, 1) [49]. According to [49],
we assume a γ-discounted infinite-horizon MDP with state
space S and action space A. We also assume that the Markov
chain induced by a behavior policy πb is uniformly ergodic.
The minimum state-action occupancy probability of the sam-
ple trajectory is defined as ωmin,i = min

(s,a)∈Si×Ai

ωπb,i(s, a),

where ωπb,i denotes the stationary distribution of the Markov
chain for the ith agent with i = 1, 2. Furthermore, the
mixing time associated with the sample trajectory is defined

as tmix,i = min

{
t

∣∣∣∣ max
(s,a)∈Si×Ai

dTV (P t(·|s, a), ωπb,i) ≤ 1
4

}
,

where dTV(ω, ν) = 0.5
∑

x∈X |ω(x) − ν(x)| and P t(·|s, a)
indicates the distribution of (st, at) with the initialization
of (s0, a0) = (s, a). According to Theorem 3, in dual-
agent Q-learning, the accuracy levels of the two agents are
2rmax

1−γ and 2Lmaxrmax

1−γ . According to the complexity analysis of
asynchronous Q-learning in [49], the total sample complexity
of dual-agent Q-learning can be approximated as the sum of
the sample complexity of the offloading agent and that of the
velocity control agent as

O

(
1

4r2max(1− γ)2

(
1

ωmin,1
+

1

L2
maxωmin,2

)
+

1

1− γ

(
tmix,1

ωmin,1
+

tmix,2

ωmin,2

))
. (41)

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we will evaluate the stochastic task offload-
ing performance achieved from our proposed Q-learning-based
algorithm.

In our simulation, 20 APs and MEC servers are de-
ployed, where N1 = {1, 2, . . . , 7} ∪ {14, 15, . . . , 20} and
N2 = {8, 9, . . . , 13}. The computing capacities of cellu-
lar and satellite-based MEC servers are from finite sets
{10, 11, . . . , 19} (GHz) and {50, 51, . . . , 59} (GHz). The mov-
ing distance cn is randomly chosen from a set {100, 200, 300}
(m) for the cellular AP and from a set {1000, 2000, 3000}
(m) for the satellite. In the cellular network, the bandwidth
is W = 10 MHz, the transmit power of the mobile robot
is p = 0.2 W, the channel noise power is σ2 = 2 × 10−12

W, and the channel power gain is h2 = 10−6. In the
satellite communication, for simplicity, we set the distances
as dGS = dSE = 1000 km, and the transmission rates as
rGS = 10 Mbps and rSE = 100 Mbps. The extra migration
cost ∆C is set to the average delay of 500 ms. In each
offloading interval ∆T = 1 s, the generated data size is
randomly selected from the set {100, 250, 400, 550, 700} (KB)
with Φ = 800 CPU cycles/bit, and the computing capacity
of the mobile robot is randomly chosen from a finite set
{0.5, 0.6, . . . , 1} (GHz). The random waypoint model without
considering direction [50] is used as the mobility model of the
robot. For the mobile robot with a = 2 m/s

2, its velocity is
from a discrete set V = {5, 6, . . . , 20} (m/s). In Q-learning,
the hyperparameters are set as λ = 0.1, γ = 0.9, and ϵ = 0.05
with a discount interval of 4× 10−6.
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Fig. 3. Average reward in the training episode. The number of APs with
unavailable wireless communication is NCH = 4. The migration ratio is
ρ = 0.1. The moving factor is θ = 0.1.

For a fair performance comparison, we simulate three
baselines below.

• Conventional Offloading: The mobile robot has a constant
velocity, as depicted in [30], and its offloading decision
is made by Q-learning.

• Local Execution: All scheduled computation tasks are
processed by a mobile robot with its available CPU
frequency while maintaining a constant velocity.

• Simplified Greedy: Since conventional greedy searching
for velocity decision-making has significant complexity,
i.e., O(|V|N ), a simplified greedy algorithm using local
searching for each AP is given for comparison. First,
in the nth AP coverage region, the velocity with the
maximal average of r̄n(t) is searched from the candidate
set V . Then, upon searching the maximal average of rn
in all training, the target velocity for the whole trajectory
will be selected.

In Fig. 3, the convergence of the reward function in (19)
is plotted for the proposed scheme compared to conventional
offloading and simplified greedy schemes. The number of
cellular/satellite APs with unavailable wireless communication
is set to NCH = 4. The migration ratio is set as ρ = 0.1.
The moving factor is set as θ = 0.1. As observed in Fig. 3,
the proposed scheme has higher rewards than conventional
offloading using low velocities and has close rewards to
conventional offloading using the highest velocity. It also has
slightly lower rewards than the simplified greedy algorithm.
Thus, the proposed scheme can achieve convergence as the
training increases, which is consistent with the convergence
analysis in Section III-B.

In Fig. 4, the average task completion time of conventional
offloading, local execution, simplified greedy, and the pro-
posed schemes are plotted for different parameters. We first
compare the proposed scheme with conventional schemes in
Fig. 4(a) for different values of NCH. It can be seen in Fig.
4(a) that as the value of NCH increases, except for the local
execution, the other schemes have increased task completion
times. More importantly, the proposed scheme has a lower
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Fig. 4. Task completion time comparison among conventional offloading,
local execution, simplified greedy, and the proposed schemes. (a) ρ = 0.1
and θ = 0.1, (b) NCH = 4 and θ = 0.1, (c) NCH = 4 and ρ = 0.1.
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completion time than conventional schemes. For example,
for NCH = 4, compared to conventional offloading, local
execution, and simplified greedy, the completion time of the
proposed scheme is reduced by approximately 16%, 41%,
and 11%, respectively. We also plot the task completion time
curves for varying migration factors ρ in Fig. 4(b). It is shown
that upon increasing the migration ratio, a slightly increased
task completion time is incurred. For varying values of ρ,
the proposed scheme also has a much lower completion time
than conventional offloading, local execution, and simplified
greedy, with average reduction ratios of 17%, 41%, and 12%,
respectively. Moreover, in Fig. 4(c), we plot the task comple-
tion time curves of these schemes for different moving factors
θ. As seen from this figure, the moving factor has a slight
effect on the task completion time of all MEC-based offloading
schemes. In these schemes, the proposed scheme has the
lowest task completion time, whose average reduction ratios
over conventional offloading, local execution, and simplified
greedy are 16%, 41%, and 11%, respectively. In addition, Fig.
4 shows that, since velocity control is not considered in the
conventional offloading scheme, the conventional scheme has
almost the same average task completion time for different
velocities. To summarize, as opposed to conventional schemes,
the proposed scheme can effectively reduce the service delay
of MEC-based offloading for the hybrid satellite-terrestrial-
network-enabled robot.

Fig. 5 portrays the task completion time versus the
size of the data generated by the robot. The data size
per offloading interval is randomly selected from the set
{100, 250, 400, 550, 700}(KB) + ∆D, where the incremental
parameter ∆D belongs to {1, 3, 5, 7, 9} (MB). It is shown that
for different data sizes, the proposed scheme has the lowest
task completion time. Furthermore, compared to conventional
schemes, when the data size increases, a much higher time
consumption reduction can be achieved by the proposed
scheme.

To show the effect of mobility control on service delay,
we now investigate task completion time versus moving time
in Fig. 6. It is noted that, when the marker size increases,
the values of the parameters involving NCH, ρ, and θ are
increased. First, in Fig. 6(a), we compare the task completion
time versus moving time performance for conventional of-
floading, local execution, simplified greedy, and the proposed
schemes with different values of NCH. It is shown that since
a constant velocity is assumed in conventional offloading and
local execution, the effect of the velocity control on the com-
pletion time performance cannot be clearly observed. Although
the simplified greedy scheme has a lower moving time than
the proposed scheme, it has a higher time consumption than
the proposed scheme. Based on the joint optimization of task
offloading and velocity control, the proposed scheme obtained
the lowest task completion time at a moderate moving time.
Fig. 6(a) also implies that the proposed scheme is sensitive
to NCH, since communication state-based velocity control
is employed. Second, we portray a scatterplot to compare
the task completion time versus moving time performance
for different migration ratios in Fig. 6(b). Similar to 6(a),
Fig. 6(b) shows that, compared to conventional schemes, the
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Fig. 5. Task completion time comparison among conventional offloading,
local execution, simplified greedy, and the proposed schemes for different
data sizes, where NCH = 4, ρ = 0.1, and θ = 0.1.

proposed scheme can achieve the lowest time consumption
at a moderate moving time. It is also shown that compared
to the communication state, the migration ratio has a smaller
effect on the moving time (corresponding to velocity control)
in the proposed scheme. Finally, in Fig. 6(c), we plot the
task completion time scatters versus moving time for different
moving factors. As shown in Fig. 6(c), the proposed scheme
can also achieve the lowest time consumption at a moderate
moving time. Moreover, with an increased moving factor, the
proposed scheme can efficiently reduce the moving time while
maintaining the lowest service delay among these schemes.
It is also shown in Fig. 6 that all conventional schemes are
insensitive to the moving time, and the proposed scheme
benefits from velocity control.

Furthermore, to verify the efficiency of the proposed
scheme, two possible cases for the joint optimization of
velocity control and task offloading are considered. In Case
I, according to the availability of all wireless channels in
each AP, the mobile robot directly makes a velocity control
decision. For the channel states µn = 1 and µn = 0, we have
vgoal,n = vmin and vgoal,n = vmax, respectively. In Case II,
based on the availability of all wireless channels per AP, the
mobile robot directly makes a task offloading decision. For
the channel states µn = 1 and µn = 0, we have 1α(m, t) = 1
with a given MEC server and 1α(m, t) = 0 with the local
computation, respectively. Our proposed scheme corresponds
to Case III. Different from the fixed velocity control in Case
I and the fixed offloading decision in Case II, a flexible joint
optimization is designed in the proposed scheme. Thus, Cases
I and II can also be regarded as two special cases of Case III.
In the following figures, the task completion time performance
is comprehensively compared for these three cases.

In Fig. 7(a), we first compare the task completion times of
these three cases for different values of NCH, where ρ = 0.1
and θ = 0.1. We also plot the time consumption curves for
different migration ratios in Fig. 7(b), where NCH = 4 and
θ = 0.1. Moreover, we plot the time consumption curves for
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Fig. 6. Task completion time versus moving time among conventional
offloading, local execution, simplified greedy, and the proposed schemes.
(a) NCH = 2, 4, 6, 8, ρ = 0.1, and θ = 0.1. When the marker size
increases, the value of NCH increases from 2 to 8. (b) NCH = 4,
ρ = 0, 0.2, 0.4, 0.6, 0.8, 1, and θ = 0.1. When the marker size increases,
the value of ρ increases from 0 to 1. (c) NCH = 4, ρ = 0.1, and
θ = 0, 0.2, 0.4, 0.6, 0.8. When the marker size increases, the value of θ
increases from 0 to 0.8.
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Fig. 7. Task completion time comparison of three cases for joint velocity
control and task offloading. (a) ρ = 0.1 and θ = 0.1. (b) NCH = 4 and
θ = 0.1. (c) NCH = 4 and ρ = 0.1.
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different moving factors in Fig. 7(c), where NCH = 4 and
ρ = 0.1. Observe from Fig. 7 that as the parameter values
involving NCH, ρ, and θ increase, all task completion times
increase. Furthermore, Case II has a much higher service delay
than Cases I and III, and Case III has a slightly higher service
delay than Case I.

From Fig. 8, the task completion time versus moving time
performance is compared for Cases I, II, and III. The param-
eters are set as follows: 1) NCH = 2, 4, 6, 8, ρ = 0.1, and
θ = 0.1 in Fig. 8(a); 2) NCH = 4, ρ = 0, 0.2, 0.4, 0.6, 0.8, 1,
and θ = 0.1 in Fig. 8(b); and 3) NCH = 4, ρ = 0.1, and
θ = 0, 0.2, 0.4, 0.6, 0.8 in Fig. 8(c). As shown in Fig. 8(a),
although Case II has a lower moving time than Cases I and
III, it has a much higher time completion time than Cases I
and III. Furthermore, Case III can obtain a lower moving time
than Case I at the price of a slightly increased task completion
time. In addition, Figs. 8(b) and 8(c) show that due to the fixed
number of APs with unavailable wireless communication, the
velocity control of Case III lacks flexibility. As a result, Case
III cannot adaptively reduce the moving time. In contrast, Case
III can dramatically reduce the moving time, especially for a
large value of the moving factor shown in Fig. 8(c), while
maintaining a close task completion time to Case I.

In summary, the proposed scheme can create an elegant
balance between service delay reduction and moving time
reduction, and thus, it is a better choice for task offloading
and velocity control compared to conventional schemes.

V. CONCLUSION

In this paper, a joint optimization problem of velocity
control and task offloading has been proposed in a hybrid
satellite-terrestrial network with multiple MEC servers. To
reduce the service delay for a mobile robot caused by increased
local computations and frequent service migrations, the effect
of wireless communication availability and velocity control
on task offloading has been studied. The analytical results
of convergence rate and sample complexity of the improved
Q-learning algorithm have been obtained. Simulation results
have shown that, unlike conventional counterparts, based on
velocity control, the proposed scheme can obtain an effective
offloading performance improvement in terms of the task
completion time. It was found that for mobile robots, mo-
bility control is beneficial for providing high-quality service
offloading in complex network environments. However, further
study is required to determine its effectiveness in the scenario
of multiple mobile robots for multiple cooperative missions.
While this paper has only considered the decision-making of
offloading and velocity control for one robot in the multi-robot
environment, other forms of dynamics, such as time-varying
bandwidth, dynamic computational resources, and complex
trajectory planning, have considerable impact on MEC-based
offloading. These issues will constitute the direction of our
future work.

APPENDIX A
PROOF OF THEOREM 1

We first assume that the mobile robot has a constant veloc-
ity, that is, βn = 0, while the constraint Tgoal,n ⩽ knTmove is
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Fig. 8. Task completion time versus moving time among three cases for joint
velocity control and task offloading. (a) NCH = 2, 4, 6, 8, ρ = 0.1, and
θ = 0.1. When the marker size increases, the value of NCH increases from
2 to 8. (b) NCH = 4, ρ = 0, 0.2, 0.4, 0.6, 0.8, 1, and θ = 0.1. When the
marker size increases, the value of ρ increases from 0 to 1. (c) NCH = 4,
ρ = 0.1, and θ = 0, 0.2, 0.4, 0.6, 0.8. When the marker size increases, the
value of θ increases from 0 to 0.8.
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satisfied. Thus, (11) is simplified as

min
1α(m,t)

Tmean (42a)

s.t. Tn(t) ⩽ Tn,max(t) (42b)
N∑

m=1

1α(m, t) ⩽ 1 (42c)

1α(m, t) ∈ {0, 1} (42d)

According to [51], the generalized assignment problem (GAP)
can be formulated as

min
xij

∑
i

∑
j

cijxij (43a)

s.t.
∑
j

aijxij ⩽ bi (43b)∑
i

xij = 1 (43c)

xij ∈ {0, 1} (43d)

where cij is the cost of assigning Task j to Agent i, aij denotes
the required capacity when Task j is assigned to Agent i, and
bi is the available capacity of Agent i. Based on [51], [52],
GAP is NP-hard.

If we set xij = 1α(m, t), bi =
∑Ln

l=1 Tn,max(l), cij =

Tn(t)/(1α(m, t)
∑N

n=1 Ln),
∑N

m=1 1α(m, t) = 1, and aij =
Tn(t)/1α(m, t), GAP is a special case of (42). Thus, (42) is
NP-hard. Furthermore, since (42) is a special problem of (11),
according to [53], the optimization problem (11) is NP-hard.

APPENDIX B
PROOF OF THEOREM 2

A constant-moving robot is first assumed, that is, βn =
0, and the constraint Tgoal,n ⩽ knTmove should be satisfied.
Then, the coverage region decomposition-based optimization
problem (12) can be formulated as

max
αm(l)

− 1

Ln

Ln∑
l=1

Tn(l) (44)

s.t. (42b) − (42d)

The 0-1 knapsack problem is expressed as follows. In a
knapsack, its weight capacity is W . For a set of items, item
n has a weight of wn and a value of vn. The objective is
maximizing the summed value of items that can be packed in
the knapsack, while maintaining the summed weight of items
less than or equal to the weight capacity W . Thus, the 0-1
knapsack problem is formulated as

max
O

∑
n∈O

vn (45a)

s.t. O ⊆ I (45b)∑
n∈O

wn ⩽ W (45c)

where O denotes the set of items that should be packed.
According to [19], [52], [54], the 0-1 knapsack problem is
NP-hard.

If we set vn = −Tn/Ln, I = Ln, wn = αm(l), and W = 1,
the 0-1 knapsack problem becomes a special case of (44) for
Tn(t) ⩽ Tn,max(t). Thus, the problem (44) is also NP-hard.
Moreover, since (44) is a special case of (12), according to
[53], problem (12) is also NP-hard.
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