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ABSTRACT
Forecasting for intermittent demand is considered a difficult task and becomes evenmore challeng-
ing in the presence of obsolescence. Traditionally the problem has been dealt with modifications
in the conventional parametric methods such as Croston. However, these methods are generally
applied at the observed frequency, ignoring any additional information, such as trend that becomes
prominent at higher levels of aggregation. We evaluate established Temporal Aggregation (TA)
methods: ADIDA, Forecast Combination, and Temporal Hierarchies in the said context. We fur-
ther employ restricted least-squares estimation and propose two new combination approaches
tailored to decreasing demand scenarios. Finally, we test our propositions on both simulated and
real datasets. Our empirical findings support the use of variable forecast combination weights to
improve TA’s performance in intermittent demand items with a risk of obsolescence.
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1. Introduction

Intermittent demand remains a typical concern across
various industrial sectors, particularly spare parts (Synte-
tos, Lengu, and Babai 2013). However, the phenomenon
has also been extensively studied in several other con-
texts, such as retail (e.g. Sillanpää and Liesiö 2018), food
and pharmaceutical (e.g. Balugani et al. 2019), etc. Para-
metric methods such as Croston (1972) (CR) and its
variants (e.g. Syntetos and Boylan approximation (SBA)
(Syntetos and Boylan 2005) are generally considered
the standard methods in the forecasting of intermittent
demand. In addition, the techniques such as Bootstrap-
ping and Machine learning (ML) (e.g. Hasni et al. 2019;
Babai, Tsadiras, and Papadopoulos 2020; Jiang, Huang,
and Liu 2020) have also been extensively studied in the
context of intermittent demand forecasting. Nonethe-
less, the assumption that intermittent demand is deprived
of any trend and seasonality remains the common trait
of most such studies (Kourentzes and Athanasopoulos
2021).

The other important aspect of intermittent demand is
that such items are often characterised by an increased
risk of obsolescence (Babai et al. 2019). That is generally
indicated by a linear or abrupt decrease in the demand
occurrence probability (e.g. Prestwich, Tarim, and Rossi
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2021) or with increasing instances of zero demand over
time (e.g. Teunter, Syntetos, and Babai 2011). In such sit-
uations, the conventional parametric methods such as
CR and SBA are considered less appropriate, as these
methods do not revise the demand estimate in cases of
zero demand (Babai, Syntetos, and Teunter 2014). How-
ever, based upon the property of constant forecast update,
contemporary parametric methods such as Teunter, Syn-
tetos and Babai (TSB) proposed by Teunter, Syntetos,
and Babai (2011) and Prestwich, Tarim, and Rossi (2021)
are believed to be appropriate for intermittent demand
items with a higher risk of obsolescence. Still, most of
these forecasting applications usually try to excerpt infor-
mation from historical observations at the original fre-
quency while ignoring any relevant information at lower
frequencies. Although, if analysed closely, intermittent
demand series can exhibit a decreasing trend over a long-
time. For example, the potential change in a time-series
structure at various levels of aggregation for an intermit-
tent demand series is presented with the help of Figure 1.
The demand does not display any prominent trend at
the original frequency, i.e. monthly, whereas a decreasing
trend becomes noticeable at higher time buckets.

It becomes evident from the above discussion that it is
useful to incorporate information available at the higher
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Figure 1. Intermittent data series with a prominent decreasing trend at higher aggregation levels.

aggregation levels into the final forecast at the bottom
level. Thus, the use of TA in case of intermittent demand
items with an increased risk of obsolescence seems to be
a promising idea as:

• TA can help discover specific hidden series character-
istics, which may be pronounced across higher aggre-
gation levels. This basic technique helps bring down
intermittence, thus allowing for the use of appro-
priate forecasting methods for fast-moving items
(Nikolopoulos et al. 2011). Additionally, the reduced
intermittence, at least theoretically, may allow for a
more frequent forecast update for conventional para-
metric methods (e.g. CR, SBA) .1

• Exploiting several TA levels can help improve the fore-
casting accuracy of various categories of methods,
especially if longer horizons are considered (Petro-
poulos and Kourentzes 2015; Mircetic et al. 2022).

1.1. Temporal aggregation (TA) and intermittent
demand

The TA aggregation technique can primarily be differ-
entiated based on the type of aggregation scheme fol-
lowed, i.e. overlapping and non-overlapping. In non-
overlapping TA, the time series of interest is separated
into various fixed time buckets (equal to the considered
aggregation level). In overlapping TA, the aggregation
window (size equal to the considered aggregation level)

keepsmoving one step ahead at each period, thus, remov-
ing the oldest observation and adding the latest one. The
non-overlapping TA is considered more suitable in inter-
mittent demand scenarios (Boylan and Babai 2016); thus,
most of such studies consider non-overlapping TA.

Kourentzes, Rostami-Tabar, andBarrow (2017) emph-
asised that there are two non-overlapping TA techniques
in literature: single and multiple TA levels. In intermit-
tent demand, the use of TA can be first attributed to
Nikolopoulos et al. (2011), where the authors proposed
using an aggregate–disaggregate intermittent demand
approach (ADIDA). The methodology relies upon gen-
erating a decreased intermittent structure of a demand
series at higher TA levels, wherein the forecasts are gener-
ated, which are then further disaggregated to the original
frequency. The model was further refined by Kourentzes,
Petropoulos, and Trapero (2014) using multiple TA lev-
els, and the technique is referred to as theMultiple Aggre-
gation Prediction Algorithm (MAPA). In the strategy,
the demand is aggregated at some higher level of aggre-
gation, where an appropriate forecasting model is fitted
at each level. In the next step, various components of
the time series are combined to get the final forecast.
In the intermittent demand context, Petropoulos and
Kourentzes (2015) utilised the MAPA framework with
certain modifications, wherein the forecasts from differ-
ent aggregation levels are combined. The authors proved
the benefits of such a strategy, using forecasts derived
from a single or a combination of different methods.
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Lei, Li, and Tan (2016) combined TA with the ‘Fuzzy
Markov Chain’ and argued in favour of equal combina-
tion weights. Further, Kourentzes, Rostami-Tabar, and
Barrow (2017) compared the two approaches (i.e. single
and multiple TA levels). The authors argue that iden-
tifying an optimal aggregation level is desirable. How-
ever, despite the theoretical suboptimality of the multi-
ple TA level technique, the authors propose its use to
avoid modelling uncertainty. Thus, the forecast combi-
nation (FC) framework proposed by Petropoulos and
Kourentzes (2015) is used as one of the TA techniques
in the study. In the same context, Fu and Chien (2019)
put forward an alternative technique wherein the authors
suggested the combination of TA and ML techniques
to provide forecasts for the electronic components that
are demanded intermittently. For further comprehensive
details on the TA approach, the readers are advised to
refer to Babai, Boylan, and Rostami-Tabar’s (2022) work.

Temporal hierarchy (TH) is the other type of multiple
TA level technique similar to the one discussed in the text
above. However, the TH technique forces coherence in
the forecast at aggregate and disaggregate levels. In other
words, the forecast obtained at a higher level of aggrega-
tion should be equal to the sum of the forecast at its dis-
aggregated level. With some modification to the original
method by Athanasopoulos et al. (2017), the technique
with structural scaling (SS) approximation was utilised
in the intermittent demand context by Kourentzes and
Athanasopoulos (2021). The authors proved its efficacy

with the inherent advantage of incorporating informa-
tion optimally from various levels of aggregation to the
final forecast at the bottom level.

The studies mentioned above have shown the ben-
efits of TA techniques and have even argued for their
advantages in the demand series that exhibit trend or sea-
sonality. The studies, however, have not focused on the
situations that characterise obsolescence. These combi-
nation techniques allow the final forecast to incorporate
the additional information present at a higher level of
aggregation. Still, the present schemeof assigningweights
to the disaggregated forecasts from each level of aggrega-
tion warrants further investigation in cases of inventory
obsolescence. For example, Figure 2. represents the inter-
mittent demand series that does not display a noticeable
trend even at a higher TA level.

Despite the evident difference in the structure of an
intermittent demand series for the examples discussed
in Figures 1 and 2, the weight combination remains the
same for the discussed multiple aggregation level tech-
niques.

Given the above discussion, the present study explores
the use of various TA techniques to ascertain their effi-
cacy in the case of an increased obsolescence risk in an
intermittent demand context. The study also explores
the possibility of assigning varying weights particularly
suited to the decreasing demand scenario. The present
study proposes two new forecast combination tech-
niques, wherein the optimal weights are obtained with

Figure 2. Stationary intermittent data series structure at various levels of temporal aggregation.
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a restricted least square estimation. The efficacy of the
proposed models is compared with other TA techniques
(ADIDA, FC and TH) by utilising established methods
such as CR, SBA, TSB and Exponential Smoothing (ETS)
with the help of a simulated and empirical dataset.

The efficacy of the forecasting techniques is generally
comparedwith the help of various forecast accuracymea-
sures. However, the over-emphasis on the results of fore-
casting accuracy and ignoring the inventory performance
aspect can result in misleading conclusions (Kourentzes
2013). Hence, the other aspect of the paper is an inven-
tory performance analysis for the techniques considered
in the study.

In summary, the study’s main contributions are as
follows: It provides a framework for using established

forecasting methods with various TA techniques in the
cases of increased risk of inventory obsolescence. Further,
based upon the ideas of restricted least squared estima-
tions, the study proposes two new forecast combination
techniques. The study also compares their forecasting
and inventory performance in the said context. The com-
binations suggested are expected to offer the advantages
of both single and multiple TA levels, thus leading to
improved forecasting and inventory performance. The
comparison of various important aspects of the existing
literature with the proposed study is further highlighted
with the help of Table 1.

Overall, the study is structured as follows. First, the
considered TA techniques are discussed in detail in
the following section. Section 3 contains a discussion

Table 1. Comparison of the proposed study with the existing literature.

Existing research
report

Forecasting method
employed for the

original forecast (Base) Context
Type of post-processing
technique followed.

Inventory
Performance
Assessment Additional remark

Nikolopoulos et al.
(2011)

Naïve, SBA Intermittent demand Forecast from Single
aggregation level
utilised (ADIDA)

No The paper empirically
demonstrates the
usefulness of TA
in an intermittent
demand context, with a
concept of an optimal
aggregation level.

Petropoulos and
Kourentzes (2015)

Naïve, SES, Moving
Average (MA), CR,
SBA

Intermittent demand ADIDA, Forecast com-
bination (FC) from
all the considered
aggregation levels with
equal weightage to the
disaggregated forecast
from every level

No The paper proves the
efficacy of FC in an
intermittent demand
context.

Lei, Li, and Tan (2016) SES Intermittent demand FC with simple and
weighted mean

No The paper demonstrates
the usefulness of FC
with equal weightage
to forecasts from all
considered levels of
aggregation.

Fu and Chien (2019) MA, CR, SBA, TSB, ML Intermittent demand FC with simple and
weighted mean

No The study provides a data-
driven framework for
combining the forecast
obtained from different
forecasting methods at
each aggregation level.

Kourentzes and
Athanasopoulos
(2021)

A combination of TSB
/ETS (Either ETS or
TSB depending upon
the intermittence of
the demand series
(TSB+ ETS)

Intermittent demand TH with SS approximation
(equivalent to FC with
equal weightage to
forecast from every
level)

No Extended the idea of TH
in intermittent demand
context. This, in turn, can
be useful in capturing
information (such as
trend) that becomes
prominent at higher
aggregation levels.

Proposed study CR, SBA, TSB, TSB+ ETS Intermittent demand
with a risk of
obsolescence

ADIDIA, FC, TH with
SS approximation,
Proposed FC technique
with varying weight
combination scheme

Yes Demonstrates the
usefulness of a variable
FC weight scheme,
particularly in the
case of decreasing
demand. Furthermore,
the proposed technique
can prioritise the
combination weight
scheme according to a
particular time series
structure.
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regarding the proposed models. Section 4 contains the
empirical analysis of the methods discussed in the study,
while Section 5 contains the results of the inventory
performance analysis. Finally, the study is concluded in
section 6, along with the relevant discussion on various
implications and future research directions.

2. Temporal aggregation techniques

The present section contains an introduction to the TA
techniques such as ADIDA, FC and TH considered in the
study.

2.1. Temporal aggregation (TA)

Step 1 aggregation
LetY be a time serieswith observation yt, t = (1, 2, . . . ..n)
sampled at the highest observed frequency. Then, the
time series can be aggregated in a non-overlapping man-
ner at different aggregation level sk (denoted with Y[k]),
with each level containing n′ observations such that
n′ = (1, 2, 3, . . . n/k) with n

k < n. Where each observa-
tion Y[k]

i for i = (1, 2, 3, . . . n/k) at an aggregation level

k can be denoted as Y[k]
i =

ik∑
t=1+(i−1)k

yt . However, for

specific values of k, n
k may not result in integer values;

accordingly,
[n
k
]
observations from the beginning of the

series will be dropped from Y (with n − [n
k
]
observa-

tions remaining) to allow the resulting series to have
complete-time buckets.
Step 2 forecasting
The second step consists of forecasting for the series
obtained at different levels of aggregation. In this step,
generally, any forecasting method suitable for intermit-
tent data or fast-moving scenarios can be used as per
the characteristics of the time series at different levels of
aggregation.
Step 3 final forecasting
The third step results in the final output, and the pro-
cess of obtaining the forecast for the original frequency
is known as disaggregation. In the original ADIDA tech-
nique (Nikolopoulos et al. 2011), themethod of disaggre-
gation proposed is intuitive but very effective and can be
mathematically represented as follows.

ŷ[k]t = Ŷ[k]
i
k

, for i =
[
t
k

]
(1)

Where ŷ[k]t represents disaggregated forecast at aggrega-
tion level k for time t, and

[ t
k
]
represents the integer

greater than or equal to the division quotient for t
k .

As already emphasised, the ADIDA technique is based
upon the idea of an optimal aggregation level, for which

the considered forecasting error is minimised. However,
there should also be a contemplation on the number
of aggregation levels considered, as using an excessively
high number will lead to the problem of over-smoothing
(Petropoulos and Kourentzes 2015). Apart from the con-
cept of an optimal aggregation level, the combination of
forecasts from various methods or at various aggregation
levels is considered promising in improving forecasting
and inventory performance (e.g. Azevedo and Campos
2016; Wang and Petropoulos 2016). So, the modified
framework ofMAPA (FC approach) used in the study can
be mathematically represented.

ŷ[C]t = ŷ[1]t
m

+ ŷ[2]t
m

+ ŷ[3]t
m

. . . . . .
ŷ,[k]t
m

(2)

Where m is the total number of aggregation levels con-
sidered.

The final forecast is thus a linear combination of the
outputs of various forecasting methods at the different
levels of aggregation. For example, if we consider an
intermittent demand series observed at the quarterly and
aggregated to bi-annual and annual levels. The aggrega-
tion scheme thus results in two levels of TA (m = 3). At
the same time, the forecast at each level of aggregation is
obtained and disaggregated into the highest frequency. In
the end, the final forecast obtained at the quarterly level
can be written as.

ŷCt = ŷ[1]t
3

+ ŷ[2]t
3

+ ŷ[4]t
3

(3)

Alternatively, the combination can be expressed as
follows.

ŷCt = 0.333∗ŷ[1]t + 0.333∗ŷ[2]t + 0.333∗ŷ[4]t (4)

2.2. Temporal hierarchies (TH)

The basic concept of TH is similar to the FC approach
discussed in the sub-section above. In the TH, simi-
lar to the FC, the first step consists of the time series
aggregation at various levels of hierarchies. However, the
TH approach restricts the number of considered non-
overlapping aggregate levels by limiting the value of 12/k
to an integer. This ensures the seasonality of the aggre-
gated series to be an integer, thus resulting in a relatively
less complex forecast combination. In the second step, the
forecasts are generated at these aggregation levels (known
as ‘base forecast’). Finally, the third and vital stage con-
sists of forecast reconciliation, wherein the ‘base forecast’
is reconciled to the original frequency with the help of
various mathematical operations.

In the example considered in section (2.1), the obser-
vations at all levels of considered aggregation can be
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stacked into the following column vector form.

yi = (Y[4]
i ,Y[2]

i ,Y[1]
i )′ (5)

In the TH approach, a ‘summing matrix S’ (Hyndman
et al. 2011) forces the original series to be aggregated in a
scheme as desired. For example, with yi = S ∗ bi, where yi
is the column vector with all the observations in a hierar-
chy, bi signifies the original frequency observations. The
summing matrix s (n × m) for the quarterly data can be
represented as follows, with I being the identity matrix.

S =

⎡
⎢⎢⎣
1 1 1 1
1 1 0 0
0 0 1 1

I4×4

⎤
⎥⎥⎦

After the aggregation process, the forecast for each
aggregation level can be represented in the following
column vector form.

ŷi = (Ŷ[4]
i , Ŷ[2]

i , Ŷ[1]
i )′ (6)

The observed data in a time series is coherent at all
aggregation levels, i.e. it adds precisely across the aggre-
gation levels; however, it is not the case with the base
forecast, which needs a reconciliation process, expressed
as follows.

ỹh = SGŷh (7)

S helps to sum the forecasts coherently, and G maps
the forecast at various aggregations to the bottom level.
For example, in the bottom-up approach, the informa-
tion from the bottom levels is only considered; hence
the matrix G is set so that all other aggregation com-
ponents are assigned a zero coefficient. However, due
to ample empirical evidence of the benefits of utilising
the information from all the considered aggregation lev-
els, Hyndman et al. (2011) introduced the concept of an
optimal approach for utilising the same. Further,Wickra-
masuriya, Athanasopoulos, andHyndman (2019) proved
that for G = (STW−1

h S)−1STW−1
h , the information from

all levels of aggregation is used optimally. However, the
main issue with the approach is the determination ofWh,
which can be overcome by using the approximation pro-
cedure given by Wickramasuriya, Athanasopoulos, and
Hyndman (2019). One such approximation is known as
structural scaling, whereinWh = σ∧, where σ > 0,∧ =
dig(S1), where 1 is the unit matrix of dimension m. The
reconciled forecast for TH with SS approximation at the
quarterly level can be represented as follows.

ŷCt = 0.7083∗Y[1]
1i − 0.2916∗Y[1]

2i − 0.04167∗Y[1]
3i

− 0.0417∗Y[1]
4i + 0.2083∗Y[2]

1i − 0.04167∗Y[2]
2i

+ 0.0833∗Y[4]
i , for i =

[
t
k

]
(8)

The subscript (1, 2, ..4) denotes the specific quarter
or half-year; for example, Y[1]

2i denotes the year’s second
quarter forecast.

The popularmethods in intermittent demand contexts
such as CR, SBA and TSB provide an identical forecast
within a considered aggregation level for the required
step ahead; thus, Y[1]

1i = Y[1]
2i = Y[1]

3i = Y[1]
4i and Y[2]

1i =
Y[2]
2i . Therefore, the combination can be rewritten.

ŷCt = 0.3333∗Y[1]
i + 0.1667∗Y[2]

i + 0.0833∗Y[4]
i ,

for i =
[
t
k

]
(9)

It can also be expressed in terms of the desegregated
forecast as follows.

ŷCt = 0.333∗ŷ[1]t + 0.333∗ŷ[2]t + 0.333∗ŷ[4]t (10)

Even in the case of methods wherein the forecasts are
not expected to be identical, the cumulative contribution
(from each level of aggregation) remains equal.

Therefore, the approaches such as FC and TH may
havemanymerits. However, it can be expected that infor-
mation from every level of aggregation will have a dif-
ferent impact on the final forecast at the bottom level,
depending on the type of information it contains. On the
other hand, the concept of the optimal aggregation level
of ADIDA may also be appealing; however, it completely
ignores the benefits of forecast combination, if any. As a
result, the prospect of assigning weights that can adapt
to the changing time series structure is an interesting
concept.

3. Proposed techniques

For the TA techniques discussed in the text, the final fore-
cast for the bottom level thus can be expressed by the
following mathematical expression.

ŷCt =
k∑
1

(βk∗ŷ[k]t ) for t = 1, 2 . . . ..n (11)

With βk being the weight coefficient associated with
aggregation level k. In the case of FC and TH with SS
approximation for the same TA levels, β1 = β2 . . . =
βK = 1/m, where m is the total number of aggrega-
tion levels. In ADIDA, the β corresponding to the opti-
mal aggregation level is assigned a weight equal to one,
whereas the rest are assigned a weight of zero.

The general equation for the forecast combination at
the bottom level of aggregation thus can be considered
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a regression problem without intercept, which can be
formulated mathematically as follows.

y = β ŷ[k] + ε (12)

Where y = [y1, y2 . . . .yn]T , is the n × 1 vector for actual
observed demand,ŷ[k] is the n × m vector of n disaggre-
gated forecasts for various levels of aggregations ((m = k)
if all aggregation levels are considered).

ŷ[k] =

⎡
⎢⎢⎢⎣
ŷ[1]1 ŷ[2]1 . . . . ŷ[k]1
ŷ[1]2 ŷ[2]2 . . . . ŷ[k]2
. . . . . . . . . . . . . . .

ŷ[1]n ŷ[2]n . . . . ŷ[k]n

⎤
⎥⎥⎥⎦

β = [β1,β2 . . . .βk]T is a m × 1 vector of regression
coefficients and ε = [ε1, ε2 . . . .εi]T is a n × 1 vector of
random error terms.

Let βA be the set of all possible values of vector β , in
the case of Ordinary Least squares (OLS) estimators; the
objective is to find a vector βols = [β1

ols,β2
ols . . . .βk

ols]T

that minimises the sum of squared errors (SSE).

Sse(β) = (y − β ŷ[k])T(y − β ŷ[k]) (13)

β̂ols = (ŷ[k]Tŷ[k])−1ŷ[k]Ty (14)

However, the direct application of OLS to estimate the
weight coefficient for the forecast combination is fraught
with two main issues.

a. The elements of β̂ols can assume negative values that,
in turn, may force the ŷCt < 0 in the test set, which is
undesirable in the present context.

b. The condition related to the sum of coefficients of

elements of, i.e.
k∑
1

β̂ols
k = 1(Hollyman, Petropoulos,

and Tipping 2021), may not always be satisfied.

Additionally, the use of OLS for estimating forecast
combination weights has been extensively contested in
literature (Clemen 1989).
Model 1
The above constraints can be incorporated into the
regression model, and the problem can be formulated as
a constrained least square problem.

minβ

(y − β ŷ[k])T(y − β ŷ[k])
2

(15)

s.t. Aβ = 1 (16)

β ≥ 0 (17)

Where A = [Aij] is a row matrix with an order of 1 ×
m and with each element Aij = 1.

The proposed model (referred to as Model 1 for the
rest of the study) helps determine the optimal weights
within the constraints already defined. The model can
force the weights of all disaggregated forecasts except
from one aggregation level to zero, or it can even choose
equal weights. The approach of selecting the optimal
aggregation level will thus become equivalent to the
Rostami-Tabar et al. (2013) method, with the optimal
aggregation level pertaining to the minimum SSE in the
test data set. Model 1 thus can be considered a less
restricted TA technique, with ADIDA and the FC as its
special cases.
Model 2
The opportunity of determining the weights by allow-
ing the model to choose them with the help of a con-
strained linear regression is an intuitive and straightfor-
ward approach.

In the context of intermittent demand, popular meth-
ods such as CR do not revise their forecast in case of
zero demand. The intermittence of such a time series
decreases with an increasing aggregation level. Thus,
leading to a more updated forecast at a higher level of
aggregation. Additionally, in situations such as a continu-
ous decrease in demand, the trend information becomes
more prominent as we move up the aggregation level.
Even for the methods that can incorporate the trend
information in the final forecast, the weight coefficients
of a higher level of aggregation are intuitively expected to
have a more significant impact on the final forecast com-
bination. Therefore, this information can be modelled in
Model 1 by assigning a weight that is at least equal to the
immediate higher aggregation level; thus, the new model
is referred to as Model 2 for the rest of the study.

The mathematical expression for Model 2 is presented
as follows.

minβ

(y − β ŷ[k])T(y − β ŷ[k])
2

(18)

s.t. Aβ = 1 (19)

Cβ ≥ 0 (20)

β ≥ 0 (21)

Where,

C =

⎡
⎢⎢⎢⎢⎣

−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
0 0 0 . . . 0 0 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎦

C = [Cij] matrix with an order ofm × m and two suc-
cessive elements of a given row Cij+1 = 1, and Cij = −1,
and all the remaining row elements are zero. Thus,Model
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2 is a more restricted form of Model 1, with the weight
combination adopted by FC/TH also being a special case
ofModel 2. However, unlike ADIDA, it is bound to select
only the topmost level as the optimal aggregation level.

Both models’ formulations are comparable to the
Generalised restricted least-squares (GRLS) (Judge and
Takayama 1966) estimation. Firstly, we can derive the
first-order necessary conditions for β̂c to minimise the
formulated GRLS problem. Then, the general form of
the Lagrangian function for the minimisation problem
for the proposed methods in the study can be given as
follows.

L = (y − β ŷ[k])T(y − β ŷ[k])
2

+ γ (Aβ − 1)

+ λCβ + δβ (22)

With γ , λ and δ being the Lagrange multiplier vectors
with λ = [λ1j] and δ = [δ1j] are the row matrix with m
elements.

The Karush-Kuhn-Tucker (KKT) optimality condi-
tions that need to be satisfied by vector β̂c are represented
as follows.

∇L[ β̂c, γ ∗, λ∗, δ∗] = 0 (23)

Aβ̂c − 1 = 0 (24)

Cβ̂c ≥ 0 (25)

β̂c ≥ 0 (26)

γ ∗(Aβ̂c − 1) = 0 (27)

λ∗CLβ̂
c = 0 (28)

δ∗β̂c = 0 (29)

λ ≥ 0 (30)

δ ≥ 0 (31)

γ is unrestricted in sign
The optimisation problem of the scale similar to the

one discussed in the present study can easily be solved
with the help of the active set method proposed by Law-
son and Hanson (1974). The problem with such algo-
rithms is that they become inefficient in handling large
scale GRLS problems. Since the present study is restricted
towards demonstrating the effectiveness of an alternative
combination technique in special cases of intermittent
demand, we restrict ourselves towards the use of the
active set method only. For further details on the other
techniques that are effective in handling large scale GRLS
problems, the readers are advised to refer to the work by
Wickramasuriya, Turlach, and Hyndman (2020).

4. Empirical evaluation

The section contains the particulars regarding the exper-
imental arrangement used in the study, such as the details
regarding themethods employed, the evaluationmetrics,
the datasets, and the results of the analysis.

4.1. Forecastingmodels

In order to evaluate the suitability of existing and pro-
posed TA approaches, the study utilises four forecast-
ing models: CR, SBA, TSB and ETS. CR and SBA are
standard methods in intermittent demand forecasting,
whereas TSB is considered more suitable for increased
risk of obsolescence. However, as already emphasised,
the parametric methods do not inherently model trend
or seasonality in the data, which can be overcome with
the ETS model. The application of ETS thus can help to
model a time series into four main components: ‘level,
trend, seasonal and an error term’, while their interaction
may be additive or multiplicative. For further details on
the ETS class of methods, the readers are advised to refer
to the research report of Hyndman and Athanasopoulos
(2018).

In the present study, the ETS model is expected to
better adjust to the decreasing trend scenario, which gen-
erally becomes prominent at a higher level of aggregation.
However, since the use of ETS has been found to be
unreliablewith certain intermittent demand datasets (e.g.
Ducharme, Agard, and Trépanier 2021), its use for inter-
mittent data may not be an optimal choice. Furthermore,
since the study also involves three CR variants, i.e. CR,
SBA, and TSB, it is also important to devise a mechanism
to choose among thesemethods. Although certain guide-
lines exist regarding the use of CR and SBA, there are
no clear rules for using other intermittent demand fore-
castingmethods, such as TSB or the forecastingmethods,
such as ETS (Kourentzes and Athanasopoulos 2021).

Further, Kourentzes (2014) demonstrated that such a
classification rulemight not be able to outperform simple
heuristics solutions with optimised model parameters.
Since the present study focusses upon the obsolescence
scenario, for which TSB method is considered a suitable
choice. The present study thus utilises TSB for intermit-
tent data, and ETS is utilised for continuous data. In
order to distinguish between intermittent and continuous
demanddata, the study utilises the ‘intermittent threshold’
heuristic by Kourentzes and Athanasopoulos (2021). The
percentage of periods with zero demand over the total
within sample periods is utilised to differentiate between
continuous and intermittent demand. In the process, the
authors considered four different cutoff limits for cate-
gorising demand (10%,20%, 30% and 40%). The authors
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restrict the cutoff limit to 40% based upon the argument
that the parameter estimation becomes challenging for
ETS in the presence of increased zero observation in the
time series. The authors, through empirical investigation,
prove the 10% cutoff limit to be overly restrictive.

Given the above discussion, a cutoff of 40% is to be
utilised by the present study. Thus, ETS is utilised for
a threshold below 40%; in contrast, for above 40%, the
TSB method is utilised. The method thus now involves
the use of TSB or ETS at different levels of aggregation
depending upon the demand type; thus, it is referred to
as TSB+ETS in the rest of the study.

4.2. Model deployment

As the study proposes using restricted least square coeffi-
cients as the weights for the TA, the models require the
disaggregated forecast related to each level of aggrega-
tion. In the case of CR and TSB, the study utilises the
tsintermittent package in r (Kourentzes and Petropoulos
2014) to generate the base forecast. In the case of the ETS,
the study utilises the forecast package in r (Hyndman
and Khandakar 2008) for the same. Further, to estimate
the weights for the proposed models, the within-sample
observed demand data is regressed upon the within-
sample disaggregated forecast(fit) data. Finally, the opti-
mal weight coefficients for each constrained model are
obtained with the help of the lsqlincon function available
with the pracma package in r (Borchers and Borchers
2021).

4.3. Forecasting performancemeasures

The forecasting performance measures can be cate-
gorised into several categories (e.g. Prestwich et al.
2014); however, two main groups are usually consid-
ered: scale-dependent and independentmeasures. In aca-
demic studies related to intermittent demand forecast-
ing, both types of measures have been used to assess
the forecasting performance of the contemplated meth-
ods. Since the present study plans to conduct statis-
tical analysis on the forecasting accuracy results, the
scale-independent measures are favoured. In the pro-
cess, the study uses three main forecasting performance
measures, viz. Scaled Mean Error (sME), Scaled Mean
Square Error (sMSE) and Scaled Mean Periods in Stock
(sMPIS).

The study uses the mean error to assess the presence
of systematic bias (positive or negative) of a particular
method. However, due to the requirement of its aver-
age over different series, the out-of-sample of respective
demand series is scaled with the help of the within-
sample mean of observed demand. The scaled error for

a particular series (i) over a forecast horizon (h) can be
expressed as follows.
Scaled Error(sE)

sEi,h = yn+h − ŷh
1
n
∑n

t=1 yt
(32)

Where n is the number of within-sample observations,
yn+h is the observed demand at the hth period (out-of-
sample), and ŷh is the h-step ahead forecast. The scaled
Mean Error (sME) values for a particular dataset are
obtained as the average of the sE across all horizons and
series of a dataset.
Scaled Squared Error
Apart from the systematic bias of a method, it is also
desirable to assess its performance in terms of variance
in the forecast obtained. Hence, the study employs the
scaled version of mean squared error, where the square
of mean of within-sample demand is used as a scaling
denominator. The scaled squared error for a particular
series (i) over a forecast horizon (h) can be expressed as
follows.

sSE =
(
yn+h − ŷh
1
n
∑n

t=1 yt

)2

(33)

The reported scaled Mean Squared Error (sMSE) values
for a particular dataset are obtained as the average of the
sSE across all horizons and series of a dataset.
Scaled Periods in Stock (sPIS)
The traditional accuracy measures have often been crit-
icised and considered inadequate in the intermittent
demand context (Petropoulos and Kourentzes 2015). For
example, the error metrics such as mean Squared and
Mean Absolute Errors are focused upon periods with
zero demand, thus favouring a biased forecast (Wallström
and Segerstedt 2010). Which is of particular concern for
highly intermittent demand data. Therefore, Periods in
stock (PIS) (Wallström and Segerstedt 2010) acts as an
important biasmeasure (e.g. Petropoulos andKourentzes
2015). PIS indicates the number of periods a particular
SKU spends in fictitious stock. It not only acts as a mea-
sure of the difference between the forecast and the cor-
responding outcome but combines it with the measure
of how long it takes to make the necessary correction.
The error measurement is thus augmented with the time
dimension (Wallström and Segerstedt 2010). The met-
ric for a series i, as defined by Wallström and Segerstedt
(2010), can be mathematically defined as follows.

PISi = −
H∑
h=1

h∑
j=1

(yn+j − ŷj) (34)
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With H representing the forecasting horizon required,
the positive value of the measure is indicative of over-
stocking, while its negative value signifies understocking.

The PIS is also a scale-dependent accuracy measure;
hence it needs to be made scale-independent to enable
its average over a number of time series. The average of
within-sample demand further scales PIS to enable its
average over a number of demand series.

The scaled Periods in Stock (sPIS) for a score i is
given by:

sPISi = PISi
1
n
∑n

t=1 yt
(35)

The reported scaled Mean Periods in Stock (sMPIS) val-
ues for a particular dataset are themean of the sPIS across
all series of a considered dataset.

4.4. Synthetic data

In order to evaluate the methods discussed in the study,
we first use a simulated dataset for the two important
cases in the context of intermittent demand. The first
one is related to the decreasing demand scenario, and
the second is related to the stationary demand; thus,
both datasets can help understand the need for a variable
weight combination scheme. The study uses the tsinter-
mittent package in r (Kourentzes and Petropoulos 2014)
to generate the simulated time series.

In order to generate the data related to decreasing
demand scenario, a time series consisting of 120monthly
demand points for a combination of the squared value
of the coefficient of variation (CV2) and average inter-
demand interval (ADI) is generated. The simulated time
series is further aggregated at five levels (bi-monthly,
quarterly, four-monthly, bi-annual and annual levels).
Finally, the time series with strictly decreasing demand
at the annual aggregation level is chosen. If the gen-
erated data fails to show such a decreasing trend, the

data is regenerated until such a series is found. In order
to simulate the data related to stationary demand, the
time series is generated without such an arrangement.
The descriptive statistics related to the dataset for the
decreasing and stationary demand scenarios are listed
in Table A1(Appendix A). Table A1 also contains the
information regarding the ADI and CV2 for the time
series at various levels of aggregation. As expected, there
is a decrease in the ADI and CV2 values with increas-
ing aggregation level for both the datasets. Further, time
series decomposition analysis can help understand the
strength of data characteristics, including trend and sea-
sonality (Wang, Smith, and Hyndman 2006). Follow-
ing Makridakis, Wheelwright, and Hyndman (2008), the
decomposition of a time series under consideration can
be expressed as follows.

yt = Tt + St + Rt (36)

With Tt , St and Rt being the trend, seasonality and
remainder element of the concerned series.

The trend and seasonality strength (TS, SS) can be
expressed as follows (e.g. Hyndman and Athanasopoulos
2018).

TS = Max
(
0, 1 − Var(Rt)

Var(Tt + Rt)

)
(37)

SS = Max
(
0, 1 − Var(Rt)

Var(St + Rt)

)
(38)

A zero strength signifies no trend or seasonality,
whereas a value of one signifies perfectly trended or sea-
sonal data. For the simulated dataset (stationary and
decreasing), the variation in the trend and seasonality
strength with the considered aggregation level is pre-
sented herein with the help of Table 2.

The analysis of the strength of trend and seasonal-
ity components of the simulated datasets provides valu-
able insight into the context of the present study. Since

Table 2. Time series components strength analysis for synthetic data.

Demand Scenario

Decreasing Stationary

Trend/seasonality Component Aggregation level Min Max Mean Median Min Max Mean Median

Tread Strength Monthly 0.063 0.420 0.179 0.164 0.033 0.300 0.126 0.129
Bi-monthly 0.155 0.702 0.344 0.333 0.070 0.495 0.247 0.248
Quarterly 0.149 0.832 0.474 0.455 0.079 0.688 0.267 0.254
Four-monthly 0.260 0.854 0.546 0.538 0.099 0.700 0.392 0.395
Half-yearly 0.423 0.970 0.735 0.734 0.144 0.731 0.402 0.401
Annual 0.700 0.999 0.944 0.954 0.216 0.824 0.489 0.499

Seasonality Strength Monthly 0.102 0.498 0.211 0.202 0.089 0.309 0.191 0.189
Bi-monthly 0.049 0.680 0.235 0.216 0.006 0.392 0.196 0.182
Quarterly 0.018 0.562 0.227 0.198 0.102 0.401 0.211 0.213
Four-monthly 0.001 0.645 0.244 0.219 0.164 0.445 0.199 0.184
Half-yearly 0.001 0.813 0.265 0.210 0.005 0.409 0.191 0.172
Annual —– —— —— —– —– —– —– ——
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the time series in both datasets are chosen so that, as
expected, the data becomes highly trended with increas-
ing aggregation level for decreasing demand dataset.
In contrast, the increase experienced for the station-
ary demand dataset is not so pronounced. However, not
much can be inferred from the seasonality strength for
both datasets as they are comparable and do not change
appreciably across the datasets.

4.4.1. Results of synthetic data
The present study utilises the last 12 months of the data
as test data for the simulated dataset with two fore-
cast horizons (1 and 6 steps ahead), and the remaining
dataset serves as within-sample data. The evaluation is
performed with the rolling origin forecast update tech-
nique (e.g. Hyndman and Athanasopoulos 2018). First,
a forecast is generated, and its respective performance
is evaluated, while the forecast origin is rolled ahead to
expand the training set. Then, the forecasting method
is re-estimated, and the process is repeated until all the
data in the test set is exhausted. Finally, for the simu-
lated dataset considered in the study, 12 and 7 forecasts
are generated for the out-of-sample set.

Table 3 presents the results for the methods con-
sidered in the study for a particular forecast horizon
for the simulated dataset (least value for a particu-
lar technique/accuracy measure highlighted and itali-
cised).With the first column representing the forecasting
method employed to obtain the original forecast. Vari-
ous post-processing techniques used are specified from
the fifth column onwards. For example, without aggrega-
tion (WA) specifies the results with original methods at a
monthly frequency.

For the results listed in Table 2, if the results for WA
for both the considered forecast horizons and methods
are analysed, then the TSB+ETS method is the best-
performing model among all the considered ones in
case of decreasing demand. In contrast, the results are
comparable for all the methods in the case of the sta-
tionary demand scenario. Furthermore, the forecasting
accuracy results are also on expected lines if analysed
based upon the increasing forecast horizon, i.e. generally
deteriorating with increasing forecast horizon. Further,
the TA techniques improve the forecasting performance
for these methods, also referred to as the ‘self-improving
mechanism’ (Nikolopoulos et al. 2011). Overall, themod-
els proposed in the study (Model 1 andModel 2) perform
as expected in the decreasing demand scenario, with the
least mean-variance and bias in the forecast and lead-
ing to the least overstocking. In contrast, the TA tech-
niques donot improve forecasting accuracy for stationary
demand data.

The other important result is related to ADIDA,
with the technique showing a significant improvement
in forecasting performance compared to FC/TH/WA
in the decreasing demand scenario. The results of the
ADIDA technique embolden its suitability in the context
of decreasing demand scenarios. The other important
observation relates to the comparable performance of TH
and FC approaches. Thus, concurring with the postula-
tion of their similar forecast combination scheme if the
SS technique is used for weights approximation in TH.
Further, with Figure 3, the study presents the error distri-
bution (sSE) of the consideredmethods for the simulated
decreasing demand dataset for one-step ahead forecasts
(with a black line signifying the median and a red point
signifying the mean value) (similar results are obtained
for h = 6 forecasts).

The error distribution confirms the gains in the fore-
casting accuracy for the proposed models in decreas-
ing datasets, with an apparent distinction in the case
of TSB+ETS. The distribution also adds weight to the
argument related to the similar forecasting performance
of the proposed models and ADIDA. The Friedman test,
a non-parametric equivalent of ANOVA, was initially
conducted for the sSE results of all the datasets con-
sidered in the study. The Friedman test results indicate
at least one technique for which the forecasting accu-
racy is different in all the datasets except for the sta-
tionary demand considered in the study. Subsequently,
the Nemenyi test is applied for pairwise comparison to
the sSE results for the decreasing simulated dataset (h =
1). Figure A1, Figure A2, Figure A3, and Figure A4
(Appendix A) present the statistical test results for the
post-hoc Nemenyi test for synthetic data related to
decreasing demand scenarios. The statistical analysis
results thus establish the improved forecasting accuracy
of themodels proposed in the study, withModel 2 achiev-
ing the minimum rank for all the techniques considered.
However, the results fail to establish the statistical signif-
icance of the test results among Model 1, Model 2 and
ADIDA for most of the methods considered. Neverthe-
less, the results also establish the comparable forecasting
accuracy of the considered TH and FC approach, as dis-
cussed in the text earlier. Thus, for decreasing demand
scenarios, the favourable results for models proposed in
the study and the ADIDA technique support the propo-
sition of a more significant influence of information
present at higher aggregation levels.

The results can help better understand the conditions
favouring particular techniques if analysed in terms of
time series components. For example, in the analysis pre-
sented in (Table 2), the trend component becomes highly
prominent at the annual aggregation level for the decreas-
ing dataset. Given the above, it can be argued that for the
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Table 3. Forecasting accuracy results for the synthetic dataset (Stationary and decreasing) for CR, SBA, TSB and TSB+ ETS methods.

Accuracy measure

sMPIS sME sMSE

Dataset Type

Forecast Horizon Method TA technique Stationary Decreasing Stationary Decreasing Stationary Decreasing

h = 1 CR WA 0.862 11.027 −0.074 −0.917 3.362 0.981
ADIDA 0.756 7.307 −0.062 −0.611 3.381 0.472
TH 0.712 9.652 −0.058 −0.804 3.323 0.739
FC 0.714 9.659 −0.058 −0.809 3.324 0.741
Model 1 0.714 7.142 −0.059 −0.595 3.326 0.439
Model 2 0.637 7.060 −0.052 −0.587 3.266 0.422

SBA WA 0.724 10.526 −0.066 −0.872 3.413 0.882
ADIDA 0.695 7.348 −0.064 −0.613 3.395 0.483
TH 0.665 9.548 −0.062 −0.779 3.382 0.697
FC 0.683 9.412 −0.063 −0.787 3.372 0.700
Model 1 0.628 7.251 −0.065 −0.574 3.472 0.455
Model 2 0.728 7.221 −0.075 −0.601 3.449 0.441

TSB WA 0.781 9.914 −0.066 −0.826 3.322 0.772
ADIDA 0.667 7.382 −0.057 −0.615 3.289 0.465
TH 0.668 9.449 −0.055 −0.768 3.309 0.659
FC 0.695 9.184 −0.058 −0.765 3.276 0.658
Model 1 0.550 7.356 −0.047 −0.612 3.310 0.459
Model 2 0.781 7.353 −0.066 −0.613 3.322 0.435

TSB+ ETS WA 0.753 9.701 −0.065 −0.814 3.351 0.742
ADIDA 0.668 1.901 −0.058 −0.202 3.308 0.101
TH 0.666 4.480 −0.056 −0.401 3.320 0.242
FC 0.691 4.479 −0.059 −0.402 3.298 0.245
Model 1 0.620 2.757 −0.075 −0.179 3.611 0.093
Model 2 0.748 1.746 −0.090 −0.153 3.589 0.078

h = 6 CR WA 0.614 6.886 −0.083 −0.958 3.530 1.027
ADIDA 0.573 4.921 −0.074 −0.675 3.499 0.508
TH 0.556 5.984 −0.070 −0.831 3.423 0.763
FC 0.564 5.988 −0.071 −0.833 3.454 0.767
Model 1 0.578 4.836 −0.075 −0.667 3.514 0.457
Model 2 0.501 4.585 −0.067 −0.628 3.448 0.432

SBA WA 0.623 6.651 −0.074 −0.911 3.544 0.928
ADIDA 0.533 4.497 −0.066 −0.641 3.436 0.504
TH 0.524 5.742 −0.068 −0.808 3.460 0.719
FC 0.560 5.978 −0.070 −0.819 3.421 0.722
Model 1 0.488 4.260 −0.087 −0.606 3.795 0.487
Model 2 0.610 4.630 −0.111 −0.631 3.789 0.469

TSB WA 0.634 6.298 −0.075 −0.876 3.521 0.812
ADIDA 0.532 4.654 −0.064 −0.654 3.404 0.488
TH 0.528 5.647 −0.067 −0.759 3.441 0.664
FC 0.563 5.909 −0.068 −0.772 3.397 0.671
Model 1 0.438 4.785 −0.055 −0.620 3.497 0.473
Model 2 0.620 4.754 −0.081 −0.609 3.521 0.466

TSB+ ETS WA 0.623 5.994 −0.074 −0.841 3.544 0.786
ADIDA 0.533 1.568 −0.066 −0.211 3.436 0.110
TH 0.524 3.417 −0.068 −0.369 3.460 0.215
FC 0.560 3.428 −0.070 −0.367 3.421 0.212
Model 1 0.488 1.687 −0.087 −0.199 3.795 0.099
Model 2 0.610 1.607 −0.111 −0.175 3.789 0.085

variable FC scheme to have any effect on the forecasting
accuracy, there needs to exist a pronounced difference
in time series components at different aggregation lev-
els. Thus, if there is a significant change in the strength of
time series components, such as a trend with increasing
aggregation levels, then the idea of varying the FC scheme
seems more beneficial in terms of accuracy improve-
ments. However, the proposed models are expected to
show a comparable forecasting accuracy with the exist-
ing TA techniques if utilised for time series data that does
not display a significant change in its characteristics with

changing aggregation levels (stationary dataset in present
text).

4.5. Empirical dataset

In the case of the synthetic dataset, there were enough
data points to estimate the optimal forecast combination
weights for both the proposed models. However, obtain-
ing such a lengthy time series in the context of intermit-
tent demand forecasting in real-life settings is challeng-
ing. Therefore, the present study utilises the empirical
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Figure 3. Errors distribution (sSE) for simulated decreasing demand dataset (h = 1).

dataset of 3000 SKUs related to the ‘automotive’ indus-
try. Each demand series comprises 24 months in the
dataset, with the respective observation signifying the
demand for a particular month. This dataset has been
extensively employed in intermittent demand forecasting
studies focusing on obsolescence scenarios (e.g. Babai,
Syntetos, and Teunter 2014; Sanguri and Mukherjee
2021).

Since the study is focused on the obsolescence sce-
nario; additionally, the simulated stationary dataset
results are also indicative of competing forecasting per-
formance for all considered techniques. Accordingly, the
study now concentrates only on the decreasing demand
scenario in the real dataset. Thus, the complete real
dataset is separated into four non-overlapping portions,
with strictly decreasingmean demand (μ)in each portion
(μ1 > μ2 > μ3 > μ4)(e.g. Babai et al. 2019).

This helps identify 147 SKUs, which is later utilised
as the empirical dataset in the study. In order to com-
pare the methods discussed in the study, each time series
is further aggregated at three levels of aggregation (Bi-
monthly, Quarterly and Half-yearly). The dataset thus

experiences strictly decreasing demand if observed at a
half-yearly level of aggregation. The descriptive statistics
for the real decreasing dataset with 147 SKUs in listed in
Table A2(Appendix A). Similar to the synthetic dataset
there is also a decrease in the ADI and CV2 with increas-
ing aggregation level for the real decreasing dataset as
well.

Further, based upon the discussion in Section 4.1, the
time series characteristics at various levels of aggrega-
tion for the considered empirical dataset (147 SKUs with
strictly decreasing demand at the bi-annual aggregation
level) are presented in Table 4.

4.5.1. Forecasting accuracy results for empirical data
Since each time series consists of 24 data points, the lat-
est 6 data points are used as the out of -sample portion.
Furthermore, the rolling origin method of forecast eval-
uation with two forecast horizons (1 and 3 steps ahead) is
used. At the same time, the other procedures for obtain-
ing the forecast remain similar to as discussed in sections
(4.1 and 4.2). Finally, the forecasting accuracy results for
the empirical dataset are listed in Table 5 (the least value
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Table 4. Time series component strength analysis for the real
dataset.

Demand Scenario

Decreasing

Aggregation level Min Max Mean Median

Monthly 0.001 0.843 0.343 0.320
Bi-monthly 0.069 0.958 0.555 0.578
Quarterly 0.230 0.988 0.732 0.776
Half-yearly 0.894 0.999 0.966 0.968

Monthly 0.009 0.864 0.513 0.510
Bi-monthly 0.122 0.917 0.515 0.503
Quarterly 0.039 0.986 0.536 0.550
Half-yearly 0.004 0.996 0.487 0.511

for a particular technique/accuracy measure highlighted
and italicised).

The results for the empirical dataset are similar to
the one reported in Section (4.4.1), with the considered
TA techniques results showing a remarkable improve-
ment compared to the original methods’ results. These
results thus further corroborate the findings of literature
wherein TA has been shown to improve the forecasting
performance of the existingmethods; so, the findings can
be extended to the cases of decreasing demand. If the
overall results are analysed, the proposed models in the
study outperform the other considered approach, with
Model 2 being the least biased and more accurate for all
the methods considered in the study. Similar to section
4.4.1, the forecasting error distribution analysis is further
conducted to understand the gains achieved through the
proposedmodels. Figure 4 presents the error distribution
for the consideredmodels in the study for h = 1 forecasts
(similar results are obtained for h = 3 forecasts).

The results of error distribution analysis are less forth-
coming than in the case of simulated data; still, they are
indicative of distinctively improved forecasting accuracy
of the proposedModel 2. This is still important consider-
ing the limited data for the optimal forecast combination
scheme estimation. If the improvements in the forecast-
ing accuracy for the proposed models are analysed with
the help of error distributions of simulated and empiri-
cal datasets (Figures 3 and 4). The higher improvements
for the simulated dataset can be attributed to sufficient
data points that allow the proposed models to estimate
the forecast combination weights better.

The results are tested further statistically, with
FigureA5, FigureA6, FigureA7 andFigureA8(Appendix
A) presenting the post-hoc Nemenyi test for empirical
data (h = 1). Overall, the results for statistical analysis
establish the advantages of the TA techniques in the case
of decreasing demand scenarios for intermittent demand
items. Further, the results also confirm the superior fore-
casting accuracy of Model 2, as it is the best-performing

Table 5. Forecasting accuracy results from empirical data.

Accuracy measure

Forecast Horizon Method TA technique sMPIS sME sMSE

h = 1 CR WA 2.804 −0.467 0.478
ADIDA 2.410 −0.399 0.417
TH 2.408 −0.404 0.412
FC 2.398 −0.400 0.413
Model 1 2.384 −0.397 0.414
Model 2 2.240 −0.373 0.388

SBA WA 2.762 −0.460 0.468
ADIDA 2.344 −0.390 0.407
TH 2.399 −0.401 0.408
FC 2.380 −0.396 0.409
Model 1 2.342 −0.390 0.404
Model 2 2.222 −0.378 0.376

TSB WA 2.834 −0.472 0.476
ADIDA 2.372 −0.396 0.413
TH 2.485 −0.414 0.422
FC 2.461 −0.410 0.422
Model 1 2.396 −0.399 0.410
Model 2 2.293 −0.382 0.395

TSB+ ETS WA 2.674 −0.446 0.463
ADIDA 1.170 −0.195 0.351
TH 1.818 −0.307 0.346
FC 1.819 −0.287 0.344
Model 1 1.201 −0.200 0.327
Model 2 0.941 −0.155 0.294

h = 3 CR WA 2.639 −0.496 0.524
ADIDA 2.298 −0.423 0.420
TH 2.258 −0.426 0.433
FC 2.276 −0.428 0.421
Model 1 2.262 −0.420 0.416
Model 2 2.121 −0.400 0.392

SBA WA 2.641 −0.495 0.522
ADIDA 2.281 −0.420 0.411
TH 2.308 −0.428 0.449
FC 2.310 −0.431 0.418
Model 1 2.275 −0.417 0.416
Model 2 2.153 −0.398 0.387

TSB WA 2.698 −0.500 0.512
ADIDA 2.263 −0.409 0.410
TH 2.359 −0.426 0.431
FC 2.343 −0.425 0.424
Model 1 2.288 −0.419 0.411
Model 2 2.186 −0.402 0.393

TSB+ ETS WA 2.489 −0.478 0.501
ADIDA 1.160 −0.216 0.316
TH 1.715 −0.331 0.347
FC 1.717 −0.329 0.345
Model 1 1.193 −0.225 0.301
Model 2 0.933 −0.174 0.264

model with a significant difference in the forecasting
accuracy from other considered TA techniques for all the
three methods considered in the study. However, in con-
trast to the results obtained from the synthetic dataset,
the forecasting accuracy forModel 1 andADIDAare sim-
ilar to the FC/TH technique. Thus, indicating a relation-
ship between the forecasting accuracy of Model 1 with
the length of within-sample fit data required to assess
the optimal combination/aggregation level. Finally, the
results are also significant, as in the literature related to
inventory obsolescence, the studies using similar datasets
have reported marginal improvements in the forecasting
accuracy by using the same methods (e.g. Babai et al.
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Figure 4. Errors distribution (sSE) for Empirical dataset (h = 1).

2019). In contrast, the results obtained in the present
study suggest substantial improvements if the mean val-
ues of the TA techniques are considered.

5. Inventory performance

Since there is no clarity in the literature regard-
ing the advantage of PIS measure compared to the
other inventory performance assessment techniques
available. Consequently, a separate inventory perfor-
mance analysis for the techniques is also performed.
The process of obtaining the results of inventory
metrics involves choosing an inventory policy. For
example, the order-up-to policy (R, S) is the most
widely accepted policy for intermittent demand items
(Teunter and Sani 2009). The policy involves decid-
ing a review period(R) along with maximum stock
position or order-up-to level(S). For the present study,
we use a setup similar to that of Teunter and Sani
(2009) and Kourentzes (2013), wherein S is expressed as

follows.

S = ŷ(L+R) + K ∗ σ F
(L+R) (39)

Where ŷ(L+R) is the forecasted demand over the period
(L + R), with R representing the review period, L denot-
ing the lead time and K is the safety factor corresponding
to a ‘target service level’ obtained from the normal distri-
bution for the preferred service level. While σ F

(L+R) is
expressed mathematically as follows.

σ F
L+R =

√
(L + R)MSEt (40)

Where MSEt (Smoothed MSE) is the standard error
computed with one-step ahead forecasts. MSEt can be
expressed with the help of the below-mentioned formula
(for further details, please refer to Syntetos and Boylan
(2008) and Syntetos et al. (2009)).

MSEt = (1 − δ) ∗ MSEt−1 + δ ∗ (yt − ŷt)2 (41)

For the present study, we assume L = 1 and R = 1; thus,
the protection interval is equal to (L+R = 2); accord-
ingly, the forecast horizon for the evaluation is fixed at
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h = 2. The study considers four values of target service
level (0.8, 0.9, 0.95, and 0.99), for which the relevant
values of K are obtained from a standard normal distri-
bution table. While the value for δ is fixed at 0.2.

For the analysis, the observed demand is deducted
from the stock on hand for every period. If the resulting
stock (stock on hand+ on order) goes below stock level S
(updated every period), the difference amount is ordered.
The other important aspect is regarding the initialising
stock, which is assumed to be equal to the demand in the
first test period.

The realised service level corresponds to the probabil-
ity of not stocking out in a considered cycle, and the cor-
responding stock holding is measured in the study. The
analysis resultsmust be considered very carefully as com-
paring the techniques based on the service levels alone
may not provide an accurate assessment (Kourentzes
2013.) Thus, the efficiency curves provide insight into the

amount of stock required by each technique against a tar-
get service level. The techniques that retain higher stock
may still achieve a higher service level. Thus, the realised
service level needs to be analysed with the corresponding
stock level. The actual stock holding thus acts as a cost
parameter, an essential indicator of a technique’s perfor-
mance. In order tomake the actual stock holding additive
for the entire dataset, we scale the values with the mean
of positive within sample demand.

The average scaled holding stock (ASH), and average
realised service level (ARSL) based upon a target service
level (TSL) for the simulated and empirical data con-
sidered in the study are presented in Figures 5 and 6,
respectively.

The sME results reported for both the datasets
(synthetic and real) for all the considered techniques
are negative (moderate to high), indicating overpre-
diction (error = actual demand – forecasted demand).

Figure 5. Efficiency curves for inventory performance analysis for simulated decreasing dataset (L = 1, R = 1).
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Accordingly, the inventory performance analysis results
are on the expected lines as all the considered tech-
niques are able to achieve high service levels for both
the datasets. However, the sME values are more nega-
tive in the case of the synthetic dataset than in the real
dataset. Thus, the higher ARSL values in the case of the
synthetic dataset than the real dataset further substanti-
ates the argument regarding overprediction. Since there
is not a huge difference in the realised service levels for
all the considered techniques. Thus, the main difference
among the techniques lies in the ASH, which indicates
the amount of stock required to achieve the correspond-
ing service levels. The results of both the datasets con-
sidered for inventory performance analysis are similar
with the proposed models providing competing realised
service levels with a significantly reduced inventory. The

WA technique (for CR, SBA, TSB, TSB+ETS) for both
datasets provide higher service levels; however, it comes
at a substantial increase in stock holding. While the
proposed models (Model1and Model 2) provide com-
parable service levels with substantially reduced stock
levels.

If analysed in terms of increasing target service level,
the results also show a similar trend for each consid-
ered technique and forecasting model. The correspond-
ing stock holding increases with an increase in the target
service level. Overall, there is a decrease in the ARSL for
the proposed techniques. However, this can be attributed
to a substantial decrease in the actual stock holding. Thus,
adding weight to the argument regarding the suitability
of the proposed techniques in the decreasing demand
context.

Figure 6. Efficiency curves for inventory performance analysis for the real dataset (L = 1, R = 1).
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6. Conclusion, research implications and
further research directions

Due to its inherent slow-moving character, intermittent
demand items often lead to a higher risk of obsolescence.
Several researchers have contributed to the area; however,
the models put forward have mainly been the variants
of Croston’s method that show marginal improvements
in forecasting accuracy over their predecessors. Further-
more, the application of such methods is limited to the
frequency at which the data is observed. Whereas the
additional information available at a higher time bucket
is generally ignored. Therefore, the concept of TA, i.e.
examining the time series at various levels of aggrega-
tions (in terms of time hierarchy), presents itself as a
promising option in situations with a higher risk of obso-
lescence. Thus, the present study applies single (ADIDA)
and multiple TA levels (FC and TH) techniques in the
said context. The TA techniques have various structural
differences; while ADIDA strives to discover an optimal
aggregation level, FC and TH depend upon the combina-
tion of forecasts.

Further, despite the similarity between FC and TH,
the techniques differ in choosing their weight combi-
nations. FC relies upon the mean weight ratio; the TH
involves a complex procedure to arrive at the optimal
weight combinations. However, the present study proves
the equivalence of the forecast combinations obtained
from FC and TH (with structural scaling approximation)
if methods that provide a constant forecast are used (e.g.
CR, TSB). Therefore, though the forecast combination
techniques such as FC have proved efficient, the strategy
is considered sub-optimal.

Additionally, these forecast combination techniques
do not have any provision for varying the combina-
tion of the weights based on the time series struc-
ture. Hence, the study proposes two new approaches to
modify the forecast combination strategy followed by
the existing techniques. The study uses two restricted
least squared estimations for obtaining a varying weight
combination scheme. In Model 1, the study entirely
relies upon the data to select the optimal combina-
tion/aggregation level scheme. Whereas in the second
approach (Model 2), the study designs the scheme of
combination dependent upon the postulation that the
disaggregated forecast obtained from a higher level of
aggregation is expected to have a more significant effect
on the final forecast. In order to test the above postula-
tions, the study compares the forecasting performance
of proposed models with established TA techniques by
using popular forecasting methods such as CR, SBA,
TSB and ETS in cases of both simulated and empirical
datasets.

In the simulated dataset, two datasets are gener-
ated: decreasing and stationary demand. The results
of the comparison of the forecasting accuracy are
on the expected lines, as the existing TA techniques
(ADIDA/FC/TH) lead to improved forecasting perfor-
mance for the considered methods. Another critical
observation pertains to the superior forecasting perfor-
mance of the ADIDA technique in comparison to FC and
TH in the decreasing demand scenario. Overall, the two
models proposed in the study show substantial improve-
ments in the forecasting performance for the decreas-
ing demand scenario. While in the case of stationary
demand, the results from all the considered techniques
are comparable.

The results from the synthetic dataset are encouraging;
however, they may be attributed to the presence of sub-
stantial data to estimate improved forecast combination
weights. Additionally, such lengthy time series in inter-
mittent demand is often an exception. Hence, the efficacy
of the proposed models is also compared with the help of
an established short empirical intermittent dataset.

The dataset is further filtered to identify the time series
that exhibit decreasing demand over a period of time.
The results of the empirical dataset also indicate the supe-
rior forecasting accuracy of the models proposed in the
study. The synthetic and empirical dataset results are
further validated statistically, establishing the superior
forecasting accuracy of the proposed models in the study
in the context of intermittent demand with the risk of
obsolescence.

Overall, the study makes important contributions to
the theory and practice of applying TA techniques in the
context of intermittent demand forecasting, especially in
case of an increased risk of obsolescence. Firstly, the study
extends the idea of the usefulness of TA techniques in the
context of the problem of obsolescence in intermittent-
demand items. Additionally, it provides a general frame-
work for their application in the said context. Further, it
proposes two robust techniques for selecting an appropri-
ate forecast combination scheme, which depends on the
structure of a particular time series. Lastly, the applica-
tion of themodels proposed by the study is not dependent
upon using any particular method and can be extended
to other suitable methods for intermittent demand items.

The study has important implications for managers,
especially when dealing with spare parts inventory in
the automobile and heavy machinery sectors. The man-
agers in such areas have to deal with spare parts ordered
intermittently that are also prone to a higher risk of obso-
lescence. In such situations, themanagers have the option
of only a few methods that can react fast to a decreasing
demand scenario. In contrast, the use of TA techniques
can immensely improve the forecasting performance of
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the already established methods. At the same time, its
forecasting performance can be further improved with
the help of the models proposed in the study. Further-
more, reducing the intermittence at higher aggregation
levels also allows the application of methods designed for
fast-moving items.

Although the study focuses on an interesting aspect,
the study has some limitations; for example, the study
considers a simple heuristic for differentiating between
intermittent and continuous demand for the application
of the ETS or TSB model. The merits of model selec-
tion at various TA levels can be examined in terms of
the probable avenues of future research. Further, a lim-
ited empirical dataset is considered in the study, which
restricts the generalisation of the study’s results. Thus, the
dataset with an even higher frequency or other popular
empirical datasets with high intermittence can be consid-
ered for future analysis. The other significant extension
can be to consider the performance of algorithms suitable
for large-scale constrained least square estimate prob-
lems to enable amore general application of the proposed
models. The proposed models can also be tested in sim-
ilar situations wherein the time series structure changes
considerably with the increasing aggregation levels. For
the inventory performance analysis, the assumption of
normality may not be valid for the intermittent demand
context; thus other assumptions can be further examined.

Note

1. Although the conventional parametric methods (e.g., CR,
SBA) are designed for intermittent demand data, these
methods still update their forecast only in a period with
non-zero demand (Teunter, Syntetos, and Babai 2011).
However, since TA is expected to reduce the intermittence
of such a series at higher aggregation levels, thus the fore-
cast obtained with such methods is expected to be more
updated at higher aggregation levels.
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Appendix A

Table A1. Descriptive statistics synthetic data.

Scenario
Aggregation

Level
MinimumMean

Demand
Average Mean

demand
Maximum

Mean demand
Minimum

ADI
Mean
ADI

Max
ADI

Minimum
CV2

Mean
CV2 Max CV2

Decreasing demand Monthly 1 43.40 145.75 1.47 3.78 7.62 0 1.03 5.22
Bi-monthly 1.41 49.01 155.46 1.08 2.15 3.84 0.13 0.99 3.63
Quarterly 2.03 56.88 184.80 1.05 1.66 2.71 0.10 0.93 3.16
Four monthly 2.50 64.93 208.91 1.00 1.41 2.08 0.17 0.88 2.99
Half-yearly 3.82 81.99 304.88 1.00 1.18 1.63 0.13 0.76 2.35
Annual 6.5 136.93 518.3 1.00 1.00 1.00 0.08 0.61 1.69

Stationary demand Monthly 5.19 64.28 126.01 1.33 2.62 7.4 0.26 0.97 3.04
Bi-monthly 8.10 84.82 191.38 1.01 1.63 4.00 0.19 0.86 2.53
Quarterly 10.56 107.66 283.30 1.00 1.32 2.64 0.22 0.77 2.38
Four monthly 13.50 132.81 376.4 1.00 1.19 2.15 0.17 0.66 1.92
Half-yearly 20.25 186.71 564.6 1.00 1.07 1.58 0.09 0.54 1.97
Annual 36.86 359.79 1129.2 1.00 1.09 1.25 0.01 0.31 1.33

Table A2. Descriptive statistics real data (147 SKUs with strictly decreasing demand at Bi-annual level).

Aggregation
Level

MinimumMean
Demand

Average Mean
demand

Maximum
Mean demand

Minimum
ADI Mean ADI Max ADI Minimum CV2 Mean CV2 Max CV2

Monthly 1.36 5.84 66.08 1.00 1.22 1.85 0.00 0.47 1.47
Bi-monthly 1.90 10.21 127.66 1.00 1.04 1.33 0.05 0.40 1.64
Quarterly 2.35 14.97 191.50 1.00 1.01 1.14 0.02 0.34 1.10
Half-yearly 4.75 29.54 383.00 1.00 1.00 1.00 0.01 0.24 1.08

Figure A1. Statistical comparison of forecasting accuracy in
case of decreasing demand scenario (Synthetic Dataset) for CR
method, Critical distance = 0.754.

Figure A2. Statistical comparison of forecasting accuracy in case
of decreasing demand scenario (Synthetic Dataset) for SBA
method, Critical distance = 0.754.

Figure A3. Statistical comparison of forecasting accuracy in case
of decreasing demand scenario (Synthetic Dataset) for TSB
method, Critical distance = 0.754.

Figure A4. Statistical comparison of forecasting accuracy in case
of decreasing demand scenario (Synthetic Dataset) for TSB+ ETS
method, Critical distance = 0.754.
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Figure A5. Statistical comparison of forecasting accuracy in case
of decreasingdemand scenario (Empirical Dataset) for CRmethod,
Critical distance = 0.622.

Figure A6. Statistical comparison of forecasting accuracy in case
of decreasing demand scenario (Empirical Dataset) for SBA
method, Critical distance = 0.622.

Figure A7. Statistical comparison of forecasting accuracy in
case of decreasing demand scenario (Empirical Dataset) for TSB
method, Critical distance = 0.622.

Figure A8. Statistical comparison of forecasting accuracy in case
of decreasing demand scenario (Empirical Dataset) for TSB+ ETS
method, Critical distance = 0.622.
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