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Abstract. We obtain large N asymptotics for N ×N Hankel determi-
nants corresponding to non-negative symbols with Fisher-Hartwig (FH)
singularities in the multi-cut regime. Our result includes the explicit
computation of the multiplicative constant.

More precisely, we consider symbols of the form ωef−NV , where V is
a real-analytic potential whose equilibrium measure µV is supported on
several intervals, f is analytic in a neighborhood of supp(µV ), and ω is
a function with any number of jump- and root-type singularities in the
interior of supp(µV ).

While the special cases ω ≡ 1 and ωef ≡ 1 have been considered
previously in the literature, we also prove new results for these special
cases. No prior asymptotics were available in the literature for symbols
with FH singularities in the multi-cut setting.

As an application of our results, we discuss a connection between
the spectral fluctuations of random Hermitian matrices in the multi-cut
regime and the Gaussian free field on the Riemann surface associated
to µV . As a second application, we obtain new rigidity estimates for
random Hermitian matrices in the multi-cut regime.
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6.2. The Painlevé local parametrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7. Solving the small norm problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8. Ratio asymptotics for non-singular symbols . . . . . . . . . . . . . . . . . . . . . 85
8.1. Proof of (1.46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2. Proof of (1.58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9. Ratio asymptotics for Fisher-Hartwig symbols . . . . . . . . . . . . . . . . . . 91
9.1. The integral term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.2. The ratio term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3. Combining the terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10. Partition function asymptotics for the k-cut Chebyshev
potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.1. Results for Chebyshev-type orthogonal polynomials. . . . . . . . 107
10.2. Asymptotics of HN (e

−NV0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.3. Limit σ → 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11. Partition function asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.1. The order N2 term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.2. The order N term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
11.3. The constant term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.4. Application of θ-function identities to evaluate ∆

(1)
11 and

∆
(2)
11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.5. Evaluation of residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



HANKEL DETERMINANTS WITH A MULTI-CUT POTENTIAL 3

11.6. Integration in s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.7. The Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

1. Introduction and main results

In this article, we study the asymptotics of Hankel determinants HN (ν)
as N → ∞, where

(1.1) HN (ν) = det

(∫
R
xi+jν(x)dx

)N−1

i,j=0

,

for certain integrable functions ν = νN : R → [0,∞) which we allow to vary
with N . An important reason to study these objects is their connection to
statistical mechanics and matrix integrals.

For instance, the classical fact (see e.g. [50, Chapter 3]) that HN has the
multiple integral representation

(1.2) HN (ν) =
1

N !

∫
RN

∏
1≤i<j≤N

(xi − xj)
2
N∏
j=1

ν(xj)dxj ,

provides a connection to the statistical mechanics of a gas of particles inter-
acting through a logarithmic repulsion.

The viewpoint of matrix integrals stems from the fact (see e.g. [50, Chap-
ter 5]) that if dM denotes the Lebesgue measure on the space of N × N
Hermitian matrices and V : R → R is a smooth function with sufficient
growth at ±∞, then

(1.3) HN (e
−NV ) =

cN
N !

∫
e−NTrV (M)dM,

dM =

N∏
j=1

dMj,j

∏
1≤i<j≤N

dReMi,j dImMi,j ,

where cN = π−N(N−1)/2
∏N
j=1 j!. The trace in (1.3) is interpreted as TrV (M)

=
∑N

j=1 V (λj), where (λ1, ..., λN ) ∈ RN denote the eigenvalues of the matrix
M .

Such integrals play a role in a number of different fields: for example,
they can be used to enumerate certain graphs [12, 61], they are connected to
orthogonal polynomials, and they are important in random matrix theory
[50]. The last two subjects feature prominently in this paper. We now
discuss the role Hankel determinants play in the theory of random matrices,
while we return to the connections to orthogonal polynomials in detail in
Section 2.1.

Consider the probability measure whose density is proportional to

(1.4) e−NTrV (M)dM
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on the space of Hermitian N × N matrices, and denote the eigenvalues of
M by λ1, . . . , λN . The marginal density of λ1, . . . , λN is proportional to∏

1≤i<j≤N (λi − λj)
2
∏N
j=1 e

−NV (λj), and it follows from (1.2) that

(1.5) EeTr g(M) =
HN (e

g−NV )

HN (e−NV )
,

for suitable functions g, where E is the expectation over the random matrix
ensemble, and the trace is interpreted as in (1.3). Thus asymptotics of (the
ratio of) Hankel determinants translate into characterizing the asymptotic
behavior of the random variable Tr g(M) as N → ∞, which in turn is of
interest because it yields information about the spectrum of the underlying
random matrix. Expectations of the form (1.5) and their generalizations1

have been studied extensively. It is a classical fact (see e.g. [50, Section 6])
for rather general classes of functions g, that the leading order behavior of
Tr g(M) is governed asymptotically by a deterministic quantity which can
be written as N

∫
g(x)dµV (x), where µV is known as the equilibrium mea-

sure associated to the potential V . We return to the equilibrium measure
in more detail in Section 1.1.1 below, for now we simply mention the prob-
abilistic interpretation which is that it describes the asymptotic density of
the eigenvalues of M as N → ∞, and in this limit all eigenvalues of M will
lie in any fixed neighbourhood of the support of µV with probability tending
to 1.

Our goal in this paper is to obtain asymptotics for (1.3) and (1.5) for
certain potentials V and functions g, and before moving on to the technical
details we give a brief overview of the situations in which we are interested.
We require V to be real analytic, satisfying V (x)/| log x| → +∞ as x →
±∞, and that the equilibrium measure of V is k-cut regular, k = 1, 2, . . . ,
which means that dµV is supported on k intervals and additionally satisfies
certain technical conditions which we define in Section 1.1.1. Under these
conditions, we are interested in the following problems:

(a) Computing asymptotics for the partition function HN (e
−NV ) up

to and including the multiplicative constant. In the one-cut case
(k = 1) complete asymptotics are by now well-known; they have been
studied by Ercolani and McLaughlin [61], Bleher and Its [14], Borot
and Guionnet [18], Berestycki, Webb and Wong [10], and Charlier
[30]. Obtaining asymptotics in the multi-cut case is a technical chal-
lenge, and has been studied both in the physics community by among
others Eynard (see e.g. [63]), and in the mathematics community
by Borot and Guionnet [18, 19], Claeys, Grava and McLaughlin [41],
Sandier and Serfaty [96], and Shcherbina [98].

1Typical generalizations are e.g. β-matrix models, where in (1.2) the term (xi − xj)
2

is replaced by |xi − xj |β . A number of the references below also cover this more general
setting, e.g. [18, 19, 63, 78, 96, 98].
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While all of the above mentioned papers study the same problem,
the authors have focused on different goals. The work by Sandier
and Serfaty holds in an impressive level of generality, and covers not
just potentials which are regular but a wide class of potentials, up
to a multiplicative error term of O(N). The works of Eynard and of
Borot and Guionnet look at the structure of the full expansion in the
multi-cut regular case. The work of Claeys, Grava and McLaughlin
[41] is restricted to 2-cut regular potentials, and in this case a par-
ticularly elegant result is obtained, describing the asymptotics up to
and including the multiplicative constant, in terms of the equilib-
rium measure µV and special functions such as Jacobi’s θ-function
and elliptic integrals.

One of the main goals of the current paper is to obtain an analogue
of the results in [41] in the k-cut regular situation for k = 3, 4, . . . ,
and in Theorem 1.1 below we present asymptotics for HN (e

−NV )
valid up to and including the multiplicative constant. Our formula
is described in terms of the equilibrium measure and special functions
such as Riemann’s θ-function. Our formula is also valid for k = 2,
in which case it agrees with the results of [41]. In the special case
where V (x) = 2ν

k Πk(x)
2, and Πk is a monic polynomial of degree

k with k real and distinct zeros and ν > 0 is fixed and sufficiently
large, then the equilibrium measure is k-cut regular, and in Remark
1.2 we provide a simplification of the asymptotics of Theorem 1.1.

(b) Computing the asymptotics of EeTr f(M) for f which is real on R
and analytic in a neighbourhood of the support µV . In the one-cut
case this was solved by Johansson [78] for certain classes of polyno-
mial potentials and has later been approached for one-cut regular
potentials through a variety of methods, see e.g. [18, 10]. It follows
from these works that as N → ∞, Tr f(M) − N

∫
fdµV converges

in distribution to a normally distributed random variable.
In the k-cut regular setting, this no longer holds in general, as first

noticed by Pastur in [92], and further developed by Shcherbina in
[98] and Borot and Guionnet in [19]. Borot and Guionnet provided

a formula for EeTr f(M)−N
∫
fdµV in terms of Riemann theta func-

tions, and made the remarkable observation that the fluctuations of
Tr f(M) − N

∫
fdµV can be understood as being asymptotically a

sum of two independent contributions: a normally distributed ran-
dom variable, and a “discrete Gaussian” random variable whose dis-
tribution depends on N . Both of the works [98, 19] as well as more
recent work of Bekerman, Leblé, and Serfaty [9] give conditions on
V and f under which one does have convergence to a normally dis-
tributed random variable in the k-cut case.

We derive asymptotics for EeTr f(M) by giving a proof in terms of
Riemann-Hilbert techniques, which are similar to the asymptotics
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obtained in [19]. This is the simplest aspect of our paper, after set-
ting up the Riemann-Hilbert problem the proof is only four pages.
We give a new interpretation of the result by identifying the “nor-
mally distributed part” of Tr f(M) − N

∫
fdµV as coming from a

variant of the Gaussian free field on a torus with k − 1 holes – this
is due to the covariance kernel being the bipolar Green’s function on
this surface.

(c) Obtaining asymptotics of Hankel determinants with Fisher-Hartwig
singularities in the support of the equilibrium measure, of both
root-type and jump-type. Namely, in the most general setting of
this paper, we study the asymptotics of HN (νN ) with νN (x) =

ef(x)ω(x)e−NV (x), where f is real and analytic in a neighbourhood
of supp(µV ), and ω(x) =

∏p
j=1 ωαj (x)ωβj (x) where

ωαj (x) = |x− tj |αj , ωβj (x) =

{
eπiβj , x < tj

e−πiβj , x ≥ tj

with αj > −1 and Reβj = 0 for all j, with t1, . . . , tp in the inte-
rior of the support of µV (i.e. in the bulk of the spectrum of the
underlying random matrix ensemble). In the one-cut case this was
solved in a series of papers by Krasovsky [81], Garoni [74], Its and
Krasovsky [77], Berestycki, Webb and Wong [10], and Charlier [30],
but no progress has been made in the multi-cut case. In Theorem
1.6 below, we provide complete asymptotics up to and including the
multiplicative constant in the multi-cut case.

In Section 1.6 we apply these results to obtain some rigidity es-
timates for the eigenvalues in the bulk of the spectrum – estimates
which provide upper bounds on how much particles in the bulk can
fluctuate from their expected locations.

For each of the three problems, our proof relies on the asymptotic analysis
of orthogonal polynomials with exponential weights, through the analysis of
Riemann-Hilbert problems. The asymptotics of such polynomials have been
thoroughly analyzed in the multi-cut setting in [53, 52, 15]. Additionally,
double scaling limits moving between one-cut support and two-cut support
are relevant and have been well studied, see e.g. [46, 16, 47, 11, 40, 88],
although these particular transitions do not feature in the current paper.

Before stating our main results in Sections 1.2-1.4, we discuss some back-
ground concerning equilibrium measures and Riemann theta-functions in
Section 1.1.

1.1. Preliminary setup. We describe all of the mathematical objects in
terms of which our results are presented, namely equilibrium measures, θ-
functions, and certain Riemann-surfaces.

1.1.1. Equilibrium measures. A key concept for us will be the equilibrium
measure associated to the confining potential V . We will assume in what
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a1 b1 a2 b2 ak bk

Figure 1. The support J = supp(µV ).

follows that V : R → R is a real analytic function satisfying

(1.6) lim
|x|→∞

V (x)

log |x|
= ∞.

The associated equilibrium measure µV is the unique minimizer of the energy
functional

(1.7) IV (µ) =

∫∫
R×R

log |x− y|−1dµ(x)dµ(y) +

∫
R
V (x)dµ(x)

defined on the space of Borel probability measures on R.
The equilibrium measure plays a crucial role in our analysis for the fol-

lowing heuristic reason. From (1.2) with ν = e−NV , we see that the main
contribution to HN (e

−NV ) comes from the N -tuples which minimize

1

N2

 ∑
1≤i<j≤N

log |xj − xi|−2 +N
N∑
j=1

V (xj)

 .(1.8)

The N = +∞ version of this minimization problem is precisely the problem
of finding a probability measure minimizing (1.7). Hence, for large N , one
expects the density of points of the N -tuples minimizing (1.8) to be well
approximated by the equilibrium measure µV . As an introduction to equi-
librium measures in the setting of random matrices we suggest [50, Chapters
6.6 and 6.7] and [93, Chapter 11.2].

The equilibrium measure µV may alternatively be characterised through
the Euler-Lagrange equations [95, Theorem 1.3, Chapter I.1] – namely µV
is the unique Borel probability measure with compact support and finite
logarithmic energy IV (µV ) <∞, such that there exists a real constant ℓ for
which

2

∫
log |x− y|dµV (y) = V (x)− ℓ for x ∈ supp(µV ),(1.9)

2

∫
log |x− y|dµV (y) ≤ V (x)− ℓ for x /∈ supp(µV ).(1.10)

It was proven in [51] that when V is real analytic satisfying (1.6), then
the support of µV consists of a finite union of closed intervals, which we
denote by

(1.11) J = supp(µV ) =
k⋃
j=1

[aj , bj ]
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with −∞ < a1 < b1 < a2 < ... < bk < ∞. Moreover, it was proven that for
x ∈ J , the density of µV has the form

(1.12)

dµV (x) = ψV (x)dx

ψV (x) =
1

πi
R1/2

+ (x)hV (x),

where hV (x) is a real analytic function, and where R1/2
+ (x) denotes the

boundary values from the upper half plane of the function

(1.13) R1/2(z) =

k∏
j=1

((z − aj)(z − bj))
1/2 ,

with branches chosen such that R1/2 is analytic in C \ J and as z → ∞,

R1/2(z) ∼ zk.
We will throughout the paper assume that the inequality (1.10) is strict

and that hV does not vanish on J . If V satisfies these conditions, then we
say that V is k-cut regular.

Let UV be the domain of analyticity of V – in particular, as V is real
analytic, R ⊂ UV . Then ψV admits an analytic continuation to UV \ J (see
[51]):

(1.14) ψV (z) =

{
1
πiR

1/2(z)hV (z), if z ∈ UV \ J,
1
πiR

1/2
+ (z)hV (z), if z ∈ J.

With this notation ψV (z) is well-defined for all z ∈ UV , but analytic only in
z ∈ UV \ J .

By deforming the contours of integration in a suitable manner and taking
the derivative of (1.9) with respect to x, one obtains the following useful
formula

(1.15) V ′(x) = −
∮
Γ

ψV (w)

x− w
dw,

where Γ is a closed curve oriented counter-clockwise in UV containing x and
J . By relying on (1.15) it is simple to verify that

(1.16) hV (x) =
1

4πi

∮
Γ

V ′(z)

z − x

dz

R1/2(z)
.

Additionally, ψV satisfies

(1.17)

∫ aj+1

bj

ψV (x)dx = 0

for j = 1, 2, . . . , k − 1. Formula (1.17) is verified by representing V (aj+1)−
V (bj) in terms of the left-hand side of (1.9), and comparing to the integral
of the right-hand side of (1.15) from bj to aj+1.
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We will also find it convenient to introduce the notation

(1.18) Ωj =

∫ bk

aj+1

dµV =

k∑
l=j+1

µV ([al, bl])

for j = 1, ..., k − 1.

1.1.2. Theta functions. Note that although (1.7) is uniquely minimized,
(1.8) is not necessarily so when k ≥ 2. This, in turn, will produce some
oscillations in the large N asymptotics of HN (e

−NV ).
It turns out that these oscillations are described in terms of the Riemann

θ function, which we now introduce. For a (k − 1) × (k − 1) symmetric
complex matrix τ with positive definite imaginary part, one defines θ(·|τ) :
Ck−1 → C,

(1.19) θ(ξ) = θ(ξ|τ) = θ(ξ1, ..., ξk−1|τ) =
∑

n∈Zk−1

e2πin
T ξ+πinT τn.

They appear in the study of Riemann surfaces and we will return to their
properties in greater detail in Section 3.

We define theta functions with characteristics α,β ∈ Ck−1 by

(1.20)

θ
[
α
β

]
(ξ) = eπiα

T τα+2πiαT (ξ+β)θ(ξ + τα+ β)

=
∑

n∈Zk−1

e2πi(n+α)T (ξ+β)+πi(n+α)T τ(n+α),

for ξ ∈ Ck−1. Since θ = θ [00], all identities for θ
[
α
β

]
are also valid for θ by

setting α, β = 0. Note that ξ 7→ θ
[
α
β

]
(ξ) is an entire function of ξ ∈ Ck−1.

Now assume that 2α, 2β ∈ Zk−1. If 4αTβ is even, then θ
[
α
β

]
is an even

function, and if 4αTβ is odd, then θ
[
α
β

]
is an odd function (and in particular

θ
[
α
β

]
(0) = 0). A fundamental property (see e.g. [67, Chapter VI]) of the θ-

function is the quasi-periodicity property: if we write ej for the jth standard

unit vector of Ck−1 and τj for the jth column vector of τ , then for all

ξ ∈ Ck−1

(1.21)
θ
[
α
β

]
(ξ + ej) = (−1)2αjθ

[
α
β

]
(ξ),

θ
[
α
β

]
(ξ + τj) = (−1)2βje−πiτj,j−2πiξjθ

[
α
β

]
(ξ).

1.1.3. Riemann Surfaces. Let k ≥ 2, and let S be the two sheeted Riemann
surface associated with R1/2(z), constructed by gluing two copies of the

Riemann sphere C ∪ {∞} along J , in such a manner that R1/2(z) is mero-
morphic on S, with a pole at ∞ on both sheets. Then J± on the first sheet is
identified with J∓ on the second sheet, where J± = {limϵ↓0 x± iϵ : x ∈ J}.
As z → ∞, z−kR1/2(z) → 1 on the first sheet, while on the second sheet

z−kR1/2(z) → −1. S is topologically equivalent to a torus with k− 1 holes,
and is thus of genus k − 1.

Consider the cycles A1, . . . , Ak−1 and B1, . . . , Bk−1 in Figure 2. Each

cycle Bj lives on the first sheet and encloses ∪ji=1[ai, bi], while each cycle Aj
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a1 b1 a2 b2 a3 bk−1 ak bk
A1 A2 Ak−1

B1
B2

Bk−1

Figure 2. The canonical homology basis of S we consider.
The solid parts are on the first sheet and the dashed parts
are on the second sheet.

lives on both sheets, entering the first sheet in the interval (aj+1, bj+1) and
passing to the second sheet through the interval (aj , bj).

By standard theory, see e.g. [67, Chapter III.2.8], there is a unique basis
of holomorphic 1-forms ω1, . . . ,ωk−1 on S satisfying

(1.22)

∮
Ai

ωj = δi,j ,

for i, j = 1, 2, . . . , k − 1, and each ωj is of the form

(1.23) ωj(z) =
Qj(z)

R1/2(z)
dz,

where Qj(z) is a polynomial of degree at most k − 2 (see e.g. [67, Chapter
III.7]).2

Note that by our definition of Ai and ωj , we have by contour deformation
that

(1.24)

∮
Ai

ωj = −2

∫ ai+1

bi

Qj(x)

R1/2(x)
dx,

where the integral on the right-hand side is taken on the first sheet, from
which one can deduce (since R1/2 is real on (bi, ai+1)) that the coefficients
of Qj are real valued.

An important quantity constructed from ωj is the period matrix τ =

(τi,j)
k−1
i,j=1 defined by

(1.25) τi,j =

∮
Bi

ωj .

2By Qj(z), we mean Qj(P(z)), where P is the projection from S onto the complex
plane.
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We recall from [67, Chapter III.3] (see also [97]) that τ is symmetric, that
the entries of τ are purely imaginary, and that −iτ is positive definite.

The Abel map. Define the Abel map u(z) = (u1(z), . . . , uk−1(z))
T by

(1.26) uj(z) =

∫ z

bk

Qj(s)

R1/2(s)
ds, z ∈ (C ∪ {∞}) \ (−∞, bk],

where the integration contour does not cross (−∞, bk]. For k ≥ 2, we let

α = 1
2e1 and let β = 1

2

∑k−1
j=1 ej throughout the paper. Then 4αTβ is odd.

Furthermore
[
α
β

]
is a non-singular characteristic, meaning that θ

[
α
β

]
(u(z))

is not identically zero, see Lemma 3.5 below. It is a well known fact, for
which we also provide a proof in Lemma 3.5, that for fixed λ ∈ C \ J ,

(1.27) Θ(z, λ) =
θ
[
α
β

]
(u(z)− u(λ))

θ
[
α
β

]
(u(z) + u(λ))

is analytic on C \J as a function of z, with a single zero at z = λ. Here and
below, unless otherwise stated, θ

[
α
β

]
= θ

[
α
β

]
(·|τ) with τ as in (1.25). When

k = 1, (1.27) is not well defined. In this case, we define

(1.28)

Θ(z, λ) =
b1 − a1

2

z − λ

R1/2(z)R1/2(λ) + zλ+ a1b1 − a1+b1
2 (z + λ)

=
2

b1 − a1

−R1/2(z)R1/2(λ) + zλ+ a1b1 − a1+b1
2 (z + λ)

z − λ
.

Furthermore, provided λ ∈ C \ J is fixed, Θ(z, λ) remains bounded in a
neighbourhood of J . Since θ

[
α
β

]
is odd, Θ(z, λ) = −Θ(λ, z). Define

(1.29) W (z, λ) =W (λ, z) =
∂

∂z

∂

∂λ
logΘ(z, λ).

Then W is meromorphic on C \ J , and has a double pole at z = λ. In
Proposition 3.6 below, we prove that

(1.30)

W (z, λ) =
1

2(z − λ)2

[(
γ(z)

γ(λ)

)2

+

(
γ(λ)

γ(z)

)2
]
−2

k−1∑
i,j=1

(∂i∂j log θ)(0)u
′
i(z)u

′
j(λ),

where γ is defined by

(1.31) γ(z) =

k∏
j=1

(
z − bj
z − aj

)1/4

, z ∈ C \ J,

and we choose the branch of the root such that γ is analytic in C \ J and
γ(z) → 1 as z → ∞.

Finally, define

(1.32) wz(λ) =
∂

∂λ
logΘ(z, λ) =

∂

∂λ
logΘ(λ, z).
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In (5.16) we provide the alternative representation

(1.33) wz(λ) =
R1/2(z)

R1/2(λ)(λ− z)
+2R1/2(z)

k−1∑
j=1

u′j(λ)

∫ aj+1

bj

dx

R1/2(x)(x− z)
.

We are now in a position to state our main results.

1.2. Main results: asymptotics of HN (e
−NV ). The simplest example is

the setting of the Gaussian Unitary Ensemble. It is a classical result (see
e.g. [87, equation (3.3.10)]) that the asymptotics of the Hankel determinant
with quadratic potential are given by

(1.34) logHN

(
e−2σNx2

)
= −N2

(
3

4
− 1

2
log

1

4σ

)
+N log(2π)− 1

12
logN + ζ ′(−1) +O(N−1),

uniformly for σ in compact subsets of (0,+∞) as N → ∞, where ζ ′(−1) is
the derivative of the Riemann-zeta function at −1.

More generally, for one-cut regular potentials V , the problem has been
studied in [61, 14, 18, 10, 30], and by [10, Proposition 5.5] or [30, Theorem
1.1] we have

(1.35) logHN (e
−NV ) = −N2IV (µV ) +N log 2π − 1

12
logN

+ ζ ′(−1)− 1

24
log

(
ψ̃(a1)ψ̃(b1)|b1 − a1|3

26

)
+O(N−1),

as N → ∞, where IV was defined in (1.7) and

(1.36) ψ̃(q) := lim
λ→q

π

∣∣∣∣∣ ψV (λ)

(λ− q)1/2

∣∣∣∣∣ ,
for q ∈ {a1, b1}.

When V is two-cut regular, Claeys, Grava and McLaughlin [41, formula
(1.9)] obtained the following asymptotics

(1.37) logHN (e
−NV ) = −N2IV (µV ) +N log(2π)− 1

6
logN + log θ(NΩ)

+ 2ζ ′(−1)− 1

2
log

K(k)

π
− 1

24

∑
q∈{aj ,bj}2j=1

log ψ̃(q)

+
1

8
log(b2 − b1)(a2 − a1)−

1

8

2∑
l,j=1

log |bj − al|+O(N−1),

as N → ∞, where k =
√

(a2−b1)(b2−a1)
(b2−b1)(a2−a1) and K(k) =

∫ 1
0

dx√
(1−x2)(1−k2x2)

is the

complete elliptic integral of the first kind, and where ψ̃ is given by (1.36)
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for q ∈ {aj , bj}2j=1. In [41] the constant τ in θ(·|τ) had the alternative

representation iK(k′)/K(k) where k′ =
√
1− k2; one may verify that this

indeed matches our τ by standard formulas in [75, 3.147].
In the k-cut regular case an asymptotic formula was obtained by Borot

and Guionnet [19], who found that as N → ∞,
(1.38)

logHN (e
−NV ) = −N2IV (µV )+N log(2π)− k

12
logN+log θ(NΩ)+Ĉ+O(N−1).

The formula for Ĉ is rather involved (see Theorem 1.5 and Proposition 7.5
in version 5 of [19]), and we have not found any direct comparisons between
(1.38) and (1.37) in the literature. This left the open problem of whether

in fact, for k = 3, 4, . . . , there is a simple expression for Ĉ such as the one
appearing in (1.37) in the two-cut case, which we address in the following
theorem.

Theorem 1.1. Let V : R → R be real-analytic, satisfying (1.6), and assume
that V is k-cut regular for some k ≥ 2. Then

(1.39) logHN (e
−NV ) = −N2IV (µV ) +N log(2π)− k

12
logN + log

θ(NΩ)

θ(0)

+
k

4
log 2 + kζ ′(−1)− 1

24

∑
q∈{aj ,bj}kj=1

log ψ̃(q)

+
1

8

( ∑
1≤l<j≤k

[log(aj − al) + log(bj − bl)]−
k∑

l,j=1

log |bj − al|

)
+ o(1),

as N → ∞, where IV was defined in (1.7) and where ψ̃ is given by (1.36)
for q ∈ {aj , bj}kj=1.

We provide an outline of the proof of Theorem 1.1 in Section 2.5. The
main technical ingredient is the Deift-Zhou steepest descent analysis of a
Riemann-Hilbert problem associated to a system of orthogonal polynomials,
and in essence the proof is divided into two steps:

Step 1. Find an example of a k-cut regular potential V0 for which we can
obtain asymptotics of logHN (e

−NV0).
– When k = 1 the obvious choice is the Gaussian Unitary Ensem-

ble, because the corresponding determinant is closely related to
a Selberg integral for which asymptotics are well-known. This
is the approach of e.g. [10, 30].

– When k = 2, the authors of [41] viewed (roughly speaking)
a certain symmetric two-cut potential as a one-cut potential
reflected through the origin to obtain a reduction to the known
one-cut asymptotics.

– In the case of general k, we also make a reduction to one-
cut asymptotics, but this is not possible through a reflection
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through the origin. We opt instead to build a potential V0 in
terms of the Chebyshev polynomials, which we call the Cheby-
shev potential, and rely on the properties of Chebyshev poly-
nomials to make a comparison with a one-cut potential. The
inspiration for such a potential comes from the study of Toeplitz
determinants - it was observed in [2, 64] that certain determi-
nants with rotationally invariant symbols could be simplified,
and the Chebyshev potential is our attempt at creating an ana-
logue of such a rotational symmetry on the real line. This does
in fact not work quite as smoothly as in the Toeplitz case, we
need to take a limit where V0 remains a k-cut potential but
comes closer and closer to being a one-cut potential to com-
plete Step 1. However, the ordering of limits is important, and
in Section 10 we take care to avoid complicated double scaling
limits (we always remain in the k-cut situation).

Step 2. Take a continuous deformation of potentials Vs for a parameter
s ∈ [0, 1] such that V = V1 and such that we can compute the
asymptotics of ∂

∂s logHN (e
−NVs). When k ≥ 2 these deformations

involve combinations of θ-functions associated to a Riemann surface
of genus k − 1. These combinations need to be integrated in terms
of the parameter of deformation s, and the challenge is to discern
which combinations may be discarded as error terms, and to extract
and simplify the remaining terms.
For the reader unfamiliar with θ-functions it might be a good idea
to think of k = 2 where many serious simplifications occur, for ex-
ample: (i) θ is a complex function of a single variable, (ii) if f is a
non-trivial function on S then θ ◦ f is non-trivial (this is not neces-
sarily true if k ≥ 3), and (iii) θ(xΩ) is periodic in x ∈ R (again this
is not necessarily true if k ≥ 3).

To make a comparison between Theorem 1.1 and the asymptotics of
Claeys, Grava and McLaughlin presented in (1.37), we rely on the iden-
tity K(k) = π

2 θ(0)
2, and we find that the formulas match. We have not

been able to make a comparison with the results of Borot and Guionnet
[19].

The function N 7→ θ(NΩ) is in general quasi-periodic, however for certain
potentials V it is periodic, e.g. if µV ([aj , bj ]) = 1/k for j = 1, . . . , k. We
now provide details for a class of polynomial potentials where this holds, and
furthermore the asymptotics of Theorem 1.1 simplify. Let Πk be a monic
polynomial of degree k with k distinct real roots, and let 1/ν∗ be the smallest
local maximum of Πk(x)

2. Suppose that ν > ν∗, so that Πk(x)
2−1/ν has 2k

zeros, which we denote by a1 < b1 < · · · < ak < bk. Then it is well-known
that (see e.g. [93, Theorem 11.2.7]) the potential V (x) = 2ν

k Πk(x)
2 is k-cut
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regular, J := supp(µV ) = ∪kj=1[aj , bj ], and

(1.40) dµV (x) =
2ν

πk
|Π′

k(x)|
√

1/ν −Π2
k(x)dx, for x ∈ J.

We provide a proof of (1.40) in Section 2.7 for the reader’s convenience,
where we also prove the following corollary.

Corollary 1.2. Let V (x) = 2ν
k Πk(x)

2 and let ν > ν∗. Then, as N → ∞,

logHN (e
−NV )

= −N
2

2k
(3/2 + log ν + 2 log 2) +N log(2π)− k

12
logN + log

θ(rΩ)

θ(0)

+
k

8
log 2− k

16
log ν +

k

12
log k + kζ ′(−1)− 1

16

∑
q∈{aj ,bj}kj=1

log
∣∣Π′

k(q)
∣∣

+
1

8

( ∑
1≤l<j≤k

[log(aj − al) + log(bj − bl)]−
k∑

l,j=1

log |bj − al|

)
+ o(1),

where r ≡ N mod k.

1.3. Main results: ratio asymptotics HN (Fe
−NV )/HN (e

−NV ). We con-

sider k-cut regular potentials V , and consider the ratio asymptotics HN (Fe−NV )
HN (e−NV )

under the following assumptions on F :

Assumptions on F .

(a) F is non-negative on R. On any compact subinterval of R, F is
bounded and integrable.

(b) f(x) = logF (x) is real analytic in a neighbourhood of J .

(c) There exists c > 0 such that F (x)

ecV (x) → 0 as x→ ±∞.

When V is one-cut regular, the problem has been well-studied (see e.g.
[78, 18, 10]), and the following asymptotics hold as N → ∞:

(1.41)
HN (Fe

−NV )

HN (e−NV )
= eN

∫
J f(x)dµV (x)

× exp

(
1

2

∮
Γ

R1/2(z)

2πi

∫
J

f(x)

R1/2
+ (x)(x− z)

dxf ′(z)
dz

2πi

)
(1 +O(N−1)),

where Γ is a closed loop oriented clockwise containing [a1, b1].
When V is k-cut regular, the problem has been studied in [98, 19, 9], who

all derive different representations for the asymptotics. The results in [19]
are similar to ours, but are given in the homology basis in Figure 3, see the
discussion following Theorem 1.3.

We start by discussing a condition under which Tr f(M) − N
∫
fdµV

converges to a normally distributed random variable. It was observed by
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a1 b1 a2 b2 a3 bk−1 ak bk

Â1

Â2
Âk−1

B̂1 B̂k−1

Figure 3. The second canonical homology basis of S we
consider. The solid parts are on the first sheet and the dashed
parts are on the second sheet.

Borot and Guionnet in [19] that this occurs when V is k-cut regular and

(1.42)

∫
J

f(x)xjdx

R1/2
+ (x)

= 0

for j = 0, 1, . . . , k−2. We verify this, and additionally we find that assuming
(1.42), the ratio asymptotics of HN (Fe

−NV )/HN (e
−NV ) are given precisely

by (1.41) also in the k-cut case, now with Γ = ∪ki=1Γi and where Γi is a closed
loop oriented counterclockwise containing [ai, bi], giving a nice parallel to the
one-cut case.

More generally, when (1.42) does not hold, the asymptotics of HN (Fe−NV )
HN (e−NV )

are governed by the following theorem.

Theorem 1.3. Let V : R → R be real-analytic, satisfying (1.6), and assume
that V is k-cut regular for some k ≥ 2. Let F satisfy the assumptions on F
above. Then as N → ∞

(1.43)
HN (Fe

−NV )

HN (e−NV )
= eN

∫
J f(x)dµV (x) θ(NΩ+Υ(f)|τ)

θ(NΩ|τ)

× exp

[
1

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi

]
(1 +O(N−1))

where µV , Ω, R1/2, and {aj , bj}kj=1 are as in Section 1.1.1. We denote

Γ = ∪kj=1Γj and Γ̃ = ∪kj=1Γ̃j, where for each j, the smooth contours Γj

and Γ̃j surround [aj , bj ], are oriented in a counter-clockwise manner, are
contained in the domain of analyticity of f , and are defined such that Γ and

Γ̃ don’t intersect. The constant Υ = Υ(f) ∈ Rk−1 is given by

(1.44) Υm(f) = −
∫
J

Qm(z)

R1/2
+ (z)

f(z)
dz

πi
,
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for m = 1, . . . , k − 1, where Qm is defined by (1.22)-(1.23).

For definiteness, one may take Γ to surround Γ̃ in Theorem 1.3 above,

however the result remains unchanged if Γ̃ instead surrounds Γ.

Remark 1.4. With the random matrix interpretation, there is a fluctuation
in terms of how many eigenvalues tend to fall in each interval of supp (µV ).
These fluctuations are described in terms of θ-functions. The parameter
τ determines how freely the eigenvalues can jump between intervals. For
example, if k = 2 and −iτ is small then the number of eigenvalues in each
interval is nearly deterministic: indeed, if V is an even function and N is
even, then most likely there are N/2 eigenvalues in each interval. (There
are some exceptions to this statement, for example if k = 2, if V is an even
function, if −iτ is small and if N is odd, then naturally there is a symmetry
and the eigenvalues go left or right with equal probability, and so with high
probability one of the intervals will have N/2+1/2 eigenvalues and the other
will have N/2 − 1/2.) On the other hand, when −iτ is large then there is
a greater variance and the number of eigenvalues in each interval vary to
a larger extent. When k ≥ 3 the situation can be more nuanced and one
could for example have a deterministic number of eigenvalues in on interval
and fluctuations between the remaining intervals. We provide more details
in Corollary 1.5 below.

We will prove Theorem 1.3 for functions F which satisfy conditions (a)-
(c), and which in addition are Hölder continuous. Then it follows that the
theorem also holds for functions F satisfying conditions (a)-(c) but which
are not Hölder continuous. To verify this one merely takes F1 and F2 to be
Hölder continuous functions satisfying the conditions for F , with F1 = F2 =
F on a neighbourhood of J , and otherwise F1 ≤ F ≤ F2. Then it follows
that

(1.45) HN (F1e
−NV ) ≤ HN (Fe

−NV ) ≤ HN (F2e
−NV ),

and since (1.43) holds for both F1 and F2 the theorem follows in full gener-
ality.

The proof of Theorem 1.3 for Hölder continuous F is based on the steep-
est descent analysis of Riemann-Hilbert problems, we give an overview in
Section 2.3 below. Here the overarching method consists of (i) obtaining
asymptotics for ∂

∂t logHN

(
e−NV Ft

)
where Ft=0 = 1 and Ft=1 = F , and (ii)

integrating the asymptotics. This integration in t is not completely straight-
forward since θ-functions enter the picture, and we mention that the main
parametrix has a different form to the known form developed in [83].

It may be extended to complex valued f in a straightforward manner
under the assumption that θ(NΩ + tΥ(f)|τ) ̸= 0 for all t ∈ (0, 1] and N
sufficiently large.

Integrating by parts in the second term on the right-hand side of (1.43)
(see Section 8.1), we obtain a second representation for the double integral
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on the right-hand side of (1.43):

(1.46)

1

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi

=
1

2

∮
Γ

R1/2(z)

2πi

∫
J

f(x)

R1/2
+ (x)(x− z)

dxf ′(z)
dz

2πi

+

∫
J
R1/2

+ (z)
k−1∑
j=1

Υj(f)

∫ aj+1

bj

dx

R1/2(x)(x− z)
f ′(z)

dz

2πi

+
1

2

k−1∑
j=1

(f(aj+1)− f(bj))Υj(f).

If (1.42) holds, then Υ(f) = 0, and so it follows by (1.46) that (1.41)
holds.

To make the probabilistic interpretation of the non-Gaussian part which

was observed in [19], we would like to represent the second term θ(NΩ+Υ(f)|τ)
θ(NΩ|τ)

appearing in (1.43) as E[eYN ] for some real random variable YN . However
it is not clear from (1.19) that this holds. To do this it is convenient to
consider a different cycle structure on the Riemann surface S, which is the
basis in Figure 3. Let ω̂j be the basis of holomorphic one-forms satisfying

(1.47)

∫
B̂j

ω̂i = δi,j ,

where B̂j is as in Figure 3, and denote

(1.48) ûj(z) =

∫ z

bk

ω̂j(ξ).

Let τ̂ be the period matrix

(1.49) τ̂i,j =

∫
Âj

ω̂i,

and denote by θ̂(x) = θ(x|τ̂). It is easy to move between bases: if C is the
(k − 1)× (k − 1) lower-triangular matrix with entries Ci,j = 1 for j ≤ i and
Ci,j = 0 otherwise, then

(1.50) ω̂ = Cτ−1ω, τ̂ = −Cτ−1CT .

Let

(1.51) Θ̂(z, λ) =
θ̂
[
β̂
α̂

]
(û(z)− û(λ))

θ̂
[
β̂
α̂

]
(û(z) + û(λ))

, Ŵ (z, λ) =
∂

∂z

∂

∂λ
log Θ̂(z, λ),
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with β̂ = −C−Tβ and α̂ = Cα (where C−T is the inverse transpose of C).
By Lemma 3.1 below, we have the identities

Θ(z, λ) = Θ̂(z, λ) exp
(
4πiu(z)T τ−1u(λ)

)
,(1.52)

θ(NΩ+Υ(f))

θ(NΩ)
= exp

(
−πiΥ(f)T τ−1Υ(f)

) θ̂ [−NΩ̂
0

] (
Υ̂(f)

)
θ̂
[
−NΩ̂

0

]
(0)

,(1.53)

where Ω̂j = µV ([aj+1, bj+1]), and Υ̂(f) =
(
Υ̂j(f)

)k−1

j=1
with

(1.54) Υ̂j(f) = −
∫
J
û′j,+(z)f(z)

dz

πi
.

Observe that Υ̂ are purely imaginary. By Theorem 1.3 and relying on (1.52)-
(1.53), we find that as N → ∞,

(1.55)
HN (Fe

−NV )

HN (e−NV )
= eN

∫
J f(x)dµV (x)

θ̂
[
−NΩ̂

0

] (
Υ̂(f)

)
θ̂
[
−NΩ̂

0

]
(0)

× exp

[
1

4

∮
Γ

∮
Γ̃
Ŵ (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi

]
(1 +O(N−1)).

Observe that

θ̂
[
−NΩ̂

0

] (
Υ̂(f)

)
θ̂
[
−NΩ̂

0

]
(0)

,(1.56)

which appears on the right-hand side of (1.55), can be written as EevN (f)

(in other words, (1.56) is the Laplace transform of vN (f)) with

vN (f) := 2πiΥ̂(f)T
(
X − ⟨N Ω̂⟩

)
where ⟨N Ω̂⟩ ≡ N Ω̂ mod 1 and (X1, ...,Xk−1) is a Zk−1-valued random vari-
able with probability mass function given by

(1.57) P(X1 = x1, . . . ,Xk−1 = xk−1) = ĉeπi(x−⟨NΩ̂⟩)
T
τ̂(x−⟨NΩ̂⟩),

x = (x1, . . . , xk−1) ∈ Zk−1,

where ĉ is the normalization constant.
Integrating by parts (see Section 8.2 for details) we find the following

equivalent expression for the asymptotics of Theorem 1.3:

(1.58)
HN (Fe

−NV )

HN (e−NV )
= eN

∫
J f(x)dµV (x)e

1
2
L(f)

θ̂
[
−NΩ̂

0

] (
Υ̂(f)

)
θ̂
[
−NΩ̂

0

]
(0)

(1+O(N−1)),
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as N → ∞, where
(1.59)

L(f) =
∫∫

J×J
G(z+, λ+)f ′(λ)f ′(z)dλdz,

G(z, λ) = 1

2π2

log
1

|Θ(λ, z)|
− 4π

k∑
l,j=1

Im(uj(z))Im(ul(λ))(Imτ)
−1
j,l

 ,

and G(z+, λ+) = limϵ↓0 G(z + iϵ, λ+ iϵ). The representation in (1.58) has a
number of useful properties.

For example, it gives the asymptotic distribution of # = (#j)
k−1
j=1 , where

(1.60) #j = The number of eigenvalues in (aj+1 − ϵ, bj+1 + ϵ),

for fixed and sufficiently small ϵ > 0:

Corollary 1.5. As N → ∞,

(1.61) P
(
# = N Ω̂− ⟨N Ω̂⟩+ x

)
= P(X1 = x1, . . . ,Xk−1 = xk−1)(1+o(1)).

Proof. We make a comparison of Laplace transforms. Let f(λ) = sj for
λ ∈ [aj+1 − ϵ, bj+1 + ϵ] for j = 1, . . . , k − 1, and zero otherwise. Then

(1.62) E
[
es1#1+···+sk−1#k−1

]
=
HN (e

f−NV )

HN (e−NV )
.

Then L(f) = 0 and by the definition of Υ̂ in (1.54) we have Υ̂(f) = 1
2πis

where s = (sj)
k−1
j=1 . Also

∫
J f(λ)dµV (λ) =

∑k−1
j=1 sjΩ̂j . By (1.58),

(1.63)

E
[
es1#1+···+sk−1#k−1

]
= exp

N k−1∑
j=1

sjΩ̂j

 θ̂
[
−NΩ̂

0

] (
1

2πis
)

θ̂
[
−NΩ̂

0

]
(0)

(1 +O(N−1)),

as N → ∞.
We now proceed by contradiction. Assume the corollary did not hold

true. Then there is a sequence N (k) ∈ Z with k = 1, 2, . . . such that

P
(
# = N (k)Ω̂− ⟨N (k)Ω̂⟩+ x

)
remains bounded away from P(X1 = x1, . . . ,

Xk−1 = xk−1). Since ⟨N (k)Ω̂⟩ is in a compact subset of Rk−1, the sequence

N (k) in turn has a subsequence N (kj) such that ⟨N (kj)Ω̂⟩ is convergent, de-
note the limit by y∗. It follows that the Laplace transform of # − N Ω̂
converges, along the subsequence N = N (kj), to the Laplace transform of

X − y∗ where the law of X is defined by (1.57) but with ⟨N Ω̂⟩ replaced
with y∗. Since the convergence of the Laplace transform implies that the
corollary holds for N (kj) (see e.g. [13, page 390]), we have obtained our
contradiction. □

A second useful aspect of (1.58) is that the expression for G is particularly
natural because it is independent of basis - the equality in the second line
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of (1.59) also holds if we replace Θ, u and τ by Θ̂, û, and τ̂ . In Section
1.5 below, following the work of Kang and Makarov in [80], we give a brief
description of the role that G plays as the correlation kernel of the two
dimensional Gaussian free field on S restricted to J .

We can compare (1.55) to [19, (8.20)]. Observe that [19] deals with both
real and imaginary ϕ, so [19, (8.20)] holds when we set s = 1 and ϕ(x) =
−if(x). Then the two formulas match if we assume that ϖ0 = 0 in [19,
(8.21)], up to a minor discrepancy of the multiplication of a unit of i in the
second line of in [19, (8.21)] (which we believe is simply a typo).

1.4. Main results: Fisher-Hartwig singularities. Finally we describe
ratio asymptotics in the situation where we have Fisher-Hartwig singulari-
ties. We introduce some further notation for this. Let p ∈ N+ := {1, 2, ...},
and
(1.64)

ω(x) =

p∏
j=1

ωαj (x)ωβj (x), ωαj (x) = |x−tj |αj , ωβj (x) =

{
eπiβj , x < tj

e−πiβj , x ≥ tj

with tj ∈ ∪kl=1(al, bl) and with αj > −1 and Reβj = 0 for all j = 1, . . . , p. A

complete description of the asymptotics of HN (ωFe−NV )
HN (eNV )

has been obtained in

the one-cut case through the works of [81, 74, 77, 10, 30], see [30] for the most
general asymptotics available. We give a brief overview of the literature on
determinants with FH singularities in Section 1.7. Despite being well studied
in the one-cut case, no progress has been made on this problem in the multi-
cut case. We derive complete asymptotics in the multi-cut case which we
describe in Theorem 1.6 below, but for the sake of exposition we start by
considering pure root singularities (the case where F = 1, β = 0) and pure
jump singularities (F = 1, α = 0).

Let ωα(x) =
∏p
j=1 ωαj (x). By (1.5), if P is the characteristic polyno-

mial of the random matrix M distributed according to (1.4), i.e. P (x) =∏N
j=1(x− λj) where λj are the eigenvalues of M , then

(1.65)
HN (ωαe

−NV )

HN (e−NV )
= E

 p∏
j=1

|P (tj)|αj

 .

When V is one-cut regular, we have by [81, 10],

(1.66)

E

 p∏
j=1

|P (tj)|αj

 = eN
∫
logωα(x)dµV (x)

p∏
j=1

N
α2
j
4
G
(
1 +

αj

2

)2
G(1 + αj)

(2πψV (tj))
α2
j
4

×
(

4

b1 − a1

)−A2

4 ∏
1≤j<l≤p

|tj − tl|−
αjαl

2 (1 +O((logN)N−1)),
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as N → ∞, where A =
∑p

j=1 αj and where G is the Barnes G-function.
When V is k-cut regular, we obtain in Theorem 1.6 below that

(1.67)

E

 p∏
j=1

|P (tj)|αj

 = eN
∫
logωα(x)dµV (x) θ(NΩ+Υ(logωα))

θ(NΩ)
exp

(
−A2

4
CS
)

p∏
j=1

N
α2
j
4
G
(
1 +

αj

2

)2
G(1 + αj)

(2πψV (tj))
α2
j
4

∏
1≤j<l≤p

|tj − tl|−
αjαl

2 (1 + o(1)),

as N → ∞, where Υ(logωα) is defined as in Theorem 1.3 with f replaced
by logωα, and CS is a constant depending only on S given by

(1.68) CS = lim
R→+∞

[∫ a1

−R

∣∣∣∣∣ Q̃(x)

R1/2(x)

∣∣∣∣∣ dx− logR

]
,

where Q̃ is the unique monic polynomial of degree k − 1 satisfying

(1.69)

∫ aj+1

bj

Q̃(x)

R1/2(x)
dx = 0

for all j = 1, . . . , k − 1. By a contour deformation argument, one finds that
if t ∈ (aj , bj), then

(1.70) Υ(log | · −t|) =
∫ a1

−∞
u′(x)dx− 1

2

j−1∑
l=1

el.

In particular, although Υ(logωα) depends on tj , it only depends on which
interval of supp(µV ) the point tj lies in, not where in the interval it lies. We
find it curious that the dependence on the location of tj is so simple – if t′j
is in the same interval as tj for j = 1, . . . , p, then

(1.71)
E
(∏p

j=1 |P (tj)|αj

)
E
(∏p

j=1

∣∣∣P (t′j)
∣∣∣αj
) = e

N
∫ ∑p

j=1 αj log

∣∣∣∣x−tj

x−t′
j

∣∣∣∣dµV (x)

p∏
j=1

(
ψV (tj)

ψV (t′j)

)α2
j
4 ∏

1≤j<l≤p

∣∣∣∣∣ tj − tl
t′j − t′l

∣∣∣∣∣
−

αjαl
2

(1 + o(1)),

as N → ∞.
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The subleading terms are useful in studying ratios, for example relying
on (1.53) to change basis, we have

(1.72)
E (|P (t1)|α1 |P (t2)|α2)

E (|P (t1)|α1)E (|P (t2)|α2)

= |t1 − t2|−
α1α2

2 e−2πiα1α2Υ(log |·−t1|)T τ−1Υ(log |·−t2|) exp
(
−α1α2

2
CS
)

×
θ̂
[
−NΩ̂

0

] (
α1Υ̂(log | · −t1|) + α2Υ̂(log | · −t2|)

)
θ̂
[
−NΩ̂

0

] (
α1Υ̂(log | · −t1|)

)
θ̂
[
−NΩ̂

0

] (
α2Υ̂(log | · −t2|)

)(1 + o(1)),

as N → ∞, where for t ∈ (aj , bj),

(1.73) Υ̂(log | · −t|) =
∫ a1

−∞
û′(x)dx+

1

2
τ̂j−1.

We now consider pure jump singularities. Let ωβ(x) =
∏p
j=1 ωβj (x). The

Hankel determinant with pure jump singularities is the Laplace transform
of the eigenvalue counting function as follows

E
[
e
∑p

j=1 2πvjHN (tj)
]
=
HN (ωβe

−NV )

HN (e−NV )
e−N

∫
logωβ(x)dµV (x), vj = iβj ,

HN (t) =
N∑
j=1

1{λj ≤ t} −NµV ((−∞, t]), t ∈ R,

where λ1, . . . , λN are the eigenvalues of the random matrix M .
When V is one-cut regular, we have [77, 30]

(1.74)

E
[
e
∑p

j=1 2πvjHN (tj)
]
=

p∏
j=1

Nv2jG(1+ivj)G(1−ivj)(2πψV (tj))v
2
j

∣∣∣Θ̃(tj,+, tj,+)
∣∣∣−v2j

×
∏

1≤j<l≤p
|tj − tl|−2vjvl

∣∣∣Θ̃(tl,+, tj,+)
∣∣∣−2vjvl

(1 +O((logN)N−1)),

as N → ∞, with

(1.75) Θ̃(z, w) =
Θ(z, w)

w − z
,
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and Θ given by (1.28). When V is k-cut regular, we obtain in Theorem 1.6
below that

(1.76) E
[
e
∑p

j=1 2πvjHN (tj)
]

=

p∏
j=1

Nv2jG(1 + ivj)G(1− ivj)(2πψV (tj))
v2j

∣∣∣Θ̃(tj,+, tj,+)
∣∣∣−v2j

×
θ
(
NΩ+ 2π

∑p
j=1 vjΥ(1tj (x))

)
θ(NΩ)

×
∏

1≤j<l≤p
|tj − tl|−2vjvl

∣∣∣Θ̃(tl,+, tj,+)
∣∣∣−2vjvl

(1 + o(1)),

as N → ∞, where 1t(x) = 1{t ≤ x}, and with Θ̃ given by (1.75) but where
Θ is given by (1.27) instead. Relying on (1.53) to change basis, we have

(1.77)

E
[
ev1HN (t1)+v2HN (t2)

]
E
[
ev1HN (t1)

]
E
[
ev2HN (t2)

] = θ̂
[
−NΩ̂

0

] (
Υ̂ (v11t1 + v21t2)

)
θ̂
[
−NΩ̂

0

] (
Υ̂ (v11t1)

)
θ̂
[
−NΩ̂

0

] (
Υ̂ (v21t2)

)
× exp [v1v2G(t1,+, t2,+)] (1 + o(1)),

for fixed v1, v2 as N → ∞, and where G was defined in (1.59).
The ratio asymptotics in the general situation for the Fisher-Hartwig case

are provided by the following theorem, which is proven in Section 2.4 based
on results in Section 9. The main idea of the proof is to use a deformation
from a smooth weight (for which the corresponding asymptotics are available
from Theorem 1.3) to a Fisher-Hartwig weight by bringing singularities from
the complex plane to the real line. We rely here on results due to Claeys, Its,
and Krasovsky [44] regarding Painlevé V and the associated RH problem,
and it is the first time this type of transition has been relied on to give
asymptotics for determinants with fixed Fisher-Hartwig singularities. Our
conclusion after experimenting with this technique is that we obtained our
results with fewer and simpler calculations than previous methods employed
(and when θ-functions enter the picture there is a very substantial benefit),
at the expense of a more advanced theory (and a proof which is not self-
contained, relying on [44]).

Theorem 1.6 (Ratio asymptotics for a FH symbol). Let V : R → R be real-
analytic, satisfying (1.6), and assume that V is k-cut regular for some k ≥ 2.
Let F satisfy the conditions of Theorem 1.3, and denote f(x) = logF (x) for
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x in a neighbourhood of J . Let αj > −1 and iβj ∈ R. Then, as N → ∞,
(1.78)

HN (ωFe
−NV )

HN (e−NV )
= eN

∫
(f(x)+logω(x))dµV (x) θ(NΩ+Υ(f + logω))

θ(NΩ)

p∏
j=1

N
α2
j
4
−β2

j

× exp

(
1

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi

)
× exp

[
−A

(∫
J

f(x)Q̃(x)

R1/2
+ (x)

dx

2πi

)
− A2

4
CS

]

×
p∏
j=1

exp

(
−αj

2
f(tj) +

βj
πi

P.V.
∫
J
wtj ,+(λ+)f(λ)dλ

)

×
p∏
j=1

G(1 +
αj

2 + βj)G(1 +
αj

2 − βj)

G(1 + αj)
(2πψV (tj))

α2
j
4
−β2

j

×
p∏
j=1

∣∣∣Θ̃(tj,+, tj,+)
∣∣∣β2

j
exp

(
Aβj
2

[∫ ∞

bk

wtj ,+(λ)dλ− πi

2

])
×

∏
1≤j<l≤p

e
πi
2
(αlβj−αjβl)|tj − tl|2βjβl−

αjαl
2

∣∣∣Θ̃(tl,+, tj,+)
∣∣∣2βjβl

× (1 + o(1)),

where A =
∑p

j=1 αj, G is the Barnes G-function; Υ(f + logω) is defined as

in Theorem 1.3 but with f replaced by f + logω; W was defined in (1.29);

wtj ,+(λ+) = limϵ→0wtj+iϵ(λ + iϵ) where wz(λ) was defined in (1.32); Q̃ is
the unique monic polynomial of degree k − 1 satisfying (1.69) for all j =
1, . . . , k − 1; CS was defined in (1.68); where

Θ̃(z, w) =
Θ(z, w)

w − z
,

and Θ was defined in (1.27).

By combining Theorems 1.1 and 1.6, we obtain the full asymptotics for
HN (ωFe

−NV ).

Remark 1.7. For k = 1, we can verify that Theorem 1.6 matches with the
asymptotics for the one-cut case given by [30, Theorem 1.1]. Let us assume
without loss of generality that a1 = −1 and b1 = 1. Observe that for k = 1

we have Q̃(x) = 1, set θ ≡ 1, and recall that Θ is given by (1.28). Hence,
(1.79)

wz(λ) =
R1/2(z)

R1/2(λ)(λ− z)
, W (z, λ) =

zλ− 1

(z − λ)2
√
(z2 − 1)(λ2 − 1)

.
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Using (1.28) and (1.79), we verify that

(1.80)

∫ ∞

bk

wtj ,+(λ)dλ− πi

2
= i arcsin tj .

With Q̃ = 1 and by the definition of CS in (1.68), we have CS = log 2 for
k = 1. By substituting (1.79) and (1.80) in (1.78), we can now verify that
Theorem 1.6 with k = 1 indeed matches with [30, Theorem 1.1].

Remark 1.8. The quantities ωj , τ, and Υ(f) were defined in (1.22), (1.23),
(1.25) and (1.44). Equivalently, each of these objects can also be written

explicitly in terms of certain matrices as follows. Let Q := (qj,r)
k−1
j,r=1 and

A := (Ar,i)
k−1
r,i=1, where

Qj(x) =
k−1∑
r=1

qj,rx
r−1, and Ar,i =

∫ ai+1

bi

xr−1dx

R1/2(x)
.

Using the product formula for the Vandermonde determinant, we infer that

(1.81) detA =

∫ a2

b1

dx1· · ·
∫ ak

bk−1

dxk−1

∏
i<j

(xj − xi)
k−1∏
j=1

1

R1/2(xj)
.

Since xi < xj for i < j, and since R1/2 is real and does not change its sign
on (bi, ai+1), the right-hand side of (1.81) is clearly non-zero and therefore
A is invertible. By (1.22) - (1.24), we have −2QA = I, and so

Q = −1

2
A−1.

Similarly, let Bj,r :=
∑j

i=1

∫ bi
ai

xr−1dx

R1/2
+ (x)

and let B := (Bj,r)
k−1
j,r=1. By (1.25),

τ = −BA−T ,

where A−T denotes the inverse transpose of A. Finally, if we define

cr(f) :=
1

2πi

∫
J

f(x)xr−1dx

R1/2
+ (x)

, and c(f) := (cr(f))
k−1
r=1 ,

then by (1.44) we have

Υ(f) = A−1c(f).

(Above, −2A is the matrix of A-periods in Figure 2 and 2B is the matrix
of B-periods).

1.5. Applications: connection to the Gaussian free field on a Rie-
mann surface. An active research topic in random matrix theory in the
past years has been the connection between random matrices and the the-
ory of logarithmically correlated random fields (see e.g. [76, 72, 43] and
references therein) – that is random (generalized) functions X : Rd → R
with a covariance of the form Cov(X(x), X(y)) = log |x− y|−1 + g(x, y) for
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some continuous function g. A prime example of such an object is the two-
dimensional Gaussian free field, which is a Gaussian process on a subset of
R2 whose covariance is given by the Green’s function of the domain (with
suitable boundary conditions). See e.g. [99] for a review on the Gaussian
free field. As will be important for us shortly, similar objects can be defined
on more general manifolds – see e.g. [80, Section 2] for a discussion of the
Gaussian free field on compact Riemann surfaces.

Let us illustrate the connection between the Gaussian free field and ran-
dom matrix theory with two examples taken from the one-cut setting. For
this purpose, let M be an N ×N GUE random matrix normalized so that
the equilibrium measure dµ has support [−1, 1], and define

X1,N (x) =
√
2

(
log | det(M − x)| −N

∫
log |x− t|dµ(t)

)
,

X2,N (x) =
√
2π

( N∑
j=1

1{λj ≤ x} −N

∫ x

−1
dµ(y)

)
,

where the λj ’s are the eigenvalues of M . X1,N and X2,N encode different
types of information about the fluctuations of the spectrum of M around
the equilibrium measure. In the large N limit, both X1,N and X2,N exhibit
a covariance structure of logarithmically correlated random fields. Indeed,
it is known (see e.g. [73, 43]) that

lim
N→+∞

Cov(X1,N (x), X1,N (y)) = log |x− y|−1 − log 2,

lim
N→+∞

Cov(X2,N (x), X2,N (y)) = log |x− y|−1

+ log(1− xy +
√

1− x2
√

1− y2).(1.82)

The right-hand side of (1.82) can also be seen as the covariance of a variant
of the Gaussian free field – see e.g. [43, Appendix A]. This shows that X1,N

and X2,N , which are objects that arise naturally in random matrix theory,
can be understood, in the large N limit, as being restrictions of (variants of)
the two-dimensional Gaussian free field to certain one-dimensional subsets.

Assume from now on that M is a N ×N Hermitian matrix drawn from a
multi-cut random unitary invariant ensemble. In this setting, the connection
between spectral fluctuations ofM and the Gaussian free field is much more
subtle. As was already pointed out in [19], in this case the fluctuations
consist of two independent contributions: one that is connected to some N -
dependent theta-functions and which does not necessarily have a meaningful
limit as N → ∞, and another one that does have a limit that is described
by the restriction of a Gaussian free field on a Riemann surface to a one-
dimensional subset. We now describe how Theorem 1.3 can be used to obtain
a new perspective on this connection. First, we discuss how Theorem 1.3
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is related to the spectral fluctuations of M , then we describe the “theta-
function part” of these fluctuations, and finally the “Gaussian part”. As
before, we denote by λ1, . . . , λN the eigenvalues of M .

Theorem 1.3 and spectral fluctuations: Let F be as in Theorem 1.3, and
assume furthermore (for simplicity) that logF is compactly supported. Then
the ratio of Hankel determinants appearing in Theorem 1.3 can be under-
stood as

HN (Fe
−NV )

HN (e−NV )
e−N

∫
logF (x)dµV (x) = Ee

∑N
j=1 logF (λj)−N

∫
logF (x)dµV (x),

(1.83)

= Ee−
∫
R(

∑N
j=1 1{λj≤x}−N

∫ x
−∞ dµV )h(x)dx,

with h(x) := d
dx logF (x). This last expression can be rewritten more com-

pactly as Ee−XN (h), where

XN : C∞
c (R) → R ; h 7→

∫
R

( N∑
j=1

1{λj ≤ x} −N

∫ x

−∞
dµV

)
h(x)dx,

and therefore the left-hand side of (1.83) can be viewed as the Laplace
transform of XN (h). More generally, when studying random generalized

functions, say X : C∞
c (Rd) → R, one refers to Ee−X(h) as the Laplace

transform of X(h) and to h 7→ Ee−X(h) as the Laplace functional of X.
The above considerations show that the ratio of the Hankel determinants
in Theorem 1.3 encodes the Laplace functional of the eigenvalue counting
function XN (which in turn, encodes the probability distribution of XN ).

The “theta-function part” and discrete Gaussian random variables: Let us
first point out that the quantity

θ̂
[
−NΩ̂

0

] (
Υ̂(f)

)
θ̂
[
−NΩ̂

0

]
(0)

,(1.84)

which appears on the right-hand side of (1.58), can be written as Ee−vN (f)

(in other words, (1.56) is the Laplace transform of vN (f)) with

vN (f) := −2πi

k−1∑
j=1

Υ̂j(f)(Xj −N Ω̂j)

where (X1, ...,Xk−1) is a Zk−1-valued random variable with probability mass
function given by

P(X1 = x1, . . . ,Xk−1 = xk−1) = ĉeπi(x−NΩ̂)T τ̂(x−NΩ̂),

for x = (x1, . . . , xk−1) ∈ Zk−1,
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where ĉ is the normalization constant. The Laplace functional f 7→ Ee−vN (f)

can therefore be understood as that of a suitable random field v̂N (x) whose
values are discrete Gaussian random variables. Indeed, by the definition of

Υ̂ from (1.54), we can write

vN (f) =

∫
J
v̂N (x)f(x)dx :=

∫
J
2

k−1∑
j=1

û′j,+(x)(Xj −N Ω̂j)f(x)dx.

Let us now turn to the “Gaussian part” of the fluctuations.

Gaussian fluctuations and the Gaussian free field: We now analyze the other

part of the right-hand side of (1.58), namely e
1
2
L(f). Since f 7→ L(f) is qua-

dratic in f , if we can show that L(f) ≥ 0 for all f , then this means that

f 7→ e
1
2
L(f) is the Laplace functional of a Gaussian random field. Note that

L(f) can be rewritten as L(f) =
∫∫
J×J G(x, y)f

′(x)f ′(y)dxdy, where

G(x, y) := 1

2π2

log
1

|Θ(x+, y+)|
− 4π

k−1∑
l,j=1

Im(uj,+(x))Im(ul,+(y))(Imτ)
−1
j,l

 .

(1.85)

In other words, showing L(f) ≥ 0 for all f is equivalent to proving that
G(x, y) is a covariance kernel.

G(x, y) is in fact closely related to the (bipolar) Green’s function, which is
an object of central importance in the study of Riemann surfaces. We refer
to e.g. [80, Sections 2 and 3] for an in depth discussion of the role of the
bipolar Green’s function in the study of the Gaussian free field on a compact
Riemann surface. For the convenience of the reader, we also briefly review
here the concepts that are relevant for us.

We begin by recalling the definition and properties of the Laplace(-Beltrami)
operator on a general Riemannian manifold (of which Riemann surfaces are
a special case). We then quote some results from [80] about how these
general results translate to Riemann surfaces and what is known about the
Laplacian Green’s function on Riemann surfaces. We refer the interested
reader to e.g. [29, Chapter 7] for more on the Laplace(-Beltrami) operator.

First of all, we recall that for a d-dimensional smooth Riemannian mani-
foldM with metric g = (gi,j)

d
i,j=1, the Laplace(-Beltrami) operator is defined

in some given coordinate chart as

∆u =
1√

det(gp,q)dp,q=1

d∑
i,j=1

∂i

(
gi,j
√

det(gp,q)dp,q=1∂ju
)
,

for u ∈ C∞(M). Here we have written (as is common in Riemannian ge-
ometry), gi,j for the i, j entry of the inverse of the matrix (gi,j)

d
i,j=1. Note

that in the case where M = Rd and where the metric tensor g is just the
constant identity matrix, this is the familiar Laplacian operator.
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A basic fact about the Laplace operator in this generality is that if the
manifold is compact and does not have a boundary, then a spectral theorem
holds. More precisely (see [29, Theorem 7.2.6]), there exists a sequence of
real-valued C∞(M) functions (φn)

∞
n=0 which form an orthonormal basis of

L2(M) (where the inner product is
∫
M f(x)g(x)

√
det(gi,j(x))di,j=1dx) and

they are eigenfunctions of the Laplacian operator: ∆φj = −λjφj with 0 =
λ0 < λ1 ≤ λ2 ≤ .... Furthermore, the only eigenfunctions with λ0 = 0 are
constant functions.

We can view a Riemann surface Ŝ as a special case of a Riemannian
manifold – in this case, our metric is a conformal one: there exists a positive
function ρ : Ŝ → R such that gi,j = ρδi,j [79, Lemma 2.3.3]. In this case,

the Laplacian operator becomes just ρ−14∂∂̄, where ∂ = 1
2∂1 − i

2∂2 and

∂̄ = 1
2∂1 +

i
2∂2.

Just as in the study of the Laplacian on Rd, a central importance in the
study of the Laplacian on a Riemann surface is played by the notion of the
Green’s function. For this purpose, we introduce the resolvent kernel:

Rρ(z, w) =
∞∑
n=1

1

λn
φn(z)φn(w).

It follows from the spectral theorem that on the subspace of L2(M) which
is the orthogonal complement of the constant functions, the integral op-
erator with kernel Rρ is the inverse of the Laplacian, i.e. ∆−1h(z) =∫
Ŝ Rρ(z, w)h(w)ρ(w)dw for all h such that

∫
Ŝ h(w)ρ(w)dw = 0.

We will now specialize the above general theory to the Riemann surface
S defined in Section 1.1.3. Then we will verify that indeed L(f) ≥ 0. For
the remainder of our discussion, we will think of ρ as being given, and we
will suppress it in our notation (for example, we will write R instead of Rρ).

It is known, see [80, Corollary 3.2], that there exists some constant c only
depending on S so that

1

π

log

∣∣∣∣∣θ
[
α
β

]
(u(z)− u(q))

θ
[
α
β

]
(u(z)− u(p))

∣∣∣∣∣− 2π

k−1∑
l,j=1

Im (ul(p)− ul(q))(Im τ)−1
j,l Imuj(z)


(1.86)

= R(z, p)−R(z, q) + c,

where
[
α
β

]
is the odd non-singular characteristic defined by α = 1

2e1 and β =
1
2

∑k−1
j=1 ej . We mention here in passing that the function R(z, p)−R(z, q) is

the bipolar Green’s function on S (p and q being the “poles”). Using (1.21),
(1.27), (1.85) and (5.4), one sees that if we let z → x+, p→ y+, and q → y−,
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then the left-hand side tends to 2πG(x, y), namely that

(1.87)

G(x, y) = 1

2π
(R(x+, y+)−R(x+, y−)) + c

=

∞∑
n=1

1

2πλn
φn(x+)(φn(y+)− φn(y−)) + c.

On the other hand, letting now z → x−, p → y−, and q → y+, and using
again (1.86) (along with (5.4) and (1.21)), one can check that

(1.88)

G(x, y) = 1

2π
(R(x−, y−)−R(x−, y+)) + c

=

∞∑
n=1

−1

2πλn
φn(x−)(φn(y+)− φn(y−)) + c.

Hence, combining (1.87) with (1.88), we see that in fact

G(x, y) =
∞∑
n=1

1

4πλn
(φn(x+)− φn(x−))(φn(y+)− φn(y−)) + c.(1.89)

Now, if we let x → bk in the above expression, then φn(x+) − φn(x−) →
0, while by (1.85) the left-hand side vanishes since |Θ(bk, y+)| = 1 and
Im (uj,+(bk)) = 0. We conclude that in fact c = 0.

Hence, it follows from L(f) =
∫∫
J×J G(x, y)f

′(x)f ′(y)dxdy, (1.89) and
c = 0 that

L(f) =
∞∑
n=1

1

4πλn

(∫
J
f ′(x)(φn(x+)− φn(x−))dx

)2

≥ 0.

Since f was arbitrary, this proves that f 7→ e
1
2
L(f) is the Laplace functional

of a Gaussian random field X, such that X(f) is a Gaussian random variable
with mean zero and variance L(f).

It remains to address the claim that this Gaussian random field X is
related to the Gaussian free field on the Riemann surface S. For this pur-
pose, one first needs to define what is meant by the Gaussian free field
on S. Naively, one would like the Gaussian free field to be the centered
(generalized) Gaussian process with covariance given by the Green’s func-
tion of the surface, and this Green’s function in turn one would like (by
the spectral theorem) to define as

∑+∞
n=0 λ

−1
n φn(z)φn(w). In other words,

one would like to define the free field Y as Y(f) =
∫
Ŷ(z)f(z)dz, with

Ŷ(z) =
∑+∞

n=0 Ynλ
−1/2
n φn(z), where {Yn}+∞

n=0 are independent and identically
distributed standard real Gaussian variables. There is, however, a caveat:
the issue here is the “zero mode”, namely that λ0 = 0. For this reason, the
free field Y is only defined “up to constants” (because z 7→ φ0(z) is a con-

stant), so one can make sense of the random variable Y(f) =
∫
S Ŷ(z)f(z)dz

only for functions with
∫
S f(z)dz = 0.
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There are various ways of constructing random fields that circumvent this
issue. In [80], the approach taken by the authors is to look at differences
of the field. They introduce a variant of the free field, denoted Φ(p, q) and

which can be thought of as Φ(p, q) = “Ŷ(p)− Ŷ(q)” (since Ŷ(p) is not well-

defined, one should interpret this difference as
∑+∞

n=1 Ynλ
−1/2
n (φn(p)−φn(q)),

which removes the ambiguity about λ0). More precisely, Φ(p, q) is defined
with the following covariance:

EΦ(p, q)Φ(p̃, q̃) = 2 log

∣∣∣∣∣θ
[
α
β

]
(u(p̃)− u(q))θ

[
α
β

]
(u(q̃)− u(p))

θ
[
α
β

]
(u(p̃)− u(p))θ

[
α
β

]
(u(q̃)− u(q))

∣∣∣∣∣
2

− 4π
k−1∑
j,l=1

Im (uj(p)− uj(q))(Im τ−1)j,lIm (ul(p̃)− ul(q̃)).

As pointed out in [80], the above right-hand side is a difference of two bipolar
Green’s functions. Taking p→ x+, q → x−, p̃→ y+ and q̃ → y−, we obtain
that EΦ(p, q)Φ(p̃, q̃) → 8π2G(x, y). Hence, the field Φ(p, q), when (p, q) is
restricted to (p, q) = (x+, x−) with x ∈ J , describes the “Gaussian part” of
the fluctuations.

Summary: In this section, we have shown that Theorem 1.3 can be inter-

preted as a statement about the eigenvalue counting function x 7→ X̂N (x) =∑N
j=1 1{λj ≤ x} − N

∫ x
a1
dµV (t). More precisely, since the Laplace func-

tional of f 7→ XN (f) :=
∫
R X̂N (x)f(x)dx is asymptotically a product of

two Laplace functionals, Theorem 1.3 should be understood as saying that
asymptotically, as N → ∞, XN is distributed as a sum of two independent
terms vN and X:

• vN is a random function of the form

2

k−1∑
j=1

ûj,+(x)(Xj −N Ω̂j)

where X1, ...,Xk−1 ∈ Z are random variables with a probability mass
function given by

P(Xj = xj , j = 1, . . . , k − 1) = ĉ eπi(x−NΩ̂)T τ̂(x−NΩ̂), x1, . . . , xk−1 ∈ Z,
(1.90)

where ĉ is the normalization constant. This field vN is the one that is
connected to the θ-functions in Theorem 1.3, and because of (1.90),
the random vector (X1, ...,Xk−1) ∈ Zk−1 is said to be a discrete
Gaussian random variable.

• X is the restriction of a (variant of) the Gaussian free field on the
Riemann surface to a one-dimensional set – the covariance of this
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Gaussian process is

G(x, y) = 1

2π2

log
1

|Θ(x+, y+)|
− 4π

k−1∑
l,j=1

Im(uj,+(x))Im(ul,+(y))(Imτ)
−1
j,l

 .

This discussion elaborates on remarks from [98, 19, 9] where similar facts
were pointed out, though the connection to the Gaussian free field was not
touched on. We also emphasize that in Theorem 1.3, the asymptotic fluctu-
ations depend on the potential only through what the associated Riemann
surface S is, i.e. only through the endpoints of the support of µV – if two
potentials are associated to the same surface, the probability distribution of
the asymptotic fluctuations are the same. This is an instance of universality
that has not been emphasized in previous studies.

1.6. Applications: eigenvalue rigidity. Recall that M = MN is an
N ×N random Hermitian matrix sampled from the k-cut regular ensemble
dP(M) ∝ e−NTrV (M)dM , and let λ(1) ≤ λ(2) ≤ · · · ≤ λ(N) be its ordered

eigenvalues.3 A very natural and important question in random matrix the-
ory is to understand how much the eigenvalues λ(n) may deviate from their
respective classical locations, defined by

ρn := inf
{
x ∈ R : µV ((−∞, x]) =

n

N

}
, n = 1, . . . , N

where µV is the equilibrium measure (1.12). This problem is often known
as eigenvalue rigidity, and has been studied under various settings in the
literature [25, 26, 27, 62, 85, 43].

Unlike the one-cut regular scenario which is addressed in [43], in the multi-
cut setting the eigenvalues near the edge may ‘jump between consecutive
intervals’. Such a phenomenon is hinted at by the appearance of theta
functions in the asymptotics for smooth linear statistics in Theorem 1.3,
and was already observed in the work of Bekerman [8]. Therefore, the best
we can hope for is a rigidity result in the bulk of the spectrum, and this is
precisely what is established in the following corollary.

Corollary 1.9. The following are true.

(i) For each 0 < δ < 1
2 mini∈{1,...,k} µV ([ai, bi]), let

IN (δ) =

{
n :

l−1∑
i=1

µV ([ai, bi]) + δ ≤ n

N
≤

l∑
i=1

µV ([ai, bi])− δ,

for some l = 1, ..., k

}
.

3Not to confuse with (λ1, . . . , λN ) ∈ RN , which are the unordered eigenvalues of M .



34 C. CHARLIER, B. FAHS, C. WEBB, AND M.D. WONG

Then for any ϵ > 0,

lim
N→∞

P
(
|λ(n) − ρn| ≤

1 + ϵ

πψV (ρn)

logN

N
for all n ∈ IN (δ)

)
= 1

where ψV is the density (1.12) of the equilibrium measure µV .

(ii) For each 0 < η < 1
2 mini∈{1,...,k}(bi− ai), let J(η) =

⋃k
i=1[ai+ η, bi− η],

and consider the centred eigenvalue counting function

HN (u) =

[
N∑
i=1

1{λj ≤ u} −NµV ((−∞, u])

]
, u ∈ R.

Then for any ϵ > 0,

lim
N→∞

P

(
sup
x∈J(η)

|HN (x)| ≤
1

π
(1 + ϵ) logN

)
= 1.

Remark 1.10. Our result is also valid for k = 1, but does not cover the
edge where the rigidity estimate remains valid. For further details, we refer
the readers to [43, Theorem 1.2-1.3] where matching lower bounds were also
established by techniques of Gaussian multiplicative chaos. Based on the
one-cut result, we believe that our rigidity upper bounds for the multi-cut
case are optimal, i.e. we expect

lim
N→∞

P
(
|λ(n) − ρn| ≥

1− ϵ

πψV (ρn)

logN

N
for all n ∈ IN (δ)

)
= 1

and lim
N→∞

P

(
sup
x∈J(η)

|HN (x)| ≥
1

π
(1− ϵ) logN

)
= 1

to hold for any ϵ > 0, and δ, η > 0 sufficiently small. This would, however,
require finer asymptotics for Hankel determinants with merging singularities
and further probabilistic analysis which is beyond the scope of this paper.

Proof. We begin by observing that one can choose η = η(δ) sufficiently small
(and independent of N) such that ρn ∈ J(2η) for all n ∈ IN (δ). Indeed, if
we define, for each j = 1, . . . , k,

ãj(δ) := inf {x > aj : µV ([aj , x]) ≥ δ}

and b̃j(δ) := sup {x < bj : µV ([x, bj ]) ≥ δ} ,

then we may choose

η := 1
2 min
i∈{1,...,k}

{
min

(
ãi(δ)− ai, bi − b̃i(δ)

)}
.

We will now prove both rigidity estimates in three steps.
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Step 1: Chernoff bound. By considering a Fisher-Hartwig singularity (1.64)
with p = 1, α1 = 0, 2πiβ1 = γ ∈ R and t1 = u, we obtain from Theorem 1.6
that

(1.91) EeγHN (u) ≤ Cγ(η)N
γ2

4π2

for some constant Cγ(η) > 0 uniformly in u ∈ J(η) and N sufficiently large.
We observe, using a union bound, that for any fixed ϵ > 0 and finite subset
S ⊂ J(η),

P
(
sup
x∈S

|HN (x)| >
1

π
(1 + ϵ/2) logN

)
(1.92)

≤ |S| sup
x∈S

[ ∣∣∣∣P(HN (x) >
1

π
(1 + ϵ/2) logN

)∣∣∣∣
+

∣∣∣∣P(−HN (x) >
1

π
(1 + ϵ/2) logN

)∣∣∣∣
]
,

and using the fact that P(H > u) ≤ E
(
eγ(H−u)) for any real random variable

H, u ∈ R, and γ > 0 with γ = 2π and u = 1
π (1 + ϵ/2) logN , we find that

the right-hand side of (1.92) converges to 0 provided that |S| = O(N). Our
choice of S = {si}cNki=1 ⊂ J(η) is such that

aj + η = scN(j−1)+1 < scN(j−1)+2 < · · · < scNj = bj − η

are cN equally spaced points on [aj + η, bj − η] for each j = 1, . . . , k. For
c = c(µV ) > 0 sufficiently large (and independent of N), we may assume
without loss of generality that any interval of the form [sl, sl+1] satisfies
µV ([sl, sl+1]) < 1/N , and in particular contains at most one element in
{ρn : n ∈ IN (δ)}.
Step 2: a preliminary rigidity estimate. We claim that the event

GN :=
{
|λ(n) − ρn| < N−1+ϵ for all n ∈ IN (δ)

}
has a probability tending to 1 as N → ∞ for any fixed ϵ > 0. This follows
from a result of Li [85], but we provide a self-contained proof below.

Indeed, suppose there exists some n ∈ IN (δ) such that λ(n) > ρn+N
−1+ϵ.

Since ρn ∈ J(2η), we also have ρn+N
−1+ϵ ∈ J(η) for N sufficiently large. If

we choose sl ∈ S to be the largest element in S such that sl < ρn +N−1+ϵ,
then sl cannot be one of the “endpoints” {bj − η}kj=1 and hence

sl − ρn = sl+1 −O(N−1)− ρn ≥ ρn +N1−ϵ −O(N−1)− ρn ≥ 1
2N

−1+ϵ
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for N sufficiently large. In particular,

HN (sl) =
N∑
i=1

1{λj ≤ sl} −NµV ((−∞, sl])

≤
N∑
i=1

1{λj ≤ λ(n)} −NµV ((−∞, ρn])−NµV ((ρn, sl])

= −NµV ((ρn, sl]) ≤ −
√
2

π
CN ϵ

for some constant C > 0 independent of N , and this has a vanishing prob-
ability since (1.92) converges to 0. The event that λ(n) < ρn − N−1+ϵ for
some n ∈ IN (δ) may be treated similarly.
Step 3: the strong rigidity estimates. Thanks to the last step, we may assume
without loss of generality the event GN , and in particular λ(n) ∈ J(η) for all
n ∈ IN (δ) because

P
(
∃n ∈ IN (δ) : λ(n) ̸∈ J(η)

)
≤ P

(
∃n ∈ IN (δ) : |λ(n) − ρn| > η

) N→∞−−−−→ 0.

But then every eigenvalue λ(n) ∈ J(η) must be contained in some closed
interval [sl, sl+1] and this means that

HN (λ(n)) =

N∑
i=1

1{λj ≤ λ(n)} −NµV ((−∞, λ(n)])

≤
N∑
i=1

1{λj ≤ sl+1} −NµV ((−∞, sl]) = HN (sl+1) +NµV ((sl, sl+1])

where NµV ((sl, sl+1]) ≤ N (maxx∈J ψV (x)) |sl+1−sl| ≤ C for some constant
C > 0. Since the supremum of HN (·) can only be realized at the eigenvalues,
we have

P

(
sup
x∈J(η)

HN (x) >
1

π
(1 + ϵ) logN

)

≤ P

(
sup

n∈IN (δ)
HN (λ(n)) >

1

π
(1 + ϵ) logN

)

≤ P

(
sup
l≤cNk

HN (sl) + C >
1

π
(1 + ϵ) logN

)
→ 0.

A similar argument also holds for bounding supx∈J(η)(−HN (x)) and there-
fore

lim
N→∞

P

(
sup
x∈J(η)

|HN (x)| >
1

π
(1 + ϵ) logN

)
= 0.
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Now, for every n ∈ IN (δ),

1

N

∣∣HN (λ(n))
∣∣ = ∣∣∣ n

N
− µV ((−∞, λ(n)])

∣∣∣
=
∣∣µV ((−∞, ρn])− µV ((−∞, λ(n)])

∣∣
=

∣∣∣∣∫ λ(n)

ρn

ψV (x)dx

∣∣∣∣ ≥ |λ(n) − ρn| min
x∈[ρn,λ(n)]

∗
ψV (x)

where we wrote [ρn, λ(n)]
∗ to mean the interval [ρn, λ(n)] if ρn ≤ λ(n), and

[λ(n), ρn] otherwise. In either case, on our good event GN this interval
is contained in J(η) on which ψV (x) is uniformly continuous and strictly
bounded away from 0 and hence minx∈[ρn,λ(n)]

∗ ψV (x) ≥ (1+ ϵ)−1ψV (ρn) for

all n ∈ IN (δ) when N is sufficiently large. Combining everything, we obtain
simultaneously for all n ∈ IN (δ)

|λ(n) − ρn| ≤
1 + ϵ

ψV (ρn)

|HN (λ(n))|
N

≤ 1 + ϵ

ψV (ρn)

maxx∈J(η) |HN (x)|
N

≤ 1 + ϵ

πψV (ρn)

logN

N

with high probability, and this concludes our proof. □

1.7. Fisher-Hartwig singularities: a literature overview. Asymptotics
of structured determinants (such as Toeplitz, Hankel and Fredholm deter-
minants) with FH singularities have attracted considerable attention over
the years, and we briefly review here this rich literature.

In the pioneering work [69], Fisher and Hartwig conjectured a formula for
the asymptotics of large Toeplitz determinants with root-type and jump-
type singularities; see also the subsequent work [84] by Lenard. An impor-
tant motivation for studying such determinants was to better understand
the long range correlation of the Ising model and the momentum of one di-
mensional impenetrable bosons, see [59, 56] for reviews. The Fisher-Hartwig
conjecture was proved by Widom [103], Basor [3, 4], Böttcher and Silber-
mann [24], and Ehrhardt and Silberman [60], for parameters where the con-
jecture was expected to hold. A different type of asymptotics were observed
for certain parameter sets (for example when Re (β1 − β2) = 1) by Basor
and Tracy in [6], and finally the problem was solved in full generality by
Deift, Its and Krasovsky in [54, 55]. The aforementioned works deal with
FH singularities that are bounded away from each other. In recent years,
we have witnessed important progress in understanding the asymptotics of
Toeplitz determinants with merging singularities [44, 45, 65].

The works [81, 74, 77, 10, 30] have already been mentioned earlier in the
introduction and concern Hankel determinants with FH singularities in the
bulk; see also [39] for further results in this direction. Asymptotic formulas
for Hankel determinants with FH singularities have also been obtained in
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other regimes of the parameters: see [42] for two merging root-type singu-
larities in the bulk, [17, 104] for singularities close to the edges, and [37] for
a large jump-type singularity.

Asymptotics of Fredholm determinants with FH singularities have also
been widely studied, see [7, 28, 22, 32] for the sine-kernel determinant,
[21, 35] for the Airy-kernel determinant, [23, 31, 36] for the Bessel-kernel
determinant, and [48, 38] for the Pearcey-kernel determinant.

Finally, we also mention the works [5, 71] on Toeplitz+Hankel determi-
nants, [33] on Muttalib-Borodin determinants, and [102, 49, 34] for asymp-
totic results on determinants with “planar” FH singularities.

All the results mentioned above deal with a one-cut setting; the present
work provides the first result on FH asymptotics in the multi-cut regime.

1.8. Outline of the remainder of the article.

In Section 2, we recall the connection between Hankel determinants, or-
thogonal polynomials and Riemann-Hilbert (RH) problems. We also discuss
some deformations of the symbol ν we will be considering. Based on these
deformations and results we prove later in the article, we prove Theorem 1.1,
Theorem 1.3, and Theorem 1.6. In Section 3, we recall some background
information about Riemann surfaces and theta functions, and develop some
identities for θ-functions that will play an important role in our analysis.
In Section 4 we open the lens of our RH problem. In Sections 5 and 6,
we present the main parametrix and the local parametrices respectively. In
Section 7, we show that using the parametrices, we can transform the actual
problem we are interested in into one that can be solved asymptotically. In
Section 8, we use our parametrices and asymptotic solution to prove the
main estimates required for Theorem 1.3. In Section 9, we use Theorem 1.3
as well as our parametrices and asymptotic solution to prove the main esti-
mates required for Theorem 1.6. In Section 10, we analyze HN (e

−NV ) for a
very special V , for which things can be solved rather explicitly. In Section
11, we finally prove our main estimates for Theorem 1.1 in full generality by
using the results of Section 10 and our parametrices and asymptotic solution.
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(UU/KTH), by the Leverhulme Trust research programme grant RPG-2018-
260, and by project KAW 2015.0270. C.W. was supported by the Academy
of Finland grant 308123 and the Ruth and Nils-Erik Stenbäck Foundation.
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2. Differential identities and overview of the proofs

The goal of this section is to give an overview of our strategy to prove
Theorems 1.1, 1.3 and 1.6. We first review the connections between Hankel
determinants, orthogonal polynomials and Riemann-Hilbert (RH) problems,
and then we present three differential identities for logHN (ν).

2.1. Orthogonal polynomials and a RH problem. Let ν be a non-
negative function on R, whose support has positive Lebesgue measure, and
which is Hölder continuous and integrable with respect to xjdx for any
j ∈ N := {0, 1, 2, ...}. We consider the family of orthonormal polynomials
{pj(z) = κjz

j + . . . }j≥0 characterized by

(2.1)

∫
R
pj(x)pl(x)ν(x)dx = δj,l, j, l = 0, 1, 2, . . . ,

where the degree of pj is j and its leading coefficient κj is positive. Since ν
is non-negative and its support has positive Lebesgue measure, pj exist by
the Gram-Schmidt orthogonalization procedure. The connection to Hankel
determinants comes from the well-known fact that (see e.g. [101, Chapter
II])

(2.2) HN (ν) =

N−1∏
j=0

κj(ν)
−2.

This formula expresses HN (ν) in terms of the leading coefficients of p0(z),
p1(z), . . ., pN−1(z). In the next subsections, we will obtain differential iden-
tities which express certain log-derivatives of HN (ν) in terms of pN−1(z)
and pN (z) only. Let us define for z /∈ R
(2.3)

Y (z) = YN (z; ν) =

(
1
κN
pN (z)

1
2πiκN

∫
R
pN (x)
x−z ν(x)dx

−2πiκN−1pN−1(z) −κN−1

∫
R
pN−1(x)
x−z ν(x)dx

)
.

It was noticed in [70] (see also e.g. [50, Chapter 3.2]) that Y is the unique
solution to the following RH problem.

The RH problem for Y .

(a) Y : C \ R → C2×2 is analytic.
(b) Y has continuous boundary values on R, namely the limits Y±(x) =

limϵ→0+ Y (x± iϵ) exist and x 7→ Y±(x) are continuous functions on R.
Moreover, Y+ and Y− are related by the following jumps

(2.4) Y+(x) = Y−(x)

(
1 ν(x)
0 1

)
for x ∈ R.

(c) As z → ∞, z ∈ C \ R, we have

(2.5) Y (z) = (I +O(z−1))

(
zN 0
0 z−N

)
.
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By relying on the Deift-Zhou steepest descent analysis, a method first
developed in [58], the RH problem for Y may be analyzed asymptotically
as N → ∞ for a wide range of symbols ν. Of particular importance to
us in this regard, is the analysis of YN (z; e

−NV ) for multi-cut regular V
undertaken by Deift et. al. [53], the work by Claeys, Its and Krasovsky on
RH problems with emerging singularities [44], and the analysis of Y in the
multi-cut setting with a singularity at the origin undertaken by Kuijlaars
and Vanlessen [83].

2.2. Differential identities. Let ŝ1, ŝ0, ŝ ∈ R be parameters satisfying
ŝ1 > ŝ0 and ŝ ∈ [ŝ0, ŝ1]. Assume that ν = νŝ depends on ŝ, and that
for all x, νŝ(x) is differentiable with respect to ŝ ∈ (ŝ0, ŝ1). In this subsec-
tion, we derive a general differential identity which expresses ∂ŝ logHN (νŝ)
in terms of YN (·; νŝ), which we will subsequently rely on in three distinct
settings to prove Theorems 1.1, 1.3 and 1.6.

Let us write pj(x) = p
(ŝ)
j (x) = κ

(ŝ)
j xj+ . . . with κ

(ŝ)
j > 0 for the orthonor-

mal polynomials with respect to νŝ. It readily follows from (2.1) that

−2
1

κ
(ŝ)
j

∂κ
(ŝ)
j

∂ŝ
= −2

∫
R
pj(x)

(
∂

∂ŝ
pj(x)

)
νŝ(x)dx =

∫
R
p2j (x)

∂

∂ŝ
νŝ(x)dx.

Hence, taking the log in (2.2) and then differentiating with respect to ŝ, we
obtain

(2.6)
∂

∂ŝ
logHN (νŝ) = −

∫
R

 ∂
∂ŝ

N−1∑
j=0

pj(x)
2

 νŝ(x)dx
=

∫
R

N−1∑
j=0

pj(x)
2

 ∂

∂ŝ
νŝ(x)dx.

By the well-known Christoffel-Darboux identity (see e.g. [50, equation
(3.49)]),

(2.7)

N−1∑
j=0

pj(x)
2 =

κ
(ŝ)
N−1

κ
(ŝ)
N

[
p′N (x)pN−1(x)− p′N−1(x)pN (x)

]
=

1

2πi
[Y (x)−1Y ′(x)]21,

where Y = YN (·; νŝ). Substituting (2.7) in (2.6), we find

(2.8)
∂

∂ŝ
logHN (νŝ) =

1

2πi

∫
R
[Y (x)−1Y ′(x)]21

∂

∂ŝ
νŝ(x)dx, ŝ ∈ (ŝ0, ŝ1).

We will find it convenient to deform the contour of integration. Let us
assume that there are l open intervals I1, . . . , Il such that log νŝ is defined on
I1, . . . , Il and that ∂

∂ŝ log νŝ extends to an analytic function (in the variable
x) on an open neighbourhood of each interval Ij , j = 1, . . . , l. In what
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follows, we will take either l = 1 or l = k depending on the differential
identity we are considering. Within the open neighbourhood of Ij , we let Γj
be a smooth, closed curve, oriented counter-clockwise, which encloses Ij and

intersects the real line only at the two endpoints of Ij . Denote Γ = ∪lj=1Γj
and I = ∪lj=1Ij .

By the jump conditions (2.4) of Y ,

[Y (x)−1Y ′(x)]21 νŝ(x) = [Y −1Y ′]11,−(x)− [Y −1Y ′]11,+(x).(2.9)

After performing a contour deformation in (2.8) using (2.9), we obtain

(2.10)
∂

∂ŝ
logHN (νŝ) =

∮
Γ
[Y (z)−1Y ′(z)]11

∂

∂ŝ
log νŝ(z)

dz

2πi
+ r(νŝ),

where ŝ ∈ (ŝ0, ŝ1), where Y = YN (·; νŝ), and where

r(νŝ) =

∫
R\I

[Y (x)−1Y ′(x)]21
∂

∂ŝ
νŝ(x)

dx

2πi
.

The advantage of expressing ∂
∂ŝ logHN (νŝ) in terms of YN (·; νŝ) is that

the RH problem for YN can be asymptotically analyzed as N → +∞. To
prove Theorems 1.1, 1.3 and 1.6, we will use (2.10) in three different ways.
We provide a detailed outline of this in the next subsections.

2.3. Smooth ratio asymptotics: outline of the proof of Theorem
1.3. Suppose F and f are functions satisfying the conditions in Theorem
1.3, and that F is Hölder continuous on R. Then there is a union of k open
intervals I = ∪kj=1Ij such that f(x) = logF (x) is well-defined and analytic

on a neighbourhood of I, and [aj , bj ] ⊂ Ij for j = 1, . . . , k. For t ∈ [0, 1], we
define

(2.11) νt(x) = Ft(x)e
−NV (x), Ft(x) =

{
etf(x) for x ∈ I,

gt(x) for x ∈ R \ I,

where gt is given on {x ∈ R : dist(x, I) < δ} by

gt(x) = etf(x) +
dist(x, I)

δ

(
1− t+ tF (x)− etf(x)

)
,

and otherwise, on {x ∈ R : dist(x, I) ≥ δ},

gt(x) = 1− t+ tF (x).

In the above, δ > 0 is a small but fixed constant, for which f = logF is
analytic in a δ-neighborhood of I (i.e. the set {z ∈ C : dist(z, I) < δ}) .
The function gt is added to ensure that Ft is Hölder continuous.

Note that νt(x) is differentiable in t ∈ (0, 1) for each x ∈ R, satisfies
log νt(x) = −NV (x) + tf(x) for x ∈ I, and

ν0(x) = e−NV (x), ν1(x) = F (x)e−NV (x), x ∈ R.
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Hence, we can apply (2.10) with l = k, ŝ = t, ŝ0 = 0, ŝ1 = 1 and νŝ = νt.
Integrating this identity in t from t = 0 to t = 1, we obtain

(2.12)

log
HN (Fe

−NV )

HN (e−NV )
=

∫ 1

0

∮
Γ
[Y (z)−1Y ′(z)]11f(z)

dz

2πi
dt+

∫ 1

0
r(νt)dt,

r(νt) =

∫
R\I

[Y (x)−1Y ′(x)]21
∂

∂t
Ft(x)e

−NV (x) dx

2πi
,

where Y = YN (·; νt).
In Section 8 we prove that r(νt) → 0 as N → ∞ uniformly for t ∈ (0, 1),

and we obtain large N asymptotics for Y (z)−1Y ′(z) uniformly for z ∈ Γ and
t ∈ [0, 1]. Theorem 1.3 will then be proved by substituting these asymptotics
in (2.12) and performing the integrations in z and t.

2.4. Fisher–Hartwig asymptotics: outline of the proof of Theorem
1.6. Let ϵ0 > 0 be fixed. For ϵ ∈ (0, ϵ0], let νϵ(x) = F (x)e−NV (x)ωϵ(x),
where ωϵ(x) is defined by

(2.13)

ωϵ(z) =

p∏
j=1

ωαj ,ϵ(z)ωβj ,ϵ(z)

ωαj ,ϵ(z) = (z − (tj − iϵ))
αj
2 (z − (tj + iϵ))

αj
2 ,

ωβj ,ϵ(z) = (z − (tj − iϵ))βj (z − (tj + iϵ))−βje−iπβj ,

with branches chosen such that ωϵ(z) is real for z ∈ R and analytic for
z ∈ C \ Σωϵ , where Σωϵ consists of contours connecting tj + iϵ to +i∞
and tj − iϵ to −i∞.4 We also define ω0(x) by ω0(x) = limϵ→0 ωϵ(x). The
definition (2.13) of ωϵ(x) ensures that ω0(x) = ω(x), where ω is defined in
(1.64). We also let

(2.14) logωϵ(z) =

p∑
j=1

[
(αj/2 + βj) log(z − (tj − iϵ))

+ (αj/2− βj) log(z − (tj + iϵ))− πiβj

]
,

be analytic in C \ Σωϵ . The branch of log(z − (tj − iϵ)) is such that the
cut is a path from tj − iϵ to −i∞ and the argument is chosen to satisfy
arg(z − (tj − iϵ)) = 0 whenever z − (tj − iϵ) > 0. Similarly, the branch of
log(z − (tj + iϵ)) is such that the cut is a path from tj + iϵ to i∞ and the
argument is chosen to satisfy arg(z−(tj+iϵ)) = 0 whenever z−(tj+iϵ) > 0.

4There is some freedom in how the contour is chosen. However, in a neighbourhood of
tj ± iϵ, we have to be careful about the definition of the contour – this is done in Section
6.2 below equation (6.17) as the preimage of the jump contour of a model RH problem
under a certain conformal mapping. Outside of this neighbourhood, we can choose it to
be say smooth, not having self intersections, and so that none of the contours intersect
each other.
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Clearly, νϵ(x) is differentiable in ϵ ∈ (0, ϵ0) for each x ∈ R, and ∂
∂ϵ log νϵ(x)

extends to a meromorphic function in x ∈ C \ {tj + iϵ, tj − iϵ}pj=1. In par-

ticular, for each ϵ ∈ (0, ϵ0), x 7→ ∂
∂ϵ log νϵ(x) is analytic in a neighbourhood

of R. Hence, we can apply (2.10) with l = 1, I1 = (−R,R), ŝ = ϵ, ŝ0 = 0,
ŝ1 = ϵ0, νŝ = νϵ and R is a new parameter that is chosen sufficiently large so
that [a1, bk] ⊂ I1. In this situation, the contour Γ = Γ1 appearing in (2.12)
encloses I1, and passes between the singularities {tj + iϵ, tj − iϵ}pj=1 and the

real line, so that z 7→ ∂
∂ϵ log νϵ(z) is analytic on the interior of Γ1. We also

observe that
[
Y (z)−1Y ′(z)

]
11

is analytic for z ∈ C\R. Hence, by deforming
Γ1 to a circle BR of radius R centered at the origin, we pick up some residue
contributions of the poles at tj ± iϵ, and we obtain

∂ϵ logHN (νϵ) = r(νϵ)

+ i

p∑
j=1

[(αj
2

− βj

) (
Y −1Y ′)

11
(tj + iϵ)−

(αj
2

+ βj

) (
Y −1Y ′)

11
(tj − iϵ)

]
+

∮
BR

[Y (z)−1Y ′(z)]11

p∑
j=1

[(αj
2

− βj

) −i
z − (tj + iϵ)

+
(αj
2

+ βj

) i

z − (tj − iϵ)

]
dz

2πi
,

where Y = YN (·; νϵ) and

r(νϵ) =

∫
R\(−R,R)

[Y (x)−1Y ′(x)]21
∂

∂ϵ
νϵ(x)

dx

2πi
.

Taking R → ∞, we observe that r(νϵ) → 0, and by condition (c) in the
RH problem for Y , the integral over BR also converges to zero. Thus, for
ϵ ∈ (0, ϵ0), we obtain

(2.15) ∂ϵ logHN (νϵ)

= i

p∑
j=1

[(αj
2

− βj

) (
Y −1Y ′)

11
(tj + iϵ)−

(αj
2

+ βj

) (
Y −1Y ′)

11
(tj − iϵ)

]
,

where Y = YN (·; νϵ). Integrating this identity from ϵ = 0 to ϵ = ϵ0 yields

HN (ν0)

HN (e−NV )
=

HN (νϵ0)

HN (e−NV )
exp

(
−
∫ ϵ0

0
∂ϵ logHN (νϵ)dϵ

)
.(2.16)

Since x 7→ νϵ0(x) is a Hölder continuous function on R, the asymptotics of
HN (νϵ0)/HN (e

−NV ) as N → +∞ are given by Theorem 1.3. Considering
this limit is the topic of Section 9.2. We will obtain an extra simplification
by assuming that ϵ0 is fixed but small in the right hand side of (1.43) in
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exchange for an error term O(ϵ0), resulting in (9.13) which provides asymp-
totics of the form

(2.17)
HN (νϵ0)

HN (e−NV )
= Main Asymptotics×

(
1 +O

(
N−1

)
+O (ϵ0)

)
.

The implicit constants in the O(N−1) term depend on ϵ0 while the implicit
constants in the O(ϵ0) term are independent of both N and ϵ0. See (9.13)
for details, for now we give an overview of the structure of the error terms.

Now consider the second term on the right hand side of (2.16). We need to
determine the large N asymptotics of ∂ϵ logHN (νϵ) uniformly in ϵ ∈ [0, ϵ0].
Note that νϵ is a regular weight for each ϵ ∈ (0, ϵ0], while ν0 is singular.
In fact, a critical transition takes place in the asymptotics of HN (νϵ) as
N → +∞ and simultaneously ϵ→ 0. A similar phase transition was studied
in [44]. In Section 9, using (2.15) and a local analysis from [44], we obtain
uniform asymptotics of ∂ϵ logHN (νϵ) up to a term of order O(1). Thus,
integrating with respect to ϵ and taking the exponential, we obtain in (9.9)
asymptotics of the form

(2.18) exp

(
−
∫ ϵ0

0
∂ϵ logHN (νϵ)dϵ

)
= Main Asymptotics× (1 +O(ϵ0)) ,

where the implicit constants are independent of N . Substituting (2.17) and
(2.18) into (2.16) we obtain asymptotics of the form

HN (ν0)

HN (e−NV )
= Main Asymptotics×

(
1 +O

(
N−1

)
+O (ϵ0)

)
,

with error terms as in (2.17). For Theorem 1.6 we would like to replace
O
(
N−1

)
+ O (ϵ0) with o(1). This is possible because for any δ > 0 there

is an ϵ0 such that O (ϵ0) < δ/2 and an N∗ (depending on ϵ0) such that for
N > N∗ we have O

(
N−1

)
< δ/2. This concludes the overview of the limits

taken to obtain Theorem 1.6, for the explicit formulas see Section 9.

The method that was used in [81, 77, 30, 39] to obtain asymptotics of
Hankel determinants with a one-cut regular potential and Fisher-Hartwig
singularities proceeds via differential identities with respect to the param-
eters {αj , βj}pj=1. While it is, in principle, also possible to apply the same
strategy to our situation, in practice this would represent a considerable
challenge. Indeed, in the multi-cut regime, the large N analysis of YN (·; ν)
involves Riemann θ-functions that depend on the Fisher-Hartwig singular-
ities in a complicated way. For this reason, the method we use here for
the multi-cut regime differs substantially from these earlier works; instead
of deforming in the Fisher-Hartwig parameters {αj , βj}pj=1, we use (2.15),

where νϵ is a deformation of ν in the locations {tj}pj=1 of the singularities.

2.5. Partition function asymptotics: outline of the proof of Theo-
rem 1.1. Let V be an arbitrary k-cut regular potential. To obtain the large
N asymptotics of HN (e

−NV ), we will consider a family of k-cut regular po-
tentials {Vs}s∈[0,2] that (piecewise) smoothly interpolates between V2 := V
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and a reference potential V0, and we will apply (2.10) with l = k, ŝ = s,
ŝ0 = 0, ŝ1 = 2 and νŝ = e−NVs . After integrating this identity in s from
s = 0 to s = 2, we obtain

HN (e
−NV ) = HN (e

−NV0) exp

(∫ 2

0
∂s logHN (e

−NVs)ds

)
,

(2.19)

∂

∂s
logHN (e

−NVs) = −N
∮
Γ
[Y (z)−1Y ′(z)]11

∂

∂s
Vs(z)

dz

2πi
+ r(e−NVs),

for s ∈ (0, 2), where Y = YN (·; e−NVs). As can be seen from the right-hand
side of (2.19), it is important to choose V0 appropriately so that the large
N asymptotics of HN (e

−NV0) can be computed as accurately as possible. In
the one-cut case, one can simply choose V0(x) = 2x2, because in this case
HN (e

−NV0) reduces to a Selberg integral and can thus be evaluated exactly.
This fact was implicitly used in [10]. In the multi-cut regime, the task of
finding V0 is much more challenging. For the two-cut case, Claeys, Grava
and McLaughlin in [41, Proposition 2.1] used V0(x) = x4 − 4x2 for their
reference potential, however their approach for the reference potential does
not generalize to the k-cut setting when k ≥ 3. We now describe our choice
of V0.

Let Tk(x) = 2k−1xk + . . . be the kth Chebyshev polynomial of the first
kind, namely the unique polynomial of degree k satisfying

(2.20) Tk(cos θ) = cos kθ, θ ∈ [0, π].

Below, we prove that the potential V0(x) = V0(x; k, σ) = 2σ
k Tk(x)

2 with
σ > 1 is k-cut regular. In Section 10, as a first step in proving Theorem 1.1,
we compute the large N asymptotics of HN

(
e−NV0

)
for σ > 1. However,

we are not immediately able to fully simplify these asymptotics, but they
do simplify in the limit σ → 1. More precisely, we will prove that

(2.21) lim
σ↓1

lim sup
N→∞

∣∣∣∣∣ logHN

(
e−NV0

)
+N2

(
3

4k
+

1

2k
log σ + log 2

)

−N log(2π) +
k

12
logN − k − 3

12
log k − kζ ′(−1) +

k − 1

8
log(σ − 1)

∣∣∣∣∣ = 0.

An important aspect when proving (2.21) is that we always view σ > 1 as
fixed when taking the limit N → ∞, and subsequently take the limit σ → 1.

The second step in the proof of Theorem 1.1 is to obtain the large N
asymptotics of the integral appearing on the right-hand side of (2.19). To
this end, we now introduce the family {Vs}s∈[0,2] of k-cut regular poten-
tials that we consider. The interpolation between V0 and V is done in two
steps: for s ∈ [0, 1], x 7→ Vs(x) is a polynomial of degree 2k and the sup-
port suppµVs varies with s in such a way that suppµV1 = suppµV . For
s ∈ [1, 2], the potential x 7→ Vs(x) is no longer necessarily a polynomial,
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suppµVs = suppµV remains unchanged, and the relation V2 ≡ V holds. We
now describe {Vs}s∈[0,2] in more detail.

By (2.20), if σ > 1, σTk(x)
2 − 1 has 2k zeros on the interval (−1, 1), and

we label them by a1(0) < b1(0) < a2(0) < · · · < ak(0) < bk(0), see also
Figure 4. As discussed before Corollary 1.2 (i), V0(x) =

2σ
k Tk(x)

2 is k-cut
regular,

J0 := suppµV0 = ∪kj=1[aj(0), bj(0)] = {x : σTk(x)
2 ≤ 1},(2.22)

and by (1.40),

dµV0(x) =
2σ

πk
|T ′
k(x)|

√
1/σ − Tk(x)2dx, x ∈ J0.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 4. The blue curve is 2T3(x)
2 − 1, the solid dots are

aj(0), bj(0), j = 1, 2, 3, and the hollow dots are the zeros of
T ′
3. The dashed box has corners at (±1,±1). The thick black

lines represent J0 with σ = 2.

For s ∈ [0, 1], define

(2.23) Js =
k⋃
j=1

[aj(s), bj(s)] with

{
aj(s) = (1− s)aj(0) + saj ,

bj(s) = (1− s)bj(0) + sbj ,

where aj = aj(1), bj = bj(1), j = 1, . . . , k are the endpoints of suppµV .
Note that the intervals [aj(s), bj(s)], j = 1, . . . , k remain disjoint for each
s ∈ [0, 1]. Denote

(2.24) Rs(w) =

k∏
j=1

(w − aj(s))(w − (bj(s)),

and let R1/2
s (z) have branch cuts on Js and be positive for z > bk(s). In

Section 2.6 we prove the following proposition, which given a disjoint union
of intervals J = ∪kj=1[aj , bj ] provides an explicit potential VJ whose equi-
librium measure µVJ

is supported on J . We will subsequently apply this
proposition to Js defined by (2.23).
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Proposition 2.1. Given a disjoint union of k intervals J =
⋃k
j=1[aj , bj ]

and a real constant V̂ ∈ R, the following claims hold.

(a) There is a unique real monic polynomial q of degree k− 1 satisfying

(2.25)

∫ aj+1

bj

q(x)R1/2(x)dx = 0, j = 1, . . . , k − 1.

The polynomial q has a root in each interval (bj , aj+1), j = 1, . . . , k−
1.

(b) Let q be the polynomial from (a) and let VJ be the degree 2k polyno-

mial5 determined by VJ(1) = V̂ and

(2.26) V ′
J(z) := − 1

icJ

∮
Γ

R1/2(x)q(x)

z − x
dx,

where Γ is a counter-clockwise oriented contour surrounding J and
z, and

(2.27) cJ =
i

2

∮
Γ
q(x)R1/2(x)dx > 0.

Then the equilibrium measure of VJ is k-cut regular and is given by

(2.28) dµVJ
(x) = − i

cJ
q(x)R1/2

+ (x)dx, x ∈ J.

(c) Suppose that V is a polynomial of degree 2k with a positive leading

coefficient and that suppµV = J and V (1) = V̂ . Then V = VJ .
(d) The coefficients of the polynomials VJ and q are smooth when con-

sidered as functions of {aj , bj}kj=1.

We defer the proof of Proposition 2.1 to Section 2.6.
For each s ∈ [0, 1], let Vs := VJs , where VJs is the degree 2k polynomial

given by Proposition 2.1. By Proposition 2.1 (d), s → Vs is a smooth
deformation from the Chebyshev potential V0 to a second potential V1 which
has the same support as V . We now construct a smooth deformation from
V1 to V = V2. For s ∈ [1, 2], let

(2.29) Vs(x) = (2− s)V1(x) + (s− 1)V (x),

and we define

µVs(dx) = (2− s)µV1(dx) + (s− 1)µV (dx), x ∈ J1 = J.

We emphasize that the support of µVs is independent of s ∈ [1, 2]. Using
the Euler-Lagrange equations (1.9)–(1.10), it is easily verified that µVs is the
equilibrium measure of Vs. In particular, Vs is a k-cut regular potential for
every s ∈ [1, 2].

5Note that since we can expand R1/2q around ∞ as a Laurent series with only finitely
many terms with positive exponents, a routine residue at infinity calculation shows that
the integral (2.26) is a polynomial.



48 C. CHARLIER, B. FAHS, C. WEBB, AND M.D. WONG

In sections 4-7 we obtain asymptotics for YN (z; e
−NVs) as N → ∞, which

we subsequently rely on in Section 11 to analyze the large N asymptotics
of d

ds logHN (e
−NVs). Integrating the asymptotics of d

ds logHN (e
−NVs) as in

(2.19), we prove in Section 11 that

(2.30) lim
σ↓1

lim sup
N→∞

∣∣∣∣∣ log HN (e
−NV )

HN (e−NV0)
+N2

∫∫
log |x− y|−1dµV (x)dµV (y)

+N2

∫
V (x)dµV (x)−N2

(
3

4k
+

1

2k
log σ + log 2

)
− log

θ(NΩ)

θ(0)

− 1

8

( ∑
1≤l<j≤k

[log(aj − al) + log(bj − bl)]−
k∑

l,j=1

log |bj − al|

)

+
1

24

∑
x∈{aj ,bj}kj=1

log ψ̃(x)− k

4
log 2 +

k − 3

12
log k − k − 1

8
log(σ − 1)

∣∣∣∣∣ = 0,

where ψ̃ was defined in Theorem 1.1. Theorem 1.1 is obtained by tak-
ing the sum of (2.21) and (2.30) (without the absolute value so that the
logHN

(
e−NV0

)
terms cancel) and rearranging the terms. To verify that

this results in the desired o(1) error term in Theorem 1.1, we observe that
given δ > 0, we may pick σ > 1 and N∗ such that for N > N∗ the sum of
(2.21) and (2.30) is less than δ. This concludes the proof of Theorem 1.1.

The proof of (2.30) relies a number of identities for θ-functions, and we
found the work of Claeys, Grava and McLaughlin [41] in the two-cut case as
a most useful starting point when determining what these identities should
be, also in the k-cut case.

2.6. Proof of Proposition 2.1. We split the proof in four parts.
Proof of (a): existence and uniqueness of q. Let us write

q(x) = xk−1 +
k−2∑
j=0

qjx
j , with q0, . . . , qk−2 ∈ C.

With this notation, (2.25) can be rewritten as
(2.31)∫ aj+1

bj

xk−1R1/2(x)dx+
k−2∑
l=0

ql

∫ aj+1

bj

xlR1/2(x)dx = 0, j = 1, . . . , k − 1.

This is a system of k − 1 equations for the k − 1 variables q0, . . . , qk−2. Let
B be the (k − 1) × (k − 1) matrix defined by Bl,j =

∫ aj+1

bj
xl−1R1/2(x)dx,

and let Bk be the row vector given by (Bk)j =
∫ aj+1

bj
xk−1R1/2(x)dx. Then

(2.31) is equivalent to

(2.32) Bk + (q0 q1 . . . qk−2) B = (0 0 . . . 0).
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In a similar way as in (1.81), we can realize detB as the integral of a Van-
dermonde determinant, and we obtain that detB ≠ 0, which implies that
(2.32) has a unique solution.

Since the entries of B are real, it follows that q0, . . . , qk−2 are real too,
and thus x 7→ q(x) is real-valued for x ∈ R. Thus, for (2.25) to hold, q must
have a root on each of the intervals (bj , aj+1) for j = 1, . . . , k − 1.

Proof of (b): VJ is a k-cut regular potential. Recall that VJ is defined by

(2.26) and VJ(1) = V̂ . Let us first show that µVJ
defined in (2.27)–(2.28)

is the equilibrium measure of VJ . For this, we must show that the Euler-
Lagrange equations (1.9)–(1.10) hold.

Let q be the unique monic polynomial of degree k − 1 satisfying (2.25).
For z /∈ J , define

G(z) =

∫
J

dµVJ
(y)

z − y
=

1

icJ

∫
J

R1/2
+ (y)q(y)

z − y
dy.(2.33)

Let Γ be a counter-clockwise oriented loop enclosing both J and z. By
deforming the contour J to Γ in (2.33) and using Cauchy’s integral formula,
we see that

G(z) = −R1/2(z)πq(z)

cJ
− 1

2icJ

∮
Γ

R1/2(w)q(w)

z − w
dw.

By (2.26), the above equation can be rewritten as

(2.34) G(z) = −R1/2(z)πq(z)

cJ
+

1

2
V ′
J(z).

Also, from (2.33), we note that

(2.35) 2
d

dx

∫
log |x− y|dµVJ

(y) = G+(x) +G−(x), x ∈ R.

Therefore, using (2.34), we find

(2.36) 2
d

dx

∫
log |x− y|dµVJ

(y)− V ′
J(x) = 0, x ∈ J.

Additionally, from (2.25) and (2.34)-(2.35), we obtain

(2.37)

(
2

∫
log |bj − y|dµVJ

(y)− VJ(bj)
)

−
(
2

∫
log |aj+1 − y|dµVJ

(y)− VJ(aj+1)

)
= −

∫ aj+1

bj

d

dx

(
2

∫
log |x− y|dµVJ

(y)− VJ(x)
)
dx = 0.

By (2.36) and (2.37) we obtain equality in the first Euler-Lagrange equation
(1.9) upon setting

ℓ = −2

∫
log |b1 − y|dµVJ

(y) + VJ(b1).
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Let ξ1, . . . , ξk−1 be the roots of q. By (2.34),

2
d

dx

∫
log |x− y|dµVJ

(y)− V ′
J(x) < 0,

for bk < x and for bj < x < ξj with j = 1, 2, . . . , k − 1, and similarly

2
d

dx

∫
log |x− y|dµVJ

(y)− V ′
J(x) > 0,

for x < a1 and ξj < x < aj+1 for j = 1, . . . , k − 1, which proves that
(1.10) holds with a strict inequality. This shows that µVJ

is the equilibrium
measure of VJ . Furthermore, since (1.10) is strict and q is non-zero on a
neighbourhood of J , it follows that µVJ

is k-cut regular.
Proof of (c): uniqueness of VJ . Assume that V is a polynomial of degree

2k with positive leading coefficient satisfying suppµV = J and V (1) = V̂ .
We will prove that V = VJ . By deforming the contour of (1.16) to ∞, we
find that hV is a polynomial of degree k − 1. Since ψV satisfies (1.14) and
(1.17), it follows from part (a) that hV (x) is given by c q(x) for a certain
constant c, and thus µV is given by (2.28). By (1.14) and (1.15), V satisfies
(2.26), and thus V = VJ .

Proof of (d): smoothness of q and VJ . Using the multiple integral repre-

sentation of detB (which is similar to (1.81)), we see that detB remains
bounded and remains bounded away from 0. Hence, it directly follows from
(2.32) and (2.26) that the coefficients of the polynomials of VJ and q are
smooth as functions of {aj , bj}kj=1.

This concludes the proof of Proposition 2.1.

2.7. Proof of Corollary 1.2. In this section we prove Corollary 1.2.
For the reader’s convenience we first provide a proof that the equilibrium

measure of V (x) = 2ν
k Πk(x)

2 is given by (1.40).

Let a1 < b1 < · · · < ak < bk be the ordered zeros of Πk(x)
2− 1/ν, and let

J = ∪kj=1[aj , bj ]. Using Proposition 2.1, we will prove that V (x) = 2ν
k Πk(x)

2

is equal to VJ , where VJ is the unique polynomial of degree 2k satisfying
supp(µVJ

) = J and VJ(1) = 2ν
k Πk(1)

2. In this setting, we have

R1/2(x) =
√
Πk(x)2 − 1/ν.

Using the change of variables y = Πk(x), we verify that∫ aj+1

bj

Π′
k(x)R1/2(x)dx = 0, j = 1, . . . , k − 1,

and therefore the function q appearing in (2.25) is given by q(x) = 1
kΠ

′
k(x).

To evaluate the integral on the right-hand side of (2.27), we compute the
residue of the integrand at ∞ using

(2.38) R1/2(x) = Πk(x)−
1

2νxk
+O(x−(k+1)), as x→ ∞,
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and obtain cJ = π
2ν . Using also (2.38) in (2.26), we obtain

V ′
J(z) = − 1

ikcJ

∮
Γ

R1/2(x)Π′
k(x)

z − x
dx = − 1

ikcJ

∮
Γ

Πk(x)Π
′
k(x)

z − x
dx.

This last integral can be evaluated by a direct residue computation at x = z,
and we find VJ(x) = 2ν

π Πk(x)
2 = V (x), as desired. Thus the fact that V

has the equilibrium measure (1.40) follows by part (b) of Proposition 2.1.
We now proceed to simplify the terms in Theorem 1.1 for V (x) = 2ν

k Πk(x)
2.

Using (1.40) and the change of variables y = Πk(x), we infer that
∫ bj
aj
dµV =

1/k for each j = 1, . . . , k. Hence, the quantities Ωj defined in (1.18)

are explicitly given by Ωj = k−j
k for each j = 1, . . . , k − 1. Also, since

|Πk(x)| = 1/
√
ν for each x ∈ {aj , bj}kj=1, by (1.36) we have

ψ̃(x) =
23/2ν3/4

k

∣∣Π′
k(x)

∣∣3/2 .
Assuming Theorem 1.1 (which will be proved in Sections 10 and 11), it
remains to compute IV (µV ) explicitly, which we do now.

By the Euler-Lagrange equation (1.9),

IV (µV ) =

∫∫
log |x− y|−1dµV (x)dµV (y) +

∫
V (x)dµV (x)(2.39)

=
ℓ

2
+

1

2

∫
V (x)dµV (x).

This last integral can be evaluated by first deforming the contour to a large
loop containing J , then performing the change of variables y = Πk(x), and
then evaluating the residue at ∞. We find

(2.40)

∫
V (x)dµV (x) =

1

2k
.

We now evaluate ℓ. For this, we first replace x in (1.9) by the roots of Πk;
this yields k different equations for ℓ. By summing these k equations, and
then using a change of variables, we find

kℓ = − 4ν

πk

∫
J
|Π′

k(x)|
√
1/ν −Π2

k(x) log |Πk(x)|dx

= −4ν

π

∫ 1/
√
ν

−1/
√
ν

√
1/ν − y2 log |y|dy.

This last integral can be evaluated explicitly, and we obtain

(2.41) ℓ =
1

k
(1 + log ν + 2 log 2) .

Substituting (2.40) and (2.41) in (2.39), we have

(2.42) IV (µV ) =
1

2k
(3/2 + log ν + 2 log 2) .

This finishes the proof of Corollary 1.2.
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3. Analysis of θ functions

We recall some classical results from the theory of Riemann surfaces and
θ functions, and in addition some identities for θ functions which are due to
Fay. We provide ample details for the benefit of readers less well versed in
the theory of Riemann surfaces and θ-functions. Finally we combine known
results into several identities which are specific to our situation and which
we will rely on in later sections.

3.1. θ has no zeros on R. Recall θ defined in (1.19).

Lemma 3.1. For any ξ ∈ Ck−1, with −iτ real and positive definite, we have

θ(τ−1ξ| − τ−1) = eπiξ
T τ−1ξ

√
det(−iτ)θ(ξ|τ)

Proof. The lemma is proven in a more general setting in [89, Chapter 2 §5],
we include a proof for the reader’s convenience. The proof is by (multidi-
mensional) Poisson summation. More precisely, for given ξ ∈ Ck−1, consider

the function fξ : Rk−1 → C, fξ(x) = e2πiξ
T x+πixT τx. Taking the change of

variables y = τ−1(ξ − η) + x, we obtain that the Fourier transform of fξ is
given by

(3.1) f̂ξ(η) =

∫
Rk−1

e−2πiηT xfξ(x)dx = e−πi(ξ−η)
T τ−1(ξ−η)f̂0(0).

The functions fξ and f̂ξ are Schwartz functions, and we recall the standard
identity

(3.2)
∑

j∈Zk−1

fξ(j) =
∑

j∈Zk−1

f̂ξ(j).

(The identity follows from the fact that if we define Fξ(x) =
∑

j∈Zk−1 fξ(x−
j) on [0, 1]k−1, then clearly Fξ(0) equals the left hand side of (3.2). On the

other hand, by expanding Fξ(x) in the basis e2πij
T x, we find that Fξ(0) =∑

j∈Zk−1

∫
[0,1]k−1 e

−2πijT xFξ(x)dx, which equals the right-hand side of (3.2).)

Taking the definition of fξ on the left hand side of (3.2) and substituting
(3.1) into the right-hand side, and recalling the definition of θ in (1.19), we
obtain

f̂0(0)e
−πiξT τ−1ξθ(τ−1ξ| − τ−1) = θ(ξ|τ).

The claim now follows from noting that

f̂0(0) =

∫
Rk−1

eπix
T τxdx =

1√
det(−iτ)

.

□

As we now see, this readily yields that ξ 7→ θ(ξ|τ) does not vanish on
Rk−1.

Lemma 3.2. If −iτ is real and positive definite, then θ(ξ|τ) ̸= 0 for ξ ∈
Rk−1.
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Proof. Lemma 3.1 implies that

θ(ξ|τ) = 1√
det(−iτ)

e−iπξ
T τ−1ξθ(τ−1ξ| − τ−1)

=
1√

det(−iτ)
e−iπξ

T τ−1ξ
∑

n∈Zk−1

e2πin
T τ−1ξ−πinT τ−1n.

Recalling that −iτ is real and positive definite, the sum is a sum of positive
terms and the prefactors are also positive. This concludes the proof. □

3.2. Divisor of θ(u(z)±u(λ)) and of Θ(z, λ). The functions θ(u(z)±u(λ))
and θ

[
α
β

]
(u(z)±u(λ)), introduced in Section 1.1.2, play a fundamental role

throughout the entire paper, and in this section we analyze these functions.
To study their zero sets, we consider u to be a multivalued function on the
Riemann surface S (defined in Section 1.1.3) of genus k − 1 as follows.

Define

(3.3) Λ =


k−1∑
j=1

(njej +mjτj) : n1, ..., nk−1,m1, ...,mk−1 ∈ Z

 ,

with τ as in (1.25), and extend the Abel map (1.26) to S. Then u is not
well defined as a function from S → Ck−1, but by (1.22) and (1.25), u :
S → Ck−1/Λ is well defined. Thus it follows that θ(u(z) ± u(λ)) may be
considered as a multivalued function on S, with a well defined zero set. To
analyze this zero set, we will rely on the classical theory of Riemann surfaces,
and start by recalling a few definitions and classical theorems which we will
rely on (see [67] for details).

Throughout the section, if z ∈ S, we denote by Pz the projection from S
to C.6 If z ∈ S \ {aj , bj}kj=1, we denote z∗ the point in S satisfying z∗ ̸= z

and Pz = Pz∗. If z ∈ {aj , bj}kj=1, we denote z∗ = z.

(a) Divisors. If α is an integer valued function on S which is non-zero
for at most a finite number of points on S, then a divisor is a formal
symbol D =

∏
z∈S z

α(z). A divisor is said to be integral if α is non-
negative on S. We will vary notation slightly, and use the following
notation when it suits. If z1, . . . , zn1 ∈ S and λ1, . . . , λn2 ∈ S, such
that {z1, . . . , zn1} and {λ1, . . . , λn2} are disjoint, we will denote

D =

n1∏
j=1

zj

n2∏
j=1

λ−1
j =

∏
z∈S

zα(z), α(z) = #{j : zj = z} −#{j : λj = z}.

6More precisely, if we represent S as
{
(z,+R1/2(z)) : z ∈ C

}
∪
{
(z,−R1/2(z)) : z ∈ C

}
,

then

P(z,+R1/2(z)) = P(z,−R1/2(z)) = z.
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Then the degree of D is degD = n1 − n2. We will write D1 ≥ D2 if
D1/D2 is an integral divisor.

(b) Divisors of functions. Denote the space of meromorphic functions on
S by H. For f ∈ H, we denote the divisor of f by

Div(f) =
∏
z∈S

zordz(f),

where ordz(f) is the order of f at z (more specifically, ordz(f) is

defined as the smallest integer such that limλ→Pz
f(φ−1(λ))

(λ−Pz)ordz(f)
̸= 0,

where φ is a local chart). For any meromorphic function f , we have
deg(f) := degDiv(f) = 0 (see [67, I.1.6]). We will similarly refer to
divisors of multivalued functions with well defined zeros and poles.

(c) Special divisors. An integral divisor D =
∏
z∈S z

α(z) of degree k − 1
is said to be special (see [67, page 95]) if

dim{f ∈ H : ordz(f) ≥ −α(z) for all z ∈ S} > 1.

This is an especially important notion, because if an integral divisor
D =

∏
z∈S z

α(z) of degree k−1 is not special and f is a meromorphic
function whose poles are a subset of {z : α(z) > 0} and at most of
order α(z), then f is constant on S.

(d) Riemann-Roch Theorem. By the Riemann-Roch theorem (see [67,
III.4.8]), an integral divisor D of degree k−1 is special if and only if

(3.4) dim{holomorphic differentials ω̃ : Div(ω̃) ≥ D} > 0,

where the divisor of a holomorphic differential is defined in a similar
fashion as the divisor of a meromorphic function, see [67, III.4.1].
While [67] take the definition in (c) to be the definition of a special
divisor, some authors rather take (3.4) as the definition of a special
divisor. Recall that any holomorphic differential on S can be written

in the form ω̃ = p(z)√
R(z)

dz, where p is a polynomial of degree at most

k− 2. Thus, by (3.4), a divisor D =
∏k−1
j=1 zj is special if and only if

there exists j1, j2 ∈ {1, . . . , k − 1}, j1 ̸= j2, such that zj1 = z∗j2 .

(e) Abel Theorem. Given a divisor D =
∏n
j=1 zj

∏n
j=1 λ

−1
j , there exists

f ∈ H such that Div(f) = D if and only if
n∑
j=1

u(zj)−
n∑
j=1

u(λj) ≡ 0 mod Λ.

(We recall that u is well defined mod Λ). See [67, III.6.3].
(f) Zeros of θ ◦ u on S. Let K be the Riemann vector of constants (see

[67, VI.2.4]), let D =
∏k−1
j=1 zj be a divisor, and consider

(3.5) θ

u(z)−K −
k−1∑
j=1

u(zj)

 ,
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which is multivalued on S but has a well defined zero set. Then (3.5)
is identically zero on S if and only if D is special, and if D is not
special then (3.5) has a zero at each point zj for j = 1, . . . , k − 1,

and no other zeros on S. If z ∈ {zj}k−1
j=1 , then the order of (3.5) at

z is #{j : zj = z}.
By [67, Section VI.2] θ(u(z)) is either identically zero or has exactly k−1

zeros. Since (by e.g. Lemma 3.2) θ(0) ̸= 0, it is not identically zero, and we
denote the zeros by z1, . . . , zk−1. Furthermore, by [67, Theorem p 308–309],
they satisfy

(3.6)
k−1∑
j=1

u(zj) ≡ −K mod Λ.

It is easy to verify by relying on (1.24) and (1.25), that

u(bj) ≡
1

2

τj + k−1∑
l=j

el

 mod Λ, for j = 1, . . . , k − 1.

If α = 1
2ej and β = 1

2

∑k−1
l=j el then u(bj) = τα + β. Since 4αTβ = 1, and

in particular is odd, it follows that θ
[
α
β

]
(0) = 0. Thus θ(u(bj)) = 0, and by

(3.6) we obtain:

(g) The Riemann vector of constants satisfies

(3.7) K ≡ −
k−1∑
j=1

u(bj) mod Λ.

Observe that γ2(z) (defined in (1.31)) extends to a meromorphic function
on S, and define q±(z) = γ(z)−2 ± γ(λ)−2. We will describe the zeros of
z 7→ θ(u(z) ± u(λ)) in terms of the zeros of z 7→ q∓(z). For this, we first
prove the following lemma.

For now, we view q± as a function of z ∈ S which depends on a parameter
λ ∈ C.

Lemma 3.3. Assume that λ ∈ C \ {aj , bj}kj=1. Then q+ has precisely k

(not necessarily distinct) zeros in S which we denote z1,+, . . . zk−1,+, λ
(+),

and similarly q− has k (not necessarily distinct) zeros in S which we denote

z1,−, . . . , zk−1,−, λ
(−), where λ(+) is on the second sheet of S, λ(−) is on

the first sheet of S, and Pλ(+) = Pλ(−) = λ. Denote the divisor D± =∏k−1
j=1 zj,±. Then D± is not special.

Recall that if z ∈ S \ {aj , bj}kj=1, we denote z∗ the point in S satisfying
z∗ ̸= z and Pz = Pz∗.

Proof. Since λ /∈ {aj , bj}kj=1, it follows that γ(λ)
2 ̸= 0. Thus, since γ(z)2 =

−γ(z∗)2, the zero sets of q+ and q− are disjoint, and if z is a zero of q+, then:
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1) z∗ is a zero of q−, 2) z
∗ is not a zero of q+, 3) z, z

∗ /∈ {aj , bj}kj=1 because

{aj , bj}kj=1 are the poles and zeros of γ2, and 4) λ(±) is a zero of q±. Also, if

z and z∗ are zeros of q+ and q− respectively, then γ(z)4 = γ(z∗)4 = γ(λ)4,
and by the definition of γ,

(3.8)

k∏
j=1

(Pz − bj)− γ(λ)4
k∏
j=1

(Pz − aj) = 0.

If γ(λ) ̸= 1, then (3.8) has 2k (not necessarily distinct) zeros in the variable
z ∈ S, and it follows that q± has k (not necessarily distinct) zeros in S. If
γ(λ)4 = 1, then the left hand side of (3.8) is a polynomial of degree k− 1 in
the variable Pz, and thus has 2k− 2 zeros in the variable z ∈ S. As z → ∞
(on any sheet), we have
(3.9)∏k

j=1(Pz − bj)∏k
j=1(Pz − aj)

=

∏k
j=1(Pz − bj)−

∏k
j=1(Pz − aj)∏k

j=1(Pz − aj)
+ 1 = 1 +O

(
z−1
)
,

from which we deduce that the two points at ∞ on S are zeros of q+ and
q−. Thus, if γ(λ)4 = 1, we conclude from (3.8) and (3.9) that q+ and q−
have each k zeros on S.

Recall from earlier in the proof that if z is a zero of q+ then z∗ is not a
zero of q+. Since q+ has k zeros, it follows by the Riemann-Roch Theorem
(see (d) above) that D+ is not special. Similarly, D− is not special. □

We are now in a position to prove the following lemma.

Lemma 3.4. Let λ ∈ S \ {aj , bj}kj=1, and consider θ(u(z) ± u(λ)) as a
multivalued function of z ∈ S. With the notation of Lemma 3.3, the divisor
of θ(u(z)± u(λ)) is D∓.

Proof. The proof follows [57, Lemma 3.27]. Consider the multi-valued func-
tions
(3.10)

θ

u(z)− k−1∑
j=1

u(zj,+)−K

 and θ

u(z)− k−1∑
j=1

u(zj,−)−K

 ,

where we recall that K is the vector of Riemann constants. Since D+ and
D− are not special, it follows by (f) above that the divisors of (3.10) are
given by D+ and D− respectively.

Observe that the divisor of q± is given by λ(±)
∏k−1
j=1 zj,±

∏k
j=1 b

−1
j . Hence,

by the Abel theorem (see (e) above) and (3.7) we obtain

(3.11) −
k−1∑
j=1

u(zj,±)−K ≡ u(λ(±)) mod Λ.
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Since u(λ) = −u(λ∗), it follows that the zeros of θ(u(z)+u(λ)) and θ(u(z)−
u(λ)), viewed as functions of z ∈ S, are given by the zeros of (3.10) respec-
tively. Since (3.10) had the same zeros as q− and q+, the lemma follows. □

Next we consider the divisor of θ
[
α
β

]
(u(z)± u(λ)).

Lemma 3.5. Let α = 1
2e1 and let β = 1

2

∑k−1
j=1 ej. Let λ ∈ S\{b2, . . . , bk−1}.

Then the divisor of θ
[
α
β

]
(u(z)− u(λ)), as a multi-valued function of z ∈ S,

is λ
∏k−1
j=2 bj. Furthermore, the divisor of θ

[
α
β

]
(u(z) + u(λ)) is λ∗

∏k−1
j=2 bj,

and the divisor of Θ(z, λ) =
θ
[
α
β

]
(u(z)−u(λ))

θ
[
α
β

]
(u(z)+u(λ))

is λ (λ∗)−1.

Proof. We observe that
[
α
β

]
is an odd characteristic, and that u+(b1) = τα+

β. By (3.7), we have τα+β = −K−
∑k−1

j=2 u(bj). Let λ ∈ S \{b2, . . . , bk−1}
be fixed. By the Riemann-Roch theorem (see (d) above),

∏k−1
j=2 bjλ is not a

special divisor, and by (f) above, it follows that θ(u(z)−K −
∑k

j=2 u(bj)−
u(λ)) is not identically zero and has zeros at b2, . . . , bk, λ. By the definition

of θ
[
α
β

]
in (1.20), it follows that θ

[
α
β

]
(u(z)−u(λ)) also has divisor

∏k−1
j=2 bjλ.

The second statement follows from the fact that u(λ) = −u(λ∗) mod Λ,
and the third statement follows from the first two statements. □

Lemma 3.5 above, and also Lemma 3.7 below, are standard results related
to what is known as the prime form, see [68, Chapter 2]. We include proofs
for the reader’s convenience.

3.3. Some further identities for θ-functions. In this section we prove
the following proposition, which we will rely on in Section 11, and which
also yields the identity for W in (1.30).

Proposition 3.6. Recall that ω is defined by (1.22). For z, λ ∈ C \ [a1, bk],
and any fixed v ∈ Ck−1 such that θ(v) ̸= 0,

(3.12) θ

(∫ λ

z
ω + v

)
θ

(∫ λ

z
ω − v

) θ(0)2
(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)2
4θ(v)2θ(u(z)− u(λ))2

= (z − λ)2

1

2
W (z, λ) +

1

2(z − λ)2
+

k−1∑
j=1

k−1∑
i=1

u′j(z)u
′
i(λ)∂i∂j log θ(v)

 ,
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where the contour of integration does not cross [a1, bk], and

(3.13)

θ(0)2
((

γ(z)
γ(λ)

)2
−
(
γ(λ)
γ(z)

)2)
θ (u(z) + u(λ) + v) θ (u(z)− u(λ)− v)

4θ(u(z)− u(λ))θ(u(z) + u(λ))θ(v)2

=
(z − λ)2θ (2u(λ) + v) θ(0)

4θ (2u(λ)) θ (v)

 k∑
j=1

1

λ− bj
− 1

λ− aj


×

k−1∑
j=1

u′j(z)
(
∂j log θ (2u(λ) + v)− ∂j log θ

[
α
β

]
(u(z) + u(λ))

+ ∂j log θ
[
α
β

]
(u(z)− u(λ))− ∂j log θ (v)

)
,

where α = 1
2e1 and β = 1

2

∑k−1
j=1 ej.

Setting v = 0 in (3.12), we obtain (1.30).
In the remainder of the section we prove Proposition 3.6.

Lemma 3.7. Let α = 1
2e1 and let β = 1

2

∑k−1
j=1 ej. Then

Div

k−1∑
j=1

u′j(z)∂jθ
[
α
β

]
(0)

 = ∞2
1∞2

2

k−1∏
j=2

bjb
−1
1 b−1

k

k∏
j=1

a−1
j ,

where ∞1 is ∞ on the first sheet and ∞2 is ∞ on the second sheet.

Proof. From Lemma 3.5, the divisor of θ
[
α
β

]
(u(z)−u(λ)) is λ

∏k−1
j=2 bj . Thus,

for λ /∈ {b2, . . . , bk−1}, it follows that θ
[
α
β

]
(u(z)− u(λ)) has a zero of order

1 at λ as a function of z, while for λ ∈ {b2, . . . , bk−1} the divisor is special
and θ

[
α
β

]
(u(z)−u(λ)) is identically zero as a function of z. Taking also into

account that u′(z) = O(|Pz|−2) as z → ∞1, ∞2,

lim
z→λ

∂

∂z
θ
[
α
β

]
(u(z)− u(λ)) ̸= 0 for λ ∈ S \ {b2, . . . , bk−1,∞1,∞2},

lim
z→λ

∂

∂z
θ
[
α
β

]
(u(z)− u(λ)) = 0 for λ ∈ {b2, . . . , bk−1,∞1,∞2}.

Thus,

k−1∑
j=1

u′j(z)∂jθ
[
α
β

]
(0) ̸= 0, for z ∈ S \ {b2, . . . , bk−1,∞1,∞2},

k−1∑
j=1

u′j(z)∂jθ
[
α
β

]
(0) = 0 for z ∈ {b2, . . . , bk−1,∞1,∞2}.

The order of the zero at ∞1 and ∞2 is 2, and thus the total order of the
zeros is at least k + 2. The only possible poles are at a1, . . . , ak, b1, bk, if
there is a pole at each point it is of order −1. In particular it follows that
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the total degree of the poles is greater than or equal to −k − 2. Since the
degree of the divisor is zero, there must be a pole of order 1 at each of the
points a1, . . . , ak, b1, bk, which finishes the proof. □

Let JS be J− on the first sheet, namely:

JS = {z ∈ S : Pz ∈ J and R1/2(z) = R1/2
− (Pz)},

and let ΣS be {z : Pz ∈ ∪k−1
j=1(bj , aj+1)}. The following identity is due to

Fay [68].

Lemma 3.8. Let α = 1
2e1 and let β = 1

2

∑k−1
j=1 ej. Assume that z ∈ S \

{b2, . . . , bk−1,∞1,∞2}. Then, for any λ1, λ2 ∈ S \ {b2, . . . , bk−1} such that
λ1 ̸= λ2 and v ∈ Ck−1,

(3.14) θ

(∫ λ1

z
ω + v

)
θ

(∫ z

λ2

ω + v

)

=
θ (v) θ

(∫ λ1
λ2

ω + v
)
θ
[
α
β

] (∫ λ1
z ω

)
θ
[
α
β

] (∫ λ2
z ω

)
θ
[
α
β

] (∫ λ1
λ2

ω
)(∑k−1

j=1 u
′
j(z)∂jθ

[
α
β

]
(0)
)

×
k−1∑
j=1

u′j(z)

(
∂j log θ

(∫ λ1

λ2

ω + v

)
− ∂j log θ

[
α
β

](∫ λ1

z
ω

)

+ ∂j log θ
[
α
β

](∫ λ2

z
ω

)
− ∂j log θ (v)

)
,

where none of the integrals pass through JS ∪ ΣS , and where in the event

that θ(v) = 0 we interpret θ(v)
∑k−1

j=1 u
′
j(z)∂j log θ(v) =

∑k−1
j=1 u

′
j(z)∂jθ(v),

and likewise with the other logarithmic derivatives.
Furthermore, for any λ ∈ S \ {b2, . . . , bk−1},

(3.15) θ

(∫ λ

z
ω + v

)
θ

(∫ λ

z
ω − v

)

=
θ(v)2θ

[
α
β

] (∫ λ
z ω

)2(∑k−1
j=1 u

′
j(λ)∂jθ

[
α
β

]
(0)
)(∑k−1

j=1 u
′
j(z)∂jθ

[
α
β

]
(0)
)

×
k−1∑
j=1

k−1∑
i=1

u′j(z)u
′
i(λ)

(
−∂i∂j log θ

[
α
β

](∫ λ

z
ω

)
+ ∂i∂j log θ(v)

)
.

Remark 3.9. By Lemma 3.7, the right-hand side of (3.14) and (3.15) are
well defined.

Proof. (3.15) follows from (3.14) by taking the limit λ1 → λ2.
We provide a proof of (3.14) inspired by Gus Schrader’s simple proof of

Fay’s trisecant identity in [97].
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We first prove that as a function of λ1, the right-hand side of (3.14) is
pole free. Observe that, as a function of λ1, both

(3.16)
θ
[
α
β

] (∫ λ1
z ω

)
θ
[
α
β

] (∫ λ1
λ2

ω
) , and

∑k−1
j=1 u

′
j(z)∂jθ

[
α
β

] (∫ λ1
z ω

)
θ
[
α
β

] (∫ λ1
λ2

ω
)

have a single pole of order 1 at λ2 (this follows from Lemma 3.5, by Lemma
3.7, and by the fact that θ

[
α
β

]
(u(z) − u(bj)) is identically zero for j =

2, . . . , k − 1). As λ1 → λ2, the sum of the logarithmic derivatives on the
right-hand side of (3.14) converges to zero, canceling the pole coming from
(3.16), thus the right-hand side of (3.14) is pole free.

It is a simple exercise to prove that the left and right-hand side of (3.14)
have the same monodromy over the loops Aj and Bj (in particular observe
that

∂j log θ

(∫ λ1

λ2

ω + v

)
− ∂j log θ

[
α
β

](∫ λ1

z
ω

)
has no monodromy over the loops Aj and Bj). By the Jacobi inversion
theorem (see [67, Section III.6.6]), there are points z1, . . . , zk−1 ∈ S such

that v ≡ −K−
∑k−1

j=1 u(zj) mod Λ. If
∏k−1
j=1 zj is not a special divisor, then

the LHS has k − 1 zeros at z1, . . . , zk−1, and thus the function RHS/LHS
is a meromorphic function with possible poles at z1, . . . , zk−1. However

since
∏k−1
j=1 zj is not special, it follows that any meromorphic function whose

poles form a subset of {z1, . . . , zk−1} is a constant, and thus RHS/LHS is
a constant. By taking the limit λ1 → z, we obtain that the RHS/LHS is

equal to 1. On the other hand, if
∏k−1
j=1 zj is special, then we pick a sequence

vn ≡ −K −
∑k−1

j=1 u(z
(n)
j ) mod Λ such that z

(n)
j → zj and

∏n−1
j=1 z

(n)
j is not

special. Then the lemma holds for each vn, and taking the limit n→ ∞ we
obtain the lemma for v. □

Define γ on S such that γ(z) = γ(Pz) for z in the first sheet of S \ JS ,
and extend γ analytically to S \JS . Then for λ in the second sheet of S, we
have γ(λ) = iγ(Pλ).

Similarly, u is uniquely defined on S \JS by letting u(z) = u(Pz) for z in
the first sheet of S and extending analytically to S \ JS .

Lemma 3.10. Let α = 1
2e1 and let β = 1

2

∑k−1
j=1 ej. For z, λ ∈ S \(

{aj , bj}k−1
j=1 ∪∞1 ∪∞2

)
, we have

(3.17)
θ(0)2

(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)2
4θ(u(z)− u(λ))2

=
(Pz −Pλ)2

(∑k−1
j=1 u

′
j(z)∂jθ

[
α
β

]
(0)
)(∑k−1

j=1 u
′
j(λ)∂jθ

[
α
β

]
(0)
)

θ
[
α
β

]
(u(z)− u(λ))2

.
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Proof. The left and the right-hand side have the same monodromy around
the loopsAj andBj , and thus the LHS/RHS is a meromorphic function. By

Lemma 3.3, the left hand side has divisor Div(LHS) = (λ∗)2
∏k
j=1 a

−1
j b−1

j ,

as a function of z (where λ∗ is such that Pλ = Pλ∗ and λ ̸= λ∗). By
Lemma 3.5 and Lemma 3.7, the right-hand side has divisor Div(RHS) =

(λ∗)2
∏k
j=1 a

−1
j b−1

j , as a function of z. Thus the LHS/RHS is constant, and
the constant is determined by setting z = λ. □

We now continue the proof of Proposition 3.6.
Multiplying the left hand side of (3.15) with the left hand side of (3.17),

(3.18) θ

(∫ λ

z
ω + v

)
θ

(∫ λ

z
ω − v

) θ(0)2
(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)2
4θ(v)2θ(u(z)− u(λ))2

= (Pz−Pλ)2

 ∂

∂z

∂

∂λ
log θ

[
α
β

]
(u(z)− u(λ)) +

k−1∑
j=1

k−1∑
i=1

u′j(z)u
′
i(λ)∂i∂j log θ(v)

 .

Setting v = 0, we obtain

(3.19)
∂

∂z

∂

∂λ
log θ

[
α
β

]
(u(z)− u(λ)) =

1

4(Pz −Pλ)2

(
γ(z)

γ(λ)
+
γ(λ)

γ(z)

)2

−
k−1∑
j=1

k−1∑
i=1

u′j(z)u
′
i(λ)∂i∂j log θ(0).

In particular, since u(λ) = −u(λ∗) and γ(λ)2 = −γ(λ∗)2, it follows that

(3.20)
∂

∂z

∂

∂λ
log θ

[
α
β

]
(u(z) + u(λ)) =

∂

∂z

∂

∂λ
log θ

[
α
β

]
(u(z)− u(λ∗))

= − 1

4(Pz −Pλ)2

(
γ(z)

γ(λ)
− γ(λ)

γ(z)

)2

+
k−1∑
j=1

k−1∑
i=1

u′j(z)u
′
i(λ)∂i∂j log θ(0).

Substituting (3.19) and (3.20) into the definition of W in (1.29), we obtain
that

(3.21)
∂

∂z

∂

∂λ
log θ

[
α
β

]
(u(z)− u(λ)) =

1

2
W (z, λ) +

1

2(Pz −Pλ)2
.

Substituting (3.21) into (3.18), we obtain (3.12).
It follows from (3.17) that for z, λ ∈ S \ JS ,

(3.22)
θ(0)

(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)
2θ(u(z)− u(λ))

=

(Pz −Pλ)

√(∑k−1
j=1 u

′
j(z)∂jθ

[
α
β

]
(0)
)(∑k−1

j=1 u
′
j(λ)∂jθ

[
α
β

]
(0)
)

θ
[
α
β

]
(u(z)− u(λ))

.
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The square root is chosen such that it is equal to
(∑k−1

j=1 u
′
j(z)∂jθ

[
α
β

]
(0)
)

when λ = z, and by Lemma 3.7 the branches may be chosen such that
it is analytic on S \ JS . In particular it follows from Lemma 3.7 that∑k−1

j=1 u
′
j(z)∂jθ

[
α
β

]
(0) has a pole at bk, and by analytically continuing around

bk and recalling the definition of JS , it follows that if z is in the first sheet,
then

(3.23)

√√√√k−1∑
j=1

u′j(z
∗)∂jθ

[
α
β

]
(0) = i

√√√√k−1∑
j=1

u′j(z)∂jθ
[
α
β

]
(0).

Recall that for z in the first sheet, γ(z∗) = iγ(z). Denote the LHS of (3.22)
by LHS(z, λ). Taking the product LHS(z, λ) × LHS(z∗, λ) and setting it
equal to RHS(z, λ)× RHS(z∗, λ), and substituting γ(z∗) = iγ(z), u(z∗) =
−u(z), and (3.23), we obtain

(3.24)

θ(0)2
((

γ(z)
γ(λ)

)2
−
(
γ(λ)
γ(z)

)2)
4θ(u(z)− u(λ))θ(u(z) + u(λ))

=
(Pz −Pλ)2

(∑k−1
j=1 u

′
j(z)∂jθ

[
α
β

]
(0)
)(∑k−1

j=1 u
′
j(λ)∂jθ

[
α
β

]
(0)
)

θ
[
α
β

]
(u(z)− u(λ))θ

[
α
β

]
(u(z) + u(λ))

.

Setting λ1 = λ∗2 = λ in (3.14), and recalling that u(λ) = −u(λ∗), we obtain

(3.25) θ (u(z) + u(λ) + v) θ (u(z)− u(λ)− v)

= −
θ
[
α
β

]
(u(z) + u(λ)) θ

[
α
β

]
(u(λ)− u(z))

θ
[
α
β

]
(2u(λ))

(∑k−1
j=1 u

′
j(z)∂jθ

[
α
β

]
(0)
)θ (v) θ (2u(λ) + v)

×
k−1∑
j=1

u′j(z)
(
∂j log θ (2u(λ) + v)− ∂j log θ

[
α
β

]
(u(z) + u(λ))

+ ∂j log θ
[
α
β

]
(u(z)− u(λ))− ∂j log θ (v)

)
,
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Multiplying (3.24) and (3.25) we obtain

(3.26)

θ(0)2
((

γ(z)
γ(λ)

)2
−
(
γ(λ)
γ(z)

)2)
θ (u(z) + u(λ) + v) θ (u(z)− u(λ)− v)

4θ(u(z)− u(λ))θ(u(z) + u(λ))

=
(Pz −Pλ)2

(∑k−1
j=1 u

′
j(λ)∂jθ

[
α
β

]
(0)
)

θ
[
α
β

]
(2u(λ))

θ (v) θ (2u(λ) + v)

×
k−1∑
j=1

u′j(z)
(
∂j log θ (2u(λ) + v)− ∂j log θ

[
α
β

]
(u(z) + u(λ))

+ ∂j log θ
[
α
β

]
(u(z)− u(λ))− ∂j log θ (v)

)
,

Now consider
(3.27)

θ(0)2θ
[
α
β

]
(u(z)− u(λ))2

(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)2
4(Pz −Pλ)2θ(u(z)− u(λ))2

(∑k−1
j=1 u

′
j(λ)∂jθ

[
α
β

]
(0)
)(∑k−1

j=1 u
′
j(z)∂jθ

[
α
β

]
(0)
)

as a function of z. By Lemma 3.4, Lemma 3.5, and Lemma 3.7, (3.27) has
no zeros or poles. By (1.21), (1.22) and (1.25), (3.27) has no monodromy
on S and is a meromorphic function. Thus it is constant. By taking z → λ,
we obtain that (3.27) is identically equal to 1. Recall from (1.31) that
γ(λ)2 = −γ(λ∗)2, and that

γ′(λ) =
γ(λ)

4

 k∑
j=1

1

Pλ− bj
− 1

Pλ− aj

 .

By taking z → λ∗ and taking the square root in (3.27), we obtain
(3.28)

θ(0)θ
[
α
β

]
(2u(λ))

4θ(2u(λ))
(∑k−1

j=1 u
′
j(λ)∂jθ

[
α
β

]
(0)
)
 k∑
j=1

1

Pλ− bj
− 1

Pλ− aj

 = 1.

(To verify that the correct sign was taken when taking the square root we
simply take λ→ bk in (3.28) and verify that the left hand side equals 1 in this
limit). Substituting (3.28) into the right-hand side of (3.26) and dividing
by θ(0)2θ(v)2, we obtain (3.13), concluding the proof of Proposition 3.6.

4. Analysis of the Riemann-Hilbert problem Y

As is standard in the analysis of RH problems (see [50]), we will apply the
method of non-linear steepest descent developed by Deift/Zhou to evaluate
the large N -asymptotics for the Riemann-Hilbert problem for Y . In the
multi-cut setting that we are interested in, this was developed by [53], and
we have also been inspired by the work of [83]. To avoid repetition, we
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consider a generic RH problem Y (z) = YN (z) associated with the symbol

νϵ(x) = F (x)e−NV (x)ωϵ(x) from Section 2.4. Observe that we omit the
parameters s and t in our notation but keep the parameter ϵ despite the
fact that we deform the symbol in each of these variables. In this section,
we discuss some transformations of the generic RH problem that are common
to all of the RH problems relevant to us. Note that one should interpret
ωϵ(x) ≡ 1 when p = 0, which corresponds to the situation when we deform
our potential V and interpolate our function f as in Section 2.5 and Section
2.3 respectively.

The first transformation Y 7→ T . Throughout this section, we will make use
of the notation of Section 1.1.1. Let us introduce the “g-function”

g(z) =

∫
R
log(z − λ)dµV (λ) =

∫
J
log(z − λ)ψV (λ)dλ, z ∈ C \ (−∞, bk],

(4.1)

where the principal branch is chosen for the logarithm. The g-function is
analytic in C\ (−∞, bk] with continuous boundary values on (−∞, bk] which
we denote by g±. Since

g+(x) + g−(x) = 2

∫
R
log |λ− x|dµV (λ), x ∈ R,

the Euler-Lagrange equations (1.9) and (1.10), combined with our assump-
tion that the inequality in (1.10) is strict, may be rewritten as

g+(x) + g−(x)− V (x) + ℓ = 0 for x ∈ J,(4.2)

g+(x) + g−(x)− V (x) + ℓ < 0 for x ∈ Jc.(4.3)

We can then define our first transformation. For z ∈ C \ R, let

T (z) = e
N
2
ℓσ3Y (z)e−N(g(z)+ ℓ

2
)σ3(4.4)

where

σ3 =

(
1 0
0 −1

)
, xσ3 =

(
x 0
0 x−1

)
.

Relying on the fact that g is analytic on C \ (−∞, bk] and the fact that
g(z) = log(z)+O(1/z) as z → ∞, it follows that T satisfies the the following
RH problem.

4.0.1. The RH problem for T .

(a) T : C \ R → C2×2 is analytic.
(b) T has continuous boundary values T±(x) = limϵ→0+ T (x ± iϵ) on R

which satisfy the jump condition

T+(x) = T−(x)

(
e−N(g+(x)−g−(x)) F (x)eN(g+(x)+g−(x)−V (x)+ℓ)ωϵ(x)

0 eN(g+(x)−g−(x))

)(4.5)
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(c) As z → ∞,

T (z) = I +O(z−1).(4.6)

The second transformation T 7→ S. In this step we perform the “opening of
lenses”. Consider the function

ϕ(z) := −πi
∫ z

bk

ψV (λ)dλ, z ∈ UV \ (−∞, bk),(4.7)

where the path of integration lies in UV \ (−∞, bk], and we recall that UV
is the domain of analyticity of V . We observe that for z ∈ J , taking the
derivative of (4.1), we have by a residue calculation that d

dz (g+(z)−g−(z)) =
−2πiψV (z), and combined with (4.2), we obtain

d

dz

(
g+(z)−

V (z)

2

)
=

d

dz

(
g+(z)− g−(z)

2
+
g+(z) + g−(z)− V (z) + ℓ

2

)
= −πiψV (z).

Since d
dzϕ+(z) = −πiψV (z) on J , and ϕ(bk) = g(bk) − V (bk)/2 + ℓ/2 we

obtain by analytic continuation onto UV \ (−∞, bk] that

(4.8) ϕ(z) = g(z)− V (z)/2 + ℓ/2.

In particular, we have

g+(x) + g−(x)− V (x) + ℓ = ϕ+(x) + ϕ−(x), for x ∈ R,(4.9)

ϕ+(x) + ϕ−(x) = 0, for x ∈ J,(4.10)

±(g+(x)− g−(x)) = 2ϕ±(x), for x ∈ J,(4.11)

where we observe that (4.10) is obtained from (4.9) and (4.2). Using these
identities together, we rewrite the jumps for T in terms of ϕ. Furthermore,
for x ∈ J , the matrix T−(x)

−1T+(x) can be factorized as
(4.12)(
e−2Nϕ+(x) ef(x)ωϵ(x)

0 e−2Nϕ−(x)

)
=

(
1 0

e−f(x)ωϵ(x)
−1e−2Nϕ−(x) 1

)
×
(

0 ef(x)ωϵ(x)

−e−f(x)ωϵ(x)−1 0

)(
1 0

e−f(x)ωϵ(x)
−1e−2Nϕ+(x) 1

)
,

where we observe that the left hand side indeed is the same jump matrix as
that in (4.5) by (4.10) and (4.11), and that equality between the left and the
right-hand side hold by (4.10). Around each interval [aj , bj ], we open lenses
J+
j and J−

j as shown in Figure 5, which are contained in UV . The contour

J+
j is in the upper half plane and J−

j is in the lower half plane. Moreover,

both J+
j and J−

j start at aj , end at bj , and if any of the tl are in the interval

(aj , bj), then the contours pass nearby these points as well. There is some
freedom in the choice of the lenses. In particular we require that Reϕ(z) is
positive on J+

j and J−
j , see Lemma 7.1 below. The shape of the contours

J+
j and J−

j near the points aj , bj and tl will be specified in Section 6.1. For
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t1 t2 tp
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- - - R

J+
1 J+

k

J−
1 J−

k

Figure 5. The contour ΣS , in a situation where t1, t2 ∈
(a1, b1) and tp ∈ (ak, bk).

now we mention that when J+
j and J−

j meets the points aj and bj , each of

them forms an angle π/3 with (aj , bj).

We write ΣS = ∪kj=1(J
+
j ∪J−

j )∪R for the contour consisting of the lenses
and the real axis. The next transformation is defined by

S(z) = T (z)×



I, for z outside the lenses,(
1 0

−e−f(z)ωϵ(z)−1e−2Nϕ(z) 1

)
,

for z inside the lenses,

Im (z) > 0,(
1 0

e−f(z)ωϵ(z)
−1e−2Nϕ(z) 1

)
,

for z inside the lenses,

Im (z) < 0.

(4.13)

Before stating the RH problem for S, we first note the following. For j =
1, . . . , k − 1 and x ∈ (bj , aj+1),

g+(x)− g−(x) = 2πi

∫ bk

aj+1

µV (dx) = 2πiΩj .(4.14)

By combining (4.12) and (4.14), and the fact that ϕ is analytic on C \
(−∞, bk], we obtain that S defined by (4.13) solves the following RH prob-
lem.

The RH problem for S.

(a) S : C \ ΣS → C2×2 is analytic, where ΣS is as in Figure 5.
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(b) S has the jump relation S+(z) = S−(z)JS(z) for z ∈ ΣS (where the
orientation is as in Figure 5).

JS(z) =

(
1 F (z)eN(ϕ+(z)+ϕ−(z))ωϵ(z)
0 1

)
, z ∈ R \ [a1, bk],

(4.15)

JS(z) =

(
0 ef(z)ωϵ(z)

−e−f(z)ωϵ(z)−1 0

)
, z ∈ ∪kj=1(aj , bj),

(4.16)

JS(z) =

(
e−2πiNΩj F (z)eN(ϕ+(z)+ϕ−(z))ωϵ(z)

0 e2πiNΩj

)
, z ∈ (bj , aj+1),

(4.17)

JS(z) =

(
1 0

e−f(z)ωϵ(z)
−1e−2Nϕ(z) 1

)
, z ∈ (J+ ∪ J−) \ {aj , bj}kj=1.

(4.18)

where J± := ∪jJ±
j .

(c) S(z) = I +O(z−1) as z → ∞.
(d) S(z) = O(1) as z approaches any of the points of self-intersection of the

contour ΣS .

A crucial fact to our future analysis, see Lemma 7.1 below, is that the jumps
(4.15) and (4.18) converge pointwise to the identity I as N → ∞, and for z
bounded away from aj , bj , tj , they tend uniformly to the identity.

5. Main parametrix

We construct a function M(z) which is analytic on C \ [a1, bk], which has
the same jumps as S on [a1, bk] \ {aj , bj}kj=1, and which satisfies M(z) =

I + O
(
z−1
)
as z → ∞. Then the jumps of SM−1 will converge uniformly

to the identity except on open neighbourhoods of the points aj , bj , tj . We
divide the construction of such a function into two parts. First we deal with
the special case F (z)ωϵ(z) ≡ 1 which is precisely the situation considered
in the fundamental works [53, 57]. Subsequently we extend to the general
situation F (z)ωϵ(z) ̸≡ 1, where we are inspired by the construction of the
main parametrix considered by Kuijlaars and Vanlessen in [83], but also
provide a new representation for this type of main parametrix. In Remark
5.2 below, we comment on how our representation may be brought to the
form presented in [83].

5.1. Main parametrix for F (z)ωϵ(z) ≡ 1. Let λ ∈ C ∪ {∞} \ J , and let
v1, . . . , vk−1 be real. Consider the following RH problem

RH problem for Nλ.

(a) Nλ is analytic on C \ [a1, bk].
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(b) Nλ has continuous boundary values Nλ,± on [a1, bk]\{aj , bj}kj=1 sat-
isfying

Nλ,+(x) = Nλ,−(x)×


(

0 1

−1 0

)
, x ∈

⋃k
j=1(aj , bj),

e−2πivjσ3 , x ∈ (bj , aj+1), j = 1, . . . , k − 1.

(5.1)

(c) Nλ(z) = I +O(z − λ) as z → λ for λ ∈ C \ J , while if λ = ∞, then
N∞(z) = I +O(z−1) as z → ∞.

(d) Nλ(z) = O((z − z∗)
− 1

4 ) as z → z∗ ∈ {aj , bj}kj=1.

(e) As z → ∞, Nλ(z) → Nλ(∞) for some constant Nλ(∞).

In (5.8) below, we construct an explicit solution to the RH problem forNλ.
When we wish to emphasize the dependence ofNλ(z) on v = (v1, . . . , vk−1)

T ,
we denote Nλ(z; v). In the special case F (z)ωϵ(z) ≡ 1, our main parametrix
is given by N∞(z;NΩ). While we only rely on N∞ to construct a main
parametrix for the RH problem for S, we will later rely on the fact that

(5.2) N∞(λ)−1N∞(z) = Nλ(z).

We will construct a function which solves the RH problem for Nλ. The first
step is to construct a solution for the special case where v1, . . . , vk−1 = 0,
which we denote by Nλ(z; 0). This is given by

Nλ(z; 0) =

 1
2

(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)
1
2i

(
γ(z)
γ(λ) −

γ(λ)
γ(z)

)
− 1

2i

(
γ(z)
γ(λ) −

γ(λ)
γ(z)

)
1
2

(
γ(z)
γ(λ) +

γ(λ)
γ(z)

) ,

where γ was defined in (1.31). Then it follows that Nλ(z; 0) is analytic
on C \ J and that as z → λ, Nλ(z; 0) → I. For x ∈ (aj , bj), we have
γ+(x) = iγ−(x), and thus

Nλ,+(x) = Nλ,−(x)

(
0 1
−1 0

)
.

Thus Nλ(z; 0) solves the RH problem for Nλ in the special case where
v1, . . . , vk−1 = 0.

To construct Nλ for general values of v1, . . . , vk−1, we follow [57], and use
θ functions and the Abel map. Recall that ωj was the unique holomorphic
1-form on S satisfying (1.22), and is of the form (1.23).

Recall Qj from (1.23). Since Qj is of degree at most k − 2, we note that
the limit uj(∞) = limz→∞ uj(z) exists, and furthermore since the residue
at ∞ is 0, uj(z) extends to an analytic function on C \ [a1, bk]. By (1.22),

(1.25), and the fact that
Qj

R1/2 has zero residue at ∞, it is easily verified that

(5.3) u+(x)− u−(x) = τj , x ∈ (bj , aj+1),
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for j = 1, . . . , k − 1, where τj denotes the j’th column vector of τ (so that
τ = (τ1, . . . , τk−1)), and that

(5.4) u+(x) + u−(x) = −2
k−1∑
s=j

∫ as+1

bs

Q(y)

R1/2(y)
dy =

k−1∑
s=j

∮
As

ω =
k−1∑
s=j

es,

for x ∈ (aj , bj) and j = 1, . . . , k, where (ej)l = δl,j . We observe that u+ and
u− are continuous at the points aj and bj , and thus

(5.5) u+(aj) =
u+(aj) + u−(aj)

2
+
u+(aj)− u−(aj)

2
=

1

2

k−1∑
s=j

es +
τj−1

2
,

for j = 2, . . . , k, and

(5.6) u+(bj) =
1

2

k−1∑
s=j

es +
τj
2
,

for j = 1, . . . , k − 1.
Recall the definition of the θ-function in (1.19). For z ∈ C\ [a1, bk], define

mλ(z) = mλ(z; v) =
θ(0)

θ(v)

(
θ(u(z)+v−u(λ))
θ(u(z)−u(λ))

θ(u(z)−v+u(λ))
θ(u(z)+u(λ))

θ(u(z)+v+u(λ))
θ(u(z)+u(λ))

θ(u(z)−v−u(λ))
θ(u(z)−u(λ))

)
.

It follows from Lemma 3.4 that m is well defined and meromorphic on z ∈
C \ [a1, bk].

By (1.21), we have the following standard properties

(5.7) θ(ξ + ej) = θ(ξ) and θ(ξ + τj) = e−πiτj,j−2πiξjθ(ξ).

Thus it follows by (5.4) that

mλ,+(x) = mλ,−(x)

(
0 1
1 0

)
,

for x ∈ ∪kj=1(aj , bj), and by (5.3) that

mλ,+(x) = mλ,−(x)e
−2πivjσ3 ,

for x ∈ (bj , aj + 1), with j = 1, . . . , k − 1. As a consequence, if we define

(5.8) Nλ(z) =
θ(0)

2θ(v)

×

 (
γ(z)
γ(λ) +

γ(λ)
γ(z)

)
θ(u(z)+v−u(λ))
θ(u(z)−u(λ))

1
i

(
γ(z)
γ(λ) −

γ(λ)
γ(z)

)
θ(u(z)−v+u(λ))
θ(u(z)+u(λ))

−1
i

(
γ(z)
γ(λ) −

γ(λ)
γ(z)

)
θ(u(z)+v+u(λ))
θ(u(z)+u(λ))

(
γ(z)
γ(λ) +

γ(λ)
γ(z)

)
θ(u(z)−v−u(λ))
θ(u(z)−u(λ))

 ,

then we observe that

(Nλ(z))ij = (mλ(z))ij (Nλ(z; 0))ij ,

and so it is easily verified by using the jumps of m and Nλ(z; 0) that Nλ(z)
satisfies condition (b) in the RH problem for Nλ. By Lemma 3.3 and Lemma
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3.4, the poles of 1
θ(u(z)±u(λ)) are cancelled by the zeros of γ(z)

γ(λ) ∓
γ(λ)
γ(z) , and

thus condition (a) of the RH problem for Nλ is satisfied. By further recalling

that γ(z) = O((z − z∗)
−1/4) as z → z∗ for z∗ ∈ {aj , bj}kj=1, condition (d) is

satisfied. Conditions (c) and (e) are easily verified by the definition of Nλ.
Thus Nλ defined in (5.8) solves the RH problem for Nλ.

5.2. Main parametrix for F (z)ωϵ(z) ̸≡ 1. To construct a main parametrix
valid also in the general setting F (z)ωϵ(z) ̸≡ 1 for z ∈ J , we first consider
some properties of Θ defined in (1.27).

By Lemma 3.5, Θ(z, λ) is analytic as a function of z ∈ C \ [a1, bk], with a
zero of order 1 at z = λ. By (1.21), (5.3), and (5.4),

Θ(z+, λ)Θ(z−, λ) = 1 for z ∈ J,

(5.9)

Θ(z+, λ) = e4πiuj(λ)Θ(z−, λ) for z ∈ (bj , aj+1) with j = 1, . . . , k − 1,

(5.10)

where Θ(z±, λ) = limδ↓0Θ(z ± iδ, λ) for z ∈ R.
Recall the definition of wz(λ) in (1.32).
Since Θ(z, λ) has a zero of order 1 at z = λ, it follows that

wz(λ) =
1

λ− z
+O(1) as λ→ z ̸= ∞,(5.11)

w∞(λ) = − 1

λ
+O

(
λ−2

)
as λ→ ∞.(5.12)

As a function of z, wz(λ) is analytic on C\([a1, bk]∪{λ}), while as a function
of λ, wz(λ) is analytic on C \ (J ∪ {z}) (the fact that there are no jumps
on (bj , aj+1) follows by reversing the role of z, λ in (5.10) and taking the
derivative). By (5.9) and (5.10), we obtain

wz(λ+) + wz(λ−) = 0 for λ ∈ J,

(5.13)

wz+(λ) + wz−(λ) = 0 for z ∈ J,
(5.14)

wz+(λ)− wz−(λ) = 4πiu′j(λ) for z ∈ (bj , aj+1) with j = 1, . . . , k − 1.

(5.15)

By the above jump conditions and (5.11), and the fact that wz(λ) is bounded
as a function of z as z → x ∈ {aj , bj}kj=1, it is easily verified, by considering
it as a function of z, that

(5.16)
wz(λ)

R1/2(z)
=

1

R1/2(λ)(λ− z)
+ 2

k−1∑
j=1

u′j(λ)

∫ aj+1

bj

dx

R1/2(x)(x− z)
.
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Given a function g analytic on a neighbourhood of J , define

(5.17) dg(z) = − 1

4πi

∮
γz,g

g(λ)wz(λ)dλ =
1

2πi

∫
J
g(λ)wz(λ+)dλ,

where γz,g is a curve oriented counterclockwise enclosing J but not z, and
is such that g is analytic in a neighbourhood of γz,g. For z ∈ J , it follows
by (5.11) that

dg(z + iϵ) + dg(z − iϵ) =
g(z + iϵ) + g(z − iϵ)

2

− 1

4πi

∮
γ̃
g(λ)(wz+iϵ(λ) + wz−iϵ(λ))dλ,

where γ̃ encloses both J and z ± iϵ. Taking the limit ϵ → 0, we obtain by
(5.14) that

(5.18) dg,+(z) + dg,−(z) = g(z),

for z ∈ J . Recall the definition of Υ in (1.44). By (5.15),

(5.19) dg,+(z)− dg,−(z) = −
∮
γz,g

u′j(λ)g(λ)dλ = −2πiΥj(g),

for z ∈ (bj , aj+1) with j = 1, . . . , k − 1.

Recall that F (z) has the form F (z) = ef(z) for z in a neighbourhood of
J , where f is analytic. Now define

(5.20) D(z) = exp(df (z) + dϵ(z)),

where dϵ = dlogωϵ .
The function D will appear in our construction of the main parametrix,

and the properties set out in the following lemma are important

Lemma 5.1. D satisfies the following properties.

(a) D : C \ [a1, bk] → C is analytic.
(b) D has continuous boundary values D± on [a1, bk]\{aj , bj}kj=1 satisfying{

D+(z)D−(z) = ef(z)ωϵ(z), z ∈ ∪kj=1(aj , bj),

D+(z)D−(z)
−1 = e−2πiΥj , z ∈ (bj , aj+1), j = 1, . . . , k − 1.

(5.21)

(c) There exists some D∞ ∈ C such that as z → ∞,

D(z) = D∞(1 +O(z−1)).(5.22)

(d) D and D−1 are bounded for z ∈ C \
(
[a1, bk] ∪j Utj

)
, for any fixed open

neighbourhoods Utj containing tj, uniformly over all deformation pa-
rameters in our differential identities, namely ϵ ∈ (0, ϵ0), s ∈ [0, 2], and
t ∈ [0, 1].

(e) For z in a neighbourhood of tj, and Im z > 0,

D(z)±1 = O
(
(z − (tj − iϵ))±(αj/2+βj)

)
,

d

dz
logD(z) =

αj/2 + βj
z − (tj − iϵ)

+O(1),
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uniformly for 0 < ϵ < ϵ0, while for Im z < 0 we have

D(z)±1 = O
(
(z − (tj + iϵ))±(αj/2−βj)

)
,

d

dz
logD(z) =

αj/2− βj
z − (tj + iϵ)

+O(1).

Proof. Properties (a), (b), and (c) are easily verified by the above consider-
ations of dg. Property (d) follows by noting that if γ̃ encloses z and J , then
df (z) =

1
2f(z)−

1
4πi

∫
γ̃ f(λ)wz(λ)dλ, and that the integral over γ̃ is bounded

as z → aj and z → bj for j = 1, . . . , k.
For property (e), we recall the definition of logωϵ in (2.14), and observe

that for z in a neighbourhood of tj , the only non-trivial terms to consider
are log(z− (tj ± iϵ)). If Im z > 0 in a neighbourhood of tj , then we consider
the second equality in (5.17) setting g(λ) = log(λ − (tj + iϵ)), and observe
that

1

2πi

∫
J
log(λ− (tj + iϵ))wz(λ+)dλ

remains uniformly bounded in the neighbourhood because we can deform
the contour of integration downwards in the complex plane, while for

1

2πi

∫
J
log(λ− (tj − iϵ))wz(λ+)dλ

=
1

2πi

∫
J̃
log(λ− (tj − iϵ))wz(λ)dλ+ log(z − (tj − iϵ)),

where J̃ is a deformation of J which passes above tj in the complex plane.

The integral over J̃ is bounded. Recalling (5.17), the definition of dϵ =
dlogωϵ , and the definition of logωϵ in (2.14), this concludes the proof of (e)
for Im z > 0. The case where Im z < 0 is similar, and is left to the reader.
The derivative of logD also follows similarly. □

Now define

M(z) := Dσ3
∞N∞(z;NΩ+Υ)D(z)−σ3 .(5.23)

The function M will act as our main parametrix, approximating S as
described in the introduction of Section 5. It is easily verified by relying on
the properties of the RH problem for N∞ and the RH problem for D that
M solves the following RH problem.

The RH problem for M.

(a) M : C \ [a1, bk] → C2×2 is analytic.
(b) M has continuous boundary valuesM± on [a1, bk]\{aj , bj}kj=1 satisfying

M+(x) =M−(x)×


(

0 ef(x)ωϵ(x)

−e−f(x)ωϵ(x)−1 0

)
, x ∈

⋃k
j=1(aj , bj),

e−2πiNΩjσ3 ,
x ∈ (bj , aj+1),

j = 1, . . . , k − 1.

(c) M(z) = I +O(z−1) as z → ∞.
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(d) M(z) = O((z − z∗)
− 1

4 ) as z → z∗ ∈ {aj , bj}kj=1.

Remark 5.2. By (5.16) and (5.17) we find that

dg(z) = −R1/2(z)

4πi

∮
γz,g

g(λ)dλ

R1/2(λ)(λ− z)

− R1/2(z)

2πi

k∑
j=1

∮
γz,g

g(λ)u′j(λ)dλ

∫ aj+1

bj

dx

R1/2(x)(x− z)
.

By (1.44), this becomes

(5.24) dg(z) = −R1/2(z)

4πi

∮
γz,g

g(λ)dλ

R1/2(λ)(λ− z)

−R1/2(z)

k∑
j=1

Υj(g)

∫ aj+1

bj

dx

R1/2(x)(x− z)
.

Clearly (5.24) is of the same form as [83, formula (4.8)], and by recalling
the form for Υ(g) in Remark 1.8, we can compare with [83, formula (4.12)].

6. Local parametrices

In this section we aim to construct functions P (x)(z) on neighbourhoods
Ux of x ∈ {aj , bj}kj=1 ∪ {tj}mj=1, which have the same jump contours and

jumps as S on each neighbourhood Ux, and additionally satisfy P (x)(z)M(z)−1

→ I as N → ∞ uniformly for z ∈ ∂Ux. We start by constructing paramet-
rices at {aj , bj}kj=1.

6.1. The Airy local parametrix. In this section, we construct a solution
to an RH problem which provides good approximation to S close to the
branch points ai, bi, and we rely on the following model RH problem for
ΦAi.

0

2π/3

Figure 6. The jump contour ΣAi for ΦAi.

The RH problem for ΦAi.
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(a) ΦAi : C \ ΣAi → C2×2 is analytic, where the contour is given by ΣAi =

R ∪ e
2πi
3 R+ ∪ e−

2πi
3 R+ and is oriented as in Figure 6.

(b) ΦAi has continuous boundary values ΦAi,± on ΣAi \ {0} satisfying

ΦAi,+(ζ) = ΦAi,−(ζ)

(
0 1
−1 0

)
, ζ ∈ (−∞, 0),

ΦAi,+(ζ) = ΦAi,−(ζ)

(
1 1
0 1

)
, ζ ∈ (0,∞),

ΦAi,+(ζ) = ΦAi,−(ζ)

(
1 0
1 1

)
, ζ ∈

(
e

2πi
3 R+ ∪ e−

2πi
3 R+

)
\ {0}.

(c) As ζ → 0, ΦAi(ζ) = O(1).
(d) As ζ → ∞,

ΦAi(ζ) =
1√
2
ζ−

1
4
σ3

(
1 i
i 1

)(
I +

1

8ζ3/2

(
1
6 i
i −1

6

)
+O

(
1

ζ3

))
e−

2
3
ζ3/2σ3 .

(6.1)

An explicit solution to the RH problem for ΦAi was constructed in [52,
Section 7] in terms of Airy functions.7

Local parametrices at the edge. Denote by Ux an open disc of radius
δ > 0 centred at the point x. We choose δ > 0 small enough such that the
distance between any Uaj , Ubj , Utj is at least δ, and that all these open discs
are enclosed by the contour Γ (or one of the contours Γj) which appeared
in the differential identity of Section 2. For the purposes of our argument
in Section 11, when we deformed V , it is actually important that we can
choose δ independent of s. We will also need to choose the discs so small
that hV does not vanish in the disc. Moreover, note that as the discs are
surrounded by Γ (or one of the Γj), they are also contained in UV – the
domain of analyticity of V .

On each open disc Ux where x ∈ {aj , bj}kj=1, let ψV be as in (1.14) and
ζx be the local variable given by the conformal mapping

ζx(z) =

(
3πi

2

∫ z

x
ψV (λ)dλ

) 2
3

, z ∈ Ux.(6.2)

We choose the branch such that ζbj (z) is positive for z > bj on Ubj , and
ζaj (z) is positive for z < aj on Uaj .

We can finally be more precise about how we define the lenses used in the
transformation (4.13): inside Uaj and Ubj we choose them such that under
ζ, they are mapped to the contour ΣAi in Figure 6. We will return to how
we define them close to tj later on. We then define the local parametrices

7Our ΦAi is given by
√
2πe−

πi
12 Ψσ in the notation of [52].
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P (aj)(z) and P (bj)(z) as

P (aj)(z) = E(z)σ3ΦAi

(
N2/3ζaj (z)

)
σ3e

−Nϕ(z)σ3e−
f(z)
2
σ3ωϵ(z)

−σ3
2 , z ∈ Uaj ,

(6.3)

P (bj)(z) = E(z)ΦAi

(
N2/3ζbj (z)

)
e−Nϕ(z)σ3e−

f(z)
2
σ3ωϵ(z)

−σ3
2 , z ∈ Ubj ,

where ϕ is as in (4.7) and

E(z) =


M(z)e

f(z)
2
σ3ωϵ(z)

σ3
2 eNπiΩj−1η(z)σ3 1√

2

(
1 i

i 1

)
ζaj (z)

1
4
σ3N

σ3
6 , z ∈ Uaj ,

M(z)e
f(z)
2
σ3ωϵ(z)

σ3
2 eNπiΩjη(z)σ3 1√

2

(
1 −i
−i 1

)
ζbj (z)

1
4
σ3N

σ3
6 , z ∈ Ubj ,

with M as in Section 5, Ω0 = Ωk = 0 and

η(z) =

{
1, Im z > 0,

−1, Im z < 0.
(6.4)

Lemma 6.1. For x ∈ {aj , bj}kj=1, the function P
(x) defined in (6.3) satisfies

the following RH problem.

(a) P (x) : Ux \ ΣS → C2×2 is analytic. Here ΣS is as in Section 4.
(b) On Ux ∩ ΣS,

P
(x)
+ = P

(x)
− JS ,

where we recall that JS is the jump matrix defined in condition (b) for
the RH problem for S.

(c) We have the matching condition

P (x)(z)M(z)−1 = I +O(N−1), as N → +∞,(6.5)

uniformly for z ∈ ∂Ux, and also uniformly over the parameters appear-
ing in our deformations Vs, e

tf , ωϵ.
(d) As z → x, P (x)(z) = O(1).

Proof. Condition (a) follows from the definition of ΣS on Ux (we recall that
ΣS was defined on Ux so that ζx maps ΣS to ΣAi). Condition (b) follows
from condition (b) for the RH problem for ΦAi, combined with the fact that
E, f, and ωϵ are analytic on Ux, and that ϕ is analytic on C \ (−∞, bk] and
on J we have the condition (4.10) while on (bj , aj+1) we have (4.14).

A straightforward calculation making use of (6.1), the definition of ϕ from
(4.7), the definition of ζ from (6.2), as well as the fact that Ωj are real, shows
that we have for z ∈ ∂Ux (and x being the relevant aj or bj)

P (x)(z)M(z)−1 = I

+M(z)e
f(z)
2
σ3ωϵ(z)

σ3
2 O
(
N−1ζx(z)

−3/2
)
ωϵ(z)

−σ3
2 e−

f(z)
2
σ3M(z)−1,

where the implied constant is universal. We have that e±f(z) and ωϵ(z)
±1

are uniformly bounded on ∂Ux. The same holds for M , since it is analytic
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α
2
+β)
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−e−πi(
α
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1 0

eπi(
α
2
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) (
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α
2
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Figure 7. The jump contour ΣΨ and the jump matrices for Ψ.

on C \ J , and has continuous boundary values on J ∩ Ux \ {x}. Thus we
obtain condition (c). Condition (d) follows from a direct computation which
we omit here and the proof is complete.

□

We observe that by including the subleading term in condition (d) in the
RH problem for ΦAi we obtain that as N → ∞,
(6.6)

P (x)(z)M(z)−1 = I +
1

N
∆(z) +O(1/N2),

∆(z) =
M(z)eNπiΩj−1η(z)σ3

8ζaj (z)
3/2

σ3

(
1
6 i
i −1

6

)
σ3e

−NπiΩj−1η(z)σ3M(z)−1, z ∈ ∂Uaj ,

∆(z) =
M(z)eNπiΩjη(z)σ3

8ζbj (z)
3/2

(
1
6 i
i −1

6

)
e−NπiΩjη(z)σ3M(z)−1, z ∈ ∂Ubj ,

We now turn to approximations close to the points tj .

6.2. The Painlevé local parametrix. Similarly to the Airy local parametrix,
we will consider an approximation for S near the points tj through a certain
model RH problem for Ψ. As opposed to the Airy model RH problem, the
solution to the RH problem for Ψ may not be explicitly constructed, how-
ever the unique existence of a solution to Ψ was proven in [44].8 The model
RH problem Ψ is associated with the Painlevé V equation, and depends on
two complex parameters α, β and a positive one s > 0.

RH problem for Ψ.

8Let us point out a minor difference between our description of the problem and that
of [44]. Our parameters α and β correspond to 2α and −β in [44].
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(a) Ψ : C\ΣΨ → C2×2 is analytic, with ΣΨ = Γ1∪Γ2∪Γ3∪Γ4∪ [0,+∞],
and

Γ1 =
1

2
+ e

πi
4 R+, Γ2 =

1

2
+ e

3πi
4 R+, Γ3 =

1

2
+ e−

3πi
4 R+, Γ4 =

1

2
+ e−

πi
4 R+,

oriented as in Figure 7.
(b) Ψ has continuous boundary values on ΣΨ\{0, 12 , 1} and the following

jumps:

Ψ+(z) = Ψ−(z)

(
1 eπi(

α
2
+β)

0 1

)
for z ∈ Γ1,

Ψ+(z) = Ψ−(z)

(
1 0

−e−πi(
α
2
+β) 1

)
for z ∈ Γ2,

Ψ+(z) = Ψ−(z)

(
1 0

eπi(
α
2
+β) 1

)
for z ∈ Γ3,

Ψ+(z) = Ψ−(z)

(
1 −e−πi(

α
2
+β)

0 1

)
for z ∈ Γ4,

Ψ+(z) = Ψ−(z)e
−πi(α

2
+β)σ3 for z ∈ (0, 1) \ {1/2},

Ψ+(z) = Ψ−(z)e
−2πiβσ3 for z > 1.

(c) There exist functions p = p(s, α, β), q = q(s, α, β), r = r(s, α, β)
such that Ψ(z) has the following behavior as z → ∞:

(6.7) Ψ(z) =

(
I +

1

z

(
q r
p −q

)
+O(z−2)

)
zβσ3 exp

(
− s

2
zσ3

)
.

(d) The functionH0(z) := Ψ(z)z−(α
4
+β

2
)σ3 , where the branch cut is taken

on (0,+∞), is analytic in a neighbourhood of 0. Similarly, the func-
tion

H1(z) = Ψ(z)(z − 1)(
α
4
−β

2
)σ3

{
eπiβσ3 , Im z > 0,
e−πiβσ3 , Im z < 0,

where we choose the principal branch for the roots, is analytic in a
neighbourhood of 1. Furthermore, Ψ is bounded near 1/2.

For our purposes, we find the following modification of this RH problem
to be convenient.

Modified Painlevé V model RH problem. We define ΦV(z; s, α, β) = ΦV(z)
by
(6.8)

ΦV(z; s, α, β) = e
s
4
σ3sβσ3Ψ

(
− 2iz

s
+

1

2
; s, α, β

){
e−

πi
2
(α
2
+β)σ3 , Re z > 0,

e
πi
2
(α
2
+β)σ3 , Re z < 0.

This is closely related to a function defined in [44, (3.9)], denoted by Φ(λ, s)
there. More precisely, we have with this notation

(6.9) ΦV(z, s) = Φ(−2iz, s)Ĝ(z)σ3 ,
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Figure 8. The jump contour ΣΦV
and the jump matrices for ΦV.

where

(6.10) Ĝ(z) = 2βeπiβe−
πiα
4 eiz

(
z +

is

4

) 1
2
(α
2
+β)(

z − is

4

)− 1
2
(α
2
−β)

,

with

−π
2
< arg

(
z +

is

4

)
<

3π

2
, −3π

2
< arg

(
z − is

4

)
<
π

2
.

It is straightforward to verify that ΦV satisfies the following RH problem

RH problem for ΦV.

(a) ΦV is analytic on C \ ΣΦV
, where ΣΦV

is as in Figure 8.
(b) On ΣΦV

, ΦV has the following jumps:

ΦV,+(z) = ΦV,−(z)

(
1 −1
0 1

)
for arg z = π/4 and arg z = 3π/4,

ΦV,+(z) = ΦV,−(z)

(
1 0
1 1

)
for arg z = −π/4 and arg z = −3π/4,

ΦV,+(z) = ΦV,−(z)e
πi(α

2
+β)σ3 for arg(z + is/4) = −π/2,

ΦV,+(z) = ΦV,−(z)e
πi(α

2
−β)σ3 for arg(z − is/4) = π/2.

(c) The behaviour of ΦV(z) as z → ∞ is inherited from condition (c) in
the RH problem for Ψ.

(d) The behaviour of ΦV(z) as z → ±is/4 is inherited from condition
(d) in the RH problem for Ψ.

For the following results, we rely on [44].

Proposition 6.2. Let α > −1 and β ∈ iR. The following statements hold.

(a) Ψ is solvable all s > 0.
(b) When considered as a function of s, H0(0) and H1(1) are analytic

on an open set in the complex plane containing (0,∞).
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(c) As s→ 0,

H0(0) = O
((

sα/2 s−α/2 + sα/2

sα/2 s−α/2 + sα/2

))
, H1(1) = O

((
s−α/2 + sα/2 sα/2

s−α/2 + sα/2 sα/2

))
,

for α ̸= 0, while

H0(0) = O
((

1 log s
1 log s

))
, H1(1) = O

((
log s 1
log s 1

))
,

as s→ 0 for α = 0, β ̸= 0.
(d) As s → ∞, we have Φ(s/2; s), Φ(−s/2; s) = I + O (e−cs) (where Φ

is as in [44], see (6.9) above for relation to ΦV), for some constant
c > 0. Similarly, Φ′(s/2; s), Φ′(−s/2; s) = O (e−cs) as s→ ∞.

(e) There hold the identities

(H0(0)
−1H ′

0(0))11 = −s
2
− σ(s)

α
2 + β

+
α

4
− β

2
,

(H1(1)
−1H ′

1(1))22 =
s

2
+

σ(s)
α
2 − β

− α

4
− β

2
,

where σ is a real analytic function on (0,+∞) and satisfies

(6.11) σ(s) =

{
α2/4− β2 +O(s) +O(s1+α log s) as s→ 0,

O
(
s−1+2αe−s

)
as s→ +∞.

Furthermore, as ŝ→ ∞,∫ ŝ

0

(
σ(s)−

(α2

4
− β2

))ds
s

= −
(
α2

4
− β2

)
log(ŝ)

− log
G(1 + α

2 + β)G(1 + α
2 − β)

G(1 + α)
+ o(1),

where G is the Barnes G-function.
(f) As z → ∞, we have

(6.12) ΦV(z)Ĝ(z)
−σ3 = I +O(z−1),

uniformly for s ∈ (0,+∞).

Remark 6.3. In [44] it was furthermore proven that σ satisfies the Jimbo-
Miwa-Okamoto form of the Painlevé V equation:(

s
d2σ

ds2

)2

=

(
σ − s

dσ

ds
+ 2

(
dσ

ds

)2

+ α
dσ

ds

)2

− 4

(
dσ

ds

)2(dσ
ds

+ α/2− β

)(
dσ

ds
+ α/2 + β

)
.

Proof. Part (a) is the vanishing lemma proven in [44, Section 4.4.1]. For part
(b), it is generally known that such functions are meromorphic functions of
s with only a finite number of possible poles for values of s where the RH
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problem is not solvable, and by part (a) it follows that they are analytic on
an open set containing (0,∞).

For part (c), we rely on the analysis of Ψ as s → 0 in [44, Section 4.2.2],
taking care that our α and β correspond to 2α and −β in [44]. When α ̸=
0, 1, 2, . . . , it follows from [44][(4.53), (4.23), and (4.75)], writing ξ = λ

s + 1,
that

Ψ(ξ) = sβσ3E(λ)

(
1 c0J(λ; s, α/2,−β)
0 1

)
(λ+s)(

α
4
+β

2 )σ3λ(
α
4
−β

2 )σ3
(
1 ĝ
0 1

)
× (I + o(1)),

as s→ 0, uniformly for λ in a fixed neighbourhood of 0 intersected with the
region where ξ = λ

s + 1 is in region III, where ĝ and c0 are some constants
and E is an analytic function (and thus bounded) on a neighbourhood of
0. By [44, formula (4.60)], J is bounded, from which part (c) follows for
H0(0) and for α ̸= 0, 1, 2, . . . , by the definition of H0. The function H1(1)
is evaluated similarly. When α = 0, 1, 2, . . . , by [44, formulas (4.67), (4.23)
and (4.75)],

Ψ(ξ) = (I + o(1))sβσ3Ẽ(λ)

(
1 c2J̃(λ; s, α/2,−β)
0 1

)
×(λ+s)(

α
4
+β

2 )σ3λ(
α
4
−β

2 )σ3
(
1 (−1)α+1

π sinπ(α/2− β) log(λe−πi)
0 1

)(
1 ĝ
0 1

)
,

as s→ 0, uniformly for λ in a fixed neighbourhood of 0 intersected with the
region where ξ = λ

s + 1 is in region III, where ĝ and c2 are some constants

and Ẽ is an analytic function (and thus bounded) on a neighbourhood of 0.
By [44, formula (4.71)], it follows that

c2J̃(λ; s, α, β) = − 1

π
sinπ(α/2 + β)λα/2−β(λ+ x)α/2+β log(λe−πi)

+O (max{1, sα| log s|}) .
Thus, by the definition of H0, part (c) follows also for α = 0, 1, 2, . . . for
H0(0), and H1(1) is evaluated similarly.

Part (d) follows from [44, formulas (4.2) and (4.9)].
Now consider part (e). We will prove the identity for H0(0)

−1H ′
0(0), the

other one follows in a similar manner. It is easily verified that Ψ′Ψ−1 is of
the form

(6.13) Ψ′(z, s)Ψ(z, s)−1 = A∞(s) +
A0(s)

z
+
A1(s)

z − 1

and similarly that

(6.14)

[
∂

∂s
Ψ(z, s)

]
Ψ(z, s)−1 = B1(s)z +B0(s)

for some matrices Ai, Bi which are independent of z. Inserting the expression

Ψ(z) = H0(z)z
(
αj
4
+

βj
2
)σ3 into (6.13) and evaluating the residue at z = 0, we
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see that (
αj
4

+
βj
2

)
H0(0)σ3H0(0)

−1 = A0(s).

On the other hand, expanding near zero H0(z) = H0,0(I +H0,1z +O(z2)),

we see that H0(0)
−1H ′

0(0) = H0,1. Moreover, using Ψ(z) = H0(z)z
(α
4
+β

2
)σ3 ,

we see by evaluating (6.14) as well as its z-derivative, both at z = 0, that

∂

∂s
H0,0 = B0H0,0 and

∂

∂s
H0,1 = H−1

0,0B1H0,0.

Substituting the large z expansion (6.7) for Ψ into (6.14), it follows that
B1 = −1

2σ3, so by our remark that H−1
0 (0)H ′

0(0) = H0,1, we obtain

∂

∂s
(H−1

0 (0)H ′
0(0))11 = −1

2
(H−1

0 (0)σ3H0(0))11

= −1

2
(H0(0)σ3H0(0)

−1)11 = − 1
α
2 + β

A0,11(s).

Using [44, (4.103) and (4.110)], which state that A0,11(s) = σ′(s)+ α
4 + β

2
(recall that our α and β correspond to 2α and −β in [44]), we find that

(6.15) ∂s(H
−1
0 (0)H ′

0(0))11 = − 1
α
2 + β

σ′(s)− 1

2
,

where σ is a real analytic function satisfying (6.11). It remains to evaluate

the integration constant here. Recalling the notation Φ(z, s) = ΦV(
iz
2 , s)Ĝ(

iz
2 )

−σ3 ,

it follows by part (d) and the definition of Ĝ in (6.10), and by the relation
between Ψ and Φ in (6.8), (6.9), that

(H0(0)
−1H ′

0(0))11 = lim
z→0

([
Ψ−1(z)Ψ′(z)

]
11

− (α4 + β
2 )

1

z

)
= lim

z→−i s
4

[
−2i(Φ(−2iz)−1Φ′(−2iz))11 +

Ĝ′(z)

Ĝ(z)
− (α4 + β

2 )
1

z + i s4

]
is

2

= −s
2
+
α

4
− β

2
+ o(1),

as s → 0. Combined with (6.15) and the limiting behaviour of σ in (6.11),
we obtain part (e) for H0(0)

−1H ′
0(0), the result for H1(1)

−1H ′
1(−1) is proven

in a similar manner.
□

We are finally in a position to define our local parametrix near a point tj .

The local parametrix near tj. Let ϵ0 > 0 be sufficiently small but fixed,
and let Utj denote a sufficiently small but fixed disc centred at tj . In this
section, we follow [44, 42] to construct a local parametrix in Utj which will
approximate S uniformly for 0 < ϵ ≤ ϵ0. Let us define

(6.16) ζtj (z) = i

({
ϕ(z), if Im z > 0
−ϕ(z), if Im z < 0

}
− ϕ(tj + iϵ)− ϕ(tj − iϵ)

2

)
.
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One can check e.g. from (4.7) that ϕ(z) = ϕ(z), and thus

ϕ(tj + iϵ)− ϕ(tj − iϵ)

2
= iImϕ(tj + iϵ).

One readily verifies that the function ζtj is a conformal map in Utj , and
satisfies ζ ′tj (tj) = πψV (tj) > 0. This remark allows us to finally define what

the lenses from Section 4 look like in Utj : we choose the lenses so that ζtj
maps ΣS \R to ΣΦV

. We observe that ζtj (tj) is not necessarily equal to zero,
but tj is not a singular point in the RH problem for S, so we simply deform
the contour of S slightly and assume that the lens intersects the real line at
tj anyway.

To make use of our Painlevé model RH problem, we also need to define
the α, β, and s parameters. For α and β, we simply choose αj , βj . For s, let
us define

(6.17) sj,N = 2N
(
ϕ(tj + iϵ) + ϕ(tj − iϵ)

)
= 4NReϕ(tj + iϵ) > 0.

Then Nζtj (tj ± iϵ) = ± isj,N
4 .

This allows us to define precisely what the branch cut of ωϵ from Section
2.4 is: we choose the cut going from tj + iϵ upward to be such that ζtj maps
the part of it in Utj to i(sj,N/4,∞), and similarly in the lower half plane –
one readily checks from basic properties of ζtj , that at least for small enough
Utj , this gives rise to a valid branch cut (smooth, does not intersect itself,
or spiral into itself).

We can finally define our local parametrix:
(6.18)

P (tj)(z) = Etj (z)ΦV(Nζtj (z); sj,N , αj , βj)Q(z)e−Nϕ(z)σ3e−
f(z)
2
σ3ωϵ(z)

−σ3
2 ,

with

(6.19) Q(z) =


(

0 1
−1 0

)
, Im z > 0,

I, Im z < 0,

and where ΦV is the solution to the modified Painlevé V model RH problem
discussed above, and Etj is given by

(6.20) Etj (z) =M(z)ωϵ(z)
σ3
2 e

f(z)
2
σ3Q(z)−1

(
Nζtj (z) +

isj,N
4

)−(
αj
4
+

βj
2
)σ3

×
(
Nζtj (z)−

isj,N
4

)(αj
4
−

βj
2
)σ3
e−iNImϕ(tj+iϵ)σ3e

πiαj
4
σ3e−πiβjσ32−βjσ3 .

Here we choose the branch of the roots so that the cuts of the Nζtj (z) ±
isj,N
4 -terms are on Σωϵ discussed in Section 2.4 – to be precise, one defines

log(Nζtj (z)± i
sj,N
4 ) =

∫ Nζtj (z)±i sj,N4
1

dw
w for all z off of the above mentioned

cuts, in such a manner that the integration contour does not cross the cut.
The claim about P (tj) is the following.
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Lemma 6.4. The function P (tj) satisfies the following RH problem.

(a) P (tj) : Utj \ ΣS → C2×2 is analytic – here ΣS is as in Section 4.

(b) P (tj) satisfies the same jump conditions as S on ΣS ∩ Utj .
(c) For z ∈

⋃k
j=1(∂Uaj ∪ ∂Ubj ),

P (tj)(z)M(z)−1 = I +O(N−1)(6.21)

where the implied constant is uniform in 0 < ϵ ≤ ϵ0.
(d) P (tj)(z) = O(1) as z → tj.

Proof. Verifying a), b), and d) is a routine calculation making use of prop-
erties of ΦV and very similar to ones in [44, 42] so we omit the details.
Concerning the matching condition, in particular the uniformity in it, we
point out that using (6.12) along with the definition of ζtj from (6.16), that
for z ∈ ∂Utj

P (tj)(z)M(z)−1 = I + Etj (z)O(N−1)Etj (z)
−1.

with an implied constant that is uniform in z and 0 < ϵ < ϵ0. One also
readily verifies that P and ω±1

ϵ are bounded on ∂Utj uniformly in 0 < ϵ < ϵ0,
and thus we obtain (6.21). □

We now turn to performing our final transformation and solving our RH
problem approximately.

7. Solving the small norm problem

As is standard in the RH analysis of these types of problems, we have the
following lemma. Recall the contour ΣS from Figure 5 and the jumps JS
from (4.15)-(4.18).

Lemma 7.1. Given δ > 0 (fixed but sufficiently small), there exists c > 0,
such that

JS(z) = I +O
(
e−cN/(|z|2 + 1)

)
,

as N → ∞, uniformly for z ∈ ΣS\J and |z−z0| > δ for all z0 ∈ {aj , bj}kj=1∪
{tj}pj=1.

Proof. Combining ϕ(z) = g(z)−V (z)/2+ℓ/2 with the (strict) Euler-Lagrange
inequality (1.10), we infer that ϕ+(x) + ϕ−(x) < 0 for x ∈ R \ J . This
yields the lemma for any fixed x ∈ R \ J with x bounded away from
{aj , bj}kj=1 ∪ {tj}pj=1. For uniformity as x → ∞, we recall our assumption

that V (x)
log(|x|+1) → ∞, and since g has logarithmic growth at ∞, we obtain

the uniformity required.
Now consider the contour J±. For x ∈ J , Reϕ±(x) = 0, and furthermore

d
dxϕ±(x) = ∓iπψV (x). Thus, by the Cauchy-Riemann equations, Reϕ(z) >
0 on J+ and J− assuming they are chosen to be sufficiently near the real line.
We observe that at the intersection points J± ∩ ∂Ux for x ∈ {aj , bj}kj=1, we

can not choose the contours J± to be sufficiently near the real line, because
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on Ux the contours J± were already determined in Section 6.1 and the
derivative of ϕ at x is zero. We consider the intersection points near bj , the
ones near aj are considered similarly. As z → bj ,

ϕ(z) = ϕ(bj)− c(z − bj)
3/2 +O((z − bj)

5/2),

for some c > 0, where we recall that ϕ(bj) is purely imaginary. If z± ∈
J± ∩ ∂Ubj then the argument of (z±− bj) is close to ±2π/3 when we choose
δ to be sufficiently small (see Section 6.1), and thus Reϕ(z±) is positive. □

Recall the main parametrix M satisfying the RH problem for M as in
Section 5, the local parametrices at t1, . . . , tp constructed in Section 6.2,
and the local parametrices at aj , bj for j = 1, . . . , k constructed in Section
6.1. Define

(7.1) R(z) =

{
S(z)M(z)−1, z /∈ ∪x∈T Ux
S(z)[P (x)(z)]−1, z ∈ Ux for x ∈ T ,

where T = {aj , bj}kj=1 ∪ {tj}pj=1, and let ΣR be as in Figure 9, i.e.

ΣR = ∪x∈T ∂Ux ∪ {y : y ∈ J± and |y − x| > δ for all x ∈ T }

∪ {y ∈ R \ J : |y − x| > δ for all x ∈ {aj , bj}kj=1}.
Combining Lemma 7.1, Lemma 6.1, and Lemma 6.4 with the uniform

boundedness of M for z bounded away from T , we see that R satisfies the
following small norm RH problem.

(a) R is analytic on C \ ΣR.
(b) On ΣR,

R+(z) = R−(z)(I + ∆̂(z)),

where ∆̂(z) = O
(
N−1

)
for z ∈ ∂Ux with x ∈ T , and ∆̂(z) =

O
(
e−cN

|z2|+1

)
, uniformly for z ∈ ΣR \ ∪x∈T ∂Ux and uniformly in the

deformation parameters t, s, ϵ introduced in the differential identities
of Section 2.

(c) R(z) → I as z → ∞.

It is easily verified that R has the form

(7.2) R(z) = I +

∫
ΣR

R−(u)∆̂(u)du

(u− z)2πi
,

where we emphasize that the orientation on ∂Ux for x ∈ T is clockwise.
By standard small norm analysis (see e.g. [50, Section 7]), it follows that

R− = I + O(N−1) in L2
(
ΣR,

du
|u2|+1

)
as N → ∞. Thus by (7.2) and the

asymptotics of ∆̂ in condition (b) for the RH problem for R, it follows that

(7.3) R(z) = I +O
(
N−1

)
and R′(z) = O(N−1)

as N → ∞, uniformly for z in compact subsets of C \ ΣR and uniformly in
the deformation parameters t, s, ϵ introduced in the differential identities of
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Figure 9. The contour ΣR.

Section 2. Furthermore, the jumps of R on J± and ∂Ux for x ∈ T extend
to analytic functions in neighbourhoods of J± and ∂Ux. Thus these jump
contours can be deformed, and so (7.3) also holds as z approaches J± and
∂Ux for x ∈ T . The upshot is that there are open intervals Ij such that

[aj , bj ] ⊂ Ij and that (7.3) holds uniformly for z ∈ C \ (R \ ∪kj=1Ij). The

reason that (7.3) does not hold uniformly on R \ ∪kj=1Ij is that we did not
assume that F is analytic in this region, and thus we cannot deform the
jumps of R here.

For future reference we observe that in the case where F (x)ωϵ(x) ≡ 1, by
substituting (6.6) into (7.2), we obtain

(7.4)
R(z) = I +

1

N
R(1)(z) +O(1/N2),

R′(z) =
1

N

d

dz
R(1)(z) +O(1/N2),

as N → ∞, uniformly for z ∈ C \
(
R \ ∪kj=1Ij

)
, where

(7.5) R(1)(z) =
∑

x∈{aj ,bj}kj=1

∮
∂Ux

∆(u)du

(u− z)2πi
,

and where ∆(u) is as in (6.6) (so that ∆̂(u) = 1
N∆(u) +O(1/N2) on ∂Ux).

8. Ratio asymptotics for non-singular symbols

In this section, we obtain large N asymptotics for ratio asymptotics of
Hankel determinants with non-singular symbols, thereby proving Theorem
1.3. To do so, we will rely on the asymptotics of Y obtained in the Riemann-
Hilbert analysis, and specialize to symbols of the form νt(z) = Ft(z)e

−NV (z)

as denoted in (2.11), with tf = logFt analytic in a neighbourhood of J , and
we fix ωϵ = 1. Substituting these asymptotics for Y into the right-hand side
of (2.12) and integrating, we obtain Theorem 1.3.

We denote Υ(tf) = tΥ(f), where the quantity Υ was defined in (1.44).
Fix a contour Γj oriented counter-clockwise enclosing [aj , bj ], and further-
more enclosing the lenses around [aj , bj ] and the discs Uaj , Ubj (defined in
Section 6) such that f and V are analytic in an open set containing Γj and
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[aj , bj ], such that Γj intersects R only at two points. Recall that this is pre-
cisely the setting of Section 2.2 and Section 2.3, and that we denoted by Ij
the largest subinterval of R enclosed by Γj . Finally, we denoted I = ∪kj=1Ij
and Γ = ∪kj=1Γj .

For z ∈
⋃
j Γj ∪ (R \ I) and t ∈ (0, 1), we have by (4.4), (4.13), and (7.1)

Y (z) = e−N
ℓ
2
σ3R(z)M(z)eN(g(z)+ ℓ

2
)σ3 ,

where we recall the definition of g in (4.1), and that Y , R and M depend
on t. So

Y (z)−1Y ′(z) = e−N(g(z)+ ℓ
2
)σ3

(
M(z)−1R(z)−1R′(z)M(z)

+M(z)−1M ′(z) +Ng′(z)σ3

)
eN(g(z)+ ℓ

2
)σ3 ,

and we recall that r(νt) is expressed in terms of the quantity
(8.1)(
Y (z)−1Y ′(z)

)
21

= e2N(g(z)+ ℓ
2
)
(
M(z)−1R(z)−1R′(z)M(z) +M(z)−1M ′(z)

)
21
,

while
(8.2)(
Y (z)−1Y ′(z)

)
11

=
(
M(z)−1R(z)−1R′(z)M(z) +M(z)−1M ′(z)

)
11

+Ng′(z)

appears in formula (2.12).

Lemma 8.1. As N → ∞,
(8.3)

sup
t∈(0,1)

|r(νt)| = sup
t∈(0,1)

∣∣∣∣∣
∫
R\I

[Y (x)−1Y ′(x)]21
d

dt
Ft(x)e

−NV (x) dx

2π

∣∣∣∣∣ = O
(
e−cN

)
,

for some c > 0, where r(νt) is as defined in (2.12).

Proof. Let

(8.4) H(z) = e−N(2g(z)+ℓ)
[
Y (z)−1Y (z)′

]
21
.

Then (8.3) becomes

(8.5) sup
t∈(0,1)

∣∣∣∣∣
∫
R\I

H+(x)
d

dt
Ft(x)e

N(2g+(x)+ℓ−V (x))dx

∣∣∣∣∣ = O
(
e−cN

)
.

We will show that H+(x) is uniformly bounded for x ∈ R \ I. By (4.14)
combined with the Euler-Lagrange equation (1.10) (which is a strict in-
equality by our assumptions) the integrand on the left-hand side of (8.5)
is exponentially small for any fixed x ∈ R \ I. By (1.6) and the fact that
g(x) = O(log |x|) as x→ ±∞, the definition of Ft in (2.11) and assumption
(c) for F , we obtain

(8.6)
d

dt
Ft(x)e

N(2g+(x)+ℓ−V (x)) = O
(
e−cN/x2

)
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as x→ ∞. Thus, upon proving the boundedness of H+, we have proven the
lemma.

Since e−2Ng(z) = O(z−2N ) as z → ∞ and
[
Y (z)−1Y (z)′

]
21

= O(z2N−2) as

z → ∞, H(z) = O(z−2) as z → ∞. Also, since
[
Y (z)−1Y (z)′

]
21

is an entire

function and since eg(z) is analytic on C\[a1, bk], it follows that H is analytic
on C \ [a1, bk]. Combining the facts that H(z) = O(z−1) as z → ∞, that
H(z) is analytic on C \ [a1, bk], and that H is bounded in a neighbourhood
of [a1, bk], we obtain that

H(z) =

∫ bk

a1

(H+(x)−H−(x))dx

2πi(x− z)
.

Thus, if γ is a counter-clockwise oriented loop containing [a1, bk], and z is
not contained in γ, then

(8.7) H(z) =

∮
γ

H(x)dx

2πi(z − x)
.

Along γ, we have by (8.1) that

H(z) =
(
M(z)−1R(z)−1R′(z)M(z) +M(z)−1M ′(z)

)
21
.

We recall that (7.3) holds uniformly for z ∈ C \ (R \ ∪kj=1Ij), where each

Ij is an open interval such that [aj , bj ] ⊂ Ij . We let γ be such that it
intersects R in I1 and Ik (and not in the support µV ), and so in particular
(7.3) holds uniformly for z ∈ γ. Thus, since additionally M(z) and M ′(z)
are uniformly bounded for z ∈ γ, it follows that H(z) is bounded uniformly
for z ∈ R \ [a1 − δ, bk + δ] for δ > 0.

Now we consider H+(z) for z ∈ [bj + δ, aj+1 − δ]. Let Σj be a curve
connecting bj to aj+1 in the lower half of the complex plane. Let Oj be the
region contained by [bj , aj+1] and Σj . Let Hj(x) = H(x) for x ∈ C\Oj , and
Hj(x) = H(x)e−4πiNΩj for x ∈ Oj . Then by (4.14), Hj,+(x) = Hj,−(x) for
x ∈ (bj , aj+1). Then, similarly to (8.7), we have

H+(z) =

∮
γj

Hj(x)dx

2πi(z − x)

for z ∈ (bj + δ, aj+1 − δ), where γj is a loop containing [a1, bk] \ (bj , aj+1)
but not z (and is such that Hj is analytic on γj). We assume that γj only

intersects R in ∪ki=1Ii, and thus Hj(x) is uniformly bounded for x ∈ γj
(similarly to the boundedness of H(x) for x ∈ γ above). Thus it follows
that H+(z) is uniformly bounded for z ∈ R \ I, which concludes the proof
of the lemma. □

We now integrate [Y (z)−1Y ′(z)]11 appearing in (2.12). Recall Nλ defined
in (5.8), satisfying the RH problem for Nλ. By considering the Riemann-
Hilbert problem that Nλ(z) satisfies, it is easily verified that Nλ(z) =
N∞(λ)−1N∞(z) for any λ, z ∈ C \ [a1, bk]. Thus we may rewrite

N∞(z)−1N ′
∞(z) = N∞(z)−1N∞(λ)N∞(λ)−1N ′

∞(z) = Nλ(z)
−1N ′

λ(z).
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On the other hand, since λ was arbitrary and Nz(z) = I by construction,
we find that

(8.8) N∞(z)−1N ′
∞(z) = lim

λ→z
N ′
λ(z).

We rely on this to evaluate (8.2). Since V and f are analytic on a neigh-
bourhood of Γj , for j = 1, . . . , k, the small norm estimate for R in (7.3)

holds uniformly for z ∈ ∪kj=1Γj . Recall the definition of M in (5.23), and

let D(z) = exp(df (z)) with df is as in (5.17). By (8.8), (8.2) and (7.3),

(8.9) [Y (z)−1Y ′(z)]11 = Ng′(z)− t
D′(z)

D(z)
+ lim
λ→z

N ′
λ(z)11 +O(N−1)

= Ng′(z)− t
d

dz
logD(z) +

k−1∑
j=1

∂jθ(NΩ+ tΥ(f))

θ(NΩ+ tΥ(f))
u′j(z) +O(N−1),

as N → ∞, uniformly for t ∈ (0, 1) and z ∈
⋃
j Γj . Substituting the defini-

tion of D(z) from (5.20), we thus obtain

(8.10)∮
Γ
[Y (z)−1Y ′(z)]11f(z)

dz

2πi
= N

∮
Γ
g′(z)f(z)

dz

2πi
− t

∮
Γ
d′f (z)f(z)

dz

2πi

+
k−1∑
m=1

∂mθ(NΩ+ tΥ(f))

θ(NΩ+ tΥ(f))

∮
Γ
u′m(z)f(z)

dz

2πi
+ o(1),

as N → ∞, where o(1) is uniform in t ∈ (0, 1). We now evaluate the
right-hand side.

The first term: For the first term here, we note that by the definition of
g from (4.1), Fubini, and Cauchy’s integral formula, we have
(8.11)∮

Γ
g′(z)f(z)

dz

2πi
=

∫
J

(∮
Γ

1

z − x
f(z)

dz

2πi

)
dµV (x) =

∫
J
f(x)dµV (x).

The second term: By (5.17) and the fact that ∂
∂zwz(λ) =W (z, λ), we obtain

(8.12) −
∮
Γ
d′f (z)f(z)

dz

2πi
=

1

2

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi
.

The third term: By (5.19)
(8.13)
k−1∑
m=1

∂mθ(NΩ+ tΥ(f))

θ(NΩ+ tΥ(f))

∮
Γ
u′m(z)f(z)

dz

2πi
=

k−1∑
m=1

∂mθ(NΩ+ tΥ(f))

θ(NΩ+ tΥ(f))
Υm(f)

=
d

dt
log θ(NΩ+Υ(tf)).
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Combining everything: Combining the first, second and third term we obtain

(8.14)

∮
Γ
[Y (z)−1Y ′(z)]11f(z)

dz

2πi
=

d

dt

[
tN

∫
J
f(x)dµV (x)

+
t2

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi
+ log θ(NΩ+Υ(tf))

]
+ o(1),

as N → ∞, where o(1) is uniform in t ∈ (0, 1). Substituting (8.14) into
(2.12) we obtain Theorem 1.3.

8.1. Proof of (1.46). To prove (1.46), observe that

(8.15)

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi

=

∮
Γ

∫
J
(W (z, λ−)−W (z, λ+)) f(z)f(λ)

dλ

2πi

dz

2πi
.

Taking integration by parts,

(8.16)

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi

=
1

2πi

k∑
j=1

∮
Γ

[
f(bj)

(
wbj,−(z)− wbj,+(z)

)
− f(aj)

(
wbj,−(z)− wbj,+(z)

)]
f(z)

dz

2πi

+

∮
Γ

∫
J
(wλ+(z)− wλ−(z))f

′(λ)f(z)
dλ

2πi

dz

2πi
.

By (5.15),

(8.17) wbj,−(z)− wbj,+(z) = wa(j+1),−(z)− wa(j+1),+
(z) = −4πiu′j(z),

for j = 1, . . . , k − 1, and since wλ(z) is analytic for λ ∈ C \ [a1, bk],

(8.18) wbk,−(z)− wbk,+(z) = wa1,−(z)− wa1,+(z) = 0.

Thus, using additionally (5.14),

(8.19)

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi
= 2

k−1∑
j=1

(f(aj+1)− f(bj))Υj(f)

+ 2

∮
Γ

∫
J
wλ+(z)f

′(λ)f(z)
dλ

2πi

dz

2πi
.

Then (1.46) follows from (8.19) and (1.33).
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8.2. Proof of (1.58). The asymptotics of (1.58) follow from a second in-
tegration by parts and subsequently changing the homology basis from uj
to ûj . Our starting point is (8.19). By (1.33), wλ+(z±) = ± 1

z−λ + O(1) as

z → λ (for z, λ in J), and thus

(8.20)

∮
Γ
wλ+(z)f(z)

dz

2πi
= P.V.

∫
J

[
wλ+(z−)− wλ+(z+)

]
f(z)

dz

2πi
,

where P.V.
∫

is the principal value integral. By (1.33), by the fact that

R1/2
± (x) and u′j,±(x) are imaginary on J , and by the fact that R1/2(x) is

real on R \ J , it follows that wλ+(z±) is real on J . Thus

(8.21) wλ+(z±) =
∂

∂z
log |Θ(λ+, z±)|.

Thus, taking integration by parts in (8.20),

(8.22)

∮
Γ
wλ+(z)f(z)

dz

2πi
=

∫
J
log

∣∣∣∣Θ(λ+, z+)

Θ(λ+, z−)

∣∣∣∣ f(z) dz2πi
+

1

2πi

k∑
j=1

(
f(bj) log

∣∣∣∣Θ(λ+, bj,−)

Θ(λ+, bj,+)

∣∣∣∣− f(aj) log

∣∣∣∣Θ(λ+, aj,−)

Θ(λ+, aj,+)

∣∣∣∣)
From (5.10), it follows that if x ∈ {bj , aj+1}, then

(8.23) log |Θ(z, x±)| = ±Re (2πiuj(z)) ,

for z ∈ J . By (5.9),
∣∣∣Θ(λ+, z+)

/
Θ(λ+, z−)

∣∣∣ = |Θ(λ+, z+)|2. Thus,

(8.24)

∮
Γ
wλ+(z)f(z)

dz

2πi
= 2i

k−1∑
j=1

(f(aj+1)− f(bj)) Im(uj,+(λ))

+ 2

∫
J
log |Θ(λ+, z+)| f ′(z)

dz

2πi

Substituting into the right hand side of (8.19) we obtain

(8.25)

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi
= 2

k−1∑
j=1

(f(aj+1)− f(bj))

(
Υj(f)

+
1

π

∫
J
f ′(λ)Imuj,+(λ)dλ

)
+ 4

∫
J

∫
J
log |Θ(λ+, z+)| f ′(z)f ′(λ)

dz

2πi

dλ

2πi
.

Finally, we want to bring the right hand side of (8.25) to a slightly different
form. Taking integration by parts in the definition of Υj (1.44) and relying
on (5.3),

Υj = −
∮
Γ
uj(z)f

′(z)
dz

2πi
− 1

2πi

k−1∑
l=1

(f(bl)− f(al+1))τl,j .
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On J , we have Reuj,+ = Reuj,−, and so

(8.26) Υj =
1

π

∫
J
Im(uj,+(z))f

′(z)dz − 1

2πi

k−1∑
l=1

(f(bl)− f(al+1))τl,j .

We recall that τ is symmetric and Imτ = (−i)τ is positive definite. From

this, and using the fact that
∑k−1

l=1 τm,l(τ
−1)l,j = δm,j , we find

(8.27)

k−1∑
j=1

(f(aj+1)− f(bj))

(
Υj(f) +

1

π

∫
J
f ′(λ)Imuj,+(λ)dλ

)

= 2πi

k−1∑
j,l=1

Υj(f)Υl(f)(τ
−1)j,l

− 2

π

∑
j,l

∫∫
J×J

Im(uj,+(z))Im(ul,+(λ))f
′(z)f ′(λ)(Imτ)−1

l,j dzdλ.

Thus, recalling the definition of L(f) from (1.59), we obtain
(8.28)∮

Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dλ

2πi

dz

2πi
= 2L(f)− 4πi

k−1∑
j,l=1

Υj(f)Υl(f)(τ
−1)j,l.

Substituting into (1.43) and relying on (1.53), we obtain (1.58).

9. Ratio asymptotics for Fisher-Hartwig symbols

The goal of this section is to prove the main technical estimates needed for
the proof of Theorem 1.6 in Section 2.4 by using the asymptotics of Section
7 and the parametrices from Section 6.1 as well as the results for the smooth
symbol, namely Theorem 1.3.

To be more precise, the main idea of the proof is to write (in the notation
of Section 2.4)

(9.1)
HN (ν0)

HN (e−NV )
=

HN (νϵ0)

HN (e−NV )
exp

(
−
∫ ϵ0

0
∂ϵ logHN (νϵ)dϵ

)
and use the identity (2.15) to express the logarithmic derivative in terms of
the solution to a RH problem. We evaluate the asymptotics of the RH prob-
lem by relying on the local parametrix from Section 6.2 and the asymptotics
of the small norm problem from Section 7. We use Theorem 1.3 to evaluate
the asymptotics of HN (νϵ0) for fixed ϵ0 > 0. Actually, the asymptotics of
the integral above are not quite as precise as those in the previous section
in that we will have error terms of size O(ϵ0), but taking in the end ϵ0 → 0
(after we take N → ∞) will provide the desired estimates. We now turn to
analyzing the integral term above – after this, we will see how its ϵ0 → 0
asymptotics combine with those of the ratio term to produce the result we
are after.
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9.1. The integral term. Our main task in evaluating
∫ ϵ0
0 ∂ϵ logHN (νϵ)dϵ

is to analyze the asymptotics of the differential identity (2.15).
Let us begin by noting that for z close enough to tj± iϵ, and in particular

for z ∈ Utj (recall that Utj is a fixed disc centered at tj), we can make use
of (4.4), (4.13), and (7.1), to write

Y (z) = e−
Nℓ
2
σ3R(z)P (tj)(z)eNg(z)σ3e

Nℓ
2
σ3 .

Recalling the definition of P (tj) from (6.18), a short calculation shows that
(suppressing the dependence of ΦV on αj , βj , and sj and that of Etj on tj)

(9.2) (Y (z)−1Y ′(z))11 = Y1,j(z) + Y2,j(z) + Y3,j(z) + Y4,j(z),

where

Y1,j(z) =
[
Ng′(z)−Nϕ′(z)− f ′(z)

2 − ω′
ϵ(z)

2ωϵ(z)

]
,

Y2,j(z) = Nζ ′tj (z)
[
ΦV(Nζtj (z))

−1Φ′
V(Nζtj (z))

]
rr
,

Y3,j(z) =
[
ΦV(Nζtj (z))

−1E(z)−1E′(z)ΦV(Nζtj (z))
]
rr
,

Y4,j(z) =
[
ΦV(Nζtj (z))

−1E(z)−1(R−1R′)(z)E(z)ΦV(Nζtj (z))
]
rr
,

for z outside the lenses and in Utj , where r = 2 for Im z > 0 and r = 1 for
Im z < 0.

The Y3,j- and Y4,j-terms. We focus on the term Y3,j(z) in the situation

where z → tj + iϵ. The remaining cases, namely Y3,j(z) with z → tj − iϵ
or Y4,j(z) with z → tj ± iϵ will be similar and we will leave the details to
the reader. We will show below that in the N → ∞ and ϵ0 → 0 limit,
limz→tj+iϵ Yj,3(z) = O(1) uniformly in ϵ ∈ (0, ϵ0], so after integration over
(0, ϵ0], this term tends to zero when we first let N → ∞ and then ϵ0 → 0.

We begin by arguing that E(z)±1 and E′(z) are uniformly bounded in
z ∈ Utj , N , and ϵ ≤ ϵ0, so it remains to control the contribution from ΦV.
To do this we rely on Proposition 6.2.

To see the boundedness of the E-terms, we recall the definition of E in
(6.20), the definition of M in (5.23), the fact that N∞(z;NΩ + Υ) from
(5.8) and N ′

∞(z;NΩ + Υ) are uniformly bounded on Utj , so using part (e)

of Lemma 5.1, one can check with a routine calculation that E(z)±1 and
E′(z) are bounded as N → +∞ uniformly for z ∈ Utj and 0 < ϵ ≤ ϵ0 – the
boundedness in N makes use of the fact that we are assuming that β ∈ iR.
Note that from (7.3), we see that by the same reasoning also E−1R−1R′E
is uniformly bounded in Utj (actually uniformly O(N−1)).

We turn to the contribution of the ΦV-terms. Recall that for any matrix
A ∈ C2×2 and q ∈ C \ {0}, we have (q−σ3Aqσ3)22 = A22. From Proposition
6.2 (b) and (d), formula (6.8), and condition (d) for the RH problem for
Ψ from Section 6.2, we see that for some c0 > 0 fixed, we have for ϵ >
c0N

−1 (so that sj,N is bounded away from 0), that the ΦV-terms contribute
only a uniformly bounded amount. We now turn to the case ϵ = O(N−1),
corresponding to small s.
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Again using the fact that (q−σ3Aqσ3)22 = A22, one finds from (6.8), (6.16),
and condition (d) in the RH problem for Ψ, that

lim
z→tj+iϵ

Y3,j(z) =

[(
H1(1)s

αj
2
σ3

j,N

)−1

s
−βjσ3
j,N e−

sj,N
4
σ3E(tj + iϵ)−1

E′(tj + iϵ)e
sj,N

4
σ3s

βjσ3
j,N H1(1)s

αj
2
σ3

j,N

]
22

.

We use Proposition 6.2 item c) (and the fact that H1 has determinant one)

to see that the second column of H1(1)s
αj
2
σ3 is bounded as s→ 0. Since the

other quantities are bounded, we conclude that for ϵ ≤ c0/N

lim
z→tj+iϵ

Y3,j(z) = O(1)

uniformly in ϵ ∈ (0, c0/N ]. Note that this bound also is true for ϵ ≥ c0/N
by our discussion above.

In fact, by (6.17), and the fact that ϕ has a non-zero derivative at tj , it fol-
lows that sj,N > ϵ for N sufficiently large, and so limz→tj+iϵ Y3,j(z) = O (1).
As we mentioned before, an analogous statement holds for limz→tj−iϵ Y3,j(z)
and limz→tj±iϵ Y4,j(z).

Thus, as N → ∞,

(9.3)(αj
2

− βj

)
(Y (tj+iϵ)

−1Y ′(tj+iϵ))11−
(αj
2

+ βj

)
(Y (tj−iϵ)−1Y ′(tj−iϵ))11

= lim
u→ϵ

[(αj
2

− βj

)
(Y1,j(tj + iu) + Y2,j(tj + iu))

−
(αj
2

+ βj

)
(Y1,j(tj − iu) + Y2,j(tj − iu))

]
+O (1) ,

uniformly in ϵ ∈ (0, ϵ0].

The Y1,j-term. Directly from the definition (2.13), one readily verifies that

(9.4)
ω′
ϵ(z)

ωϵ(z)
=

p∑
l=1

( αl
2 + βl

z − (tl − iϵ)
+

αl
2 − βl

z − (tl + iϵ)

)
.

Thus, we conclude that

(9.5)

lim
u→ϵ

(αj
2

− βj

)
Y1,j(tj + iu)−

(αj
2

+ βj

)
Y1,j(tj − iu)− i

α2
j

4 + β2j
u− ϵ


= N

(
(
αj

2 − βj)(g
′ − ϕ′)(tj + iϵ)− (

αj

2 + βj)(g
′ − ϕ′)(tj − iϵ)

)
+

i

2ϵ

(
α2
j

4
− β2j

)
+O(1),
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uniformly in ϵ ∈ (0, ϵ0]. In particular, when we integrate ϵ over (0, ϵ0] and
take ϵ0 → 0, the O(1)-term is irrelevant.

The Y2,j-terms. We turn to the analysis of the last term – Y2,j , and aim

to show that after adding i
α2
j
4
+β2

j

u−ϵ to cancel the corresponding term from
Y1,j , there exists a finite limit which we can control. Here we rely heavily
on results and notation in [44]. We will also use arguments similar to [42,
Section 5.7].

Let us first express the relevant quantities in terms of Ψ from Section 6.2.
By (6.8),

[
ΦV(Nζtj (tj ± iu))−1)Φ′

V(Nζtj (tj ± iu))
]
rr

= − 2i
sj,N

[
Ψ(12 − 2iNζtj (tj±iu)

sj,N
)−1Ψ′(12 − 2iNζtj (tj±iu)

sj,N
)
]
rr
.

Let us now note that from (6.16) and (6.17), we see that as u → ϵ,
−2iNζtj (tj±iu)/sj,N → ±1

2 , so we see that this is related to the asymptotics

of Ψ−1Ψ′ near 0 and 1. From part (d) of the RH problem for Ψ from Section
6.2, we see that this is most conveniently expressed in terms of the analytic
functions H0 and H1 (now used with α = αj , β = βj , s = sj,N ). Using the
definition and analyticity of H0, and H1, we find that

lim
u→ϵ

{
(ΦV(Nζtj (tj + iu))−1Φ′

V(Nζtj (tj + iu)))22 +
2i
sj,N

(H−1
1 (1)H ′

1(1))22

−
(
αj

4 − βj
2

) 1

Nζtj (tj + iu)− isj,N
4

}
= 0,

and

lim
u→ϵ

{
(ΦV(Nζtj (tj − iu))−1Φ′

V(Nζtj (tj − iu)))11 +
2i
sj,N

(H−1
0 (0)H ′

0(0))11

−
(
αj

4 +
βj
2

) 1

Nζtj (tj − iu) +
isj,N
4

}
= 0,

where H0 and H1 depend of course in a non-trivial manner on s and thus ϵ
and N , so we still need to understand their behavior.
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By Proposition 6.2 (e), we conclude that

lim
u→ϵ

{(αj
2

− βj

)
Y2,j(tj + iu)−

(αj
2

+ βj

)
Y2,j(tj − iu)

+ (
αj

2 − βj)Nζ
′
tj (tj + iu)

×

[
2i
sj,N

(
sj,N
2 +

σ(sj,N ,αj ,βj)
αj
2
−βj

− αj

4 − βj
2

)
−

αj

4 − βj
2

Nζtj (tj + iu)− isj,N
4

]
− (

αj

2 + βj)Nζ
′
tj (tj − iu)

×

[
2i
sj,N

(
− sj,N

2 − σ(sj,N ,αj ,βj)
αj
2
+βj

+
αj

4 − βj
2

)
−

αj

4 +
βj
2

Nζtj (tj − iu) +
isj,N
4

]}
= 0.

Expanding ζtj (tj ± iu) = ± isj,N
4N ± iζ ′tj (tj ± iϵ)(u− ϵ) +O((u− ϵ)2), and

using the notation σj(s) := σ(s;αj , βj), we obtain

lim
u→ϵ

(αj
2

− βj

)
Y2,j(tj + iu)−

(αj
2

+ βj

)
Y2,j(tj − iu) + i

α2
j

4 + β2j
u− ϵ


(9.6)

= (
αj

2 − βj)Nζ
′
tj (tj + iϵ)

(
−2i
sj,N

)(
sj,N
2 +

σj(sj,N )
αj
2
−βj

− αj

4 − βj
2

)
− (

αj

2 + βj)Nζ
′
tj (tj − iϵ)

(
−2i
sj,N

)(
− sj,N

2 − σj(sj,N )
αj
2
+βj

+
αj

4 − βj
2

)
+O(1),

uniformly in ϵ ∈ (0, ϵ0].

Combining the Y-terms. By (6.16) and (6.17), we have

dsj,N (ϵ)

dϵ
= 2N(ζ ′tj (tj + iϵ) + ζ ′tj (tj − iϵ)),

ζ ′tj (tj ± iϵ) = ±iϕ′(tj ± iϵ),

where here and below we emphasize the ϵ dependence of sj,N = sj,N (ϵ).
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Thus we obtain

lim
u→ϵ

(αj
2

− βj

)
Y2,j(tj + iu)−

(αj
2

+ βj

)
Y2,j(tj − iu) + i

α2
j

4 + β2j
u− ϵ


(9.7)

=
(αj
2

− βj

)
Nϕ′(tj + iϵ)−

(αj
2

+ βj

)
Nϕ′(tj − iϵ)

+
1

i

dsj,N (ϵ)

dϵ

1

sj,N (ϵ)

(
σj(sj,N (ϵ))−

α2
j

4
+ β2j

)

+
1

2i

d log sj,N (ϵ)

dϵ

(
α2
j

4
− β2j

)
+O(1).

By substituting (9.5) and (9.7) into (9.3), relying on (2.15) and (9.2), we
obtain after a short calculation that as N → ∞

log
HN (νϵ0)

HN (ν0)
=

p∑
j=1

∫ ϵ0

0

(
σj(sj,N (ϵ))−

(α2
j

4
− β2j

)) 1

sj,N (ϵ)

dsj,N (ϵ)

dϵ
dϵ

+N

p∑
j=1

(αj
2

(g(tj + iϵ0) + g(tj − iϵ0)) + βj (g(tj − iϵ0)− g(tj + iϵ0))− iπβj

)
−N

p∑
j=1

(αj
2

(g+(tj) + g−(tj))− βj (g+(tj)− g−(tj))− iπβj

)

+

p∑
j=1

α2
j

4 − β2j
2

∫ ϵ0

0

(
d log sj,N (ϵ)

dϵ
− 1

ϵ

)
dϵ+O(ϵ0).

To obtain asymptotics for the first term on the right-hand side, we rely
on Proposition 6.2 part (e). For the second and third terms, we recall the
definition of ωϵ from Section 2.4 and g from (4.1), to obtain that∫

logωϵ(x)dµV (x)

=

p∑
j=1

(αj
2

(g(tj + iϵ) + g(tj − iϵ)) + βj (g(tj − iϵ)− g(tj + iϵ))− iπβj

)
and by the definition of ω in (1.64)∫

logω(x)dµV (x) =

p∑
j=1

(αj
2

(g+(tj) + g−(tj))− βj (g+(tj)− g−(tj))− iπβj

)
For the last term we observe that by (6.17),

(9.8)
d log sj,N (ϵ)

dϵ
=

1

ϵ
+O(1),
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as ϵ→ 0 – in fact, this logarithmic derivative is independent of N . Thus we
obtain that as N → ∞,

HN (ν0) = (1 +O(ϵ0))HN (νϵ0)

p∏
j=1

G(1 +
αj

2 + βj)G(1 +
αj

2 − βj)

G(1 + αj)
sj,N (ϵ0)

α2
j
4
−β2

j

(9.9)

× e−N
∫
logωϵ0 (x)dµV (x)+N

∫
logω(x)dµV (x).

Naturally the right-hand side should not depend on ϵ0. Our next task is
to see how the ϵ0-dependence cancels in the limit where N → ∞. For this,
we look more carefully at HN (νϵ0) using Theorem 1.3.

9.2. The ratio term. In this section, we study the ratio term in the right-
hand side of (9.1). For notational simplicity, we replace here ϵ0 by ϵ. By
Theorem 1.3, if ϵ is fixed, then

(9.10)
HN (νϵ)

HN (e−NV )
= eN

∫
(f(x)+logωϵ(x))dµV (x) θ(NΩ+Υϵ)

θ(NΩ)

× exp

(
1

4

∮
Γ

∮
Γ̃
W (z, λ) (f(z) + logωϵ(z)) (f(λ) + logωϵ(λ))

dz

2πi

dλ

2πi

)
× (1 +O(N−1)),

as N → ∞, where Γ = ∪kj=1Γj , Γ̃ is as in Theorem 1.3, and the implied

constant in O(N−1) may depend on ϵ. Moreover, we have written Υϵ to
emphasize that Υ depends on ϵ. To reiterate, we wish to study the behavior
of this in the limit where first N → ∞ and then ϵ → 0. We begin by
expanding the f + logωϵ product above and looking at the cross term.

For the cross term, using integration by parts and (9.4) (and recalling the
definition of W , w, df , and ω from (1.29), (1.32), (5.17), and (2.13))
(9.11)
1

2

∮
Γ

∮
Γ̃
W (z, λ)f(z) logωϵ(λ)

dz

2πi

dλ

2πi
=

1

2

∮
Γ̃
∂λ

(∮
Γ
wλ(z)f(z)

dz

2πi

)
logωϵ(λ)

dλ

2πi

= −
∮
Γ̃
d′f (λ) logωϵ(λ)

dλ

2πi

= −
p∑
j=1

[(αj
2

+ βj

)
df (tj − iϵ) +

(αj
2

− βj

)
df (tj + iϵ)− αjdf (∞)

]
→ −

p∑
j=1

[(αj
2

+ βj

)
df,−(tj) +

(αj
2

− βj

)
df,+(tj)− αjdf (∞)

]
,

as ϵ → 0. To simplify this, note first that by (5.18), df,+(tj) + df,−(tj) =
f(tj), which takes care of the αj-terms above. For the βj-terms we claim
that

df,+(tj)− df,−(tj) =
1

πi
P.V.

∫
J
wtj ,+(λ+)f(λ)dλ,
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where wtj ,+(λ+) is the boundary value of wz(λ) from the + side in both the

z variable and λ variable as z → tj , and where P.V.
∫
is the principal value

integral and (λ− tj)wtj ,+(λ+) is differentiable on the interior of J .
This follows from the following reasoning: denote

ϕf (z) =
1

2πi

∫
J

f(x)dx

R1/2
+ (x)(x− z)

.

Then, by (5.16)–(5.17),

df (z) = R1/2(z)

ϕf (z) + 2

∫
J
f(λ)

k−1∑
j=1

u′j,+(λ)

∫ aj+1

bj

dx

R1/2(x)(x− z)

dλ

2πi

 .

By Sokhotski-Plemelj formula

ϕf,±(z) = ± f(z)

2R1/2
+ (z)

+
1

2πi
P.V.

∫
J

f(x)dx

R1/2
+ (x)(x− z)

,

for z ∈ J . Thus

df,±(z) = ±R1/2
+ (z)

(
± f(z)

2R1/2
+ (z)

+
1

2πi
P.V.

∫
J

f(λ)dλ

R1/2
+ (λ)(λ− z)

+

∫
J
2f(λ)

k−1∑
j=1

u′j,+(λ)

∫ aj+1

bj

dx

R1/2(x)(x− z)

dλ

2πi

)
,

which implies that

df,+(tj)− df,−(tj) =
1

πi
P.V.

∫
J
f(λ)wtj ,+(λ+)dλ

as claimed.
We conclude that

(9.12) −
p∑
j=1

[(αj
2

+ βj

)
df,−(tj) +

(αj
2

− βj

)
df,+(tj)− αjdf (∞)

]
= −

p∑
j=1

(
αj
2
f(tj)−

βj
πi

P.V.
∫
J
wtj ,+(λ+)f(λ)dλ− αjdf (∞)

)
.

We now turn to the logωϵ logωϵ-term in (9.10) whose behavior is more
complicated and we describe in the following lemma.
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Lemma 9.1. As ϵ→ 0,

exp

(
1

4

∮
Γ

∮
Γ̃
W (z, λ) logωϵ(z) logωϵ(λ)

dz

2πi

dλ

2πi

)
= (1 + o(1))

p∏
j=1

(2ϵ)−
α2
j
4
+β2

j e−
πiβjαj

4
−
∑

l<j

αlβjπi

2 exp
(αj
2
dϵ=0(∞)

)

×

∏
l ̸=j

|tj − tl|βjβl−αjαl/4

 p∏
l,j=1

Θ(tj,+,∞)
βjαl

2

∣∣∣Θ̃(tl,+, tj,+)
∣∣∣βjβl


×

p∏
j=1

exp

(
−

j−1∑
l=1

iπβjαl
4

+

p∑
l=j+1

iπβjαl
4

)
,

where Θ is as in (1.27), and

Θ̃(z, w) =
Θ(z, w)

w − z
.

Substituting the asymptotics of Lemma 9.1, (9.12), and (9.11) into (9.10),
and using the fact that Υϵ → Υ0 as ϵ→ 0, we obtain
(9.13)
HN (νϵ)

HN (e−NV )
= eN

∫
(f(x)+logωϵ(x))dµV (x) θ(NΩ+Υ0)

θ(NΩ)

× exp

(
1

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi

)
× exp

p∑
j=1

(
−αj

2
f(tj) +

βj
πi

P.V.
∫
J
wtj ,+(λ+)f(λ)dλ+ αjdf (∞)

)

×
p∏
j=1

(2ϵ)−
α2
j
4
+β2

j e−
πiβjαj

4
−
∑

l<j

αlβjπi

2 exp
(αj
2
dϵ=0(∞)

)

×

∏
l ̸=j

|tj − tl|βjβl−αjαl/4

 p∏
l,j=1

Θ(tj,+,∞)
βjαl

2

∣∣∣Θ̃(tl,+, tj,+)
∣∣∣βjβl


×

p∏
j=1

exp

(
−

j−1∑
l=1

iπβjαl
4

+

p∑
l=j+1

iπβjαl
4

)
(1 +O(N−1) +O(ϵ)),

for any fixed ϵ > 0 as N → ∞ (the implicit constants in the O(N−1) term
depends on ϵ while the implicit constants in the O(ϵ) term are independent
of both N and ϵ).

We now prove Lemma 9.1.
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Proof. Recall from (5.17) that
(9.14)

1

4

∮
Γ

∮
Γ̃
W (z, λ) logωϵ(z) logωϵ(λ)

dz

2πi

dλ

2πi
= −1

2

∮
Γ̃
d′ϵ(z) logωϵ(z)

dz

2πi
,

where dϵ = dlogωϵ and where logωϵ was defined in (2.14). For notational

simplicity, we will from now on not distinguish between Γ̃ and Γ.
Since d′ϵ(z) is analytic on C \ J and (by (5.17) and (1.30)) d′ϵ(z) =

1
2πi

∫
J logωϵ(λ)W (z, λ+)dλ = O(z−2) as z → ∞, we obtain by deforming

the contour of integration to the branch cut of the logarithm,

(9.15)

∮
Γ
d′ϵ(z) log(z − (tj ± iϵ))

dz

2πi
= dϵ(tj ± iϵ)− dϵ(∞),

where throughout the proof log(z−(tj−iϵ)) will take arguments in (−π/2, 3π/2)
and log(z − (tj + iϵ)) will take arguments in (−3π/2, π/2) (similarly as in
the definition of logωϵ in (2.14)). Thus to study asymptotics of (9.14), it is
in fact sufficient to understand asymptotics of dϵ(tj ± iϵ):

1

4

∮
Γ

∮
Γ̃
W (z, λ) logωϵ(z) logωϵ(λ)

dz

2πi

dλ

2πi

= −1

2

p∑
j=1

[(
αj
2

− βj

)
dϵ(tj + iϵ) +

(
αj
2

+ βj

)
dϵ(tj − iϵ)− αjdϵ(∞)

]
.

Denote

dϵ,j(z) = − 1

4πi

∮
Γ
wz(λ) logωϵ,j(λ)dλ,(9.16)

logωϵ,j(z) = logωϵ(z)−
(αj
2

− βj

)
log(z − (tj + iϵ))(9.17)

−
(αj
2

+ βj

)
log(z − (tj − iϵ)).

With such a definition of ωϵ,j , we have in the notation (1.64)

(9.18) lim
ϵ→0

ωϵ,j(x) = ωj(x)e
−πiβj , ωj(x) =

ω(x)

ωαj (x)ωβj (x)
.

The purpose of introducing this notation is that we will find it convenient
to decompose dϵ(tj ± iϵ) in the following way:

(9.19) dϵ(tj ± iϵ) = dϵ,j(tj ± iϵ) + (αj/2− βj)dlog(z−(tj+iϵ))(tj ± iϵ)

+ (αj/2 + βj)dlog(z−(tj−iϵ))(tj ± iϵ),

and then analyze dϵ,j and the remaining terms separately, starting with
dϵ,j(tj ± iϵ), defined in (9.16).

The dϵ,j-term: By definition, logωϵ,j has logarithmic singularities at tl±iϵ
for l ̸= j, but no singularity at tj ± iϵ. On the other hand, by (5.11), the
only singularity of wtj±iϵ is a pole at tj± iϵ and wtj±iϵ(λ) = 1

λ−(tj±iϵ) +O(1)

as λ → tj ± iϵ, and wtj±iϵ is analytic on C \ (J ∪ {tj ± iϵ}). From (5.16),
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wz(λ) = O(λ−2) as λ → ∞. We deform Γ in (9.16) to the logarithmic
branches, and additionally evaluate the residue at λ = tj± iϵ, to obtain that
as ϵ→ 0

(9.20) dϵ,j(tj ± iϵ) =
1

2
logωϵ,j(tj ± iϵ)

− 1

2

∑
l ̸=j

[
(αl/2 + βl)

∫ tl−iϵ

−i∞
wtj±iϵ(λ)dλ+ (αl/2− βl)

∫ tl+iϵ

+i∞
wtj±iϵ(λ)dλ

]

→ 1

2
logωj(tj)−

πiβj
2

− 1

2

∑
l ̸=j

[
αl
2

(∫ tl,−

−i∞
wtj,±(λ)dλ+

∫ tl,+

+i∞
wtj,±(λ)dλ

)

+ βl

(∫ tl,−

−i∞
wtj,±(λ)dλ−

∫ tl,+

+i∞
wtj,±(λ)dλ

)]
.

We now evaluate the integrals of wtj ,±. We will be taking the logarithm
of Θ, and we begin by fixing the branch of the logarithm. For x ∈ (a1, bk),
logΘ(x±, λ) is analytic for λ ∈ C \ J because wz(λ) has no residue at ∞ as
a function of λ. By Lemma 3.5 and the fact that u(bk) = 0, θ

[
α
β

]
(u(z)) is

not identically zero. Thus, recalling the definition of Θ in (1.27), it follows
that Θ(z, bk) = 1 for all z. We fix the branch of the logarithm so that

(9.21) logΘ(z, bk) = 0

for all z.
By combining (5.9) and (5.10), if x ∈ {bj , aj+1} for j = 1, . . . , k − 1,

then Θ(x±, λ)
2 = e±4πiuj(λ). By our choice of branch for the logarithm,

logΘ(x±, λ) = ±2πiuj(λ) for x ∈ {bj , aj+1}. Thus for any z,

(9.22)

∫ aj+1

bj

wz(λ±)dλ = logΘ(aj+1,±, z)− logΘ(bj,±, z) = 0.

Now by (5.16), if λ ∈ J , we have wtj,±(λ+) = −wtj,±(λ−). Thus, by combin-
ing with (9.22), if tl > tj , contour deformation and our choice of the branch
of logΘ(x±, λ) yield that

−
(∫ tl,−

∞
wtj,±(λ)dλ+

∫ tl,+

∞
wtj,±(λ)dλ

)
=

∫
(tl,+∞)

(wtj ,±(λ+) + wtj ,±(λ−))dλ = 2

∫ ∞

bk

wtj,±(λ)dλ = 2 logΘ(tj,±,∞).

Since wtj,±(λ) is purely imaginary for λ > bk by (5.16), it follows that
logΘ(tj,±,∞) is purely imaginary. If tl < tj , then by (5.11) we pick up an
additional residue at λ = tj :

−
(∫ tl,−

∞
wtj,±(λ)dλ+

∫ tl,+

∞
wtj,±(λ)dλ

)
= ∓2πi+ 2

∫ ∞

bk

wtj,±(λ)dλ

= ∓2πi+ 2 logΘ(tj,±,∞).
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Similarly, we have

(9.23)

∫ tl,−

∞
wtj,±(λ)dλ−

∫ tl,+

∞
wtj,±(λ)dλ = log

Θ(tj,±, tl,−)

Θ(tj,±, tl,+)
,

and since we can assume without loss that the integrals are taken to follow
the real line, it follows by (5.16) that (9.23) is real, and by (5.9) is equal to
−2 log |Θ(tj,±, tl,+)|.

Thus, by (9.20),

lim
ϵ→0

exp(dϵ,j(tj ± iϵ))

= e−πiβj/2
√
ωj(tj)

∏
l ̸=j

|Θ(tl,+, tj,±)|βl Θ(tj,±,∞)αl/2e∓πi1{tl<tj}αl/2,

where ωj was given in (9.18). Relying again on (5.9),

(9.24) lim
ϵ→0

exp
[(αj

2
− βj

)
dϵ,j(tj + iϵ) +

(αj
2

+ βj

)
dϵ,j(tj − iϵ)

]
= e−πiαjβj/2ωj(tj)

αj/2
∏
l ̸=j

|Θ(tl,+, tj,+)|−2βjβl Θ(tj,+,∞)−βjαleπiαlβj1{tl<tj}

The above concludes the interaction between the singularities – namely the
contribution of the dϵ,j-terms.

The dlog(x−(tj±iϵ))-terms: We define the limit

(9.25)

d̂j,± = lim
ϵ→0

dlog(z−(tj±iϵ))(tj ± iϵ)

= lim
ϵ→0

1

2πi

∫
J
log(λ− (tj ± iϵ))wtj±iϵ(λ+)dλ

which is well defined since we can deform the integration contour in a down-
ward or upward direction around the singularity as needed, and recall that
log(z−(tj− iϵ)) takes arguments in (−π/2, 3π/2) and log(z−(tj+ iϵ)) takes
arguments in (−3π/2, π/2).

On the other hand, writing

dlog(z−(tj±iϵ))(tj ∓ iϵ) =
1

2πi

∫
J
log(λ− (tj ± iϵ))wtj∓iϵ(λ+)dλ

and deforming the contour of integration from J past the pole tj∓iϵ (possibly
using (5.13)) to a contour J̃∓, we find by the residue theorem

dlog(z−(tj±iϵ))(tj ∓ iϵ) = ∓ 1

2πi

∫
J̃∓

log(λ− (tj ± iϵ))wtj∓iϵ(λ)dλ+ log(∓2iϵ).
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By our choice of J̃∓ (both the pole and logarithmic singularity are on the

same side of J̃∓), we find (using (5.14), contour deforming, and again pos-
sibly using (5.13))
(9.26)

dlog(z−(tj±iϵ))(tj ∓ iϵ) = ± 1

2πi

∫
J̃∓

log(λ− tj)wtj (λ)dλ+ log(∓2iϵ) + o(1)

= ∓πi
2

+ log(2ϵ)− d̂j,± + o(1),

as ϵ→ 0.
Combining (9.25) and (9.26), we find for the latter two terms in (9.19)

(αj/2− βj)dlog(z−(tj+iϵ))(tj + iϵ) + (αj/2 + βj)dlog(z−(tj−iϵ))(tj + iϵ)

(9.27)

= (αj/2− βj)d̂j,+ + (αj/2 + βj)

(
πi

2
+ log(2ϵ)− d̂j,−

)
+ o(1)

and

(αj/2− βj)dlog(z−(tj+iϵ))(tj − iϵ) + (αj/2 + βj)dlog(z−(tj−iϵ))(tj − iϵ)

(9.28)

= (αj/2− βj)

(
−πi

2
+ log(2ϵ)− d̂j,+

)
+ (αj/2 + βj)d̂j,− + o(1)

Plugging (9.27), (9.28), and (9.24), into (9.19), which we then use in
(9.15), and ultimately (recalling (2.14)) in (9.14), we find
(9.29)

exp

(
1

4

∮
Γ

∮
Γ̃
W (z, λ) logωϵ(z) logωϵ(λ)

dz

2πi

dλ

2πi

)
=

p∏
j=1

(2ϵ)−
α2
j
4
+β2

j

× exp
(
−β2j

(
d̂j,+ + d̂j,−

))
eπi

βjαj
4 exp

(αj
2
dϵ(∞)

)
exp

(
αjβj
2

(
d̂j,+ − d̂j,−

))
× ωj(tj)

−αj/4
∏
l ̸=j

|Θ(tl,+, tj,+)|βjβl Θ(tj,+,∞)
βjαl

2 e−
πi
2
αlβj1{tl<tj}(1 + o(1)).

We now consider d̂j,±. Observe that if Γ encloses J but not tj ± iϵ, then

1

2

∮
Γ

log(λ− (tj ± iϵ))

λ− (tj ± iϵ)

dλ

2πi
= 0.

Thus we add this term to the definition of dlog(z−(tj±iϵ))(tj ± iϵ) in (5.17) to
obtain

dlog(z−(tj±iϵ))(tj ± iϵ)

= −1

2

∮
Γ
log(λ− (tj ± iϵ))

(
d

dλ
logΘ(tj ± iϵ, λ)− 1

λ− (tj ± iϵ)

)
dλ

2πi
.
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We deform the contour to the branch of the logarithm, and since d
dλ logΘ(tj±

iϵ, λ) = O(1/λ2) as λ→ ∞, we obtain that as R→ ∞,

(9.30) dlog(z−(tj±iϵ))(tj ± iϵ) =
1

2

∫ tj±iR

tj±iϵ

d

dλ
log

Θ(tj ± iϵ, λ)

λ− (tj ± iϵ)
dλ

+
1

2

∮
∂BR

log(λ− (tj ± iϵ))

(
1

λ− (tj ± iϵ)

)
dλ

2πi
+O(1/R)

where ∂BR is a circle of radius R centered at tj , oriented counterclockwise.

Recalling the notation Θ̃(z, λ) = Θ(z,λ)
λ−z and evaluating the ∂BR integral

explicitly, this becomes

dlog(z−(tj±iϵ))(tj ± iϵ) =
1

2

[
logΘ(tj ± iϵ,∞)− log(±iR)

− log Θ̃(tj ± iϵ, tj ± iϵ) + logR∓ πi

2

]
+O(1/R)

→ 1

2

[
logΘ(tj,±,∞)− log Θ̃(tj,±, tj,±)∓ πi

]
,

as ϵ→ 0 and R→ ∞. Now write

logΘ(tj,±,∞)− log Θ̃(tj,±, tj,±)

= lim
R→+∞

(∫ R

tj

(
wtj,±(λ±)−

1

λ− tj

)
dλ+ logR

)
.

By (5.16), we obtain that wtj,+(λ+) = wtj,−(λ−) ∈ R for λ ∈ J and
wtj,+(λ+) = −wtj,−(λ−) is purely imaginary for λ ∈ R \ J . Thus, the

contribution to d̂j,+ + d̂j,− is the real part of the above integral, and the

contribution to d̂j,+ − d̂j,− is the imaginary part of it – this can also be
written as the integral of wtj ,+ over (bk,∞):

d̂j,+ + d̂j,− = log

∣∣∣∣∣ Θ(tj,+,∞)

Θ̃(tj,+, tj,+)

∣∣∣∣∣ ,
d̂j,+ − d̂j,− =

∫ +∞

bk

wtj,+(λ+)− πi.

By (9.22) and the fact that Θ(z, bk) = 1, it follows that

d̂j,+ − d̂j,− = logΘ(tj,+,∞)− πi.

Thus, by (9.29), we obtain the lemma. □

9.3. Combining the terms. We will now substitute (9.9) and (9.13) into
(9.1). First consider the term sj,N (ϵ) appearing in (9.9). By (6.17),

sj,N (ϵ) = 4Niϕ′+(tj)ϵ (1 +O(ϵ)) ,

as ϵ→ 0. By (4.7),

sj,N (ϵ) = 4πNψV (tj)ϵ (1 +O(ϵ)) .
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Thus, substituting (9.9) and (9.13) into (9.1), we obtain that

HN (ν0)

HN (e−NV )
= eN

∫
(f(x)+logω(x))dµV (x) θ(NΩ+Υ0)

θ(NΩ)

× exp

(
1

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi

)
× exp

p∑
j=1

(
−αj

2
f(tj) +

βj
πi

P.V.
∫
J
wtj ,+(λ+)f(λ)dλ+ αjdf (∞)

)

×
p∏
j=1

G(1 +
αj

2 + βj)G(1 +
αj

2 − βj)

G(1 + αj)
(2πNψV (tj))

α2
j
4
−β2

j exp
(αj
2
dϵ=0(∞)

)
×

p∏
l,j=1

e−
πiβjαl

4

∏
j<l

e
πi
2
(αlβj−αjβl)

×

∏
l ̸=j

|tj − tl|βjβl−αjαl/4

 p∏
l,j=1

Θ(tj,+,∞)
βjαl

2

∣∣∣Θ̃(tl,+, tj,+)
∣∣∣βjβl


× (1 +O(N−1) +O(ϵ)),

as N → ∞ for any fixed and sufficiently small ϵ > 0 (the implicit constants
in the O(N−1) term depends on ϵ while the implicit constants in the O(ϵ)
term are independent of both N and ϵ). Since ϵ was arbitrary, Theorem 1.6
follows from the following lemma.

Lemma 9.2.

(9.31) 2df (∞) + dϵ=0(∞) = −
∫
J

Q̃(x)f(x)

R1/2
+ (x)

dx

πi
− A

2
CS .

where Q̃ is the unique monic polynomial of degree k− 1 satisfying (1.69)
and CS was defined in (1.68).

Proof. Step 1: We first prove that

(9.32) 2df (∞) + dϵ=0(∞) = −
∫
J

Q̃(x)(2f(x) + logω(x))

R1/2
+ (x)

dx

2πi
.

Recall the definition of df from (5.17) and note that

−R1/2(λ)w∞(λ)

is a monic polynomial of degree k − 1, which follows from the fact that
w∞(λ) is analytic on C\J and from (5.12), (5.13). Secondly we have (9.22),
from which it follows that

(9.33)

∫ aj+1

bj

R1/2(λ)w∞(λ)

R1/2(λ)
dλ = 0
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a1 b1 ak bk
. . .

Figure 10. The contour γ0.

for j = 1, . . . , k − 1. The fact that Q̃ exists and is unique, is identical (up
to replacing R(x) by 1

R(x)) to the proof of Proposition 2.1 (a).

Step 2: We prove that

(9.34)

∫
J

Q̃(x) log |x− t|
R1/2

+ (x)

dx

2πi
=

1

2
CS ,

for any t ∈ J . Substituting (9.34) into (9.32), recalling that logω(x) =∑p
j=1 αj log |x− tj |, we obtain the lemma.

To prove (9.34), first observe that
(9.35)∫
J

Q̃(x) log |x− t|
R1/2

+ (x)

dx

2πi
=

∫
J

Q̃(x) log(x− t)+

R1/2
+ (x)

dx

4πi
−
∫
J

Q̃(x) log(x− t)−

R1/2
− (x)

dx

4πi
,

where arg(x− t) ∈ (−π, π) in the logarithm. By (1.69), it follows that
(9.36)∫
J

Q̃(x) log |x− t|
R1/2

+ (x)

dx

2πi
=

∫ bk

a1

Q̃(x) log(x− t)+

R1/2
+ (x)

dx

4πi
−
∫ bk

a1

Q̃(x) log(x− t)−

R1/2
− (x)

dx

4πi
.

Let CR be a circle of radius R oriented counterclockwise, beginning at
argument −π and ending at argument π. Now let γ0 be the contour in
Figure 10, namely the union of CR and an indentation along (−R, bk] along
which the contour follows first the + side from −R to bk and then the −
side from bk to −R. Then by (9.36)

(9.37) 0 =

∫
γ0

Q̃(x) log(x− t)

R1/2(x)

dx

4πi
=

∫
J

Q̃(x) log |x− t|
R1/2

+ (x)

dx

2πi

+

∫ a1

−R

Q̃(x)(log(x− t)+ − log(x− t)−)

R1/2(x)

dx

4πi
+

∫
CR

log(x− t)Q̃(x)

R1/2(x)

dx

4πi
.
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As R→ ∞,

(9.38)

∫
CR

log(x− t)Q̃(x)

R1/2(x)

dx

4πi
=

logR

2
+ o(1),

and thus
(9.39)∫ a1

−R

Q̃(x)(log(x− t)+ − log(x− t)−)

R1/2(x)

dx

4πi
+

∫
CR

log(x− t)Q̃(x)

R1/2(x)

dx

4πi
→ −1

2
CS ,

as R → ∞. Substituting this into (9.37) in the limit R → ∞, we obtain
(9.34). □

10. Partition function asymptotics for the k-cut Chebyshev
potential

Recall that Chebyshev polynomial of the first kind T0(x) = 1 and Tk(x) =
2k−1xk+ . . . for k = 1, 2, . . . is the unique polynomial of degree k satisfying
Tk(cos θ) = cos kθ, and that we denoted the Chebyshev potential by V0(x) =
2σ
k Tk(x)

2. To emphasize the k dependency we will in this section denote
V0,k = V0.

In this section we obtain asymptotics of HN

(
e−NV0

)
as N → ∞, and our

main goal is to prove (2.21). We do this in three parts. First, in Section
10.1, we obtain general and exact results for polynomials that are orthogonal
with respect to a “Chebyshev-type” weight. Secondly, in Section 10.2, we
apply this general result to our specific situation by relying on Theorem 1.3.
Finally, in Section 10.3, we take the limit σ ↓ 1.

10.1. Results for Chebyshev-type orthogonal polynomials. In this
section, we consider a “Chebyshev-type” weight. The particular structure
of these weights allow us, in Lemma 10.1 below, to obtain exact results.

An analogue of Lemma 10.1, valid for orthogonal polynomials on the
unit circle, was proven by [2], see also [64, eq (1.61)]. Lemma 10.1 and
the analogue in [2, 64] are related by the connection between orthogonal
polynomials on the unit circle and orthogonal polynomials on the interval
[−1, 1] obtained in [54]. Thus, although we prove Lemma 10.1 directly, one
could alternatively obtain it by combining results from [2, 64] and [54].

Denote the Chebyshev polynomial of the second kind by Uk(x) = 2kxk +

. . . , which satisfies Uk(cos θ) =
sin((k+1)θ)

sin θ , and recall that T ′
k(x) = kUk−1(x).

Lemma 10.1. Let w1 be a non-negative, even function on [−1, 1], and for
k ≥ 1 define

wk(x) = |Uk−1(x)|w1(Tk(x)).

Let P
(k)
j denote the monic orthogonal polynomials associated with the weight

wk on [−1, 1], and let κ
(k)
j > 0 satisfy

(10.1)

∫ 1

−1
P

(k)
j (x)2wk(x)dx =

(
κ
(k)
j

)−2
.



108 C. CHARLIER, B. FAHS, C. WEBB, AND M.D. WONG

Denote the N × N Hankel determinant associated with the weight wk by
HN (wk), as defined in (1.1). Then

(a) The monic orthogonal polynomials satisfy

(10.2) P
(k)
nk (x) = 2−n(k−1)P (1)

n (Tk(x)), for any k ≥ 1, n ≥ 0,

and if r = 1, 2, . . . , k − 1, then
(10.3)

P
(k)
nk+r(x) = 2−n(k−1)−r+1

Ur−1(x)P
(1)
n+1(Tk(x)) +

P
(1)
n+1(1)

P
(1)
n (1)

Uk−r−1(x)P
(1)
n (Tk(x))

Uk−1(x)
.

(b) For any k ≥ 1 and n ≥ 0, κ
(k)
nk satisfies(

κ
(k)
nk

)−2
=
(
κ(1)n

)−2
2−2n(k−1),

and if r = 1, 2, . . . , k − 1, then(
κ
(k)
nk+r

)−2
=
(
κ(1)n

)−2
2−2n(k−1)−2r+1P

(1)
n+1(1)

P
(1)
n (1)

.

(c) For any k ≥ 1 and n ≥ 0, the Hankel determinant satisfies

Hnk(wk) =
Hn(w1)

kP
(1)
n (1)k−1

2n(k−1)(nk−1)
,

and if r = 1, 2, . . . , k − 1, then

Hnk+r(wk) =
Hn(w1)

k−rHn+1(w1)
rP

(1)
n (1)k−rP

(1)
n+1(1)

r−1

2n(k−1)(nk−1)+2nr(k−1)+(r−1)2
.

Proof. Part (c) of the lemma follows in a straightforward manner by substi-
tuting part (b) of the lemma into the standard formula

(10.4) HN (wk) =

N−1∏
j=0

(
κ
(k)
j

)−2
,

and relying on the fact that P
(1)
0 (1) = 1.

We structure the proof of parts (a) and (b) of the lemma as follows.
First we prove that the functions (10.2) and (10.3) are monic polynomials,
secondly we prove that (10.2) are the orthogonal polynomials of degree nk,
thirdly we prove that (10.3) are the orthogonal polynomials of degree nk+r
for r = 1, . . . , k − 1, and finally we prove part (b) of the lemma.

Step 1. By the fact that the leading coefficient of Tk and Uk−1 is 2k−1, it
follows that (10.2) is a monic polynomial, and that if (10.3) is a polynomial,
then it is monic.

We prove that the functions defined in (10.3) indeed are polynomials. If
xj = cos(jπ/k) is the j-th root of Uk−1(x) for j = 1, . . . , k − 1, then

Uk−r−1(xj) =
sin(k − r)jπ/k

sin(jπ/k)
= (−1)j+1 sinπrj/k

sinπj/k
= (−1)j+1Ur−1(xj),
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and furthermore Tk(xj) = (−1)j , and thus the numerator in the fraction of
the right-hand side of (10.3) at x = xj is

(10.5) Ur−1(xj)P
(1)
n+1((−1)j)

(
1 + (−1)j+1P

(1)
n+1(1)P

(1)
n ((−1)j)

P
(1)
n (1)P

(1)
n+1((−1)j)

)
,

which is zero, since the fact that w1 is even implies that P
(1)
2n is an even

polynomial and P
(1)
2n+1 is an odd polynomial. Thus it follows that (10.3) is

a polynomial.
Step 2. Now we verify that (10.2) satisfies the condition of orthogonality.

We need to prove that if pj is a polynomial of degree j, then

(10.6)

∫ 1

−1
P (1)
n (Tk(x))pj(x)wk(x)dx = 0

for any j = 0, . . . , nk − 1. Let n′ < n and r′ = 0, 1, . . . , k − 1, and consider

(10.7)

∫ 1

−1
P (1)
n (Tk(x))

[
P

(1)
n′ (Tk(x))Tr′(x)

]
wk(x)dx.

Since {P (1)
n′ (Tk(x))Tr′(x)}n<n′, r′<k forms a basis for the polynomials of de-

gree less than nk, it is sufficient to show that (10.7) is zero to prove (10.6). If
nk and n′k+r′ do not have the same parity, then the change of variables x→
−x, together with Tk(−x) = (−1)kTk(−x) and P

(1)
n (−x) = (−1)nP

(1)
n (x)

shows that the integral (10.7) is zero. Let us now focus on the case where
nk and n′k + r′ have the same parity. Letting x = cosϕ, (10.7) becomes∫ π

0
P (1)
n (cos kϕ)P

(1)
n′ (cos kϕ) cos(r′ϕ)| sin kϕ|w1(cos kϕ)dϕ.

Thus we obtain

k−1∑
s=0

∫ π/k

0
P (1)
n (cos(kθ + sπ))P

(1)
n′ (cos(kθ + sπ))

× cos

(
r′θ +

r′sπ

k

)
|sin (kθ + sπ)|w1(cos kθ)dθ,

which, by the fact that P
(1)
2n is even and P

(1)
2n+1 is odd, yields

(10.8)
k−1∑
s=0

(−1)s(n+n
′)

∫ π/k

0
P (1)
n (cos kθ)P

(1)
n′ (cos kθ) cos

(
r′θ +

r′sπ

k

)
sin kθ w1(cos kθ)dθ.

If r′ = 0,∫ π/k

0
P (1)
n (cos kθ)P

(1)
n′ (cos kθ) sin kθ w1(cos kθ)dθ

=
1

k

∫ π

0
P (1)
n (cosα)P

(1)
n′ (cosα) sinαw1(cosα)dα,
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which is zero by orthogonality of P
(1)
n (assuming n′ < n). If r′ ̸= 0, then

k−1∑
s=0

(−1)s(n+n
′) cos

(
r′θ +

r′sπ

k

)

=
1

2

k−1∑
s=0

(−1)s(n+n
′)

(
e
i
(
r′θ+ r′sπ

k

)
+ e

−i
(
r′θ+ r′sπ

k

))
.

Since

(10.9)
k−1∑
s=0

(−1)s(n+n
′)ei

r′sπ
k =

1− (−1)k(n+n
′)+r′

1− eπi(n+n′+r′/k)
,

and we assumed that kn and kn′+ r′ had the same parity, meaning that the
right-hand side of (10.9) is zero, it follows that (10.8) is zero, which implies
that (10.7) is zero, as desired.

Step 3. We now verify that (10.3) satisfies the condition of orthogonality.
Consider

(10.10)

∫ 1

−1

Ur−1(x)P
(1)
n+1(Tk(x)) +

P
(1)
n+1(1)

P
(1)
n (1)

Uk−r−1(x)P
(1)
n (Tk(x))

Uk−1(x)

× P
(1)
n′ (Tk(x))Tr′(x)wk(x)dx.

We will prove that (10.10) is zero for n′k+ r′ < nk+ r for r = 1, 2, . . . , k−1
and r′ = 0, 1, . . . , k − 1. Again, the change of variable x 7→ −x shows
immediately that the above integral is 0, provided that n′k + r′ and nk + r
do not have the same parity. We now focus on the case where n′k + r′ has
the same parity as nk+ r. Letting x = cosϕ, and summing over ϕ = πs

k + θ
for s = 0, 1, 2, . . . , k − 1 (with θ ∈ (0, π/k)), we obtain

k−1∑
s=0

∫ π/k

0

(
sin
(
rθ +

πrs

k

)
P

(1)
n+1(cos(kθ + πs))

+
P

(1)
n+1(1)

P
(1)
n (1)

sin

(
(k − r)θ +

π(k − r)s

k

)
P (1)
n (cos(kθ + πs))

)

× P
(1)
n′ (cos(kθ + sπ)) cos

(
r′θ +

πsr′

k

)
| sin(kθ + πs)|
sin(kθ + πs)

w1(cos kθ)dθ.



HANKEL DETERMINANTS WITH A MULTI-CUT POTENTIAL 111

Since P
(1)
2n are even functions and P

(1)
2n+1 are odd functions, we obtain that

(10.10) is given by

(10.11)
k−1∑
s=0

(−1)s(n+n
′)

∫ π/k

0

(
sin
(
rθ +

πrs

k

)
P

(1)
n+1(cos kθ)

−
P

(1)
n+1(1)

P
(1)
n (1)

sin
(
(r − k)θ +

πrs

k

)
P (1)
n (cos kθ)

)

× P
(1)
n′ (cos kθ) cos

(
r′θ +

πsr′

k

)
w1(cos kθ)dθ.

Write

(10.12) sin
(
rθ +

πrs

k

)
cos

(
r′θ +

πsr′

k

)
=

1

2
Im
(
ei(r+r

′)(θ+πs/k) + ei(r−r
′)(θ+πs/k)

)
and

(10.13) sin
(
(r − k)θ +

πrs

k

)
cos

(
r′θ +

πsr′

k

)
=

(−1)s

2
Im
(
ei(r+r

′−k)(θ+πs/k) + ei(r−r
′−k)(θ+πs/k)

)
.

Since we assume that nk + r and n′k + r′ have the same parity, it follows
that

(10.14)
k−1∑
s=0

(−1)s(n+n
′)e

πis
k

(r±r′) = 0,

for r ± r′ ̸= 0 mod k. Thus the first terms on the RHS of (10.12) and
(10.13) do not make any contribution to (10.11) for r+r′ ̸= k, and the same
holds for the second terms but for r − r′ ̸= 0. In order to conclude that
(10.11) (and hence (10.10)) is always zero, we inspect the remaining cases
not covered by the geometric sum argument (10.14).

Let us start with Im ei(r−r
′)(θ+πs/k) on the RHS of (10.12). We only need

to check the case r−r′ = 0, but Im ei(r−r
′)(θ+πs/k) is trivially zero. The same

argument holds for the term Im ei(r+r
′−k)(θ+πs/k) on the RHS of (10.13) but

with r + r′ = k.
Now consider the first term on the RHS of (10.12) with r + r′ = k. The

contribution to (10.11) from Im ei(r+r
′)(θ+πs/k) involves integrals of the form∫ π/k

0
sin
(
rθ + r′θ

)
P

(1)
n+1(cos kθ)P

(1)
n′ (cos kθ)w1(cos kθ)dθ,

which is zero by orthogonality of the polynomials P
(1)
n since n + 1 > n′.

Similarly, when r − r′ = 0 the contribution from Im ei(r−r
′)(θ+πs/k) on the
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RHS of (10.13) leads to integrals of the form
(10.15)

1

2

k−1∑
s=0

(−1)s(n+n
′)

∫ π/k

0

P
(1)
n+1(1)

P
(1)
n (1)

sin kθ P (1)
n (cos kθ)P

(1)
n′ (cos kθ)w1(cos kθ)dθ.

which is equal to zero again thanks to orthogonality (since we assumed at
the beginning that nk + r > n′k + r′, which implies n > n′ when r = r′).
Thus the polynomials (10.3) are orthogonal.

Step 4. We prove part (b) of the lemma.
When r = 0, it follows by the definition (10.2) and by taking the successive

changes of variables x = cos θ, θ = πs
k +α (s = 0, . . . , k− 1) and y = cos kα,

that ∫ 1

−1
P

(k)
nk (x)

2wk(x)dx = 2−2n(k−1)

∫ 1

−1
P (1)
n (y)2w1(y)dy,

from which the first claim in part (b) follows by (10.1).
For r ̸= 0, we observe that all the arguments leading up to (10.15) hold

also for n = n′ and r = r′, and thus (10.10) is given by (10.15) which is
equal to

P
(1)
n+1(1)

2P
(1)
n (1)

∫ 1

−1
P (1)
n (x)2w1(x)dx.

It follows by the orthogonality of P
(k)
nk+r and the fact that Tk has leading

coefficient 2k−1, that∫ 1

−1
P

(k)
nk+r(x)

2wk(x)dx = 2−2n(k−1)−2r+1P
(1)
n+1(1)

P
(1)
n (1)

∫ 1

−1
P (1)
n (x)2w1(x)dx,

which proves the second claim in part (b) by (10.1). □

10.2. Asymptotics of HN (e
−NV0). In this Section we obtain asymptotics

of HN (e
−NV0) as N → ∞ for fixed σ > 1, where we recall that V0(x) =

V0,k(x) = 2σ
k Tk(x)

2. An analogue of this result for Toeplitz determinants
can be found in [2], [86], and [64, eq (1.61)].

In Section 2.5, we proved that V0 is k-cut regular for σ > 1, and that
the equilibrium measure associated to V0 is supported on the set J0 =⋃k
j=1[aj(0), bj(0)], where aj(0), bj(0) ∈ (−1, 1) are the (ordered) zeros of

σTk(x)
2 − 1, and on J0 it is given by

(10.16) dµV0(x) =
2σ

πki
T ′
k(x)

(
Tk(x)

2 − 1/σ
)1/2
+

dx

where
(
Tk(x)

2 − 1/σ
)1/2

is analytic on C\J0 and behaves like 2k−1xk as x→
+∞. We will obtain asymptotics for the Hankel determinant HN

(
e−NV0

)
as N → ∞, by expressing HN

(
e−NV0

)
in terms of the leading coefficients of

the (rescaled) Hermite polynomials.
For σ > 1, let 1(x) be an even non-negative Hölder continuous function on

R satisfying the properties that 1(x) = 0 for all x in an open neighbourhood
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of R \ (−1, 1), and 1(x) = 1 in an open neighbourhood of {x : x2 ≤ 1/σ}.
For definiteness, we define 1(x) explicitly as follows. Given σ1 > 1 we define
1(x) for σ > σ1 as follows:
(10.17)

1(x) =


1 for x2 < 1/σ1 + (1− 1/σ1)/3

0 for x2 > 1− (1− 1/σ1)/3,

1− x2−1/σ1−(1−1/σ1)/3
(1−1/σ1)/3

for 1
σ1

+ 1−1/σ1
3 ≤ x2 ≤ 1− 1−1/σ1

3 .

Fix k ≥ 1, and define
(10.18)

w1(x) = 1(x)
e−2nσx2

√
1− x2

, wk(x) = |Uk−1(x)|w1(Tk(x)) = 1(Tk(x))
e−nkV0,k(x)√

1− x2
.

Then the conditions of Lemma 10.1 hold, and in particular we will utilize
part (c) of the lemma, which we will combine with Theorem 1.3. By Theorem
1.3, we have

(10.19)

Hnk(wk) = Hnk

(
e−nkV0,k

)
(1 +O(n−1))

× θ(nkΩ+Υ|τ)
θ(nkΩ|τ)

e
nk

∫
J0,k

f(x)dµV0,k (x)e
QJ0,k

(f)
,

QJ0,k(f) =
1

4

∮
Γ

∮
Γ̃
W (z, λ)f(z)f(λ)

dz

2πi

dλ

2πi
,

as n → ∞ for fixed σ > 1, where f(x) = −1
2 log(1 − x2) for J0,k = {x :

Tk(x)
2 ≤ 1

σ}, and where we place extra emphasis on the k-dependence by
writing J0 = J0,k and V0 = V0,k. We recall that W was defined in (1.29) for
k = 2, 3, . . . and when k = 1 we use the formula for W in (1.79). If k = 1,
the θ functions should be interpreted as equal to 1. Formula (10.19) gives
asymptotics for Hnk, and we now give a similar formula for Hnk+r, with
r = 1, . . . , k − 1. Define

Ṽ0,k(x) =
2σ̃

k
Tk(x)

2, σ̃ =
(
1 + r

nk

)
σ.

Let w̃k be as wk defined in (10.18), but with σ and V0,k replaced by σ̃ and

Ṽ0,k for k = 2, 3, . . . . Observe that (nk + r)V0,k(x) = nkṼ0,k(x), so that

w̃k(x) = 1(Tk(x))
e−nkṼ0,k(x)√

1− x2
= 1(Tk(x))

e−(nk+r)V0,k(x)

√
1− x2

.

By Theorem 1.3,

(10.20) Hnk+r(w̃k) = Hnk+r

(
e−(nk+r)V0,k

) θ((nk + r)Ω + Υ|τ)
θ((nk + r)Ω|τ)

× e
(nk+r)

∫
J0,k

f(x)dµV0,k (x)e
QJ0,k

(f)
(1 +O(n−1)),

as n→ ∞.
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By Lemma 10.1 (c) and (10.19),

(10.21) Hnk

(
e−nkV0,k

)
= Hn (w1)

k P
(1)
n (1)k−1

2n(k−1)(nk−1)

θ(nkΩ|τ)
θ(nkΩ+Υ|τ)

× e
−nk

∫
J0,k

f(x)dµV0,k (x)e
−QJ0,k

(f)
(1 +O(1/n)),

as n → ∞, where P
(1)
n are the orthogonal polynomials associated with the

weight w1. Similarly, by Lemma 10.1 (c) and (10.20),

(10.22) Hnk+r

(
e−(nk+r)V0,k

)
= Hn (w̃1,n)

k−rHn+1 (ŵ1,n+1)
r

P̃
(1)
n (1)k−rP̂

(1)
n+1(1)

r−1

2n(k−1)(nk−1)+2nr(k−1)+(r−1)2

θ((nk + r)Ω|τ)
θ((nk + r)Ω + Υ|τ)

× e
−(nk+r)

∫
J0,k

f(x)dµV0,k (x)e
−QJ0,k

(f)
(1 +O(1/n)),

as n→ ∞, where P̃
(1)
n and P̂

(1)
n+1 are the orthogonal polynomials associated

with the weight w̃1,n and ŵ1,n+1 respectively, given by:

w̃1,n(x) =
1(x)√
1− x2

e−2nσ̃x2 , σ̃ = σ(1 + r/nk),

ŵ1,n+1(x) =
1(x)√
1− x2

e−2(n+1)σ̂x2 , σ̂ = σ

(
1 +

r/k − 1

n+ 1

)
.

Observe that w̃1,n(x) = ŵ1,n+1(x), however we give separate notations be-
cause it will be convenient when computing large n asymptotics of Hn(w̃1,n)
and of Hn+1(ŵ1,n+1).

Observe also that σ̂ > 1 for n sufficiently large.
Denote

(10.23) Dk(z) = exp
( 1

2πi

∫
J0,k

f(λ)wz(λ+)dλ
)

and wz is defined in (1.32) for k = 2, 3, . . . and (1.79) for k = 1. This
definition of Dk coincides with the definition (5.20) of D (see also (5.17))
after setting dϵ = 0 and f(z) = −1

2 log(1− z2).

Lemma 10.2. Let w1(x) be as defined in (10.18) with 1(x) as in (10.17).
Given 1 < σ1 < σ2, the following statements hold.

(a) As n→ ∞,

log
Hn(w1)

Hn

(
e−2nσx2

) = −σn
π

∫ 1/
√
σ

−1/
√
σ

√
1/σ − x2 log(1−x2)dx+QJ0,1(f)+O(n−1),

uniformly for σ1 < σ < σ2.
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(b) As n→ ∞,

P (1)
n (1) = (1 +O(n−1))

√
2

1 +
√
1− σ−1

[
γ1(1) + γ1(1)

−1
] 1
2
D1(1)

−1

exp

(
σn

π

∫ 1/
√
σ

−1/
√
σ

√
1/σ − x2 log(1− x2)dx

)
.

uniformly for σ1 < σ < σ2, where we emphasize that k = 1 by the
notation γ = γ1 with γ defined in (1.31).

Proof. Observe that our Riemann-Hilbert analysis for the weight w1 holds
uniformly for 1 < σ1 < σ < σ2

9, and

dµV0,1(x) =
2σ

π

√
1
σ − x2 dx, x ∈ [− 1√

σ
, 1√

σ
].

Thus Theorem 1.3 holds uniformly for σ1 < σ < σ2, from which we obtain
part (a) of the lemma.

We now prove part (b). By (2.3) we have P
(1)
n (1) = Y11(1) (where Y (·) =

Yn(·;w1)), and by the definitions of T , S, and R in (4.4), (4.13), and (7.1)
respectively, we obtain

P (1)
n (1) = (R(1)M(1))11e

ng(1).

Note that dµV0,1(x) = dµV0,1(−x), and thus

g(1) =

∫
J0,1

log(1− x)dµV0,1(x) = −
∫
J0,1

f(x)dµV0,1(x).

Since R is analytic in a neighbourhood of 1 (because w1 = 0 is analytic
in a neighbourhood of 1), it follows that R(1) = I + O(n−1) as n → ∞,
uniformly for σ1 < σ < σ2. Recalling the definition of M in (5.23) (with
k = 1 so that the θ function is identically 1), we obtain
(10.24)

P (1)
n (1) = (1+O(n−1))D1(∞)

[
γ1(1) + γ1(1)

−1
] 1
2
D1(1)

−1e
−n

∫
J0,1

f(x)dµV0,1 (x).

Directly from the definition of D1, we obtain

D1(∞) = exp

(
lim
z→∞

R1/2(z)

8πi

∮
Γ

log(1− λ2)

R1/2(λ)

dλ

λ− z

)
= exp

(
−1

8πi

∮
Γ

log(1− λ2)dλ

(λ2 − 1/σ)1/2

)
,(10.25)

9This is because the singularities of f(x) = − 1
2
log(1 − x2), and also the singularities

of 1(x), remain bounded away from the support of Vk,0. The technicalities are straight-
forward to verify: there are two local parametrices at 1/

√
σ and −1/

√
σ. Set the radius

of each local parametrix to min
{

1
3
(1− 1√

σ1
), 2

3
√
σ2

}
. Then we leave it to the reader to

verify that condition (c) in Lemma 6.1 and Lemma 7.1 hold uniformly for σ1 < σ < σ2,
and thus (7.3) holds uniformly.
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where Γ is a counter-clockwise oriented curve surrounding J0,1, and log(1−
λ2) is real on (−1, 1) and has a branch cut on (−∞,−1] ∪ [1,+∞). For
σ > 1, the following identity holds:

(10.26) D1(∞) =

√
2

1 +
√
1− σ−1

.

−R R−1 1

Figure 11. Contour deformation for the evaluation of D1(∞)

We obtain (10.26) as follows. First, we deform the contour Γ in (10.25) to
the one in Figure 11, which consists of one half-circle of radius R > 0 in each
half plane, horizontal line contours right above/below the interval (−R,−1]
and [1, R), and arbitrarily small arcs near ±1 (which are negligible). The
contributions from the horizontal contours can be evaluated by

− 1

8πi

∫ −1

−R

log(1− λ2)+ − log(1− λ2)−

(λ2 − 1/σ)1/2
dλ

− 1

8πi

∫ R

1

log(1− λ2)+ − log(1− λ2)−

(λ2 − 1/σ)1/2
dλ =

1

2

∫ R

1

dλ

(λ2 − 1/σ)1/2

=
1

2

[
log

(
R+

√
R2 − 1/σ

2

)
+ log

(
2

1 +
√
1− 1/σ

)]
.

It is straightforward to verify that the first term in the last equality cancels
with the contributions from the two half circles as R → ∞, and the second
term gives (10.26) after exponentiation.
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Substituting (10.26) into (10.24) we obtain part (b) of the lemma. □

By Lemma 10.2 and (10.21),

(10.27)

Hnk

(
e−nkV0,k

)
Hn

(
e−2σnx2

)k =
1

2n(k−1)(nk−1)

θ(nkΩ|τ)
θ(nkΩ+Υ|τ)

(
2

1 +
√
1− σ−1

) k−1
2

×
[
γ1(1) + γ1(1)

−1
]k−1 1

2k−1
D1(1)

−k+1e
−nk

∫
J0,k

f(x)dµV0,k (x)e
−QJ0,k

(f)

×exp

(
−σn
π

∫ 1/
√
σ

−1/
√
σ

√
1/σ − x2 log(1− x2)dx+ kQJ0,1(f)

)
(1+O(1/n)),

as n→ ∞.
Since Lemma 10.2 is uniform in σ1 < σ < σ2, it may also be applied to

evaluate the asymptotics of Hn (w̃1) and P̃
(1)
n (1). In the next calculation,

we emphasize the dependence of γ1(1), D1(1), and QJ0,1(f) in σ by γ1(1;σ),
D1(1;σ), and QJ0,1(f ;σ). As n→ ∞,

γ1(1; σ̃), γ1(1; σ̂) = γ1(1;σ)(1 +O(1/n)),

D1(1; σ̃), D1(1; σ̂) = D1(1;σ)(1 +O(1/n)),

QJ0,1(f ; σ̃), QJ0,1(f ; σ̂) = QJ0,1(f ;σ)(1 +O(1/n)).

Thus, by Lemma 10.2 and (10.22),

(10.28)

Hnk+r

(
e−(nk+r)V0,k

)
Hn

(
e−2σ̃nx2

)k−r
Hn+1

(
e−2σ̂(n+1)x2

)r =
1

2n(k−1)(nk−1)+2nr(k−1)+(r−1)2

× θ((nk + r)Ω|τ)
θ((nk + r)Ω + Υ|τ)

(
2

1 +
√
1− σ−1

) k−1
2

×
[
γ1(1) + γ1(1)

−1
]k−1 1

2k−1
D1(1)

−k+1e
−(nk+r)

∫
J0,k

f(x)dµV0,k (x)e
−QJ0,k

(f)

×exp

(
− σ̂(n+ 1)

π

∫ σ̂−1/2

−σ̂−1/2

√
1/σ̂ − x2 log(1− x2)dx+ kQJ0,1(f)

)
(1+O(1/n)),

where all functions are evaluated at σ and not σ̃ or σ̂ (e.g. γ1(1) = γ1(1;σ)),
except where dependence on σ̃ or σ̂ is explicitly indicated.

Lemma 10.3. For σ > 1,∫
J0,k

log(1−x2)dµV0,k(x) =
2σ

πk

∫
J0,k

log(1−x2)|T ′
k(x)|

∣∣Tk(x)2 − 1/σ
∣∣1/2 dx

= −2

k

(
−σ +

1

2
+

1

2
log σ + k log 2 +

√
σ(σ − 1)− log

(√
σ − 1 +

√
σ
))

.
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Proof. Observe that if γ0 is as in Figure 10 and CR a circle of (large) radius
R centered at 0 with counter-clockwise orientation, then

(10.29) 0 =
2σ

πki

∮
γ0

log(z + 1)T ′
k(z)

(
Tk(z)

2 − 1/σ
)1/2

dz

= 2

∫
J0,k

log(x+ 1)dµV0,k(x) +
4σ

k

∫ −1

−R
T ′
k(x)

(
Tk(x)

2 − 1/σ
)1/2

dx

+
2σ

πki

∮
CR

log(z + 1)T ′
k(z)

(
Tk(z)

2 − 1/σ
)1/2

dz,

with log(z+1) analytic on C\(−∞,−1] and real for z > −1, with
(
Tk(z)

2 − 1/σ
)1/2

analytic on C \ J0,k and positive for z > bk. We start by evaluating the in-

tegral
∫ −1
−R on the right-hand side of (10.29). Since Tk(−1) = (−1)k, and

T ′
k(x)

(
Tk(x)

2 − 1/σ
)1/2

is negative on [−R,−1), it follows by the change of

variable y = (−1)k
√
σTk(x) and the relation

1

2

(
y
√
y2 − 1− log

(√
y2 − 1 + y

))′
=
√
y2 − 1,

that

(10.30)

∫ −1

−R
T ′
k(x)

(
Tk(x)

2 − 1/σ
)1/2

dx = − 1

σ

∫ √
σ|Tk(−R)|

√
σ

√
y2 − 1dy

=
1

2σ

(
− σTk(−R)2 +

1

2
+ k logR+

1

2
log σ + k log 2

+
√
σ(σ − 1)− log

(√
σ − 1 +

√
σ
))

+ o(1),

as R → ∞. We now evaluate the integral
∮
CR

in (10.29). As z → ∞ we

have T ′
k(z)

√
Tk(z)2 − 1/σ = T ′

k(z)Tk(z)−
k

2σz +O
(
z−2
)
, and it follows that

as R→ ∞,

(10.31)

∮
CR

log(z + 1)T ′
k(z)

√
Tk(z)2 − 1/σdz

=

∮
CR

log(z + 1)T ′
k(z)Tk(z)dz −

∮
CR

k log(z + 1)

2σz
dz + o(1).

By integration by parts we have

2πiTk(−R)2 =
∮
CR

(
log(z + 1)Tk(z)

2
)′
dz

=

∮
CR

Tk(z)
2

z + 1
dz + 2

∮
CR

log(z + 1)Tk(z)T
′
k(z)dz,
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and it follows that

(10.32)

∮
CR

log(z + 1)Tk(z)T
′
k(z)dz = πiTk(−R)2 − πiTk(−1)2.

Substituting (10.32) into (10.31) and evaluating the second integral on the
right-hand side of (10.31) in the limit R→ ∞ we obtain that

(10.33)

∮
CR

log(z + 1)T ′
k(z)

√
Tk(z)2 − 1/σdz

= πiTk(−R)2 − πiTk(−1)2 − kπi logR

σ
+ o(1),

as R → ∞. Substituting (10.30) and (10.33) into (10.29), taking the limit
R→ ∞ we have proven the lemma. □

Substituting the identity in Lemma 10.3 into (10.27) we obtain

(10.34)
Hnk

(
e−nkV0,k

)
Hn

(
e−2nσx2

)k =
1

2n2k(k−1)2k−1

θ(nkΩ|τ)
θ(nkΩ+Υ|τ)

D1(1)
−k+1

×
(

2

1 +
√
1− σ−1

)(k−1)/2 (
γ1(1) + γ1(1)

−1
)k−1

e
−QJ0,k

(f)
e
kQJ0,1

(f)
(1+O(1/n)),

as n→ ∞.
Substituting the identity in Lemma 10.3 into (10.28) we obtain

(10.35)

Hnk+r

(
e−(nk+r)V0,k

)
Hn

(
e−2σ̃nx2

)k−r
Hn+1

(
e−2σ̂(n+1)x2

)r =
D1(1)

−k+1

2n2k(k−1)+2nr(k−1)+(r−1)22k−1

× exp

[
1

2

(
1− r

k

)
log σ + (1− r) log 2 +

( r
k
− 1
)
log
(√
σ +

√
σ − 1

) ]

× θ((nk + r)Ω|τ)
θ((nk + r)Ω + Υ|τ)

(
2

1 +
√
1− σ−1

) k−1
2 [

γ1(1) + γ1(1)
−1
]k−1

× e
−QJ0,k

(f)+kQJ0,1
(f)

(1 +O(1/n)),

as n→ ∞.
It is not a straightforward matter to further simplify formulas (10.34)-

(10.35) for fixed σ > 1, however in the limit σ → 1 it is rather simple, so we
now proceed with the limit σ → 1.

10.3. Limit σ → 1. We now consider the limit σ → 1. Let ξ1, . . . , ξk−1

be the ordered zeros of Uk−1 so that ξj = − cos πjk . We observe that the

parameters {aj , bj}kj=1 depend on σ. Recalling that these are the zeros of

T 2
k (x)− σ−1, it is easily verified by writing Tk(cos θ) = cos kθ that

(10.36) bk = −a1 = 1− σ − 1

2k2
+O

(
(σ − 1)2

)
,
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as σ → 1, and for j = 1, . . . , k − 1,
(10.37)

bj = ξj−
√
σ − 1

k
sin

πj

k
+O (σ − 1) , aj+1 = ξj+

√
σ − 1

k
sin

πj

k
+O (σ − 1) .

Thus we have

(10.38) R1/2(z) → 2−k+1
(
z2 − 1

)1/2
Uk−1(z),

for any fixed z ∈ C \ {ξ1, . . . , ξk−1}, while on (bj , aj+1), j = 1, . . . , k − 1, we
have

(10.39)

R1/2(z) =
√
(aj+1 − z)(z − bj)R̃j (1 + o(1)) ,

R̃j = (−1)k−j
(∏
i ̸=j

|ξj − ξi|
)√

1− ξ2j

as σ → 1, uniformly on (bj , aj+1), and (10.39) is also valid on any shrinking
neighbourhood of ξj with branch cuts for z < bj and z > aj+1.

In order to evaluate the θ-function in (10.34) as σ → 1, we need to evaluate
τ as σ → 1. Recall from Remark 1.8 that τ = −B(A−1)T . By the definition
of A in Remark 1.8, the formula for the determinant of A in (1.81), and
(10.39), we obtain

(10.40)

Arj →
πξr−1

j

R̃j

,

det(A(σ)) → (−1)
k(k−1)

2 πk−1∏
i<j(ξj − ξi)

√∏k−1
j=1(1− ξ2j )

,

as σ → 1. Above, ξr−1
j should be interpreted as equal to 1 if r = 1 and

ξj = 0 (this happens for even values of k). In particular A is continuous as
σ → 1, and since A is bounded and detA remains bounded away from 0, it
follows that A−1 is continuous as σ → 1 as well.

Now consider the matrix B with Bjr =
∑j

i=1

∫ bi
ai

xr−1dx

R1/2
+ (x)

. Uniformly for

x in a neighbourhood of ξj , for j = 1, . . . , k − 1, we have

(10.41)
xr−1

R1/2(x)
=

ξr−1
j

R̃j

√
(aj+1 − x)(x− bj)

+O(1),

as σ → 1, where
√

(aj+1 − x)(x− bj) is analytic on C\((−∞, bj ]∪[aj+1,∞))
and is positive on (bj , aj+1). By relying on (10.38) and (10.41), we obtain

Bjr = −
iξr−1
j

2R̃j

log
1

σ − 1
+O(1),

as σ → 1. Thus, since τ = −B(A−1)T , it follows by (10.40) that

(10.42) τ = I
1

2πi
log(σ − 1) + o

(
log

1

σ − 1

)
,
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as σ → 1. It follows that θ(x|τ) → 1 as σ → 1 uniformly for x ∈ Rk−1.
Now recall the formula for QJ0,k from (10.19). Since f(z) = −1

2 log(1 −
z2) and W (z, λ) = d

dzwz(λ), we find by integration by parts (recalling the
definition of Dk from (10.23))

(10.43) QJ0,k(f) =
1

4
(logDk(1) + logDk(−1)− 2 logDk(∞)) .

All that remains is to evaluate Dk(1), Dk(−1), and Dk(∞) as σ → 1. We
start with Dk(∞).

Lemma 10.4. As σ → 1,

logDk(∞) → 1

2
log 2.

Proof. By (9.31) with f(x) = −1
2 log(1− x2),

logDk(∞) =
1

4πi

∫
J0,k

Q̃(x) log(1− x2)

R1/2
+ (x)

dx,

where Q̃(x) is the unique monic polynomial of degree k − 1 satisfying∫ ak+1

bk

Q̃(x)

R1/2(x)
dx = 0

for k = 1, . . . , k − 1. Since R1/2(x) = 1
2k−1

(
Tk(x)

2 − 1/σ
)1/2

, it is easily

verified that Q̃(x) = 1
2k−1Uk−1(x) =

1
k2k−1T

′
k(x). Since

Uk−1(x)

(Tk(x)2 − 1/σ)
1/2
+

→ 1√
x2 − 1+

as σ → 1 pointwise on (−1, 1) \ {ξj}k−1
j=1 , where ξ1, . . . , ξk−1 are the ordered

zeros of Uk−1, it follows that (we leave the details to the reader)

logDk(∞) → − 1

4π

∫ 1

−1

log(1− x2)dx√
1− x2

,

as σ → 1, and the right hand side is equal to 1
2 log 2 (see e.g. [81, formula

(52)]). □

Recall that ω1, . . . ,ωk, defined in (1.22), is the unique basis of holo-
morphic one-form satisfying

∮
Al

ωj = δl,j , and recall the form of ωj(x) =
Qj(x)

R1/2(x)
dx from (1.23). We also recall from below (1.24) that the coefficients

of Qj are real, and since ∫ ai+1

bi

Qj(x)

R1/2
+ (x)

dx = 0,
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for i ̸= j, it follows that Qj has a zero in each interval (bi, ai+1), again for
i ̸= j. Denote the zero of Qj in the interval (bi, ai+1) by yj,i. Since

(x− yj,i)√
(x− bi)(x− ai+1)

→ 1, i ̸= j,

as σ → 1, uniformly for x bounded away from ξi, it follows that

u′j(x) =
Ĉj√

(x− bk)(x− a1)(x− ξj)
(1 + o(1))

as σ → 1, uniformly for x bounded away from ξ1, . . . , ξk−1, for some constant

Ĉj . Note that ∮
Aj

(ξ2l − 1)
1/2
+

2πi((x− bk)(x− a1))1/2(x− ξl)
dx→ δl,j ,

as σ → 1. Thus,

(10.44) u′l(x) =
ωl(x)

dx
=

(ξ2l − 1)
1/2
+

2πi((x− bk)(x− a1))1/2(x− ξl)
(1 + o(1)),

where the convergence is uniform for x in compact subsets of C\{ξ1, . . . , ξk−1}.

Lemma 10.5. As σ → 1,

logDk(1), logDk(−1) = −1

2
log 2− 1

4
log(σ − 1) +

1

2
log k + o(1).

Proof. By (5.16) and (10.23), we have

logDk(±1) =
R1/2(±1)

8πi

×
∮
Γ
log(1−λ2)

 1

R1/2(λ)(λ∓ 1)
+ 2

k−1∑
j=1

u′j(λ)

∫ aj+1

bj

dx

R1/2(x)(x∓ 1)

 dλ,

where Γ is a closed, counterclockwise oriented contour enclosing J0,k, but
not intersecting (−∞,−1]∪ [1,∞). We can assume that Γ is bounded away
from ξ1, . . . , ξk−1, and thus

∮
Γ log(1−λ

2)u′j(λ)dλ remains bounded as σ → 1

by (10.44). By (10.39),
∫ aj+1

bj
dx

R1/2(x)(x−1)
remains bounded as σ → 1. Since

R1/2(±1) → 0 as σ → 1, it follows that

(10.45)

logDk(1) =
R1/2(1)

8πi

∮
Γ

log(1− x2)dx

R1/2(x)(x− 1)
+ o(1),

logDk(−1) =
R1/2(−1)

8πi

∮
Γ

log(1− x2)dx

R1/2(x)(x+ 1)
+ o(1),
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where the branches of the logarithms are principal. Since R1/2(1)

R1/2
+ (x)

= −R1/2(−1)

R1/2
+ (−x)

for all x ∈ J , it follows that

R1/2(1)

8πi

∮
Γ

log(1− x2)dx

R1/2(x)(x− 1)
=

R1/2(−1)

8πi

∮
Γ

log(1− x2)dx

R1/2(x)(x+ 1)
.

We evaluate the left hand side. Deforming Γ to the branch-cuts of the
logarithm, we obtain
(10.46)

1

2πi

∮
Γ

log(1 + x)dx

R1/2(x)(x− 1)
=

∫ −1

−∞

dx

R1/2(x)(x− 1)
− log 2

R1/2(1)
,

1

2πi

∮
Γ

log(1− x)dx

R1/2(x)(x− 1)
= lim

ϵ→0

(
− log ϵ

R1/2(1)
−
∫ ∞

1+ϵ

dx

R1/2(x)(x− 1)

)
.

Recall that bk is the largest zero of R(z), and denote

R̂1/2(z) =
R1/2(z)

(z − bk)1/2
.

As ϵ→ 0, ∫ ∞

1+ϵ

dx

(x− 1)(x− bk)1/2

(
1

R̂1/2(x)
− 1

R̂1/2(1)

)
remains uniformly bounded for σ > 1, and thus∫ ∞

1+ϵ

dx

R1/2(x)(x− 1)
=

1

R̂1/2(1)

∫ ∞

1+ϵ

dx

(x− 1)(x− bk)1/2
+O(1), as ϵ→ 0,

uniformly for σ > 1. We have∫ ∞

1+ϵ

dx

(x− 1)(x− bk)1/2
=

1√
1− bk

(
log
(
4(1− bk)

)
− log ϵ

)
+ o(1),

as ϵ→ 0. Substituting this into (10.46), we obtain

1

2πi

∮
Γ

log(1− x)dx

R1/2(x)(x− 1)
= −

log
(
4(1− bk)

)
R1/2(1)

+O(1), as σ → 1,

and recalling that R(1) → 0 as σ → 1, from (10.45) we get

logDk(1), logDk(−1) = −3

4
log 2− 1

4
log(1− bk) + o(1),

as σ → 1, and the lemma follows by (10.36). □

By (1.31) with k = 1 and (10.36), we have

γ1(1) =

(
σ − 1

4

) 1
4

(1 + o(1)),
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as σ → 1. Thus, since θ(x|τ) → 1 as σ → 1 uniformly for x ∈ Rk−1, we
obtain by (10.43) and Lemmas 10.4 and 10.5 that

θ(nkΩ|τ)
θ(nkΩ+Υ|τ)

(
2

1 +
√
1− σ−1

) k−1
2

D1(1)
−k+1

(
γ1(1) + γ1(1)

−1
)k−1

× 1

2k−1
e
−QJ0,k

(f)
e
kQJ0,1

(f)
= k−1/4(σ − 1)−

k−1
8 (1 + o(1))

as σ → 1.
Thus, from (10.34), we obtain

(10.47) lim
σ↓1

lim sup
n→∞

∣∣∣∣∣ logHnk

(
e−nkV0,k

)
− k logHn

(
e−2nσx2

)
+
[
n2k(k − 1)

]
log 2 +

1

4
log k +

k − 1

8
log(σ − 1)

∣∣∣∣∣ = 0.

Similarly, from (10.35),

(10.48) lim
σ↓1

lim sup
n→∞

∣∣∣∣∣ logHnk+r

(
e−(nk+r)V0,k

)
− (k − r) logHn

(
e−2nσ̃x2

)
− r logHn+1

(
e−2nσ̃x2

)
+
[
n2k(k − 1) + 2nr(k − 1) + r(r − 1)

]
log 2

+
1

4
log k +

k − 1

8
log(σ − 1)

∣∣∣∣∣ = 0.

Substituting the asymptotics of (1.34) into (10.47) and (10.48), we obtain
(2.21).

11. Partition function asymptotics

In this section we compute the asymptotics of d
ds logHN

(
e−NVs

)
where

Vs is the deformation introduced in Section 2.5. Our main goal is to prove
(2.30). Throughout the section, we are in the setting where D(z) ≡ 1
and Υ = 0, so that the main parametrix M defined in (5.23) is given by
M(z) = N∞(z) = N∞(z;NΩ).

Recall the notation r(νs) from Section 2.2. We start by proving that
r(e−NVs) → 0 as N → ∞. For z outside the lenses, we have by (4.4), (4.13),
and (7.1)

Y (z) = e−N
ℓ
2
σ3R(z)N∞(z)eN(g(z)+ ℓ

2
)σ3 ,

where we take V = Vs in the definition of N∞, R, and g. Let I be a single
interval such that [a1, bk] ⊂ I. By the uniform boundedness of R, R′, N∞,
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and N ′
∞ (see (7.4) and (5.8) with v = NΩ), it follows that

(11.1)

r(e−NVs) =−N

∫
R\I

[Y (x)−1Y ′(x)]21e
−NVs(x) ∂

∂s
Vs(x)

dx

2πi

= −N
∫
R\I

O(1)× ∂

∂s
Vs(x)e

N(g+(x)+g−(x)−Vs(x)+ℓs)dx,

where the implied constant is uniform in s and x as N → ∞. We find from
the k-cut regularity of Vs(x), and in particular the assumption that (1.10)
is strict, that g+(x) + g−(x) − Vs(x) + ℓs < −δ for some fixed δ > 0 and

that Vs(x)
log |x| → +∞ as x→ ±∞, so it is straightforward to verify that (11.1)

is exponentially small as N → ∞. Thus

(11.2)
d

ds
logDN (HN (e

−NVs)) = −N
∮
Γ
[Y (z)−1Y ′(z)]11

∂

∂s
Vs(z)

dz

2πi
+O(N−1)

= −N2

∮
Γ
g′(z)

∂

∂s
Vs(z)

dz

2πi
−N

∮
Γ
[N∞(z)−1N ′

∞(z)]11
∂

∂s
Vs(z)

dz

2πi

−
∮
Γ

[
N∞(z)−1

(
d

dz
R(1)(z)

)
N∞(z)

]
11

∂

∂s
Vs(z)

dz

2πi
+O(N−1)

as N → ∞, where R(1), N∞, and g were given in (7.5), (5.8), and (4.1)
respectively.

11.1. The order N2 term. We prove that the leading order term has the
following form.

Lemma 11.1. Let Vs(x) denote either one of the family of potentials de-
scribed in Section 2.5. Then∮

Γ
g′(z)

∂

∂s
Vs(z)

dz

2πi

=
∂

∂s

(∫∫
log |x− y|−1dµVs(x)dµVs(y) +

∫
Vs(x)dµVs(x)

)
,

where dµVs(x) denotes the equilibrium measure associated to Vs(x).

Proof. For either interpolation, we saw in Section 2.6 that the edge points
of the support are smooth functions of s (in fact, for one interpolation,
they are affine functions of s given by (2.23), while for the other they are
constant in s). We use the notation dµVs(x) = ψVs(x)dx (recall (1.12)) for

the equilibrium measure associated to Vs and Js =
⋃k
j=1[aj(s), bj(s)] for its

support. By definition (4.1),

g′(z) =

∫
Js

1

z − x
dµVs(x)
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so by Cauchy’s integral formula∮
Γ
g′(z)

∂

∂s
Vs(z)

dz

2πi
=

∫
Js

∂

∂s
Vs(x)dµVs(x)(11.3)

=
∂

∂s

∫
Js

Vs(x)dµVs(x)−
∫
Js

Vs(x)
∂

∂s
ψVs(x)dx.(11.4)

By the Euler-Lagrange equation (1.9)

(11.5)

∫
Js

Vs(x)
∂

∂s
ψVs(x)dx

=

∫
Js

∫
Js

2 log |x− y|ψVs(y)
∂

∂s
ψVs(x)dydx+ ℓs

∫
Js

∂

∂s
ψVs(x)dx,

and since
∫
Js

∂
∂sψVs(x)dx = ∂

∂s

∫
Js
ψVs(x)dx = 0, the lemma follows upon

substituting (11.5) into (11.4). □

11.2. The order N term. By (5.2),

N∞(z)−1N ′
∞(z) = N−1

λ (z)N ′
λ(z)

for any λ ∈ C. Letting λ → z, and relying on the fact that Nz(z) = I, we
find that by the definition of Nλ in (5.8) that

(11.6)
[
N∞(z)−1N ′

∞(z)
]
11

= lim
λ→z

N ′
λ,11(z) =

k−1∑
j=1

∂jθ(NΩ)

θ(NΩ)
u′j(z).

We now prove the following proposition.

Proposition 11.2. For either of the interpolations of Section 2.6, we have

1

2πi

∮
Γ
∂sVs(z)u

′
j(z)dz = − ∂

∂s
Ωj(s).

Substituting into (11.6), we obtain

(11.7) −N

∮
Γ
[N∞(z)−1N ′

∞(z)]11
∂

∂s
Vs(z)

dz

2πi

=
∂

∂s
log θ(NΩ)−

k−1∑
j,l=1

∂τj,l
∂s

∂

∂τj,l
log θ(NΩ).

Proof. By (1.15) and integration by parts

1

2πi

∮
Γ

∂

∂s
Vs(z)u

′
j(z)dz =

1

2πi

∮
γ

(
∂

∂s
ψVs(w)

)∮
Γ

uj(z)

z − w
dzdw,

where γ encloses Γ. We deform Γ to ∞ (giving a residue at ∞ and at z = w),
recalling that uj(z) = uj(∞) +O(z−1) as z → ∞, to obtain

1

2πi

∮
Γ

∂

∂s
Vs(z)u

′
j(z)dz = −

∮
γ

∂

∂s
(ψVs(w)) (uj(w)− uj(∞))dw.
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By (1.12) ∮
γ
ψVs(w)dw = −2

∫
Js

dµVs(x) = −2,

it follows that
∮
γ
∂
∂sψVs(w)dw = 0, so

1

2πi

∮
Γ

∂

∂s
Vs(z)u

′
j(z)dz = −

∮
γ

∂

∂s
(ψVs(w))uj(w)dw.

By (5.3) and (5.4),

1

2πi

∮
Γ

∂

∂s
Vs(z)u

′
j(z)dz

=
k∑
l=1

1(l ≤ j)

∫ bl

al

∂

∂s
ψVs(w)dw +

k−1∑
l=1

τl,j

∫ al+1

bl

∂

∂s
ψVs(w)dw,

where al = al(s) and bl = bl(s). Since ψVs vanishes at the endpoints,∫ bl

al

∂

∂s
ψVs(w)dw =

∂

∂s

∫ bl

al

ψVs(w)dw,∫ al+1

bl

∂

∂s
ψVs(w)dw =

∂

∂s

∫ al+1

bl

ψVs(w)dw.

The integrals from bl to al+1 are zero by (1.17), and thus we have proven
the proposition by the definition of Ωj in (1.18). □

11.3. The constant term. Let Uaj and Ubj be fixed but sufficiently small
discs surrounding aj and bj as in Section 6.1 with boundaries oriented clock-
wise. We have

∮
Γ

[
N∞(z)−1

(
d
dzR

(1)(z)
)
N∞(z)

]
11

∂

∂s
Vs(z)

dz

2πi

(11.8)

=

k∑
j=1

∮
Γ

(∮
∂Uaj

∆11(λ, z)

(λ− z)2
dλ

2πi
+

∮
∂Ubj

∆11(λ, z)

(λ− z)2
dλ

2πi

)
∂

∂s
Vs(z)

dz

2πi
,

where R(1) was defined in (7.5). We obtain from (6.6) and (5.2) that ∆(λ, z)
equals
(11.9)

1
ζaj (λ)

3/2Nλ(z)
−1eNπiΩj−1η(λ)σ3σ3

1
8

(
1
6 i

i −1
6

)
σ3e

−NπiΩj−1η(λ)σ3Nλ(z),

1
ζbj (λ)

3/2Nλ(z)
−1eNπiΩjη(λ)σ3 1

8

(
1
6 i

i −1
6

)
e−NπiΩjη(λ)σ3Nλ(z),

where the first line reads for λ ∈ ∂Uaj and the second line for λ ∈ ∂Ubj , and
where η was defined in (6.4) by η(z) = sgn(Im z), ζaj and ζbj were defined
in (6.2), and Nλ was defined in (5.8). We begin our study of ∆11 by simply
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writing out the quantity more explicitly. A straightforward calculation,
making use of the fact that detNλ(z) = 1 so that e.g. (N−1

λ )11 = Nλ,22 etc,
shows that for λ ∈ ∂Uaj , with j = 1, . . . , k,

(11.10)

∆11(λ, z) = ∆
(1)
11 (λ, z) + ∆

(2)
11 (λ, z),

∆
(1)
11 (λ, z) =

1

48ζaj (λ)
3/2

(Nλ,11(z)Nλ,22(z) +Nλ,12(z)Nλ,21(z)) ,

∆
(2)
11 (λ, z) = − i

8ζaj (λ)
3/2

(
e2πiNΩj−1η(λ)Nλ,22(z)Nλ,21(z)

− e−2πiNΩj−1η(λ)Nλ,12(z)Nλ,11(z)

)
,

(where we set Ω0 = Ωk = 0), and for λ ∈ ∂Ubj , with j = 1, . . . , k,

(11.11)

∆11(λ, z) = ∆
(1)
11 (λ, z) + ∆

(2)
11 (λ, z),

∆
(1)
11 (λ, z) =

1

48ζbj (λ)
3/2

(Nλ,11(z)Nλ,22(z) +Nλ,12(z)Nλ,21(z)) ,

∆
(2)
11 (λ, z) =

i

8ζbj (λ)
3/2

(
e2πiNΩjη(λ)Nλ,22(z)Nλ,21(z)

− e−2πiNΩjη(λ)Nλ,12(z)Nλ,11(z)

)
.

11.4. Application of θ-function identities to evaluate ∆
(1)
11 and ∆

(2)
11 .

We will shortly apply the θ-function identities from Proposition 3.6 to obtain

expressions for ∆
(1)
11 and ∆

(2)
11 where the oscillations (namely θ functions

containing NΩ) and the slowly varying terms separate, so we can average
out the oscillations.

We now obtain an identity for the terms appearing in (11.10) and (11.11).

Lemma 11.3. Let Nλ be defined by (5.8) with v = NΩ, and let u be defined
by (1.26). For z, λ ∈ C \ [a1, bk], we have

Nλ,11(z)Nλ,22(z) +Nλ,12(z)Nλ,21(z) =

(11.12)

(z − λ)2

W (λ, z) + 2
k−1∑
i,j=1

(∂i∂j log θ)(NΩ)u′i(z)u
′
j(λ)



Nλ,22(z)Nλ,21(z) = i
(λ− z)2

4

θ(0)θ(2u(λ) +NΩ)

θ(2u(λ))θ(NΩ)

k∑
j=1

(
1

λ− bj
− 1

λ− aj

)(11.13)
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×

wλ(z) + k−1∑
j=1

(∂j log θ(2u(λ) +NΩ)− ∂j log θ(NΩ))u′j(z)



Nλ,12(z)Nλ,11(z) = −i(λ− z)2

4

θ(0)θ(2u(λ)−NΩ)

θ(2u(λ))θ(NΩ)

k∑
j=1

(
1

λ− bj
− 1

λ− aj

)(11.14)

×

wλ(z) + k−1∑
j=1

(∂j log θ(2u(λ)−NΩ) + ∂j log θ(NΩ))u′j(z)

 ,

where W is as in (1.29) and wλ(z) is as in (1.32).

Proof. Since detNλ = 1, the left hand side of (11.12) is equal to

2Nλ,11(z)Nλ,22(z)− 1,

and substituting (3.12) into (5.8) (with v = NΩ) yields the desired result
for Nλ,11(z)Nλ,22(z). Formulas (11.13) and (11.14) both follow in a straight-
forward manner from substituting (3.13) into (5.8).

In all cases, it is useful to keep in mind that ∂j log θ and ∂j log θ [
α
β] are

odd functions. □

Let v ∈ Ck−1. By (5.3), (5.5), (5.6), and (5.7),

(11.15)

θ(2u(λ) + v)

θ(2u(λ))
= e−2πivj−1η(λ)

θ
(
2
∫ λ
aj
ω + v

)
θ
(
2
∫ λ
aj
ω
) for λ ∈ ∂Uaj ,

θ(2u(λ) + v)

θ(2u(λ))
= e−2πivjη(λ)

θ
(
2
∫ λ
bj
ω + v

)
θ
(
2
∫ λ
bj
ω
) for λ ∈ ∂Ubj ,

where we set v0 = vk = 0.
Let

(11.16) w̃λ(z) =

{
wλ(z)− 2πiη(λ)u′j−1(z) for λ ∈ Uaj , for j = 1, . . . , k,

wλ(z)− 2πiη(λ)u′j(z) for λ ∈ Ubj , for j = 1, . . . , k,

(where u′0 = u′k = 0), and observe that by (5.14) and (5.15), w̃λ(z)

R1/2(λ)
is

meromorphic as a function of λ on each disc Ux for x ∈ {aj , bj}kj=1, and

since wλ(z) is bounded as λ → x, w̃λ(z)

R1/2(λ)
is analytic on each disc Ux as a

function of λ.
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Putting these remarks together, we find

(11.17)

∮
Γ

[
N∞(z)−1

(
d
dzR

(1)(z)
)
N∞(z)

]
11

∂

∂s
Vs(z)

dz

2πi
= r̂(s)

+

∮
Γ

dz

2πi

∂

∂s
Vs(z)

∑
q∈{aj ,bj}kj=1

[∮
∂Uq

dλ

2πiζq(λ)3/2

(
1

48
W (λ, z)

± θ(0)
32θ(NΩ)

(
θ
(
2
∫ λ
q ω+NΩ

)
+θ

(
2
∫ λ
q ω−NΩ

)
θ
(
2
∫ λ
q ω

)
)
w̃λ(z)

k∑
l=1

(
1

λ−bl −
1

λ−al

))]
,

where ∂Uq is oriented clockwise, and where ± = + for q ∈ {aj}kj=1 and

± = − for q ∈ {bj}kj=1, and

(11.18) r̂(s) =
∑

q∈{aj ,bj}kj=1

∮
∂Uq

dλ

2πiζq(λ)3/2

3∑
i=1

r̂i(s;λ),

where
(11.19)

r̂1(s;λ) =
1

24

∮
Γ

dz

2πi

∂

∂s
Vs(z)

k−1∑
i,l=1

(∂i∂l log θ)(NΩ)u′i(z)u
′
l(λ),

r̂2(s;λ) = ± 1

32

∮
Γ

dz

2πi

∂

∂s
Vs(z)θ(0)

θ
(
2
∫ λ
q ω +NΩ

)
θ
(
2
∫ λ
q ω

)
θ(NΩ)

×

(
wλ(z)− w̃λ(z) +

k−1∑
l=1

u′l(z)∂l log
θ(2u(λ)+NΩ)

θ(NΩ)

)
k∑
l=1

(
1

λ−bl −
1

λ−al

)
,

r̂3(s;λ) = ± 1

32

∮
Γ

dz

2πi

∂

∂s
Vs(z)θ(0)

θ
(
2
∫ λ
q ω −NΩ

)
θ
(
2
∫ λ
q ω

)
θ(NΩ)

×

(
wλ(z)− w̃λ(z)−

k−1∑
l=1

u′l(z)∂l log
θ(−2u(λ)+NΩ)

θ(NΩ)

)
k∑
l=1

(
1

λ−bl −
1

λ−al

)
.

If a function gN (s) satisfies
∫ 2
0 gN (s)ds = O(1/N) as N → ∞, then we

denote gN (s) = Õ(1/N) as N → ∞.

Lemma 11.4. As N → ∞, we have r̂(s) = Õ(1/N).

Lemma 11.4 allows us to ignore terms which do not contribute to the final
answer already before performing our analysis of residues, and thus we avoid
performing calculations which would otherwise be rather involved. In this
respect we were inspired by a similar procedure undertaken in [66], although
the situation at hand is different to that of [66].
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Proof. We will use Fubini to change the order of integration in s and λ.
However, since the contour of integration ∂Uq depends on s, we start by
discussing a few technicalities to facilitate the use of Fubini. For s ∈ [1, 2],
the support of the equilibrium measure J is fixed, while for s ∈ (0, 1), the
endpoints of the support {aj , bj}kj=1 depend on s. However, since the radius

of Ux is uniformly bounded from below for x ∈ {aj , bj}kj=1 for all s ∈ [0, 1),
it follows that there are a finite number of points 0 = s0 < s1 < · · · <
sK = 2 such that for any s ∈ [sj−1, sj ] and x(s) ∈ {aj(s), bj(s)}kj=1, we have

x(s) ∈ Ux(sj−1)∩Ux(sj). We will integrate over each such interval separately,
and add the contributions at the end. To ease the notation, we simply say
that we integrate from s1 to s2. Then for all s1 ≤ s ≤ s2, we can assume
that the contours ∂Uq are fixed and independent of s in the integrals on
the right-hand side of (11.8), since we are evaluating only the residue. By
Fubini, ∫ s2

s1

r̂(s)ds =
∑

q∈{aj ,bj}kj=1

∮
∂Uq

∫ s2

s1

1

ζq(λ)3/2

3∑
i=1

r̂i(s;λ)ds
dλ

2πi
.

We start by considering r̂1. By Proposition 11.2

(11.20) 24
r̂1(s;λ)

ζq(λ)3/2
= −

k−1∑
l=1

1

N

∂

∂s

(
u′l(λ)

ζq(λ)3/2
(∂l log θ)(NΩ)

)

+

k−1∑
l=1

u′l(λ)

Nζq(λ)3/2

∑
1≤u≤v≤k−1

∂τu,v
∂s

∂

∂τu,v
(∂l log θ)(NΩ)

+

k−1∑
l=1

∂

∂s

(
u′l(λ)

Nζq(λ)3/2

)
(∂l log θ)(NΩ).

In (11.20) we interpret τ to always be symmetric, so that when we take the
derivative of a function f depending on τ (e.g. f(τ) = log θ(NΩ|τ) above),
it is given by
(11.21)

∂

∂τj,l
f(τ) = lim

ϵ→0

f(τ + ϵχj,l + ϵχl,j)− f(τ)

ϵ
for 1 ≤ j < l ≤ k − 1,

∂

∂τj,j
f(τ) = lim

ϵ→0

f(τ + ϵχj,j)− f(τ)

ϵ
for 1 ≤ j ≤ k − 1,

where χj,l is the matrix with zeros in all entries except the j, l entry and

1 in the j, l entry. We observe that ∂l log θ and ∂
∂τu,v

∂l log θ in (11.20) are

bounded functions on R, and that
u′l(λ)

ζq(λ)3/2
and its derivative with respect

to s are both uniformly bounded for λ ∈ ∂Uq for all q ∈ {aj , bj}kj=1. Thus

the second and the third term on the right-hand side of (11.20) are both
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uniformly of order O(1/N) for s ∈ [0, 2]. While the first term on the right-
hand side is not in general small, the integral in s from s1 to s2 is of order
O(1/N) as N → ∞. Thus it follows that∫ s2

s1

r̂1(s;λ)

ζq(λ)3/2
ds = O(1/N),

as N → ∞, uniformly for λ ∈ ∂Uq, for q ∈ {aj , bj}kj=1. Now consider the

term involving r̂2. By (11.15), (11.19), and Proposition 11.2, for q = bj and
Imλ > 0,

(11.22)

32
r̂2(s;λ)

ζq(λ)3/2
= − 1

N

∂

∂s

 θ(0)

ζq(λ)3/2

θ
(
2
∫ λ
q ω +NΩ

)
θ
(
2
∫ λ
q ω

)
θ(NΩ)

k∑
l=1

(
1

λ−bl −
1

λ−al

)
+ e2πiNΩj

θ (2u(λ) +NΩ)

Nθ(NΩ)

∂

∂s

(
θ(0)

ζq(λ)3/2
1

θ (2u(λ))

k∑
l=1

(
1

λ−bl −
1

λ−al

))

+
e2πiNΩj

Nθ(NΩ)

θ(0)

ζq(λ)3/2
1

θ (2u(λ))

(
k∑
l=1

(
1

λ−bl −
1

λ−al

)) k−1∑
l=1

2∂ul(λ)

∂s
∂lθ (2u(λ) +NΩ)

+
e2πiNΩj

N

(
θ(0)

ζq(λ)3/2
1

θ (2u(λ))

k∑
l=1

(
1

λ−bl −
1

λ−al

))

×
∑

1≤u≤v≤k−1

∂τu,v
∂s

∂

∂τu,v

θ (2u(λ) +NΩ)

θ(NΩ)
,

where we interpret ∂
∂τu,v

as in (11.21). It is easily verified that the second,

third and fourth terms are all of order O(1/N) as N → ∞, uniformly for
Imλ > 0. The integral of the first term with respect to s from s1 to s2
is of order O(1/N) as N → ∞, again uniformly for λ ∈ ∂Ubj such that

Imλ > 0. The situation Imλ < 0 is treated similarly, with e2πiNΩj replaced
by e−2πiNΩj . Likewise, the situation q ∈ {aj}kj=1 is treated similarly, with

e2πiNΩj replaced by e2πiNΩj−1 . It follows that∫ s2

s1

r̂2(s;λ)

ζq(λ)3/2
ds = O(1/N),

as N → ∞, uniformly for λ ∈ ∂Uq for all q ∈ {aj , bj}kj=1.
Finally, r̂3 is treated in a similar manner to r̂2, with NΩ exchanged for

−NΩ, and one obtains ∫ s2

s1

r̂i(s;λ)

ζq(λ)3/2
ds = O(1/N),

as N → ∞, uniformly for λ ∈ ∂Uq for all q ∈ {aj , bj}kj=1, where i = 1, 2, 3.
Thus the lemma is proven. □
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11.5. Evaluation of residues. We now aim to evaluate the remaining
terms in (11.17). As noted, on each disc Uaj and Ubj , the integrand in
the λ variable is meromorphic with a pole of order 2 at the center of each
disc. We now calculate the residue at each pole, and to this end we introduce
some notation. Recall, from e.g. (1.30), that W (z, λ)R1/2(z) meromorphic
as a function of z. We denote

(11.23)

W̃ (q, z) = lim
λ→q

1

2
(λ− q)1/2W (λ, z),

W̃ ′(q, z) = lim
λ→q

1

2

∂

∂λ

[
(λ− q)1/2W (λ, z)

]
,

ψ̂(q) = lim
λ→q

πi
ψVs(λ)

(λ− q)1/2
,

ψ̂′(q) = lim
λ→q

d

dλ

[
πi

ψVs(λ)

(λ− q)1/2

]
,

as λ → q ∈ {aj , bj}kj=1, where all roots have branch cuts on J and (λ− aj)

has arguments in [0, 2π) and (λ − bj) has arguments in [−π, π), ψ̂(bj) > 0,

and arg ψ̂(aj) = π/2. By the definition of ζ in (6.2),

1

ζq(λ)3/2
=

1− 3
5
ψ̂′(q)

ψ̂(q)
(λ− q) +O

(
(λ− q)2

)
ψ̂(q)(λ− q)3/2

,

as λ→ q.
As λ→ q ∈ {aj , bj}kj=1 from the upper half plane,

(11.24) w̃λ(z) = 4W̃ (q, z)(λ− q)1/2 +
4

3
W̃ ′(q, z)(λ− q)3/2 +O((λ− q)5/2),

and denoting û′j(q) = limλ→q(λ− q)1/2u′j(λ),

(11.25)
θ(0)

θ(NΩ)

θ
(
2
∫ λ
q ω +NΩ

)
+ θ

(
2
∫ λ
q ω −NΩ

)
θ
(
2
∫ λ
q ω

)
= 2 + 16

k−1∑
i,l=1

(
∂i∂lθ(NΩ)

θ(NΩ)
− ∂i∂lθ(0)

θ(0)

)
û′i(q)û

′
l(q)(λ− q) +O((λ− q)2),

By the definition of the θ-function, we have ∂2j θ(x|τ) = 4πi ∂
∂τj,j

θ(x|τ) and
∂j∂lθ(x|τ) = 2πi ∂

∂τj,l
θ(x|τ), where we interpret the partial derivatives as in

(11.21). Thus, substituting the expansions (11.23)-(11.25) into (11.17), and
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relying on Lemma 11.4, we obtain

(11.26)

∮
Γ

[
N∞(z)−1

(
d
dzR

(1)(z)
)
N∞(z)

]
11

∂

∂s
Vs(z)

dz

2πi

=

{
1

24

∑
q∈{aj ,bj}kj=1

∮
Γ

dz

2πi

∂

∂s
Vs(z)

(
W̃ ′(q, z)− 3

ψ̂′(q)

ψ̂(q)
W̃ (q, z)

)
1

ψ̂(q)

+ 4
∑

1≤m≤j≤k−1

∂

∂τm,j
log

θ(NΩ)

θ(0)

∑
q∈{al,bl}kl=1

û′j(q)û
′
m(q)

ψ̂(q)

∮
Γ
dz

∂

∂s
Vs(z)W̃ (q, z)

+
1

4

∮
Γ

dz

2πi

∂

∂s
Vs(z)

[∑
l ̸=j

(
W̃ (aj , z)

(aj − al)ψ̂(aj)
+

W̃ (bj , z)

(bj − bl)ψ̂(bj)

)

−
k∑

j,l=1

(
W̃ (aj , z)

(aj − bl)ψ̂(aj)
+

W̃ (bj , z)

(bj − al)ψ̂(bj)

)]}
+ Õ(1/N),

as N → ∞.

11.6. Integration in s. We now aim to evaluate the sum (11.26). To
this end we need to develope several identities. First off, recall that by
cutting and gluing S, it may be represented as a (4k − 4)-gon with edges
A1, B1, A

−1
1 , B−1

1 , A2, B2, A
−1
2 , B−1

2 , . . . , B−1
k−1. We denote

γ = A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 . . . B−1
k−1, so that γ first traverses A1, then

traverses B1, etc (see [67, Chapter I.2.5]). Recall Riemann’s bilinear iden-
tity [67, Chapter III.2], namely given two meromorphic differentials λ and
ν, and a base-point z0,∮

γ
Λν =

k−1∑
j=1

(∮
Aj

λ

∮
Bj

ν −
∮
Bj

λ

∮
Aj

ν

)
, Λ(z) =

∫ z

z0

λ.

Let q ∈ {aj , bj}kj=1, and fix λ = ∂
∂qωl and ν = ωj . Then

∮
Ai
ν =

∮
Ai

ωj = δij

and 0 = ∂
∂q

∮
Ai

ωl =
∮
Ai

∂
∂qωl =

∮
Ai
λ, and thus

(11.27)

∮
γ

(∫ z

z0

∂

∂q
ωl

)
ωj = −

∮
Aj

ωj

∮
Bj

∂

∂q
ωl = − ∂

∂q
τlj .

Since γ encloses S, we can deform it to the poles of
∫ z
z0

∂
∂qωl.

∫ z
z0

∂
∂qωl is

analytic except for the pole at z = q, and as z → q,(∫ z

z0

∂

∂q
ωl

)
ωj(z) = −

û′j(q)û
′
l(q)

z − q

(
1 +O

(√
z − q

))
dz, û′j(q) = lim

z→q

√
z − qu′j(z).

The local coordinate at q is (z − q)1/2 = y, and so(∫ z

z0

∂

∂q
ωl

)
ωj(z) = −2

û′j(q)û
′
l(q)

y
(1 +O(y))dy
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Thus, deforming γ to surround q on the left-hand side of (11.27), we obtain

(11.28)
∂

∂q
τlj = 4πiû′j(q)û

′
l(q),

which is already a well-known formula, see e.g. [94, Section 4].
Next, we prove the following lemma.

Lemma 11.5. Let q ∈ {aj , bj}kj=1. Then

(11.29)
∂

∂s
q = − 2

ψ̂(q)

∮
Γ

∂

∂s
Vs(z)

W̃ (q, z)

2πi
dz.

We observe that by (11.29) and (11.28) we have

(11.30) ∂sτj,m(s) = −4
∑

q∈{al,bl}kl=1

û′j(q)û
′
m(q)

ψ̂(q)

∮
Γ
dz

∂

∂s
Vs(z)W̃ (q, z).

Proof. Recall, e.g. from (1.30), that W (z, λ)R1/2(z) is meromorphic as a

function of z, and that ψVs(z)R1/2(z) is analytic in a neighbourhood of R.
Using (11.23), the right-hand side of (11.29) is given by

(11.31)
1

πi

∮
Γ

dz

2πi

∮
∂Uq

dλ

2πi

∂
∂sVs(z)W (λ, z)

ψVs(λ)
,

where as before the orientation of ∂Uq is clockwise. By integration by parts
and the definition of W (z, λ) in (1.29) and the definition of wz(λ) in (1.32),

(11.32) −
∮
Γ

dz

2πi

∂

∂s
Vs(z)W (λ, z) =

∮
Γ

dz

2πi

∂

∂s
V ′
s (z)wz(λ),

and by (1.15),

(11.33)

∮
Γ

dz

2πi

∂

∂s
V ′
s (z)wz(λ) = −

∮
Γ′
dξ

∮
Γ

dz

2πi

∂
∂sψVs(ξ)

z − ξ
wz(λ),

where Γ′ encloses Γ. We will now integrate in the z variable, and observe
that Γ does not enclose ξ. We have that wz(λ) = w∞(λ)+O

(
1
z

)
as z → ∞.

Thus, expanding the contour Γ to ∞ in the right-hand side of (11.33), we
only pick up a residue at z = ξ and z = ∞:

(11.34)

∮
Γ

dz

2πi

wz(λ)

z − ξ
= −wξ(λ) + w∞(λ).

Next we integrate in ξ. Since∮
Γ′

∂

∂s
ψVs(ξ)dξ =

∂

∂s

∮
Γ′
ψVs(ξ)dξ,

which is zero since
∮
Γ′ ψVs(ξ)dξ = −2

∫
J dµVs = −2, the term including

w∞(λ) will be zero once substituted into (11.33).
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We now evaluate
∮
Γ′ dξwξ(λ)

∂
∂sψVs(ξ). We deform Γ′ to hug [a1, bk]. We

recall from (5.11) that wξ(λ) has a pole of order 1 at ξ = λ. By (5.14) and
(5.15), and the fact that ψVs(ξ)+ = −ψVs(ξ)− on J , we obtain
(11.35)∮

Γ′
dξwξ(λ)

∂

∂s
ψVs(ξ) = −2πi

∂

∂s
ψVs(λ)− 4πi

k−1∑
j=1

u′j(λ)

∫ aj+1

bj

dξ
∂

∂s
ψVs(ξ).

By (1.17), and since ψVs has square root vanishing at the endpoints of
the support aj , bj ,

0 =
∂

∂s

∫ aj+1

bj

dξ ψVs(ξ) =

∫ aj+1

bj

dξ
∂

∂s
ψVs(ξ).

Thus, by (11.32)–(11.35), we obtain that for λ ∈ ∂Uq,

(11.36) −
∮
Γ

dz

2πi

∂

∂s
Vs(z)W (λ, z) = −2πi

∂

∂s
ψVs(λ).

Substituting this into (11.31), which is equal to the right-hand side of
(11.29), we obtain

(11.37) − 2

ψ̂(q)

∮
Γ

∂

∂s
Vs(z)

W̃ (q, z)

2πi
dz =

1

πi

∮
∂Uq

dλ
∂
∂sψVs(λ)

ψVs(λ)
.

where the orientation of ∂Uq is clockwise. As λ→ q, we have

∂
∂sψVs(λ)

ψVs(λ)
= − 1

2(λ− q)

∂

∂s
q +O(1),

which concludes the proof upon evaluating the residue at q in (11.37).
□

For a second identity, we observe that by (11.36) we have

(11.38) −
∮
Γ

dz

2πi

∮
∂Uq

dλ

2πi

∂
∂sVs(z)W (z, λ)

ψVs(λ)(λ− q)
= −

∮
∂Uq

dλ
∂
∂sψVs(λ)

(λ− q)ψVs(λ)
.

Evaluating the residue at λ = q on both sides and applying (11.29), we
obtain for q ∈ {aj , bj}kj=1

(11.39)
∂

∂s
ψ̂(q) =

∮
Γ

dz

2πi

∂

∂s
Vs(z)

(
W̃ ′(q, z)− 3

ψ̂′(q)

ψ̂(q)
W̃ (q, z)

)
.
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Substituting (11.39), (11.29), and (11.30) into (11.26)

(11.40)

∮
Γ

[
N∞(z)−1

(
d
dzR

(1)(z)
)
N∞(z)

]
11

∂

∂s
Vs(z)

dz

2πi

= −
∑

1≤m≤l≤k−1

∂τm,l
∂s

∂

∂τm,l
log

θ(NΩ)

θ(0)
+

∂

∂s

(
1

24

∑
q∈{aj ,bj}kj=1

log ψ̂(q)

− 1

8

( ∑
1≤l<j≤k

[log(aj − al) + log(bj − bl)]−
k∑

l,j=1

log |bj −al|

))
+ Õ(1/N),

as N → ∞, where ∂
∂τm,l

is interpreted as in (11.21). Substituting (11.40),

(11.7), and the result of Lemma 11.1 into (11.2), we obtain

(11.41)
d

ds
logHN (e

−NVs) =
∂

∂s

(
−N2

∫∫
log |x− y|−1dµVs(x)dµVs(y)

−N2

∫
Vs(x)dµVs(x) + log

θ(NΩ)

θ(0)
− 1

24

∑
q∈{aj ,bj}kj=1

log |ψ̂(q)|

+
1

8

( ∑
1≤l<j≤k

[log(aj − al) + log(bj − bl)]−
k∑

l,j=1

log |bj − al|

))
+ Õ(1/N),

as N → ∞, since the argument of ψ̂(q) is independent of s for q ∈ {al, bl}kl=1.

11.7. The Chebyshev polynomials. Now consider the potential V0 =
2σ
k Tk(x)

2 and take the limit σ ↓ 1. Then, by (10.36) and (10.37),

(11.42)
1

8

( ∑
1≤l<j≤k

[log(aj − al) + log(bj − bl)]−
k∑

l,j=1

log |bj − al|

)

= −k
8
log 2 +

k − 1

8
log k − k − 1

16
log(σ − 1)− 1

8

k−1∑
j=1

log

(
sin

πj

k

)
+ o(1),

as σ ↓ 1. Recalling the equilibrium measure for the Chebyshev polynomials
in (10.16), the definition of ψ̂ from (11.23), and the fact that |Tk(q)| = 1/

√
σ

for q ∈ {aj , bj}kj=1, it follows that

|ψ̂(q)| = 23/2σ3/4

k
|T ′
k(q)|3/2.

By (10.36) and (10.37),

bj = cos

(
π − πj

k
+

√
σ − 1

k

)
+O(σ − 1),

aj+1 = cos

(
π − πj

k
−

√
σ − 1

k

)
+O(σ − 1),
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as σ ↓ 1, for j = 1, 2, . . . , k − 1. Thus, since T ′
k(x) = kUk−1(x) and

Uk−1(cos θ) =
sin kθ
sin θ ,

|ψ̂(q)| = 23/2
√
k(σ − 1)3/4

sin
(
πj
k

)3/2 (1 +O(
√
σ − 1)),

as σ ↓ 1, for q ∈ {bj , aj+1}k−1
j=1 . Combined with the fact that |Uk−1(±1)| = k,

we obtain

(11.43) − 1

24

∑
q∈{aj ,bj}kj=1

log |ψ̂(q)| = − 1

24

(
3k log 2 + (k + 3) log k

+
3(k − 1)

2
log(σ − 1)− 3

k−1∑
j=1

log sin
πj

k

)
+O(

√
σ − 1).

By (2.42), writing V0(x) =
2ν
k Πk(x)

2 = 2σ
k Tk(x)

2 so that ν = σ22k−2,
(11.44)∫∫

log |x− y|−1dµV0(x)dµV0(y) +

∫
V0(x)dµV0(x) =

3

4k
+

1

2k
log σ + log 2.

Recalling from Section 10.3 that θ(x|τ) → 1 as σ → 1 for x ∈ Rk−1,

noting that ψ̃(q) = |ψ̂(q)|, and substituting (11.42), (11.43), and (11.44)
into (11.41), we obtain (2.30), which completes this section.
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