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Summary 

A Finite Element Method approach is presented for the solution of the two-dimensional 

wave-diffusion equation. The fractional time derivative is considered as a Caputo 

derivative. Houbolt and Newmark methods are employed for the time-marching 

process. Four examples are presented and discussed.  
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Introduction 

It has, perhaps, become commonplace that many papers dealing with the 

solution of problems governed by differential equations with time and space derivatives 

of non-integer orders begin with or contain an excerpt from a famous letter written by 

Leibnitz to L'Hopital on 30 September 1695, in which some idea, or some reasoning, 

concerning fractional calculus is already present. By doing so, not only is the historical 

importance of the development of this important branch of mathematics highlighted, but 

tribute is also paid to the genius of one of the inventors of Differential Calculus. 

Returning to the mentioned letter excerpt: when inquired what if n were ½ in 
n

n

d y
dx

, 

Leibnitz answered: “It will lead to a paradox, from which one day useful consequences 

will be drawn.” Today, the many applications of fractional calculus found in science 

and in engineering confirm the Leibnitz’ prediction and justify the growing attention 

that has been given to this branch of mathematics, see for instance Sun et al. [1], and 

Machado et al. [2], for an overview of the applications. Clear and didactic introductions 

to this matter are found in the works Fractional Calculus I, II, III, by Beardon [3], and 

the report by Loverro [4]. According to Miller and Ross [5]: “the name fractional 

calculus became somewhat of a misnomer. A better description might be differentiation 

and integration to an arbitrary order”, as the theory of generalized operators had been 

extended to include operators of rational or irrational, positive or negative, real or 

complex orders. However, due to the tradition the name fractional calculus is kept in 

several textbooks, e.g., Oldham and Spanier [6], Ortigueira [7], Mainardi [8]. The great 

development of this research area must be credited to the development of the numerical 

methods which, by their turn, turned possible only with the advent of the digital 

computer. For formulations based on the Finite Difference Method (FDM), see for 

instance Murillo and Yuste [9], Yang et al. [10], Huang et al. [11]. Regarding 

formulations based on the Finite Element Method (FEM), the interested reader is 

referred to the works by Deng [12], Huang et al. [13], Zheng et al. [14], Corrêa et al. 

[15]. In what concerns the Boundary Element Method (BEM), see Katsikadelis [16], 

Dehghan and Safarpoor [17], Carrer at al. [18,19]. Meshless formulations have also 

been employed, see for instance Kumar et al. [20], Shekari et al. [21] and Zafarghandi et 

al. [22].  

This work is concerned with the solution of the two-dimensional wave-diffusion 

equation through a Finite Element Method formulation. The Caputo integro-differential 
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operator is adopted to represent the fractional time derivative, see [3,4]. The choice of 

the Caputo operator was influenced by the authors’ previous successful experience in 

dealing with the solution of the same problem with the Boundary Element Method 

(BEM) formulation, see Carrer et al [18,19]. To represent the second order time 

derivative that appears in the Caputo operator, two approximations were adopted: the 

first is that due to Houbolt [23], and known as Houbolt method and, if widely used in 

BEM formulations, see [19], it is not used in FEM formulations, as it is prone to 

produce damping and period elongation in elasticity problems, see Bathe [24]; the 

second approximation is the Newmark method, widely used in FEM formulations, see 

[24,25,26]. The FEM formulation related to the former approximation will be called, 

from now on, FEM-WDH, and the designation FEM-WDN remains valid for the later 

approximation. To verify the potentialities of the proposed version of the FEM 

formulations, four examples are included and analysed. Different values of the order of 

the time derivative, which is usually represented by the Greek letter , were adopted in 

each example. These values are:  = 2.0, that corresponds to the classical wave 

propagation problem, and  = 1.8, 1.5, 1.2, and 1.05. The comparison between the FEM 

results with the analytical solutions shows good agreement between them for the biggest 

values of  but, as  diminishes, FEM-WDN results loose accuracy while the FEM-

WDH results continue keeping good accuracy. A comprehensive discussion is carried 

out in the section Examples. 
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2. The Wave-Diffusion Equation 

The two-dimension wave-diffusion equation reads: 

 

 
α

2
2

1 Cu u
c t


 


 (1) 

 

 In Equation (1),  is the Laplacian, c is the wave velocity, and u = u(x,y,t) is a 

function of the space-time variables x,y,t. If X = (x,y), a shortened notation arises and 

one can write: u = u(X,t).  

 The fractional derivative Cu
t








, 1 <  < 2, on the left-hand side of Equation (1), 

according to the Caputo definition is written as: 

 

 
2

1 20

1 1
(2 ) ( )

tCu ud
t t



  
  

 


      (2) 

 

 In Equation (2), (…) is the Gamma function. 

 For a domain , with the boundary  represented as: qu  , the boundary 

conditions are schematically defined as follows: 

 

Dirichlet boundary condition: ),,(ˆ),( tXutXu   over u   (3) 

and 

Neumann boundary condition: ˆ( , ) ( , )uq X t q X t
n


 


 over q  (4) 

 

 The initial conditions are: 

 

 )()0,( 0 XuXu   (5) 

 00

( , ) ( )
t

u X t u X
t 





 (6) 
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3. The Finite Element Method Formulation 

The starting point for the development of the FEM formulations falls on the Galerkin 

method, Zienkiewicz and Taylor [27]. Here, the classical wave equation, for which 

 = 2, is considered a particular case of a more general equation, which is precisely the 

fractional wave-diffusion equation.  

 The FEM equation that corresponds to Equation (1) is written as: 

   

  C

t






 


uM Ku f   (7) 

 

 In the above equation, K is the stiffness matrix: 

 

 T d


 K B B  (8) 

 

 M is the mass matrix: 

 

 T d


 M N N  (9) 

 

and f is the load vector.  

 

 T qd


 f N  (10) 

 

 Representing the interpolation, or shape, functions by N1, N2,…,Nn, one has: 

 

  

1 2

1 2

...

...

n

n

N N N
x x x

N N N
y y y

   
    
   
    

B   (11) 

 

   1 2 ... nN N NN   (12) 
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 To obtain the solution of Equation (1) at discrete time values, through Equation 

(7), requires the replacement of the second order time derivative, 
2

2

u




, in Equation (2), 

by an approximated formula. Among the many approximations found in the literature, 

two were adopted in this work, namely the Houbolt method [23], and the Newmark 

method [28]. For both approximations the solution is provided at the discrete times tn+1. 

If t is the selected time interval, then ,)1(1 tntn   0  n  N, with N being defined 

by the researcher.  

From now on, in order to simplify the notation, u(X,tj), for any time tj, is 

rewritten as uj. Equations (7), then, is suitably rewritten as: 

 

 1
1 1

C n
n nt






 


 


uM Ku f   (13) 

 

with: 

 

 1
2

1
1 20

1 1
(2 ) ( )

ntC n d
t t



  
  




 
 

    
u u   

 1 2 1

1
1 2 11 1 10

1 1 1 1...
(2 ) ( ) ( ) ( )

n

n

t t t

nt t
d d d

t t t    
   



  

 
         

  u u u   (14) 

 

The formulation based on the Houbolt method is called FEM-WDH: FEM for 

the Finite Element Method, WD for wave-diffusion equation, and H for the Houbolt 

method. In the Houbolt method a cubic Lagrange interpolation, from time tj2 = (j  2)t 

to time tn+1 = (j + 1)t, is assumed for u, and the second order derivative taken at t = tj+1, 

thus generation what will be called the Houbolt approximation: 

 

 
 

1

2
1 1 2

12 2

2 5 4
j

j j j j
jt t t 

  


  
 

 

u u u uu u  (15) 

 

 Equation (15) is substituted into Equation (14), and the following expression 

arises: 
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   1
1 1 2

1 2 5 4
τ (3 )

C n
n n n nt



 


  


    

   
u u u u u   

       
1

2 2
1 1 2

0

1 2 5 4
n

j j j j
j

n j n j 


 
  



          
 u u u u   (16) 

 

 Finally, the FEM-WDH corresponding equation is obtained after substituting 

Equation (16) into Equation (13). It can be written as: 

 

  1 1n n Ku f   (17) 

  

in which: 

 

  2
(3 ) t

 
  

K K M   (18) 

 

and 

 

   1 1 1 2
1 5 4

(3 )n n n n nt   
        

f f M u u u   

   
1

( 1) 1 1 2
0

2 5 4
n

n j j j j j
j

B


   



   


 u u u u   (19) 

 

where: 

 

       2 2
1 1n jB n j n j  

        (20) 

 

 Note that the computation of 2u  and 1u  is required when j = 0 is Equation 

(16), or in Equation (19). According to Carrer et al. [28], this can be done by employing 

the following expressions, see Carrer et al. [29]: 

 

 2 0 02 t   u u u   

 1 0 0t  u u u  (21) 
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 The formulation based on the Newmark method [24], Newmark family of 

methods [25], or Newmark- Method [26], is called FEM-WDN. Regarding the 

notation, the same reasoning can be followed, and N is used for Newmark. For the 

Newmark method, the following expressions for are used: 

 

  
1

2
1

12 2 2

1 1
2n

n n n
n nt t t t t    




 
           

u u uu u u   (22) 

   
1

1 11
n

n n n nt t
t t 

 
 


      


u u u u u  (23) 

 

 The corresponding version for Equation (17) has: 

 

 
1

(3 ) t 
 

  
K K M   (24) 

 1 1 1 2

1 1 1
(3 ) 2

n n n
n n t t t         

  
            

u u uf f M   

  

1
1

1 1 2
0

1 1
2

n
j j j j

n j
j

B
t t t t       




  


               


u u u u
 (25) 

 

 The term 0u , that appears in Equation (25) when j = 0, is computed directly 

from differential equation related to the classical wave propagation problem.  

 The presence of the summation symbol in Equations (19) and (25) means that 

the computation of the variable of interest, u, at time tn+1, involves all its previous 

values. In other words, the computation depends on the history. This is a consequence 

of the non-local character of the Caputo operator. 
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4. Examples 

Once the FEM-WDH and FEM-WDN basic equations have been obtained, four 

examples were analysed to verify the pros and cons of each one of them. Starting with 

 = 2.0, that corresponds to the classical wave propagation problem, the other values of 

the fractional order of the time derivative adopted are:  = 1.8, 1.5, 1.2, 1.05. 

 The adoption of small values for  such as  = 1.2 or  = 1.05 poses a 

challenge. In authors’ previous works that deal with BEM formulations, accurate results 

for small values of , such as  = 1.2 or  = 1 05, only were obtained with a Caputo 

derivative-based formulation, see Carrer et al. [19]; in their formulation based on the 

Riemann-Liouville derivative, see Carrer et al. [30], accurate results were obtained only 

for  > 1.5, demonstrating a severe limitation of that formulation. It seems that Caputo-

derivative based formulations are the only ones capable to provide accurate results for 

small values of . Additionally, in a FEM Caputo derivative-based formulation for the 

anomalous diffusion problem, see Corrêa et al. [15], accurate results could be found for 

values of  as small as  = 0.05. The above comments justify the authors’ choice for the 

development of the FEM-WDH and FEM-WDN formulations. 

 Regarding the FEM-WDH formulation, perhaps the use of the Houbolt method 

can bring some surprise for some readers, mainly to those that got used with the use of 

the Newmark method. However, despite the comments by Cook et al. [25]: “The 

Houbolt method was once common in general-purpose transient codes but has been 

supplanted by methods with better algorithmic damping properties and now is more of 

historical interest.”, the FEM-WDN results are always in better agreement with the 

analytical solutions than the FEM-WDN results. In fact, in all the examples included 

here the FEM-WDN formulations fails in providing accurate results for the smaller 

values of the order of the time derivative, see Figures 20 – 21 and 35 – 36.  

 The selection of the time-step length is based on the authors’ previous 

experience with the BEM formulations based on the use of the Houbolt method, see 

Carrer et al. [30]. The use of the Newmark method for problems belonging to the 

fractional calculus constitutes a novelty that deserves be mentioned. As is widely 

known, the Newmark method is unconditionally stable for 0.25   and 

0.50  ;keeping these values, the same time-step could be adopted for both 

formulations. Note that various attempts to use alternative values for  and , whose 

results are not included here, were unsuccessful even with the adoption of much smaller 
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time-steps. The presence of, say, a kind of damping that appears when   < 2.0, enables 

the use of the time step adopted for the classical problem and allow the authors to 

postpone the development of a stability analysis study. In fact, this is still a challenging 

task.  

 In all the examples, c = 1.0. The meshes are characterized by the number of 

elements, n , and the by the number of degrees of freedom or, concisely, the number of 

nodes, by nodesn .  
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4.1. Bar with sinusoidal initial condition 

This example consists of a bar of length L = , fixed at x = 0 and x = , see Figure 1, 

with the initial conditions: 

 

   xxu sin0   (26) 

   00 xu  (27) 

 

 From the depiction of the problem, as well as from Equations (26) and (27), it is 

readily seen that this is a one-dimensional problem. To solve it using the formulations 

developed here, a rectangular domain defined in the region 0  x  , 0  y  /2 

replaces the original domain for the two-dimensional FEM analyses. The boundary 

conditions for this rectangular domain are written as:  

 

   0,,0 tyu ;   0,,  tyu  (28) 

  
( ,0, )

,0, 0
x t

duq x t
dn

  ;  
( , / 2, )

, / 2, 0
x t

duq x t
dn 

    (29) 

 

 Note that the simulation of the one-dimensional is accomplished through the 

Neumann boundary conditions, see Equation (29), at y = 0 and y = /2. 

 The mesh is depicted in Figure 2 and has n = 128, and nnodes = 153. The time-

step is t = 0.025. The FEM results are compared with the analytical solution, see 

Murillo and Yuste [9]: 

 

  ( , ) sinu x t E t x
   (30) 

 

where E(…) is the Mittag-Leffler function, see Miller and Ross [5], Ortigueira [7], 

omnipresent in the analytical solutions of the next examples. It is defined as: 

 

    



 


0 1k

k

k
zzE   (31) 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



where z  C,  is the fractional order of the derivative, and (…) is the gamma 

function. For  = 2 one has:  

 

   zzE cos2
2   (32) 

 

 This is a very simple problem, for which the function E( t) is easily evaluated 

and has been employed by many authors for verifying the accuracy of numerical 

methods, see for instance Murillo and Yuste [9], Carrer et al. [19]. The results from 

FEM-WDH and FEM-WDN formulations, here and in the following examples, will be 

displayed side-by-side whenever possible. The results for u(/2,/4,t) are depicted in 

Figure 3; and the results for u(x,/4,3) is shown in Figure 4. Note that even for small 

values of , a good agreement between the FEM results and the analytical solution is 

observed. Besides, from Figure 3 one can notice that a kind of damping appears as  

becomes smaller and the vibrational movement practically comes to an end.  
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4.2. Bar with Neumann boundary condition 

This example consists of a bar of length L = 12, fixed at x = 0, and subjected to a 

Neumann boundary condition, that can be interpreted as a suddenly applied load, at 

x = L, see Figure 5. The boundary conditions for this one-dimensional problem are: 

 

   0,0 tu  (33) 

  , ( 0)q L t q H t   (34) 

 

 Regarding Equation (34): 

 

 u Pq
x EA


  


 (35) 

 

where the deformation, , is a function of the longitudinal elasticity modulus, E, of the 

area of the transversal section A, and of the applied load, P.  

 The problem also presents null initial conditions.  

 The boundary conditions in Equations (33) and (34) enable one to rephrase the 

description of this problem as representing the longitudinal vibration of a bar subjected 

to a load suddenly applied and kept constant during all the time of analysis. When  = 2 

this problem is characterized by the presence of jumps in the results for q(0,t), that is, 

the results for q(0,t) present discontinuities in time. Due to the difficulty of numerical 

methods in correctly displaying, or rather, in depicting these discontinuities, the results 

for q(0,t) can be used to assess the capability of the proposed numerical method to 

provide accurate solutions to the problem.  

The analytical solution is, see Carrer et al. [30]: 

 

   














 


 




 )sin(

2
sin18),( 22

,...5,3,1
22 xtcEn

n
Lxqtxu nn

n

 (36) 

 

with: 

 

 
L

n
n 2


  (37) 
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 As before, the solution of this problem was sought through the definition of an 

equivalent problem in the rectangular domain, 0  x  L, 0  y  L/2, that presents null 

Neumann boundary conditions at y = 0 and y = L/2 in order to simulate the original one-

dimensional problem. In this way, the boundary conditions of the equivalent problem 

are: 

 

   0,,0 tyu ;  , ,q L y t q  (38) 

  
( ,0, )

,0, 0
x t

duq x t
dn

  ;  
( , / 2, )

, / 2, 0
x L t

duq x L t
dn

   (39) 

 

 The mesh is that already employed in the first example, scaled to accommodate 

the different domain size. 

 Now, the time-step used in all analyses is t = 0.25. 

 The results for u(L,L/4, t) and u(L/2,L/4, t) are depicted in Figures 6 to 8. 

Regarding those figures, there are some important observations: i) the oscillatory 

motion for u in Figure 6 tends to disappear, see Figures 7 and 8, and is practically 

absent for  = 1.05; ii) the FEM-WDN results present an increasing loss of accuracy, 

mainly for  = 1.05, see Figure 8.  

 The results for q(0, L/4, t) and are depicted in Figures 8 to 11. Note that the time 

jumps presented by q at x = 0, see Figure 9, tend to disappear as  becomes smaller than 

2, see Figures 10 and 11. As expected after the results for u, the FEM-WDN results lose 

accuracy for  = 1.05, see Figure 11. But which really draws the attention appears in 

Figure 9: while the FEM-WDH results present a reasonable agreement with the 

analytical solution, with the discontinuities being well represented, on the other hand 

the FEM-WDN results fail in correctly representing the jumps since the beginning of 

the analysis. The damping introduced by the Houbolt method is benefic for this kind of 

problem. The same can be said about the use of the Houbolt method in BEM 

formulations, see, for instance, Carrer et al. [19]. 

 Figure 12 present the results for u(x,L/2,18).  

 As an overall conclusion, from the classical wave propagation problem to the 

problems presenting small values of  and presented here, FEM-WDH results are in 

good agreement with the analytical solution; the FEM-WDN results are acceptable only 

for  = 1.5. 
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4.3. Square Domain with Sinusoidal Initial Condition 

The problem to be solved in this third example, illustrated in Figure 13, is defined in the 

region 0  x,y  L, with L = 10, and presents the boundary conditions: 

 

   0,, tyxu  for x = 0 and x = L (33) 

   0,, tyxu  for y = 0 and y = L (34) 

 

 The initial conditions are: 

 

   





 







 

L
y

L
xUyxu sinsin,0  (35) 

   0,0 yxu  (36) 

 

For the analytical solution, one has, see Carrer et al. [30]: 

 

   





 







 








 
 

 L
y

L
xtc

L
Etyxu sinsin2,, 2

2

2

 (37) 

 

The above expression, when particularized for  = 2.0, is written as: 

 

   





 







 








 


L
y

L
xct

L
tyxu sinsin2cos,,  (38) 

 

 To verify the accuracy and the convergence of the FEM-WDH and FEM-WDN 

results to the analytical solution, the relative L2 error norm, E2, was computed according 

to: 

 

   

 

 

 

 

 

2

2

2 2

1
2 2 2

1

N
i i

analytical FEM analytical FEManalytical FEM L i

N
analytical iL analytical analytical

i

u u d u uu u
E

u u d u

 



 

  
  





 
 (39) 
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 In Equation (39) FEMu  represents either the FEM-WDH or the FEM-WDN 

results, obtained with the use of three regular meshes with increasing level of 

discretzation. In the first mesh, n = 100, and nnodes = 121. For this mesh, the analyses 

were carried out with t = 0.15. The second mesh has n = 400 and nnodes = 441. For 

this mesh, t = 0.075. For the third and more refined mesh, n = 1600 and nnodes = 1681, 

see Figure 14. The corresponding time-step is t = 0.0375. 

 The results related to E2 are shown first; see Figures 15 and 16 for the times 

t = 3.0 and t = 6.0, respectively.  

 Aiming at providing the reader a more comprehensive discussion, BEM results 

were also included in the above-mentioned figures. It is important to mention that each 

one of the three BEM analyses was carried out with the same time-step and the same 

data regarding nnodes of the corresponding FEM analyses. The authors would like to 

emphasize that the BEM formulation, such as that presented by Carrer at al. [30], 

employs linear triangular cells in the domain discretization; for this example, 200 cells 

were employed in the first analysis, 800 in the second and 3200 in the third and last one. 

 From Figures 15 and 16, one can notice that for  = 2.0 the FEM-DWN 

performs better than the FEM-DWH, but this is an exception: at t = 3.0, FEM-DWN 

produces results in better agreement with the analytical solution for  = 1.8 and  = 1.5, 

whereas for  = 1.2 and  = 1.05 this statement is valid for the FEM-DWH results. On 

the other hand, at t = 6.0, the FEM-DWH results, for 2.0  , are in better agreement 

with the analytical solution than the FEM-DWN ones. The best BEM results, for both 

times, are those obtained for  = 1.2 and  = 1.05. 

The results for u(L/2,L/2,t) are depicted in Figure 17, where a good agreement is 

observed between the FEM-DWH and FEM-DWN results and the analytical solution 

for all values of . The results in Figure 17 follow the same pattern of those previously 

presented in Figure 3, that is, the decreasing in  is accompanied by the ceasing of the 

oscillatory behaviour: for  = 2.0, one has a periodic and undamped response; for 

 = 1.8, the oscillatory behaviour still continues but the presence of damping is to be 

noted; for  = 1.5 a little oscillation can be noticed, but the damping is greater than that 

for  = 1.8. The results for  = 1.2 and  = 1.05 present no oscillation. 

FEM-WDH and FEM-WDN results for u(x,L/2,3) in Figure 18 present good 

agreement with the analytical solution for the three meshes.  
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4.4. Circular domain with a linear initial condition 

This last example consists of a circular domain and, therefore, it is better described by a 

polar coordinate system (r,), 0 10r R   , 0 2   , see Figure 19. In this system 

of coordinates, one has the boundary condition given by: 

 

   0, tRu  (40) 

 

 For the initial conditions, one has: 

 

  
R
rru  10  (41) 

 

   00 ru  (42) 

 

The variables are independent from the coordinate  and the analytical solution 

reads, see Carrer et al. [30]: 

 

   )(, 2

1
0














 tEH

R
rzJtru nnn

n
 (43) 

 

 In Equation (43), zn are the zeros of the Bessel function of the first kind and 

order zero, obtained from: 

 

   00 nzJ  (44) 

 

Besides: 

 

 
R
czn

n   (45) 

 

and: 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
  0 022

01

2 ( )
( )

R

n n
n

rH u r J z rdr
RR J z

   
   (46) 

 

 The substitution of Equation (41) into Equation (46) gives: 

 

 
 

22 2

1 1 222
1

2 3 5( ) ; 1, ;
3 2 2 4( )

n
n n

nn

zR RH J z F
zR J z

  
    

  
 (46) 

 

 The generalized hypergeometric function, 1F2(…), in Equation (46), is computed 

as: 

 

          zHzJzHzzJ
z

zF 22242
8
3;

2
5,1;

2
3

100121 





   (47) 

 

 In Equation (47) J1(…) is the Bessel function of the first kind and order one, and 

H0(…) and H1(…) are the Struve functions of orders zero and one, respectively. When 

 = 2.0, one retrieves the expression given by Greenberg [31] for the classical wave 

propagation problem: 

 

   0
1

, cos( )n n n
n

ru r t J z H t
R






   
 

  (48) 

 

In order to have a better representation of problem geometry, six-nodes 

triangular elements meshes were adopted. These meshes are depicted in Figures 20 – 

22, and are called: mesh 1, with n = 144, nnodes = 305; mesh 2, with n = 576, 

nnodes = 1185; mesh 3, with n = 2394, nnodes = 4673. The corresponding time steps are: 

t = 0.8, for mesh 1, t = 0.4, for mesh 2, and t = 0.2, for mesh 3.  

FEM-WDH and FEM-WDN results, obtained with mesh 3, for u(0,t), u(2,t), 

u(4,t), u(6,t), and u(8,t) are shown in Figures 23 – 25. FEM-WDH results are always in 

good agreement with the analytical solution. The FEM-WDN results, on the other hand, 

can be considered good for  = 2.0 and acceptable only for  = 1.5. For the smaller 

values of , that is, for  = 1.05 the FEM-WDN results present a strong disagreement 

with the analytical solution, thus suggesting the use of more refined meshes or, which 
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seems to be more reasonable, the use of different values for the parameters  and . One 

can arrive at the same conclusion from Figure 26, which display the results for u(r,12).  

Quite good results were produced by the FEM-WDH formulation while the 

results produced by the FEM-WDN formulation were quite disappointing. Regarding 

this last observation, it seems that the FEM-WDN formulation, or rather, the Newmark 

method, proved to be incapable of producing accurate results with the values commonly 

used for the  and  parameters. Figures 27 and 28, that contain the convergence study 

for this example, only confirm this conclusion: there, it is readily seen that FEM-WDH 

performs much better than the FEM-WDN for all the chosen values of .  
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Conclusion 

Nowadays, fractional calculus problems are under the focus of intense research, both 

from the theoretical and from the numerical point of view. In this work, the authors 

intend to present a small contribution towards the solution of the diffusion-wave 

problems through formulations based on the Finite Element Method. Two formulations 

were developed with this aim and were called FEM-WDH and FEM-WDN; the former 

is based on the use of the Houbolt method and the later, on the use of the Newmark 

method to perform the time-marching process. Although, to the authors' knowledge, the 

Houbolt method is not currently being used in FEM formulations, its successful use in 

BEM formulations encouraged the development of the FEM-WDH formulation. The 

results presented in this work evidenced the appropriateness of this choice and also 

brought a certain disappointment in relation to the FEM-WDN formulation: while the 

FEM-WDH results are always in good agreement with the analytical solutions, the 

FEM-WDN formulation was unable to produce accurate results for small values of 

alpha in the second and, especially, the fourth example. It is thought that further 

research should be done regarding the choice of  and  parameters when using 

Newmark's method for solving fractional calculus problems. Perhaps some conclusions 

found in textbooks should be rethought in the light of the results presented here and, 

perhaps, to be presented in the future by other researchers. Naturally much effort has 

still to be done regarding the solution of problems governed by fractional partial 

differential equations and, as mentioned at the beginning to this Conclusion, this work is 

intended to present a small contribution for those interested in numerical methods in 

general. 
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Caption to the figures 

 

Figure 1. Bar with sinusoidal initial condition: geometry and boundary conditions for 

the two-dimensional simulation. 

 

Figure 2. Mesh used in the first and second examples: n = 128, nnodes = 153. 

 

Figure 3. Bar with sinusoidal initial condition: FEM-WDH and FEM-WDN results for 

u(/2,/4,t). 

 

Figure 4. Bar with sinusoidal initial condition: FEM-WDH and FEM-WDN results for 

u(x,/4,3). 
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Figure 5. Bar with suddenly applied load: geometry and boundary conditions for the 

two-dimensional simulation. 

 

Figure 6. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

u(L,L/2,t) and u(L/2,L/2,t) with  = 2.0. 

 

Figure 7. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

u(L,L/2,t) and u(L/2,L/2,t) with  = 1.5. 

 

Figure 8. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

u(L,L/2,t) and u(L/2,L/2,t) with  = 1.05. 

 

Figure 9. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

q(0,L/2,t) with  = 2.0. 

 

Figure 10. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

q(0,L/2,t) with  = 1.5. 

 

Figure 11. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

q(0,L/2,t) with  = 1.05. 

 

Figure 12. Bar with suddenly applied load: FEM-WDH and FEM-WDN results for 

u(x,L/2,18). 
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Figure 13. Square domain: geometry and boundary conditions. 

 

Figure 14. Square domain: mesh with n = 1600, nnodes = 1681. 

 

Figure 15. Square domain: convergence study, for FEM and BEM analyses, at t = 3.0  

 

Figure 16. Square domain: convergence study, for FEM and BEM analyses, at t = 6.0. 

 

Figure 17 Square domain: FEM-WDH and FEM-WDN results u(L/2,L/2,t). 

 

Figure 18. Square domain: FEM-WDH and FEM-WDN results u(x,L/2,3). 
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Figure 19. Circular domain: geometry and boundary conditions. 

 

Figure 20. Circular domain: mesh 1 with n = 144, nnodes = 305. 

 

Figure 21. Circular domain: mesh 2 with n = 576, nnodes = 1185. 

 

Figure 22. Circular domain: mesh 3 with n = 2394, nnodes = 4673. 

 

Figure 23. Circular domain: FEM-WDH and FEM-WDN results for u(0,t), u(2,t), u(4,t), 

u(6,t), and u(8,t) with  = 2.0. 

 

Figure 24. Circular domain: FEM-WDH and FEM-WDN results for u(0,t), u(2,t), u(4,t), 

u(6,t), and u(8,t) with  = 1.5. 

 

Figure 25. Circular domain: FEM-WDH and FEM-WDN results for u(0,t), u(2,t), u(4,t), 

u(6,t), and u(8,t) with  = 1.05. 

 

Figure 26. Circular domain: FEM-WDH and FEM-WDN results for u(r,12). 

 

Figure 27. Circular domain: convergence study at t = 12.0. 

 

Figure 28. Circular domain: convergence study at t = 28.0. 
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FIGURE 2 
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(a) FEM-WDH 

 

(b) FEM-WDN 

 

 

 

 

FIGURE 3 
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(a) FEM-WDH 

 
(b) FEM-WDN 

 

 

 

 

FIGURE 4 
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FIGURE 5 
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(a) FEM-WDH ( = 2.0) 

 
(b) FEM-WDN ( = 2.0) 

 

 

 

 

FIGURE 6 
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(a) FEM-WDH ( = 1.5) 

 
(b) FEM-WDN ( = 1.5) 

 

 

 

 

FIGURE 7 
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(a) FEM-WDH ( = 1.05) 

 
(b) FEM-WDN ( = 1.05) 

 

 

 

 

FIGURE 8 
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(a) FEM-WDH ( = 2.0) 

 
(b) FEM-WDN ( = 2.0) 

 

 

 

 

FIGURE 9 
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(a) FEM-WDH ( = 1.5) 

 
(b) FEM-WDN ( = 1.5) 

 

 

 

 

FIGURE 10 
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(a) FEM-WDH ( = 1.05) 

 
(b) FEM-WDN ( = 1.05) 

 

 

 

 

FIGURE 11 
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(a) FEM-WDH 

 
(b) FEM-WDN 

 

 

 

 

FIGURE 12 
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FIGURE 13 
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FIGURE 14 
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FIGURE 15 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

 

 

 
 

 

 

 

FIGURE 16 
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(a) FEM-WDH 

 
(b) FEM-WDN 

 

 

 

 

FIGURE 17 
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(a) FEM-WDH 

 
(b) FEM-WDN 

 

 

 

 

FIGURE 18 
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FIGURE 19 
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FIGURE 20 
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FIGURE 21 
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FIGURE 22 
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(a) FEM-WDH ( = 2.0) 

 
(b) FEM-WDN ( = 2.0) 

 

 

 

 

FIGURE 23 
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(a) FEM-WDH ( = 1.5) 

 
(b) FEM-WDN ( = 1.5) 

 

 

 

 

FIGURE 24 
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(a) FEM-WDH ( = 1.05) 

 
(b) FEM-WDN ( = 1.05) 

 

 

 

 

FIGURE 25 
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(a) FEM-WDH 

 
(b) FEM-WDN 

 

 

 

 

FIGURE 26 
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FIGURE 27 
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FIGURE 28 
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