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Skew-symmetric non-integer matrices with real entries can be viewed as quivers with non-
integer arrow weights. Such quivers can be mutated following the usual rules of quiver 
mutation. Felikson and Tumarkin show that mutation-finite non-integer quivers admit 
geometric realisations by partial reflections. This allows us to define a geometric notion 
of seeds and thus to define the exchange graphs for mutation classes. In this paper we 
study exchange graphs of mutation-finite quivers. The concept of finite type generalises 
naturally to mutation-finite non-integer quivers. We show that for all non-integer quivers 
of finite type there is a well-defined notion of an exchange graph, and this notion is 
consistent with the classical notion of exchange graph of integer mutation types coming 
from cluster algebras. In particular, exchange graphs of finite type quivers are finite. We 
also show that exchange graphs of rank 3 affine quivers are finite modulo the action of a 
finite-dimensional lattice (but unlike the integer case, the rank of the lattice is higher than 
1 for non-integer quivers).

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction and summary

Cluster algebras were introduced and studied in a series of four articles by Fomin–Zelevinsky, see [12,13,15], and 
Berenstein–Fomin–Zelevinsky, see [2]. Many beautiful properties of cluster algebras are visualised by the exchange graph. 
For example, cluster algebras attached to Dynkin diagrams have finite exchange graphs, see [13], and cluster algebras at-
tached to affine Dynkin diagrams have exchange graphs of linear growth, see Felikson–Shapiro–Tumarkin [7, Theorem 10.8]
and Felikson–Shapiro–Thomas–Tumarkin [6, Theorem 1.1].

In Fomin–Zelevinsky’s setting, all quivers are integer-valued, that is, they are given by exchange matrices with integer 
entries. More generally, one can consider quivers whose multiplicities of arrows are not necessarily integers. Such quivers 
correspond to exchange matrices with real entries. Those objects appeared naturally in the context of Painlevé-VI differential 
equations, see Dubrovin–Mazzocco [4], and have been studied in the context of root systems and associahedra, see Fomin–
Reading [10], almost periodicity, see Lampe [17], dynamical systems, see Machacek–Ovenhouse [19], and representation 
theory, see Duffield–Tumarkin [5]. However, a concept of cluster variables has not yet been developed for quivers with real 
weights, making it challenging to introduce a notion of seeds and exchange graphs in the non-integer case.

Fortunately, there are also geometrically flavoured constructions originating from Barot–Geiß–Zelevinsky’s concept of a 
quasi-Cartan companion, see [1], that were developed, for example by Speyer–Thomas [25], Seven [23,24], and Reading [21]. 
In particular, Felikson–Tumarkin [8,9] used these ideas to investigate mutation-finite real quivers. More precisely, [9] clas-
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sifies mutation-finite real quivers and shows that all non-integer finite mutation type quivers have a geometric realisation 
where a seed is given by a set of vectors in some quadratic space and a mutation is represented by partial reflection, chang-
ing some vectors in the set. These realisations are acting either on a positive definite quadratic vector space (finite type), 
or on positive semi-definite spaces of corank 1 and 2 (affine and extended affine types respectively). Note that [8] and [9]
provide geometric realisations only for individual seeds (with a guarantee that after mutation one gets a geometric realisa-
tion of the mutated seed, but without paying attention to the entirety of all seeds in the mutation class and in particular to 
observing necessary periodicities that are expected when considering integer subquivers).

In this paper we extend the construction to show that it is possible to define seed mutations and exchange graphs for any 
non-integer quiver of finite type. It turns out that some compatibility checks are required in order to define seed mutations 
and exchange graphs consistently (i.e. to match with what we have in the classical case of integer quivers). We show that 
for any real quiver of finite type there exists a way to satisfy these compatibility checks, i.e. to define the realisation of all 
seeds together and to define the exchange graph. We describe the whole family of compatible ways to define realisations 
of the mutation class and show that all of those originating from quivers in the same mutation class lead to the same 
exchange graph.

The case of affine type is more involved. We focus on rank 3 affine mutation classes. A geometric realisation of an 
affine seed of rank 3 is given by a triangle on Euclidean plane with π -rational angles. We show that for every rank 3
mutation-finite affine quiver there exists a compatible realisation of the entire mutation class, which allows to define an 
exchange graph. The exchange graph in this case turned out to be a finite graph modulo the action of a lattice of some 
finite dimension. The crucial difference with the integer case is that the corresponding lattice is no longer one-dimensional, 
as was the case in all classical affine types.

For higher rank affine quivers and extended-affine quivers, we were not able to verify if there is a compatible way to 
define the geometric realisation of the entire exchange graph, so we cannot yet define exchange graphs in these settings.

In the geometric realisations considered here, a seed is represented by a set of vectors v1, . . . , vn in some quadratic space 
V . A mutation μk in direction vk then acts by changing the sign of vk and changing some of the vectors into their reflection 
images with respect to the plane orthogonal to vk . Given the corresponding quiver Q , there are two ways to define this 
action: either by reflecting the vector vi when there is an arrow from vi to vk in Q , or by reflecting vi when there is 
an arrow from vk to vi . These two ways are equivalent in the context of [8] and [9] (they lead to seeds with equivalent 
properties), but for defining the exchange graph covering all the seeds it is important to distinguish the two ways to apply. 
In particular, since we want the mutation to be an involution, we need to use one method or the other depending on the 
properties of the seed (i.e. both the set of vectors and Q ).

A natural way to make this choice in finite type is to use the positivity/negativity of roots in the corresponding (possibly 
non-crystallographic) root systems. However, there is a freedom in choosing the initial seed with respect to the set of 
primitive roots. Furthermore, it is not a priori clear whether a given choice will be compatible with some expected properties 
of the exchange graph. Fortunately, we can always find a compatible choice and all compatible choices will lead to defining 
the same exchange graph:

Theorem A (Theorem 5.4). Given a seed of finite type (i.e. realised in Sn), there exists a compatible choice of a positive vector, and all 
compatible choices of positive vectors yield the same exchange graph.

The crucial step in reconciling our theory with the cluster algebra classical theory is the formulation of a compatibility 
constraint, in particular in rank 2 (Definition 3.10 and Remark 3.11, based on the results of Lemma 3.7).

For the affine type, it turned out that there is not much freedom in setting a compatible definition of the mutation. 
We examine rank 3 affine mutation classes and find two possibilities for the compatible definition. One of these definitions 
turned out to be difficult to handle, but the other one allowed to check that it is indeed a compatible choice, and hence a 
way to define the exchange graph.

Theorem B (Theorem 9.4, Corollary 9.10, Theorem 10.1). Given a rank 3 seed of affine type (i.e. realised in E2 by a triangle with angles 
r1π , r2π and r3π with r1, r2, r3 ∈Q), there exists a lattice L such that the following conditions hold:

(1) The lattice acts on the exchange graph and the quotient of the group action is finite.
(2) The rank of the lattice is equal to rkZ(L) = ϕ(d)/2 or ϕ(d) where ϕ is Euler’s totient function and d the least common denominator 

of r1, r2, r3 .

To prove Theorem B we construct a line b ⊆ E2 (called the belt line) that intersects every triangle associated to an 
acyclic seed. The line is related to a billiard problem in Euclidean geometry. The lattice L encodes the number theory of 
lengths of vectors parallel to b that translate one seed into another seed. After constructing a number of translation vectors 
geometrically, we use number theory to prove that these vectors are linearly independent over the integers. More precisely, 
we work in the cyclotomic number field and apply a Dedekind determinant and a Verlinde formula. The proof of Theorem B
(1) also uses the Schwarz–Milnor Lemma, see [22] and [20]. We observe that the geometry of the belt line b also holds for 
real rank 3 quivers of finite type (realised in S2) and even for mutation-infinite cases represented by partial reflections in 
S2, E2, or the hyperbolic plane H2.
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As an application of the above results, we compute the growth of the exchange graphs of mutation-finite real quivers. 
For a natural number n we denote by gr(n) the number of seeds that can be reached from the initial seed by at most n
mutations. We are interested in the growth of the function.

Corollary (Corollary 9.13). The exchange graph � of a mutation-finite real rank 3 quiver distinct from the Markov quiver has 
polynomial growth. In case when the quiver is affine, the polynomial growth rate is equal to the rank of the lattice L from 
Theorem B.

For cluster algebras with integer exchange matrices we have a gap between polynomial growth of small degree and 
exponential growth. More precisely, unless a mutation-finite cluster algebra with an integer exchange matrix has exponential 
growth, it either has linear growth (in the case of affine cluster algebras) or quadratic or cubic growth (for 3 sporadic 
families of cluster algebras), see Fomin–Shapiro–Thurston [11, Proposition 11.1] and Felikson–Shapiro–Thomas–Tumarkin [6, 
Theorem 1.1]. In contrast to the integer case, the polynomial growth rate, i.e. the rank of the lattice L, is larger than 1 for 
all non-integer cases.

The article is organised as follows. In Section 2 we recall from [8] the notion of geometric realisations. In particular, we 
use geometry to define a notion of a seed for real exchange matrices. Then, in Section 3, we examine rank 2 mutations, 
which as a substructure form the core of the compatibility checks we consider in Section 4. In Section 5 we prove Theo-
rem A. The rest of the paper concerns rank 3 affine quivers. In Section 6 we construct initial seeds for affine quivers. In 
this section we focus on the case where all angles are rational multiples of π with an odd least common denominators; we 
explore the case of even least common denominators in Section 10. In Section 7 we recall the definition of the cyclotomic 
field and study number-theoretic properties of sines and cosines of angles in triangles associated to the seeds. Section 8 is 
devoted to the proof of the linear independence of a set of translation vectors over the integers. In Section 9 we determine 
the rank of L and present our main result about the structure of the exchange graph, using quasi-isometries. In this sec-
tion we also introduce growth rates and prove that the exchange graph of an affine rank 3 quiver has polynomial growth. 
Section 10 contains an analysis of changes for even common denominators.

2. Geometric realisations and their mutations

2.1. Real exchange matrices and their mutations

A crucial notion in the theory of cluster algebras is the mutation of a skew-symmetric matrix. The notion was introduced 
by Fomin–Zelevinsky [12] for integer matrices, but the same definition makes sense for real matrices. We fix an integer r ≥ 1
called the rank.

Definition 2.1 (Matrix mutation [12]). The mutation μk , k ∈ [1, r], of a real skew-symmetric r × r matrix B = (bij) is the 
skew-symmetric r × r matrix μk(B) = B ′ = (b′

i j) with entries

b′
i j =

{
−bij if k ∈ {i, j};
bij + (bik|bkj| + |bik|bkj)/2 otherwise.

Such a matrix B is called exchange matrix. Note that real skew-symmetric r × r matrices are in correspondence with 
weighted quivers on r vertices without loops and 2-cycles (where we introduce an arrow i → j with weight bij whenever 
bij > 0). We say that a skew-symmetric matrix B is acyclic if its quiver does not contain oriented cycles.

Notice that matrix mutation is an involution, that is, (μk ◦ μk)(B) = B for all B and all k. The following definition is a 
straightforward generalisation of usual terminology for exchange matrices with integer entries to real entries.

Definition 2.2 (Matrix mutation classes). Let B ∈ Matr×r(R) be an exchange matrix.

(1) A skew-symmetric matrix B ′ ∈ Matr×r(R) is called mutation-equivalent to B if there exists a sequence (k1, . . . , ks) of 
indices such that B ′ = (μks ◦ . . . ◦ μk1 )(B).

(2) The mutation class of B is the set of all B ′ that are mutation-equivalent to B .
(3) We say that B is mutation-finite if the mutation class of B is finite.
(4) We say that B is mutation-acyclic if it is mutation-equivalent to an acyclic exchange matrix. Otherwise we say it is 

mutation-cyclic.

2.2. Geometric realisation of seeds and their mutations

For a skew-symmetric matrix with integer entries we can construct a cluster algebra by introducing clusters and cluster 
variables. For a skew-symmetric matrix with non-integer entries it is not easy to define notions of cluster variables and 
3
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clusters. Building on work of Seven [23] and Barot–Geiß–Zelevinsky [1], Felikson–Tumarkin [8] consider a notion of geo-
metric seeds and realise their mutations by partial reflections. In the rest of the section we give a short overview of the 
construction.

Remark 2.3. We point out that in different contexts one can construct different geometric realisations. In this article we 
restrict ourselves to the construction below.

We fix a quadratic space V of dimension r, that is, an r-dimensional real vector space V together with a symmetric 
bilinear form (·, ·) : V × V →R. The following definitions are motivated by results of Barot–Geiß–Zelevinsky [1, Proposition 
3.2] and Seven [23, Theorem 1.4] (with integer entries replaced by real entries).

Definition 2.4 (Geometric realisations). Suppose that B is a real skew-symmetric r × r matrix. An ordered basis v =
(v1, . . . , vn) of V is called a geometric realisation of B if the following conditions hold:

(1) For every i ∈ {1, . . . , n} we have (vi, vi) = 2.
(2) For two distinct i, j ∈ {1, . . . , n} we have |(vi, v j)| = |bij |.

We identify two geometric realisations that are obtained from each other by a permutation of their entries.

Definition 2.5 (Admissibility). A geometric realisation of a matrix B by vectors v = (v1, . . . , vn) is called admissible if for 
every chordless oriented cycle (i1, . . . , is) in the quiver of B the number of positive scalar products (vi j , vi j+1 ) is odd (here 
indices are to be read mod s), whereas in every chordless non-oriented cycle such a number is even. A geometric realisation 
of a mutation class is called admissible if the realisation of every quiver is admissible.

The terminology of admissible geometric realisations comes from the article by Seven [23]. In the following we always 
mean admissible geometric realisation when we speak about geometric realisations.

Remark 2.6. Let B = (bij) be a skew-symmetric matrix. A quasi-Cartan companion of B is a matrix A = (aij) such that aii = 2
for all i and |aij | = |bij |. The Gram matrix of v ∈ V r is the matrix ((vi, v j)i j). The conditions (1) and (2) in Definition 2.4
imply that the Gram matrix of a geometric realisation of B is a quasi-Cartan companion of B , see [1].

Definition 2.7 (Seeds). A seed of rank r is a pair (v, B) where B is a real skew-symmetric r × r matrix and v a geometric 
realisation of B .

Remark 2.8. A realisation of a 2 × 2 exchange matrix is a linearly independent pair (v1, v2) inside a 2-dimensional vector 
space V satisfying conditions (1) and (2) in Definition 2.4 for all i, j ∈ {1, 2}. Given a seed of rank r > 2, we can construct 
a seed of rank 2 by removing r − 2 vectors and deleting the corresponding rows and columns of the matrix. This seed is 
called a subseed of rank 2.

As in Lie theory, where the roots of a root system are divided into positive and negative roots, we declare certain vectors 
v ∈ V \{0} to be positive, and certain vectors v ∈ V \{0} to be negative. We denote the set of positive elements by V + ⊆ V
and the set of negative elements by V − ⊆ V . We will give a precise definition of positive and negative vectors later in 
the text, see Definition 4.2 in Section 4.1. As a rough idea, we demand that the definition be made to recover the classical 
mutation of seeds when restricting to the case of integer exchange matrices. Moreover, the condition implies that v ∈ V + if 
and only if −v ∈ V − .

Definition 2.9 (Mutations of seeds). Suppose that (v, B) is a seed of rank r. The mutation μk , k ∈ [1, r], of (v, B) is μk(v, B) =
(μk(v), μk(B)) where μk(v) = (v ′

1, . . . , v
′
r) is defined in the following way. If vk ∈ V + , then we put

v ′
i =

⎧⎪⎨⎪⎩
−vi if i = k;
vi if (vk ∈ V +and i 	= k and bik > 0) or (vk ∈ V −and i 	= k and bik < 0);
vi − (vi, vk)vk if (vk ∈ V +and i 	= k and bik < 0) or (vk ∈ V −and i 	= k and bik > 0);

It is easy to check that the mutation μk is well-defined, i.e. μk(v, B) is again a seed. A related statement for exchange 
matrices with integer entries is due to Barot–Geiß–Zelevinsky [1, Proposition 3.2].

If vk is positive, then −vk is negative. We can conclude that μk is an involution, that is, (μk ◦ μk)(v, B) = (v, B) for all 
k and (v, B). The mutation μk is called positive if vk ∈ V + and it is called negative otherwise.
4
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Definition 2.10 (Exchange graphs). The exchange graph of a seed (v, B) contains as vertices all seeds (v′, B ′) obtained from 
(v, B) by sequences of mutations. Two vertices (v′, B ′) and (v′′, B ′′) are connected by an edge if and only if they are related 
by a single mutation.

Two seeds (v, B) and (v′, B ′) are called mutation-equivalent if there exists a sequence of indices (k1, . . . , ks) such that 
(v′, B ′) = (μks ◦ . . . ◦ μk1 )(v, B). By definition, if (v, B) and (v′, B ′) are mutation-equivalent, then their exchange graphs 
coincide.

Remark 2.11. (a) The definitions in Section 2.2 are set in such a way that for the case of integer exchange matrices admit-
ting geometric realisations, this newly defined notion of the exchange graph would give the same as the exchange graph 
constructed from corresponding cluster algebras. We will not give the definition of cluster algebra here (see [12]) as we will 
not use it later, but we will mention that by the rank of a cluster algebra we mean the size of the corresponding exchange 
matrix, and by cluster algebras of Dynkin types A, B, C, D, E, F , G we mean the finite cluster algebras associated to the 
orientations of the corresponding Dynkin diagrams.

(b) The proof of Theorem 5.4 below shows that for the Dynkin types the new definition of the exchange graph (together 
with the standard Lie theoretic notion of positive and negative vectors) coincides indeed with the one coming from cluster 
algebras.

3. Seed mutations in rank 2

3.1. The description of mutations of rank 2 seeds

This section is devoted to the mutation of seeds of rank 2. The aim of the subsection is to study the adequacy of distinct 
notions of positive and negative vectors.

Here a seed is given by a skew-symmetric 2 × 2 matrix B together with a realisation v = (v1, v2) in a 2-dimensional 
real vector space V , which we may identify with the vector space V =R2. After projectivisation, we may identify the space 
V /R+ with the circle S1.

The matrix B is determined by the entry b12 thanks to skew-symmetry. In what follows, in regard to [9, Lemma 6.5], 
we suppose that b12 = 2 cos(α) where α is a rational multiple of π , because otherwise we will produce a mutation-infinite 
seed. To be concrete, let us fix the angle as follows.

Definition 3.1 (Fundamental angle). For a rank 2 seed (v, B) with b12 = 2 cos(α), we put α = a
b π where a, b ≥ 1 are natural 

coprime numbers, and call α the fundamental angle.

Notice that |b12| ≤ 2. We combine this inequality with condition (2) in Definition 2.4. Sylvester’s criterion implies that 
the bilinear form (·, ·) : V × V → R is positive definite. Without loss of generality we may assume that V = E2 is the 
Euclidean plane equipped with the standard scalar product 〈·, ·〉.

For v ∈ V \{0} we put �v = {w ∈E2 | 〈w, v〉 < 0} and lv = {w ∈E2 | 〈w, v〉 = 0}. Notice that �v is an (open) half-plane 
bounded by the line lv .

The map v → �v induces a bijection between the set of vectors v ∈E2 with 〈v, v〉 = 2 and the set of (open) half-planes 
in E2 whose boundary line passes through the origin. Because of that we identify the pair v = (v1, v2) with the intersection 
of the half-planes �v1 ∩ �v2 . This intersection is a sector given by an angle of size α centered at the origin. The size α
determines |b12|. To obtain a geometric model of the seed (v, B) we have to encode the sign of b12, which we do by an 
arrow. More precisely, we orient (the sides of the sector corresponding to) the vectors v1 → v2 if b12 > 0, v2 → v1 if 
b12 < 0, and do not connect them if b12 = 0.

The mutation process is now realised by partial reflections, which means the following. Suppose that the seed (v, B) is 
realised by a sector with an angle whose sides s1 and s2 correspond to v1 and v2 (together with an arrow between v1 and 
v2). Then the mutation of the seed at v2, according to Definition 2.9, either replaces s1 with the reflection s1 across s2, or 
leaves it unchanged (depending on the location of v2 and orientation of the arrow).

The following definition is an obvious attempt to define positive and negative vectors. Under some assumptions it re-
covers the classical notion of positivity in Lie theory when we think of the vectors v1 and v2 as positive simple roots in a 
finite type root system.

Definition 3.2 (Positivity via reference point). Fix u ∈E2\{0} (we will call u a reference point). We declare v to belong to the 
set V + if 〈u, v〉 > 0, and declare v to belong to the set V − if 〈u, v〉 < 0.

3.2. Long and short periods

Example 3.3 (Short period). We consider a geometric realisation v = (v1, v2) of the exchange matrix

B =
(

0 2 cos(π/3)
)

=
(

0 1
)

.
−2 cos(π/3) 0 −1 0

5
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Fig. 1. Geometric description of seeds and mutations in rank 2.

Fig. 2. Seed mutation with period 7.

We draw the seed (v, B) in the top left of corner of Figs. 1 and 2. Here we visualise the sector �v1 ∩�v2 as shaded regions. 
The vectors v1 and v2 themselves are not drawn explicitly, but we can recover them by considering the two outward normal 
vectors of length 

√
2 to the sides of the sector. The reference point u is shown as a bold dot. Definition 3.2 asserts that vi , 

i ∈ {1, 2}, is positive if and only if the line lvi divides the plane into two half-planes such that u lies in the same half-plane 
as the sector.

Fig. 1 shows the mutation process. Here we mutate at sources when passing through the picture in clockwise direction. 
During the mutation process sectors with angles π/3 and 2π/3 occur. Sometimes it is convenient not to draw sectors with 
obtuse angles, instead we label the sides of the sector: here a minus sign attached to a half-plane �vi , i ∈ {1, 2}, indicates 
that we draw {w ∈ E2 | 〈w, vi〉 > 0} instead of �vi = {w ∈ E2 | 〈w, vi〉 < 0}. We obtain a periodic sequence of seeds of 
period 5. Fig. 3 shows the 5-periodic mutation process for the same seed and the same reference point as Fig. 1, but here 
sectors are drawn entirely without signs. The figure also shows the exchange graph of the seed, a pentagon, which is an 
associahedron of type A2, compare Fomin–Reading [10, Figure 4.4].

Note that when we intersect the half-planes �v (with v ∈ V \{0}) with the circle S1 ⊆ E2, they become half-circles; 
similarly, when we intersect the sectors �v1 ∩ �v2 (with v1, v2 ∈ V \{0}) with the circle S1 ⊆ E2, they become arcs and 
their arc lengths reflect the angles at which the planes intersect. We therefore also call the projectivisation S1 ⊂ E2 a 
geometric realisation of (v, B).

Example 3.4 (Long period). Fig. 2 shows the mutation process for the same seed as in Example 3.3 with a different reference 
point. We obtain a periodic sequence of seeds of period 7. Notice that the matrix B defines a cluster algebra of type A2, 
which admits 5 seeds. Hence, the short periods correspond to the periods that occur in cluster algebras (attached to integer 
exchange matrices), whereas larger periods yield larger exchange graphs. We draw the locus of the reference points u which 
yield 5-periodic sequences of seeds in Fig. 4.

Our aim is to describe which choices result in short periods, and which ones result in long periods. To do this, we define 
the swap of a seed ((v1, v2), B) to be the seed ((v2, v1), τ (B)) where τ (B) is obtained from B by a simultaneous reordering 
of the rows and columns given by the permutation (12). The swap is denoted by τ .
6
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Fig. 3. The construction of the associahedron of type A2 via geometric mutations.

Fig. 4. The locus of reference points (shaded) for which mutation has a short period.

Let us fix an initial seed (w, B), given by a sector with an angle of size α as in Definition 3.1. For technical reasons it 
will be convenient to write the pair of vectors as w = (w0, −w1). Without loss of generality we may assume that b12 > 0. 
We consider the map τ ◦ μ2. Note that

(τ ◦ μ2)((w0,−w1), B) = ((w1,−w2), B ′)
for some w2 ∈ V and a matrix B ′ = (b′

i j). Notice that B ′ = (τ ◦ μ2)(B) = τ (−B) = B . In particular, b′
12 > 0. Iteration yields 

seeds (τ ◦ μ2)
n(w, B) = ((wn, −wn+1), B) parametrised by natural numbers n ∈ N all of which have the same exchange 

matrix. Explicitly, we have

wn+1 =
{

−wn−1 + 〈wn−1, wn〉wn if wn is positive;
−wn−1 if wn is negative.

Definition 3.5 (Lazy mutations). We say that n ∈N is lazy if wn is negative. If this is the case, then we also call the mutation 
(wn−1, −wn) ↭ (wn, −wn+1) lazy.

Remark 3.6.

(1) If n is lazy, then 〈wn+1, wn〉 = −〈wn, wn−1〉, else 〈wn+1, wn〉 = 〈wn, wn−1〉.
(2) Lazy numbers come in pairs. Suppose that n ∈Z is lazy. Then wn+1 = −wn−1 so that exactly one of the numbers n − 1

and n + 1 is lazy.

For every n the angle between wn and w0 is an integer multiple of π/b. It follows that the sequence (τ ◦ μ2)
n(w, B)

must be periodic.

Lemma 3.7. The period p of τ ◦ μ2 is equal to b + 2a or to 3b − 2a. Furthermore, the following holds:

(a) If the angle between the initial vectors w0 and −w1 is acute (i.e. 2a < b), then 3b − 2a > b + 2a. In this case p = b + 2a
is the smaller of the possible periods unless w0 is negative and w1 is positive. In the latter case p = 3b − 2a.

(b) On the other hand, if the angle between the initial vectors w0 and −w1 is obtuse (i.e. 2a > b), then 3b − 2a < b + 2a. 
In this case p = 3b − 2a is the smaller of the two possible periods if w0 is negative and w1 is positive.

Proof. For every n ∈ Z we consider the linear map fn : V → V defined by wn−1 → wn and wn → wn+1. If n is not lazy, 
then fn is a rotation around the origin by the angle ψ ∈ [0, π ] for which 〈wn−1, wn〉 = 2 cos(ψ). Since lazy numbers come 
in pairs, the value of 〈wn−1, wn〉 is the same for all non-lazy numbers n by Remark 3.6 (1). In other words, for every 
non-lazy number n the map fn is a rotation by the same angle ψ in the same direction. We have ψ = α or ψ = π − α, 
depending on the sign of w0 and w1.

To find the period p, we consider several cases. First, suppose that w1 is negative. In this case, the number 1 is not lazy, 
and hence f1 is a rotation so that ψ = α. Second, suppose that w0 is positive. In this case 0 is not lazy, and hence f0 is 
7
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a rotation so that ψ = α. Now suppose that w1 is positive and w0 negative. In this case, 0 and 1 are both lazy. It follows 
that 2 is not lazy and hence f2 is a rotation so that ψ = π − α.

Let us write ψ = cπ/b with c ∈ {a, b − a}. In the case c = a, we have to show that p = b + 2a; in the case c = b − a, 
we have to show that p = 3b − 2a. Therefore, we have to show p = b + 2c in both cases. To this end, we show that there 
are exactly b non-lazy mutations and exactly c pairs of lazy mutations along a fundamental period of seeds. We denote the 
number of non-lazy mutations along a period by b′ , and the number of pairs of lazy mutations by c′ . We claim b′ = b and 
c′ = c.

The composition fn+1 ◦ fn is a rotation by π when (n, n + 1) is a pair of lazy numbers. Since fn is a rotation by ψ for 
every non-lazy number n, we must have c′π + b′ψ = 2πm for some integer m. The equation implies that c′ + b′ · c

b = 2m is 
an integer. Because of the coprimality of b and c, we conclude that b′ must be a multiple of b. It cannot be zero because 
there must be non-lazy mutations. Hence b′ ≥ b.

There are b lines through the origin intersecting the sides of the initial sector under an angle that is a multiple of π/b. 
These lines divide the plane into 2b sectors with angles π/b, which we can label consecutively by elements in Z/bZ when 
we identify opposite sectors. Now suppose we perform b non-lazy mutations. The occurring seeds are given by sectors made 
of c smaller sectors whose labels are given by

[k + 1,k + c], [k + c + 1,k + 2c], . . . , [k + (b − 1)c + 1,k + bc], [k + 1,k + c]
for some k ∈ Z/bZ. (Here, we denote [r, s] = {r, r + 1, . . . , r + s}.) The non-lazy mutations are interrupted by pairs of lazy 
mutations. Lazy mutations happen between intervals [k + (l −1)c +1, k + lc] and [k + lc +1, k + l(c +1)] if [k + (l −1)c +1, k +
lc] contains a fixed sector t ∈Z/bZ (determined by the reference point u). Hence the number of pairs of lazy mutations is 
equal to the number of elements in the sequence k + 1, k + 2, . . . , k + bc that are equal to t . This number is equal to c, and 
hence p = b + 2c. �

There are three types of cluster algebras of rank 2 with finitely many cluster variables, namely A2, B2, and G2. The 
entries of the exchange matrix B = (bij) fulfil the relation |b12b21| = 1 = 4 cos2(π/3) in type A2, |b12b21| = 2 = 4 cos2(π/4)

in type B2, and |b12b21| = 3 = 4 cos2(π/6) in type G2. Since the angles π/3, π/4 and π/6 are acute, we model these 
classical cluster algebras geometrically through a situation like in case (a) of Lemma 3.7. The orbits of the classical cluster 
transformation have lengths 5, 6, and 8, respectively. This corresponds to the shorter of the two possible periods in the 
lemma, e.g. for A3, where (a, b) = (1, 3), we have 5 = 2a + b 	= 3b − 2a. This means that we should choose the reference 
point in such a way that only small periods occur as rank 2 substructures in order for our model to mimic classical cluster 
algebra behaviour.

Example 3.8. Let us illustrate Lemma 3.7 in the case of the 7-periodic seed mutation from Fig. 2. The twisted mutation map 
τ ◦ μ2 yields seven seeds (w0, −w1), (w1, −w2), . . . , (w6, −w0). We have two pairs of adjacent lazy indices, namely 0, 1
and 4, 5. For example, for i = 4, the lazy step (w3, −w4) ↭ (w4, −w5) exchanges w3 with its negative w5 = −w3 (and 
changes the sign of w4). The numbers 2, 3, 6 are not lazy. For example, for i = 3, the non-lazy step (w2, −w3) ↭ (w3, −w4)

exchanges w2 with w4, which is obtained from w2 by a rotation by 2π/3 in counterclockwise direction. The other two 
non-lazy steps are also given by rotations by the same angle, so that the three non-lazy mutations have the effect of a full 
rotation.

Definition 3.9 (Short and long periods). We refer to the smaller of the two periods in Lemma 3.7 as a short period and to the 
larger of the two periods in Lemma 3.7 as a long period.

In other words, min(b + 2a, 3b − 2a) is the short period and max(b + 2a, 3b − 2a) is the long period. In particular, if the 
fundamental angle is acute, then b + 2a is short and 3b − 2a is long.

Definition 3.10 (Compatibility of the reference point). We say that the choice u ∈ V is compatible with the seed ((w0, −w1), B)

if mutation of this seed (with respect to the reference point u) has a short period.

This definition of compatibility ensures that we get periods 5, 6, or 8, respectively, for an initial seed of type A2, B2 and 
G2, respectively, in accordance with classical cluster algebra theory.

Remark 3.11. Let us describe the locus of compatible reference points geometrically. Let (v, B) be a seed of rank 2 such that 
�v1 ∩ �v2 is a sector with angle α = 	 (A, O , B) and its sides are oriented O A → O B .

(a) If α is an acute angle, then the reference point u is compatible with (v, B) unless u lies inside the supplementary angle 
	 (−B, O , A) (the red region in the left side of Fig. 5).

(b) If α is an obtuse angle, then the reference point u is compatible with (v, B) if and only if u lies inside the supplemen-
tary angle 	 (−B, O , A) (the green region in the right side of Fig. 5).
8
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Fig. 5. Left: the vectors wi . Middle and Right: the locus of compatible (smoothly shaded, green when in colour) and incompatible (hatched, red when in 
colour) reference points.

4. Compatibility in higher rank

4.1. Compatible reference points

The Definition 2.9 of a seed mutation requires a choice of positive and negative vectors. Like in the situation in rank 2, 
as discussed in Section 3, we define positive and negative vectors through a reference point, compare also Macdonald [18, 
Section 1.2]. To construct the set V + ⊆ V , we fix a reference point u ∈ V .

Every vector v ∈ V defines a half-space �v by taking �v = {w ∈ V | 〈v, w〉 < 0}.

Definition 4.1 (Positive vectors). Given a reference point u, we say that v ∈ V is positive if u belongs to �v . In this case we 
write v ∈ V + . We say v belongs to V − if −v ∈ V + .

Definition 4.2 (Compatibility in rank r > 2). We say that the reference point u is compatible with the seed (v, B) if u is 
compatible with every rank 2 subseed of (v, B) in the sense of Definition 3.10. We say that u is compatible if it is compatible 
with every seed in the mutation class of (v, B).

As we have seen in Section 3, not every notion of positivity will recover the exchange graphs for classical cluster algebras. 
Moreover, Definition 4.2 is clearly a necessary condition for exchange graphs to agree with classical exchange graphs. Hence, 
it is natural to impose this condition in general. We will see later that it is also a sufficient condition to recover classical 
exchange graphs. We fix an initial seed (v0, B) and a reference point u, and denote the resulting exchange graph by �.

Definition 4.3 (Finite and affine seeds). Suppose that (v, B) is a seed of rank n.

(1) We say that (v, B) is of finite type, if its geometric realisation lies on the sphere Sn−1. We say it is of infinite type
otherwise.

(2) We say that (v, B) is of affine if its geometric realisation lies in the Euclidean space En−1.

Remark 4.4 (Finite and affine quivers). As the exchange matrix is the essential part from which we can determine the seed 
(v, B), we also use the terminology from Definition 4.3 when considering exchange matrices only. In particular,

(1) an exchange matrix B is of finite type if its geometric realisation lies on the sphere Sn−1;
(2) an exchange matrix B is affine if its geometric realisation lies in the Euclidean space En−1.

Remark 4.5. In Definition 4.4 the term affine is justified because the condition is satisfied for all affine quivers in the usual 
setting with integer exchange matrices. In particular, quivers of type Ã2, B̃2, etc. satisfy the condition.

5. Exchange graphs for finite types

The classification of (non-integer) mutation-finite matrices is obtained in [9, Theorem B]. It states that such matrices are 
either coming from orbifolds or are in one of four infinite series, or in the finite list of matrices listed in of [9, Table 1.1]. 
In particular, it states that non-integer mutation matrices not coming from an orbifold are all having geometric realisations 
in a space with positively definite quadratic form, or semi-positive quadratic space of corank 1 or at least 2, respectively. In 
these cases one says that the matrix is of finite, affine or extended affine type respectively.

Remark 5.1. As we will use the classification of finite type and of rank 3 affine type, we reproduce these classifications in 
Fig. 6 left and right respectively. The mutation classes in these figures are represented by the corresponding quivers with 
real weights according to the following notation:
9
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Fig. 6. Non-integer mutation-finite quivers not coming from a surface or orbifold: finite types (left) and affine rank 3 types (right).

• label p/q on an arrow from vertex vi to v j means that in the exchange matrix one has bij = 2 cos π p
q .

Remark 5.2 (Domain associated to a seed). Given a seed (v, B) represented by a tuple of vectors v = (v1, . . . , vn), by the 
domain associated to the seed we mean 

⋂n
i=1 �vi .

Remark 5.3. The Definition 2.5 of admissibility of a realisation immediately implies that if the domain belonging to a seed 
is acute-angled, then the seed is acyclic.

Theorem 5.4. Let B be an exchange matrix of finite type. Then

(1) there are geometric realisations (v, B) with the reference point in a compatible position;
(2) in every such realisation, the compatible reference point belongs to some acute-angled domain;
(3) every choice of a reference point in an acute-angled domain gives such a realisation;
(4) all such realisations result in the same exchange graph.

Proof. The classification of exchange matrices of finite type is given in [9, Theorem B] (see also Table 1.1 there): it says 
that except for surface and orbifold cases and cases with integer matrices, there are finitely many types to consider, all 
coming from non-crystallographic root system H3 (3 mutation classes), H4 (5 mutation classes) and F4. The mutation 
classes coming from surfaces or orbifolds of finite type are exhausted by a disc, a punctured disc, and a disc with a unique 
orbifold point, i.e. by types An , Dn and Bn . So, taking into account also mutation classes with integer exchange matrices, 
we need to consider the following types: infinite series An , Bn , Dn , and finite list E6, E7, E8, F4, three mutation classes 
coming from type H3 and five mutation classes coming from type H4. Notice that each of them is associated to a (possibly 
non-crystallographic) root system.

We will consider the non-crystallographic cases separately from the crystallographic ones.
Non-crystallographic mutation classes: the existence of a geometric realisation is shown in [9, Lemma 6.3]. For every 

geometric realisation (i.e. an appropriate choice of vectors associated to the initial seed from the finite root system H3 or H4
respectively) we consider all possible choices of the reference point (placing it consequently inside each of the fundamental 
chambers of the group action) and show the statements of the theorem explicitly, by computer-assisted computation: we 
consider all these cases, check which of them result in a reference point in a compatible position and explicitly compare 
the exchange graphs produced from the cases where the reference point is compatible.

Crystallographic mutation classes: Let 	 be the root system of B , let w1, . . . , wn be the simple roots of 	, and let 
F = ⋂

�wi be the fundamental simplex defined by the simple roots. Our reasoning here will be based on the following two 
observations:

• the root system 	 has only the following angles between the roots: π/2, π/3, 2π/3, π/4, 3π/4. In particular, this 
implies that any acute angle has a form of π/n;

• the simple roots of 	 together with any orientation of the acyclic quiver from the corresponding mutation class give a 
geometric realisation for any acyclic seed.

(1) To show existence of a compatible realisation, consider the set of simple roots of 	, this will be the set of vectors 
associated to the initial seed (we take any acyclic seed as the initial one). We place the reference point inside F . Then 
the notion of positive/negative roots of the root system coincides with the notion of positivity given by Definition 2.9. It is 
shown in [23,24] that the mutation of Y -seeds (i.e. pairs (c, B) with a c-vector c) is using the same formulae as given in 
Definition 4.1. Since the standard mutation of seeds from root systems has only rank 2 subseeds with a short period, the 
reference point must be compatible.
10
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Fig. 7. Realising the exchange graph of type A3 on the sphere.

(2) If the reference point were in an obtuse-angled domain, there would be a subseed of rank 2 with a long period, 
compare the rightmost picture in Fig. 5, in contradiction to the compatibility of the reference point.

(3) Suppose that a reference point lies in an acute-angled domain P . Then the angles of P are π/2, π/3, π/4, i.e. P is a 
Coxeter polytope. The reflection group G P generated by the reflections with respect to the sides of P should coincide with 
the reflection group W obtained from the initial seed. This implies that P should be one of the fundamental chambers of 
W (otherwise G P is a subgroup of W of index higher than 1). Hence, the situation coincides with the one constructed in 
(1), and the reference point is compatible again.

(4) Based on [25], Seven in [23, Corollary 1.7] and [23, Theorem 1.3] gives an explicit formula for mutations of Y -seeds in 
the case of integer acyclic exchange matrices (i.e. for a mutation of the pair (c, B) where c is a c-vector). The formula given 
in [23,24] coincides with the mutation rule of geometric realisations of seeds given in Definition 2.9 (given that the initial 
seed was the set of simple roots and the reference point was inside the initial fundamental domain F ). As Y -seeds are in 
bijection with the seeds of cluster algebras, see Fomin–Zelevinsky [14, Theorem 1.10], this implies that we obtain always the 
same exchange graphs as one has in cluster algebra settings. It is known from [13, Theorem 1.7] that the exchange matrix 
for a cluster algebra does not depend on the choice of the initial seed in it. �
Remark 5.5. The exchange graph originating from the mutation class H3 coincides with the one given by Fomin–Reading 
in [10], the exchange graphs for the classes H ′

3 and H ′′
3 are provided in [8]. For the rank 4 mutation classes, the exchange 

matrices are too big to be drawn here: the computer calculations show that the number of vertices of the exchange graphs 
are given by 105 (for F4), 280 (for H4), 495 (for H ′

4), 352 (for H ′′
4), 420 (for H ′′′

4 ) and 570 (for H ′′′′
4 ).

Remark 5.6. In the setting of non-integer matrices, c-vectors are not mutated in the same as the geometric realisations 
considered in this paper. Moreover, mutation of Y -seeds cannot be defined in the same way as in [23], since the sign 
coherence breaks after some sequences of mutations.

Example 5.7. An example of a geometric picture of the exchange graph of type A3 is shown in Fig. 7. To obtain the picture 
on the plane, we project the sphere to the plane using the stereographic projection from a right-angled vertex. The bold 
lines bound the domains associated to seeds (here, projections of spherical triangles). The reference point is represented by 
a star. For each seed, inside the domain we draw the corresponding quiver (in dashed lines). The exchange graph is the dual 
graph to the decomposition of the plane to the domains. The cluster complex is the dual complex to the decomposition.

Remark 5.8 (Belt line b). In Fig. 7, a spherical line b of the sphere is drawn as a straight oblique line. The line b has formidable 
properties. First, it is a line which intersects precisely the acyclic seeds. Second, the spherical triangle of every cyclic seed 
admits two vertices such that the orthogonal projection of the vertex to the opposite side lies on the spherical line b. One 
can check that a spherical line with the same properties exists for every compatible realisation in Theorem 5.4. We will see 
later in Section 6.3 that a line with the same properties exists for exchange graphs in the Euclidean plane.
11
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6. Realisations of rank 3 affine quivers

6.1. Realisations in the Euclidean plane

Consider a mutation-finite exchange matrix B of rank 3. The rest of the paper concerns the rank 3 affine type. We 
choose a geometric realisation v = (v1, v2, v3) of B inside a quadratic space V = R3. Now we describe how to realise the 
seed (v, B) in the Euclidean plane E2 after projectivisation.

There are two bilinear forms V × V → R. First, we denote the standard Euclidean form by angular brackets 〈·, ·〉 : V ×
V → R. Moreover, as in Definition 2.4, we denote the bilinear form defining the quadratic space V by round brackets 
(·, ·) : V × V →R. The form (·, ·) is positive semi-definite of corank 1. I.e. there exists a unique up to proportionality vector 
e1 ∈ V \{0} such that (e1, w) = 0 for all w ∈ V . Extend e1 to an ordered basis e = (e1, e2, e3) of V by choosing vectors e2
and e3. Then we pick a hyperplane P ⊆R3 that is parallel to e2 and e3 and does not contain the origin. To be concrete, let 
us put P = { (w1, w2, w3) ∈R3 | w1 = 1 }. Here coordinates are written with respect to the basis e.

Let v = (v1, v2, v3) ∈ V , and suppose that v is not parallel to e1, that is, (v2, v3) 	= (0, 0). Then the orthogonal comple-
ment v⊥ = { w ∈ V | 〈v, w〉 = 0 } is not parallel to P . Hence the intersection of lv = v⊥ ∩ P defines a line in P . The line 
bounds the half-plane �v = { w ∈ V | 〈v, w〉 < 0 } ∩ P , and the intersection �v1 ∩ �v2 ∩ �v3 defines a planar triangle (or an 
infinite region bounded by three lines). The concept of geometric realisation now means that if |bij | = |(vi, v j)| = 2 cos(πti j)

for two indices i and j, then πti j is the angle between the sides of the triangle associated to vi and v j . The quiver encodes 
the placements of the signs inside the skew-symmetric matrix B .

Remark 6.1. Another geometric description can be constructed as follows. Consider the Euclidean plane E2 = R2. Recall 
that a map f : E2 → R is affine linear if there exists a row vector a ∈R2 and a real number b such that f (x) = ax + b for 
all x. We denote by F the set of all affine linear maps E2 → R. Clearly, F is a 3-dimensional vector space. We define a 
symmetric bilinear form on F by setting ( f , g) = (a, c) when f (x) = ax + b and g(x) = cx +d for all x. Note that the bilinear 
form is degenerate and its radical consists of all constant maps.

For every f ∈ F define l f = f −1(0) and � f = f −1([0, ∞)). If f is non-constant, then l f ⊆ E2 is a line and � f ⊆ E2 is 
a half-plane bounded by l f . Notice that l f and � f do not change when we multiply f by a positive scalar. In this way, a 
seed (v, B) defines a triangle 	 in the Euclidean plane whose angles encode the entries of B .

Both constructions are dual to each other. Vectors v = (v1, v2, v3) ∈ V are in bijection with linear maps f v : V → R
defined by f v(w1, w2, w3) = v1 w1 + v2 w2 + v3 w3. The hyperplane P = R2 embeds in R3 via (w2, w3) → (1, w2, w3). 
The restriction of f v to P is an affine linear map P →R. Conversely, every affine linear map P →R extends uniquely to a 
linear map f v from V to R. The zero set of the restriction of f v to P defines the same line lv as above. The viewpoint of 
affine linear maps is used in the context of affine root systems, see Macdonald [18, Section 1.2]. Angles measured in P =R2

using the Euclidean bilinear form on R2 agree with angles measured in F using the bilinear form above.

6.2. The initial configuration

The bulk of the paper is devoted to geometric mutations of rank 3 affine quivers as Euclidean triangles with rational 
angles. According to [8] an initial seed can be realised by two parallel lines and a third line intersecting the parallel lines 
under the angle π/d for some positive integer d, see Fig. 8.

Remark 6.2. We can construct other matrices in the same mutation class using considerations as in the proof of [8, Theorem 
6.11]. In particular, the mutation class has a matrix of the form(

0 2 cos(πt3) 2 cos(πt2)

−2 cos(πt3) 0 2 cos(πt1)

−2 cos(πt2) −2 cos(πt1) 0

)
,

where (t1, t2, t3) is a permutation of ( 1
d , kd , d−k−1

d ) for some natural number k ∈ [0, d2 ]. Note that the sum of the angles πti

is equal to π , so that they form a Euclidean triangle. We plug in k = d−1
2 if d is odd, and k = d

2 if d is even. After writing 
d = 2n + 1 or d = 2n for some n ≥ 1, we can say that B is mutation-finite if and only if it is mutation-equivalent to(

0 2 cos(πt3) 2 cos(πt2)

−2 cos(πt3) 0 2 cos(πt1)

−2 cos(πt2) −2 cos(πt1) 0

)
,

where (t1, t2, t3) is one of the triples(
n

2n + 1
,

n

2n + 1
,

1

2n + 1

)
,

(
n − 1

2n
,

1

2
,

1

2n

)
(n ≥ 1).

In fact, a stronger statement is true.
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π/m

Fig. 8. A seed with parallel sides.

d1 d1

Fig. 9. The initial seed (v0, B0).

Proposition 6.3. Let n1, n2, n3 ∈ [1, d] with n1 + n2 + n3 = d. The mutation class of (v, B) contains a triangle with angles 
n1
d π , n2

d π and n3
d π if and only if gcd(n1, n2, n3) = 1.

Proof. Suppose that n1
d π , n2

d π and n3
d π are the angles of a triangle 	 and n1, n2, n3 have a non-trivial common divisor e. 

Then the angles of every triangle in the mutation class of 	 are multiples of eπ/(d). This mutation class cannot contain 	.
For the converse direction, notice that the matrix B is mutation-finite by the π -rationality of the angles. Hence, we can 

apply Felikson–Tumarkin’s classification of mutation classes for mutation-finite exchange matrices in rank 3, see [8, Section 
6]. In particular, a seed whose triangle has angles n1

d π , n2
d π and n3

d π is mutation-equivalent to (v, B). �
Remark 6.4. Note that the number d is the least common denominator of the three rational multiples of π in any geometric 
realisation obtained from (v, B) by sequences of mutations. We consider separately the cases where d is even or odd. In this 
Section 6.2 and in Sections 7, 8, 9 we study the case where d is odd. Section 10 is devoted to the case where d is even.

We fix an integer n ≥ 1, and put d = 2n + 1. We construct an initial seed as follows.

Definition 6.5 (Initial triangle).

(a) We define the fundamental angle to be α = π/(2n + 1).
(b) The initial triangle 	0 ⊆E2 is an isosceles triangle with angles α, nα and nα.
(c) The initial seed (v0, B0) is given by the initial triangle 	0 together with an acyclic quiver as shown in Fig. 9.

Remark 6.6. By virtue of Remark 6.2 the choice of an initial seed in Definition 6.5 is not a loss of generality.

6.3. The initial acyclic belt

Definition 6.7 (Acyclic belts).

(1) An acyclic belt is a maximal connected full subgraph of the exchange graph containing only vertices (v, B) with acyclic 
exchange matrices B .

(2) The acyclic belt obtained from (v0, B0) by sequences of mutations at sinks or sources is called the initial acyclic belt. 
It is denoted by I and we label the vertices of I so that I0 = (v0, B0) and that In+1 = (vn+1, Bn+1) is obtained from 
In = (vn, Bn) by a mutation at a source for all n ∈Z.

Example 6.8 (Type ̃A2). Let us look at the case n = 1. In this case, the matrix B has integer entries and it defines a cluster 
algebra of type Ã2. Its exchange graph is called the brick wall and it is shown in Fig. 12, left. Moreover, it is known how to 
visualise the seeds by equilateral triangles in the Euclidean plane, see Fig. 12, right. Note that there is exactly one acyclic 
belt, and this acyclic belt consists of equilateral triangles.

Definition 6.9 (Belt line b). Define b ⊆ E2 to be the line connecting the two feet of the altitudes in the initial triangle 
corresponding to the sink and the source in the initial quiver Q 0. The line is shown in Fig. 10.

Remark 6.10 (Billiard). The line b is well-studied in Euclidean geometry. It plays an important role in the solution of Fag-
nano’s problem, which is related to triangular billiards. The problem asks to find three points on the three sides of a given 
13
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Fig. 10. The belt line b. The feet of altitudes and the lines connecting them are highlighted by dotted lines.

Fig. 11. Locus of reference points not compatible with the initial seed.

triangle such that the perimeter of the triangle formed by the three points is as small as possible. For an acute-angled 
triangle, the minimum is attained when the points are the feet of the altitudes of the triangle, and the perimeter of the 
minimal triangle forms a 3-periodic billiard orbit, see Tabachnikov [26, Chapter 7]. The name b stands both for acyclic belt
and billiard.

Now, we need to find a compatible choice of a reference point.

Proposition 6.11. Let u be a compatible reference point. Then u lies either

(a) infinitely far away on line b, in the direction of the arrow from the source to the sink in the initial triangle, or
(b) inside an acute triangle that represents the seed I−k = (v−k, B−k) for some k ≥ 0 (which is obtained from the initial 

seed I0 = (v0, B0) by a series of sink mutations).

Proof. Starting with the initial seed we perform a sequence of mutations at sinks, which produce the seeds I0, I−1, I−2, . . .
according to the labelling from Definition 6.7. For k ∈ N we denote the triangle corresponding to the seed Ik by 	k . We 
claim that if u does not lie inside the triangle 	−k , then 	k+1 is obtained by reflecting 	k across the side of it which 
corresponds to the sink in Ik , compare Fig. 13.

For a proof of the claim let us fix k ≥ 0 and assume that u does not lie inside 	−k . Without loss of generality we assume 
that vk = (w1, w2, w3) is labelled so that the index 1 corresponds to the sink in Bk . By definition, u must be compatible 
with the seed Ik at every index, that is, at all angles of the triangle 	k . Remark 3.11 allows us to determine the loci of 
compatibility for each angle explicitly. The loci are given by sectors around the 3 angles; the sectors of non-compatible 
points for the three angles are shaded differently in Fig. 11. The line lw1 , the side line of 	k corresponding to the sink, 
14
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Fig. 12. The exchange graph (left) and the geometric description of the seeds (right) of a cluster algebra of type A(1)
2 .

divides the plane into two half-planes. Since u does neither lie inside 	k nor inside the forbidden regions, it must lie the 
half-plane that does not contain the triangle 	k . Hence the mutation of Ik at 1 is not lazy and 	k+1 is obtained by reflecting 
	k across lw1 .

The discussion in the previous paragraph about the location of u implies that either case (b) occurs or 	k+1 is obtained 
from 	k by a reflection across a side for every k ≥ 0. For the rest of the proof we assume that (b) does not occur.

The composition of two reflections across two lines intersecting each other at an angle ϕ is a rotation by angle 2ϕ . The 
composition of three rotations by angles 2α, 2nα and 2nα is a translation due to 2α +2nα +2nα = 2π . Hence, after 6 steps 
we obtain a triangle 	−6 which can be obtained from 	0 by a translation by a vector w . We obtain regions of compatibility 
for 	−6 similar to those 	0 in Fig. 11 but shifted by vector w . Analogously, we can continue to mutate at sources, and 
obtain similar regions of compatibility for every sixth triangle.

It is well-known in the literature that the line b intersects the occurring triangles in the feet of two altitudes, see for 
example Section 4.5 about Fagnano’s theorem in Coxeter–Greitzer’s book [3]. From this we can conclude that the translation 
vector w is parallel to b.

A tracking of angles shows that the base sides of the triangles 	−1 and 	−4 in seeds −1 and −4 are parallel to b. The 
compatibility of the reference point of the seeds 	−1−6k and 	−4−6k for all k ≥ 0 implies that u lies between the two lines 
defined by the base sides of the triangles 	−1 and 	−4. This implies that u lies infinitely far away on the line b. �
Condition 6.12. In this article we study case (a) of Proposition 6.11, that is, we assume that the reference point u lies 
infinitely far away on the line b, in the direction of the arrow from the source to the sink in the initial triangle.

Remark 6.13. The choice of case (a) seems less natural than case (b), but it allows us to prove Theorem B. We conjecture 
that the choices (a) and (b) yield the same exchange graph, so that Theorem B is true also in case (b). However, our proof 
is not directly transferable to case (b).

The initial acyclic belt is shown in Fig. 13 for the example n = 2 (that is, α = π
5 ).

Remark 6.14. We can describe the notion of positivity given by the reference point u from Proposition 6.11 in geometric 
terms. Suppose that a seed (v, B) is given by a triangle 	. Let s be a side of 	, and without loss of generality let us assume 
that s corresponds to the component v1 of v = (v1, v2, v3). The extension of s divides E2 into two half-planes. Let z ∈E2

be a vector perpendicular to s such that z lies in a different half-plane than 	. Then it is easy to see that there exists a 
vector b⊥ ∈ E2 having the property that v1 (and hence the mutation of (v, B) at v1) is positive if and only if (b⊥, z) > 0. 
Here (·, ·) : E2 ×E2 →R denotes the standard scalar product. By construction, the line b⊥ is orthogonal to the line b.

The discussion in the proof of Proposition 6.11 shows the following.

Proposition 6.15. The initial acyclic belt has the following geometric structure.

(1) The domain of every geometric realisation In with n ∈ Z inside the initial acyclic belt is an acute-angled triangle. The 
line b intersects every triangle In in two points. These points are the feet of two altitudes in In .

(2) Suppose that n ∈Z. The domains of the geometric realisation In and In+6 are obtained from each other by a translation 
by a vector parallel to b.

Remark 6.16. Proposition 6.15 is true for every other choice of an acyclic seed (given by an acute-angled initial triangle 
and an acyclic quiver) when we choose a reference point infinitely far away on the line through the feet of the altitudes 
corresponding to the sink and the source. Hence it is true for every acyclic belt. A priori, two different acyclic belts could 
15
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Fig. 13. The initial acyclic belt I .

yield two distinct lines b and b′ . Moreover, two different directions of the lines could result in two conflicting definitions 
of the reference point (and thus, conflicting notions of positivity), and a priori the length of the translation vectors in 
Proposition 6.15 (2) could depend on the acyclic seed. However, we will show in the next section that the direction of the 
line b, the line b itself, and the length of the translation vector are independent of the choice of the acyclic belt.

6.4. A conserved quantity of mutation

Mutations of geometric realisations admit an interesting invariant.

Definition 6.17 (Mutation invariant). Fix a triangle 	 = A1 A2 A3. For i ∈ {1, 2, 3} we denote by ai the side of 	 opposite to 
Ai . We put

T (	) = a1 sin(A2) sin(A3).

Moreover, suppose now that 	 is an infinite region bounded by two parallel lines a1 and a2 and a finite side a3 that 
intersects a1 and a2 at angles α and π − α. Then we define

T (	) = a3 sin(α) sin(π − α) = a3 sin2(α).

Proposition 6.18. The quantity T is well-defined, that is, it is independent of the numbering of the vertices of the triangle 
	.

Proof. Suppose that 	 = A1 A2 A3 a triangle as in Definition 6.17. We have to show

a1 sin(A2) sin(A3) = a2 sin(A3) sin(A1) = a3 sin(A1) sin(A2).

This is an immediate consequence of the law of sines. �
Proposition 6.19 (T is mutation-invariant). Suppose that the geometric realisation (v, B) is represented by a triangle or an 
infinite region 	. Let k ∈ {1, 2, 3} such that the mutation μk(v, B) = (v ′, B ′) is represented by triangle or an infinite region 
	′ . Then T (	) = T (	′).

Proof. The statement is true when k is a sink or a source. Assume that k is neither a sink or a source. Without loss of 
generality we may assume k = 1. Consider the formula T (	) = a1 sin(	 A1 A2 A3) sin(	 A2 A3 A1). The mutation μk leaves a1
and one of the angles invariant and replaces the other angle with its supplementary angle. This means T (	) = T (	′). �
Corollary 6.20. Suppose that the triangles 	 and 	′ are similar (i.e. they have the same angles) and are related by a 
sequence of mutations as in the previous proposition. Then 	 and 	′ are congruent (i.e. they have the same side lengths).
16
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Fig. 14. Mutation of an obtuse-angled triangle.

Proposition 6.21. Let 	 = A1 A2 A3 be an acute-angled triangle and let H1, H2 and H3 be the feet of the altitudes of 	. 
Then the invariant T (	) admits a geometric interpretation as

T (	) = 1
2 (|H1 H2| + |H2 H3| + |H3 H1|) .

Proof. The semiperimeter of the triangle H1 H2 H3 is equal to A/ρ where A is the area and ρ the circumradius of 	, 
see Honsberger [16, Section 5]. On the other hand, A = 1

2 a1a2 sin(A3). The relation a2 = ρ sin(A2), see Coxeter–Greitzer [3, 
Theorem 1.1], establishes the claim. �

Note that the points H1, H2 and H3 from the previous proposition constitute the solution to Fagnano’s problem. Hence 
the term 2T (	) is the minimum perimeter of a triangle inscribed in a fixed triangle A1 A2 A3.

Definition 6.22 (Translation vector). Suppose that a seed (v, B) is represented by an acute-angled triangle 	. The vector that 
relates every sixth triangle in the acyclic belt of (v, B) is called translation vector.

Corollary 6.23. Suppose that the seed (v, B) is represented by an acute-angled triangle. Then the translation vectors of (v, B)

and the initial seed have the same length 4T (	) = 4T (	0).

Proof. The translation vector is equal to 2 (|H1 H2| + |H2 H3| + |H3 H1|), see Fig. 10. �
6.5. The feet of altitudes

Proposition 6.24 (Feet of altitudes lie on b). Suppose that the geometric realisation (v, B) is obtained from the initial geometric 
realisation by a sequence of mutations and that it is given by a triangle 	 and a quiver Q .

(1) If 	 is acute-angled so that the associated quiver Q is acyclic, then the feet of the two altitudes opposite to the sink 
and the source lie on b.

(2) If 	 is obtuse-angled, then the feet of the altitudes on the two sides of the obtuse angle lie on b.

Proof. We prove this property by induction on the length of a shortest mutation sequence from (v0, B0) to (v, B). There 
are two types of mutations, namely mutations inside an acyclic belt, see Fig. 10, and mutations involving obtuse-angled 
triangles. For mutations inside an acyclic belt we can use the same arguments as in the proof of Proposition 6.15 because 
the reference point u lies on the line b.

Let us consider mutations involving obtuse-angled triangles, see the left picture in Fig. 14, whose quivers are all cyclic. 
Hence a mutation at a side a keeps one of the other sides and reflects the other across s. Hence a generic situation is given 
locally as follows. Points A2, A3, . . . lie on a common line l, and another point A1 does not lie on the line. The points form 
triangles A1 Ak Ak+1 for k ≥ 2. These triangles all have angles of the same size ψ at A1 and are obtained from each other by 
successive mutations. Now we denote by H3, H4, . . . the feet of the altitudes from A3, A4, . . . on the lines A1 A2, A1 A3, . . .
We want to prove that H3, H4, . . . all lie on the line b. We apply the induction hypothesis to the triangle A1 Ak Ak+1 such 
that A1 Ak Ak+1 has the shortest mutation distance from the origin among all choices of k. The induction hypothesis implies 
that the feet P of the perpendicular from A1 on l lies on b.

Consider the similarity transformation f preserving A1, which rotates by the angle ψ and stretches with factor cos(ψ). 
The transformation f maps Ak to Hk for all k ≥ 2. Also, f maps the line l to a line b′ so that H3, H4, . . . all lie on a common 
line b′ . By construction the line b′ intersects l at the angle ψ . The induction hypothesis, applied to the triangle A1 Ak Ak+1, 
implies that the feet of the altitudes P and Hk lie on b so that b = b′ (see Fig. 14, right). �
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Fig. 15. The belt line b crosses all seeds represented by acute-angled triangles and only them.

Remark 6.25 (Quivers are oriented towards the reference point). Let us look at the consequences of Proposition 6.24 for the 
orientation of the arrows in the associated quivers. To describe the orientations, we refer to the half-planes bounded by b
as �1 and �2. We divide each of the two cases of Proposition 6.24 into two subcases.

(1) First assume that the triangle 	 = A1 A2 A3 is acute-angled, so that the associated quiver Q is acyclic. Then the belt 
line b intersects 	 in two points H1 and H3, and without loss of generality let us say the side A1 A2 (containing 
H3) corresponds to the source of the quiver; the side A2 A3 (containing H1) corresponds to the sink. There are two 
possibilities.
(1a) The third side of 	, namely A1 A3, lies in �1.
(1b) The third side of 	, namely A1 A3, lies in �2.

(2) Second assume that the triangle 	 is obtuse-angled so that the associated quiver Q is cyclic. Then the belt line b does 
not intersect 	, because the two feet of the altitudes are outside the triangle. Again, there are two possibilities.
(2a) The triangle 	 lies in �1.
(2b) The triangle 	 lies in �2.
Let us label the vertices 	 = A1 A2 A3, so that the belt line b intersects the extensions of the sides A1 A2 and A2 A3 in 
H3 and H1, respectively, and H3 lies between H1 and u.

Now it is easy to see that a sink/source mutation of an acute-angled seed takes case (1a) over to case (1b), and vice versa. 
Moreover, a mutation of an acute-angled seed at a vertex which is neither sink nor source transports (1a) → (2a) and (1b) 
→ (2b). What is more, mutation of a seed in case (2a) produces a seed in cases (1a) or (2a), and mutation of a seed in case 
(2b) produces a seed in cases (1b) or (2b). All these mutations leave the following structure intact.

(1) If 	 = A1 A2 A3 is acute-angled, then the triangle is oriented towards the reference point u, that is, the sides are oriented 
A1 A2 → A1 A3 → A2 A3.

(2) If 	 = A1 A2 A3 is obtuse-angled, then the sides are oriented A1 A2 → A1 A3 → A2 A3 → A1 A2. In particular, if two 
obtuse-angled seeds are located on different sides of the line b, see cases (2a) and (2b), then they have different 
orientations.

In particular, it follows from Remark 6.25 that the belt line crosses all seeds represented by acute-angled triangles and 
only them (see Fig. 15 for the illustration).

6.6. Translational symmetries of the exchange graph

Definition 6.26 (Translated seeds). Let w ∈E2.

(1) Suppose that the seed (v, B) is represented by a triangle 	 together with a quiver Q . The translated seed w + (v, B)

is given by the translation of 	 in E2 by the vector w , together with the same quiver Q . In this case, we call w the 
translation vector between the seeds.
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(2) Suppose that J is an acyclic belt. We denote its vertices in the exchange graph by Jk with k ∈ Z. The translated acyclic 
belt w + J is the infinite path graph with vertices w + Jk with k ∈Z.

Proposition 6.27. All possible translation vectors between seeds in the mutation class of (v0, B0) are parallel to b.

Proof. Suppose that two seeds are related by a translation w . We assume that the seeds are represented by triangles (or 
infinite regions) 	 and 	′ together with quivers Q and Q ′ . By assumption 	′ = w + 	. We define H to be the foot of 
the altitude on the side of 	 that corresponds to the source in Q if 	 is acute-angled, and define H to be the foot of the 
altitude on the side of 	 that corresponds to the source of the arrow between the two sides of the obtuse angle otherwise. 
We define H ′ similarly. Since the triangles 	 and 	′ are congruent and Q is isomorphic to Q ′ , we must have H ′ = w + H . 
By Proposition 6.24 both H and H ′ lie on b. �

By construction, the translation of the initial seed (v0, B0) by a translation vector w parallel to b is again an acyclic seed 
in the acyclic belt w + (v0, B0). For some vectors w , for example integer multiples of the translation vector T (	0), this 
coincides with the acyclic belt of (v0, B0).

Proposition 6.28. Let Q be a quiver with three vertices and let n1, n2, n3 ∈ [1, 2n] be natural numbers such that n1α +
n2α + n3α = π and gcd(n1, n2, n3) = 1. Then, up to translation by vectors parallel to b, the mutation class of (v0, B0)

contains exactly two seeds with quiver Q whose triangles have angles n1α, n2α and n3α (corresponding to the vertices of 
Q in this order).

Proof. The mutation class of (v0, B0) must contain a triangle with angles n1α, n2α and n3α by Proposition 6.3. The con-
served quantity T (	) = T (	0) from Proposition 6.19 is homogeneous of degree 1, which implies that the angles of the 
triangle 	 suffice to determine its size. In particular, we can reconstruct the triangle up to congruence uniquely when given 
its angles.

Proposition 6.24 shows that the belt line b intersects every triangle corresponding to a seed in � in the feet of two 
altitudes. Moreover, the given quiver Q and the given angles tell us which altitudes we have to consider. Namely, for acyclic 
quivers (with acute-angled triangles as in case (1) of Proposition 6.24) we have to consider the altitudes on the sides that 
correspond to the source and the sink. The quiver must be oriented towards the reference point by Remark 6.25, which 
determines the location of the triangles up to translations by vectors parallel to b and reflection across b.

For cyclic quivers (with obtuse-angled triangles as in case (2) of Proposition 6.24) we have to consider the altitudes on 
the sides of the obtuse angle. The triangle must lie either in �1 or in �2, where �1 and �2 are the half-planes bounded by 
b as in Remark 6.25. This location determines the orientation of the triangle by Remark 6.25 as well as the relative position 
of H1 and H3 on b.

Hence in all cases, up to translation by vectors parallel to b, there are exactly two triangles with prescribed angles in the 
mutation class of (v0, B0). �
Proposition 6.29. Let w ∈E2. Assume that there exist two seeds (v1, B1) and (v2, B2) in � such that (v2, B2) = w +(v1, B1). 
Then the map T w : � → � with (v, B) → w + (v, B) is an automorphism of graphs.

Proof. Suppose that (v, B) is a seed in � and that the triangles of (v, B) and w + (v, B) are given by 	 and w +	. Since w
is parallel to b, a side of 	 has the same sign as the corresponding side of w + 	. Hence, a mutation at these sides yields 
triangles which are related to each other by a translation by w . �
Proposition 6.30. The choice of V + ⊆ V is compatible with every seed.

Proof. We can verify the statement by drawing the sectors of non-compatible reference points, separately for acute-angled 
and obtuse-angled triangles, like we draw them for the initial triangle in Fig. 11. An inspection based on Remark 6.25 shows 
that the choice of the reference point u infinitely far on the line b is compatible for every triangle. �
6.7. On the lengths of sides and translation vectors

We denote the length of the larger side in the initial triangle by d1, see Fig. 9.
Suppose that the seed (v, B) is obtained from (v0, B0) by a sequence of mutations. Assume that (v, B) is represented by 

a triangle 	. Recall that T (	) = T (	0). Hence, if a is a side of 	 and β and γ are angles in 	 incident with a, then β and 
γ are rational multiples of α = π/(2n + 1) and

a = d1
sin(α) sin(nα)

. (1)

sin(β) sin(γ )
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Definition 6.31 (Translation vector lengths). For every k ∈ [1, n] with gcd(k, 2n + 1) = 1 we put

sk = d1
sin(α) sin(nα)

sin2(kα)
.

Proposition 6.32. Suppose that k ∈ [1, n] is coprime to 2n + 1. Furthermore, let wk ∈ E2 be a vector parallel to the line b
whose length is equal to sk , where sk is as in Definition 6.31. Then the exchange graph of (v0, B0) contains the translated 
acyclic belt I + wk .

Proof. We consider an infinite region 	 that is given by two parallel half-lines that intersect the third (finite) side a of 
the region at angles kα and π − kα. By Proposition 6.3 the mutation class of (v0, B0) contains a seed (v, B) whose domain 
is equal to 	. Its quiver must be oriented cyclically since π − kα is obtuse. The mutation of 	 at one of the parallel 
sides yields an infinite region 	′ which is obtained from 	 by translation along a. Note that a is parallel to the line b by 
Proposition 6.27. The equation T (	) = T (	0) implies that the length of a is equal to sk .

Then there exists a mutation sequence that takes 	 to a triangle Ik in the initial acyclic belt I in the same way as 	′ is 
mapped to the translation of Ik along a. �
7. The algebraic number theory of sines and cosines of occurring angles

7.1. Cyclotomic fields

In this section we study the number theoretic properties of the cosines of the angles that occur in the triangles. The 
material in this section is classical and can be found for example in Lang’s books about cyclotomic fields.

Definition 7.1 (Cyclotomic polynomials). For every d ≥ 1 the polynomial

d =
∏

k∈[1,d]
gcd(k,d)=1

(x − e2πki/d) ∈C[x]

is called the d-th cyclotomic polynomial.

Cyclotomic polynomials satisfy many properties. In particular, for any given d ≥ 1, the polynomial d ∈Z[x] is a monic 
polynomial with integer coefficients. In fact, it is the minimal polynomial of any primitive d-th root of unity e2πki/d with 
gcd(k, d) = 1. Moreover, d is irreducible over Z and for every m ≥ 1 we have

xm − 1 =
∏
d|m

d.

The degree of the cyclotomic polynomial deg(d) = ϕ(d) is given by Euler’s totient function. We consider the primitive 
root of unity ζ = e2αi with α = π

2n+1 . Since 2n + 1 is odd, the zeros of 2n+1 can be grouped into pairs of complex 
conjugates. In other words the set of complex zeros of 2n+1 is equal to 

{
ζ k, ζ−k | k ∈ U

}
where

U = {k ∈ [1,n] | gcd(k,2n + 1) = 1 } .

In particular, the polynomial 2n+1 is palindromic, i.e. 2n+1(1/x) = x−ϕ(2n+1)2n+1(x). Hence there is a polynomial 
�2n+1 ∈Z[x] of degree ϕ(2n + 1)/2 such that

�2n+1(x + x−1) = x−ϕ(2n+1)/22n+1(x).

This polynomial must be irreducible over Z, because any non-trivial factorization would yield a non-trivial factorization of 
2n+1. Furthermore, 2 cos(2kα) is a root of �2n+1 for every k ∈ U . As the cardinality of the set U is equal to the degree of 
�2n+1, the polynomial �2n+1 cannot have roots other than the ones from above. Moreover, �2n+1 is monic.

Definition 7.2 (Chebyshev polynomials of the first kind). Define Tm ∈ Z[x] recursively by T0 = 1, T1 = x and Tm+1 = 2xTm −
Tm−1 for m ≥ 1.

It is well-known that Tm(cos(x)) = cos(mx) for all m ∈ N and x ∈ R. Note that every Tm is a monic integer polynomial 
in t = 2x. Moreover, a result of Watkins–Zeitlin [27, Equation (2)] asserts that if m = 2n + 1 is odd, then

Tn+1 − Tn = 2n
∏
d|m

�d.

The field Q(ζ ) is known as the cyclotomic field. We also consider the following number field.
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Definition 7.3 (Maximal real subfield). Put K =Q(2 cos(2α)) =Q(ζ + ζ−1).

Then K ⊆ Q(ζ ) is the maximal real subfield of the cyclotomic field. Notice that K contains the element 2 cos(kα) for 
every k ∈ U .

Recall that an element x ∈ C is called an algebraic integer if it is a root of a monic polynomial with integer coefficients. 
The set of algebraic integers in a field extension F/Q is a subring of F and is denoted OF . It is known that OQ(ζ ) =Z[ζ ]. 
Note that 2 cos(2kα) ∈ OK for every k ∈ U because the elements are roots of the monic integer polynomial �2n+1. In fact, 
the set { 2 cos(2kα) | k ∈ U } is a basis of the Z-module OK .

Note that for every k ∈ U the equality cos(2kα) = − cos((2n + 1 − 2k)α) holds. If k > n/2, then the number 2n + 1 − 2k
is an odd integer in the interval [1, n]. In particular,

OK = 〈2 cos(2kα) | k ∈ U 〉Z = 〈 2 cos(kα) | k ∈ U 〉Z . (2)

We are also interested in the groups of units O×
K ⊆ O×

Q(ζ )
because they contain elements which are relevant for our 

geometric discussions. Elements of these groups are known as cyclotomic units in the literature.

Proposition 7.4. Let k ∈ [1, n].

(1) We have

(a)
1 − ζ k

1 − ζ
,

1 − ζ k

1 − ζn
∈ OQ(ζ ), (b)

sin(kα)

sin(α)
,

sin(kα)

sin(nα)
∈ OK .

(2) If in addition k is coprime to 2n + 1, then

(a)
1 − ζ k

1 − ζ
,

1 − ζ k

1 − ζn
∈ O×

Q(ζ )
, (b)

sin(kα)

sin(α)
,

sin(kα)

sin(nα)
∈ O×

K .

Proof. (1a) Using the geometric series we see that the element (1 − ζ k)/(1 − ζ ) = ∑k−1
l=0 ζ l belongs to OQ(ζ ) = Z[ζ ]. For 

the second claim note that n is coprime to 2n + 1. Hence ζn is a generator of the cyclic group {ζ k | k ∈ [0, 2n]}. Hence there 
is an integer l such that ζ k = ζnl . Then (1 − ζnl)/(1 − ζn) ∈OQ(ζ ) =Z[ζ ] using the geometric series as before.

(1b) By the previous part of the proposition (1 − ζ k)/(1 − ζ ) is an algebraic integer. The same is true for the (4n + 2)-

th root of unity ζ
1−k

2 . Hence the product of the two numbers is an algebraic integer as well. The identities 2 sin(kα) =
ζ k/2 − ζ−k/2 and 2 sin(α) = ζ 1/2 − ζ−1/2 imply

ζ
1−k

2 · 1 − ζ k

1 − ζ
= sin(kα)

sin(α)
.

Now sin(kα)/ sin(α) ∈OK because it is an algebraic integer and it belongs to K =Q(ζ ) ∩R.
(2) Now suppose that gcd(k, 2n + 1) = 1. First we want to show that (1 − ζ )/(1 − ζ k) ∈ OQ(ζ ) . The assumption implies 

that ζ k is a generator of the cyclic group {ζ l | l ∈ [0, 2n]} and (1 − ζ kl)/(1 − ζ k) ∈ OQ(ζ ) = Z[ζ ] using the geometric series 
as above. The claim (1 − ζn)/(1 − ζ k) ∈ OQ(ζ ) can be shown analogously. The claim (1 − ζ )/(1 − ζ k) ∈ OQ(ζ ) also implies 
that sin(α)/ sin(kα) ∈OK . Similarly sin(nα)/ sin(kα) ∈OK . �
7.2. The Galois group

The field extension Q(ζ )/Q is Galois. Its Galois group is isomorphic to the multiplicative group (Z/(2n + 1)Z)× . Explic-
itly, an isomorphism is given by

(Z/(2n + 1)Z)× → Gal(Q(ζ ),Q), l + (2n + 1)Z → ml

where ml : Q(ζ ) →Q(ζ ) maps ζ r → ζ rl for every r ∈ [0, 2n].
Notice that every ml (with l coprime to 2n + 1) leaves the subfield K invariant. Hence the restriction defines a homo-

morphism of fields

σl : K → K , 2 cos(2rα) → 2 cos(2rlα) (3)

for every r ∈ [0, 2n]. These homomorphisms are actually automorphisms since they define a permutation on the basis 
{2 cos(2kα) | k ∈ U } thanks to the coprimality of l and 2n + 1. However, they are not pairwise different. If l ∈ [1, n] is 
coprime to 2n + 1, then 2n + 1 − l is coprime to 2n + 1 as well and ml = m2n+1−l because (2l + 2(2n + 1 − l))α = 2π . In fact, 
the map
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(Z/(2n + 1)Z)×/{±1} → Aut(K )

l → ml

is an isomorphism of groups. In particular, the automorphism group of K is abelian.

Proposition 7.5. Suppose that r, l ∈ [1, n] such that gcd(l, 2n + 1) = 1. Then

σl

(
1

sin2(rα)

)
= 1

sin2(rlα)

where σ is defined as in equation (3).

Proof. The claim follows from the identity 1/ sin2(rα) = 2/(1 − cos(2rα)) because σl is a map of fields. �
8. Linear independence of translation vectors

8.1. An estimate of the coefficients

In this section we want to show that the set{
1

sin2(kα)
| k ∈ U

}
is linearly independent over Q. This set is equal to the set of all translation vectors from Definition 6.31, scaled by inverse 
of the common factor d1 sin(α) sin(nα). Since the cardinality of the set U = {k ∈ [1,n] | gcd(k,2n + 1) = 1 } is equal to the 
degree of the field extension K/Q, this implies that this set of translation vectors is a basis of K as a vector space over Q.

The following result is a special case of a Verlinde formula. A more general formula and a proof can be found in the 
article by Zagier, see [28]. Our formula can be obtained from Zagier’s D(g, k) by putting k = 2.

Proposition 8.1. For every n ≥ 1 we have

n∑
k=1

1

sin2(kα)
= 2

3
n(n + 1).

Clearly, the first term in the sum is larger than every other summand. In fact, the first summand is larger than the sum 
of the remaining terms as the following lemma shows.

Lemma 8.2. For every n ≥ 1 we have

n∑
k=2

1

sin2(kα)
<

1

sin2(α)
.

Proof. By Proposition 8.1 the claim is equivalent to the inequalities

2

3
n(n + 1) <

2

sin2(α)
⇔ sin2

(
π

2n + 1

)
<

3

n(n + 1)
.

It is well known that sin(x) < x for all x > 0. Moreover, using Archimedes’ bound π < 22/7 it is easy to see that π < 2
√

3
or π2 < 12. We conclude that

sin2
(

π

2n + 1

)
<

π2

4n2 + 4n + 1
<

12

4n2 + 4n
= 3

n(n + 1)
,

which finishes the proof of the claim. �
8.2. Determinants of group characters

In this subsection we recall the definition of a group character and present a classical result about a determinant con-
structed from group characters. The determinant will play a crucial role in the proof of the linear independence of the 
translation vectors.
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Definition 8.3 (Group character). Let G be a finite group. A character is a group homomorphism from G to C× .

Since every element g in a finite group G has finite order, the image of every character χ must lie in the unit circle 
S1 ⊆C× .

The following theorem has a long and colourful history. In the special case of cyclic groups the theorem yields a fac-
torisation of the determinant of a circulant matrix which was first proved by Catalan. Our formulation is due to Dedekind 
although Burnside proved a related statement. The theorem was generalised to all finite groups by Frobenius.

Theorem 8.4 (Dedekind). Let G = {g1, . . . , gt} be a finite abelian group of order t . Suppose that R = C[Xg | g ∈ G] is the 
polynomial ring in t variables indexed by the elements of G . We define a matrix M ∈ Matt×t(R) by putting Mij = Xgi g−1

j
. 

Then the determinant is given by

det(M) =
∏

χ : G→S1

⎛⎝∑
g∈G

χ(g)Xg

⎞⎠ ,

where the sum runs over all characters of the group G . In particular, every factor on the right hand side is an irreducible 
homogeneous polynomial of degree 1.

8.3. Linear independence of translation vectors

Recall that a Q-basis B of a Galois extension F/Q is called normal if there exists an element a ∈ F such that

B = {σ(a) | σ ∈ Gal(F ,Q) } .

The Normal Basis Theorem asserts that every Galois extension has a normal basis. The following statement is a variation of 
a well-known argument which plays a role in the proof of the Normal Basis Theorem. Note that we do not assume that the 
field extension is Galois.

Lemma 8.5. Let F/Q be a field extension. Assume that φ1, . . . , φr : F → F are isomorphisms of fields. Let a ∈ K . We define 
a matrix M ∈ Matr×r(K ) by Mij = φ−1

i (φ j(a)). Suppose that det(M) 	= 0. Then φ1(a), . . . , φr(a) are linearly independent over 
Q.

Proof. Suppose that λ1, . . . , λr ∈ Q such that λ1φ1(a) + . . . + λrφr(a) = 0. Note that every field automorphism φ ∈ Aut(K )

restricts to the identity on Q ⊆ F since φ(1) = 1. We apply φ−1
1 , . . . , φ−1

r to the above equation and obtain

M

⎛⎜⎝λ1
...

λr

⎞⎟⎠ = 0.

As M is invertible, we can conclude that λ1 = . . . = λr = 0. �
Theorem 8.6. Let n ≥ 1 and α = π

2n+1 . The set{
1

sin2(kα)
| k ∈ [1,n],gcd(k,2n + 1) = 1

}
is linearly independent over Q.

Proof. Recall the abbreviation U = {k ∈ [1,n] | gcd(k,2n + 1) = 1 }. We apply Lemma 8.5 to a = 1/ sin2(α) and the field 
automorphisms σl ∈ Aut(K ) with l ∈ U from Section 7.2. It is sufficient to prove that the determinant of the matrix M ∈
MatU×U (K ) with

Mrs = (σ−1
r ◦ σs)(a) (r, s ∈ U )

is not equal to zero. We compute the determinant by Theorem 8.4 of Dedekind. More precisely, we apply the theorem to 
G = Aut(K ) and substitute Xm = σ(a) for all m ∈ G . We obtain

det(M) =
∏

χ : G→S1

(∑
l∈U

χ(σl)σl(a)

)
.
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We show that every factor in the right hand side of the equation is non-zero. Let χ : G → S1 be a character. Notice that 
1 ∈ U because it is always coprime to 2n + 1. We have σ1(a) = a because σ1 is the neutral element in G . The triangle 
inequality, the fact that the image im(χ) is contained in the unit circle, and Lemma 8.2 yield the chain∣∣∣∣∣∣∣∣

∑
l∈U
l 	=1

χ(σl)σl(a)

∣∣∣∣∣∣∣∣ ≤
∑
l∈U
l 	=1

σl(a)|χ(σl)| =
∑
l∈U
l 	=1

σl(a) ≤
n∑

l=2

σl(a) < a = |χ(σ1)σ1(a)|

of inequalities. We can conclude that∑
l∈U
l 	=1

χ(σl)σl(a) 	= −χ(σ1)σ1(a)

because those are two complex numbers with different absolute values. �
9. The structure of the exchange graph

9.1. The lattice of translation vectors

Let us introduce the following lattices.

Definition 9.1 (Length lattices).

(1) (Translation lattice from infinite regions) Put

R =
〈

d1
sin(α) sin(nα)

sin2(kα)
| k ∈ U

〉
Z

.

(2) (Translation lattice) Let L be the Z-module spanned by the Euclidean lengths of all vectors w ∈ E2 such that the 
exchange graph of (v0, B0) contains two seeds (v1, B1) and (v2, B2) with (v1, B1) = (v2, B2) + w .

(3) (Side lattice) Let L′ be the Z-module spanned by the Euclidean lengths of sides in triangles 	 such that the exchange 
graph of (v0, B0) contains a seed (v, B) that is represented by the triangle 	.

Proposition 9.2.

(1) There exists a natural number d such that there are inclusions:

L ⊆ 1
dZ[2 cos(α)]d1

⊆ ⊆

R ⊆ Z[2 cos(α)]d1

(2) The ranks of the lattices are equal to rkZ(R) = rkZ(L) = rkZ(Z[2 cos(α)]d1) = ϕ(2n + 1)/2.

Proof. The inclusion R ⊆ Z[2 cos(α)]d1 follows from Proposition 7.4 (2b) and closure of Z[2 cos(α)] = OK under multipli-
cation. The inclusion R ⊆ L was established in Proposition 6.32.

To construct the integer d note that

L′ ⊆
〈

d1
sin(α) sin(nα)

sin(k1α) sin(k2α)
| k1,k2 ∈ [1,n]

〉
Z

by virtue of formula (1), see Subsection 6.7. The formula 2 sin(x) sin(y) = cos(x − y) − cos(x + y) for x, y ∈ R implies that 
the numerators and the denominators of the generators belong to the field K = 〈 2 cos(kα) | k ∈ U 〉Q . Hence L′ ⊆ Kd1. Let 
e ∈N be the common denominator of all the fractions that occur as coefficients in Q-linear combinations of the generators 
of L′ in the basis { 2 cos(kα)d1 | k ∈ U } of d1 K . Then L′ ⊆ 1

e Z[2 cos(α)]d1.
Let w ∈ L be a translation vector. Hence, there exists a sequence (vi , Bi), i ∈ [1, k] of seeds such that (v1, B1) = (vk, Bk) +

w and two adjacent elements in the sequence are related to each other by a single mutation. We denote by 	1 and 	k the 
triangles associated with the first and the last seed, and by w1, wk ∈ E2 two vertices of 	1 and 	k with w1 = wk + w . 
From this we can conclude that there are vectors ui with i ∈ [1, l] with w = ∑l

i=1 ui such that |ui | ∈ L′ is a side length in a 
triangle given by one of the seeds in the mutation sequence and angle between ui and b is an integer multiple of α for every 
i ∈ [1, l]. So we may write w = ∑l

i=1|ui | cos(miα) with mi ∈ Z. The formula 2 cos(x) cos(y) = cos(x + y) + cos(x − y) and 
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Fig. 16. The exchange graph for the case α = π/5.

the inclusion L′ ⊆ 1
e Z[2 cos(α)]d1 imply that L ⊆ 1

dZ[2 cos(α)]d1 for d = 2e. The inclusion Z[2 cos(α)]d1 ⊆ 1
dZ[2 cos(α)]d1

is automatic.
The rank of the lattice R is equal to ϕ(2n + 1)/2 by Theorem 8.6. The lattice 1

dZ[2 cos(α)]d1 has the same rank. From 
this we can conclude that all intermediate lattices must have the same rank as well. �
Question 9.3. Does the equality R = L hold?

9.2. The exchange graph

In this subsection we describe the structure of the exchange graph of (v0, B0). We can summarise the previous discussion 
as follows.

Theorem 9.4. The exchange graph of (v0, B0) has the following structure.

(1) The acyclic belt I + w is a full subgraph of the exchange graph for every w ∈ L.
(2) Suppose that n1, n2, n3 ∈ [0, 2n + 1] are natural numbers such that gcd(n1, n2, n3) = 1, so that there exists a Euclidean 

triangle 	 with angles n1α, n2α, n3α. Furthermore, let Q be a quiver corresponding to 	, which is acyclic if 	 is 
acute-angled and cyclic if 	 is obtuse-angled. Then there exist exactly two seeds in the exchange graph whose triangle 
is congruent to 	 and whose quiver is Q . Furthermore, two such seeds are related to each other by a translation by a 
vector in L or a reflection across the belt line b.

Let us illustrate the result by an example.

Example 9.5. Suppose that n = 2, i.e. α = π/5. The exchange graph of (v0, B0) is shown in Fig. 16. We denote by w ∈ E2

the generator of the 1-dimensional lattice L. The exchange graph has the following properties.

(1) The acyclic belt I + nw is a full subgraph of the exchange graph for every n ∈Z.
(2) (Lines with negative slope, green when in colour) For every (n, m) ∈ Z × 3Z the exchange graph contains additional 

vertices Rn,m and Sn,m such that the following conditions hold:
• The vertex Rn,m is adjacent to (I + nw)m , (I + (n − 1)w)m+4 and Sn,m .
• The vertex Sn,m is adjacent to Rn,m , Sn−1,m+6 and Sn+1,m−6.

(3) (Lines with positive slope, blue when in colour) For every (n, m) ∈ Z × (2 + 3Z) the exchange graph contains an addi-
tional vertex Tn,m such that Tn,m adjacent to (I + nw)m , Tn−1,m and Tn+1,m .

9.3. Quasi-isometries

Definition 9.6 (Quasi-isometries). Suppose that (M1, d1) and (M2, d2) are metric spaces. A map f : M1 → M2 is called a 
quasi-isometry if the following conditions hold.

(1) There exist real numbers a ≥ 1 and b ≥ 0 such that

1

a
d1 (x, y) − b ≤ d2 ( f (x), f (y)) ≤ ad1 (x, y) + b

for all x, y ∈ M1.
(2) There exists a real number c ≥ 0 such that for every z ∈ M2 there exists x ∈ M1 with d2 (z, f (x)) ≤ c.
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We say that (M1, d1) and (M2, d2) are quasi-isometric if there exists a quasi-isometry f : M1 → M2.

It is known that the composition of two quasi-isometries is again a quasi-isometry, and that if f : M1 → M2 is a quasi-
isometry with constants a, b, c, then the map g : M2 → M1, where g(z) = x for an arbitrary x ∈ M1 such that d2 (z, f (x)) ≤ c, 
is again a quasi-isometry. It follows that quasi-isometry is an equivalence relation on metric spaces.

Every isometry is a quasi-isometry, but the converse is false in general. Other examples of quasi-isometries are the 
inclusions Zk ↪→Rk and kZ ↪→Z for each k ≥ 1.

Let � = (V 0, V 1) be a simple graph with vertex set V 0 and edge set V 1. Recall that the distance d between two vertices 
in � is the number of edges in a shortest path between the two vertices. In this way, (V 0, d) becomes a metric space. Also 
we may view (V 0, V 1) as a 1-dimensional cell complex, and the distance d induces a metric on (V 0, V 1). Notice that the 
embedding (V 0, d) ↪→ ((V 0, V 1), d) is a quasi-isometry.

Another source of quasi-isometries is group theory. Recall that a generating set S of a group G is called symmetric if 
S = S−1 and S does not contain the identity.

Notation 9.7 (Cayley graph). Assume that a group G is generated by a finite symmetric set S ⊆ G . By CayS (G) we denote the 
Cayley graph of G (i.e. the graph with vertex set G and an edge between g, h ∈ G if gh−1 ∈ S).

It is well known that if a graph has two finite, symmetric generating sets S, S ′ ⊆ G , then id : G → G induces a quasi-
isomorphism between CayS (G) and CayS ′ (G).

Suppose that G is a group with identity e and M is a set. Recall that a group action of G on M is a map G × M → M , 
(g, m) → gm such that ex = x for all x ∈ M and (gh)x = g(hx) for all g, h ∈ M and x ∈ X .

Definition 9.8 (Group actions on metric spaces). Assume that the group G acts on a metric space (M, d).

(1) We say the group action is isometric if d(gx, gy) = d(x, y) for all g ∈ G and x, y ∈ M .
(2) We say the group action is properly discontinuous if the set {g ∈ G | d(x, gx) ≤ r} is finite for every x ∈ M and r ≥ 0.
(3) We say the group action is cocompact if the orbit space M/G is compact with respect to the quotient topology.

Recall that a metric space (M, d) is called proper if the closed ball Br(x) = {y ∈ M | d(x, y) ≤ r} is compact for every x ∈ M
and r > 0. It is called geodesic if for all x, y ∈ M there exists a geodesic between x and y, that is, an isometric embedding 
p : [0, d] → M such that p(0) = x and p(d) = y where d = d(x, y).

Theorem 9.9 (Schwarz [22] and Milnor [20]). Suppose that a group G acts on a proper, geodesic metric space (M, d) and that 
the group action is isometric, properly discontinuous and cocompact. Then G is finitely generated. Moreover, (M, d) is quasi-
isometric to CayS (G) for every finite, symmetric generating set S ⊆ G . To be concrete, fix x ∈ M . Then the map G → M with 
g → gx is a quasi-isomorphism.

Corollary 9.10. The exchange graph � is quasi-isometric to the Cayley graph of the lattice L, and a quasi-isomorphism is 
given by the translation of the initial seed i.e. by the map

L → �, w → w + (v0, B0).

Proof. The graph � (viewed as a 1-dimensional cell complex) is a geodesic metric space. It is proper because every ball 
Br(x) in � is sequentially compact and hence compact.

We consider the translation map L × � → � with (w, (v, B)) → w + (v, B). The definition of L implies that the map is 
well-defined, that is, the image w + (v, B) belongs to � for all w ∈ L and all seeds (v, B). It is a group action by definition. 
Proposition 6.29 implies that the group action is isometric. Let x = (v, B) be a vertex of � and r ≥ 0. Then the number of 
vertices y of � with d(x, y) ≤ r is finite. For every such y there is at most one w ∈ L such that y = w + x. We see that the 
group action is properly discontinuous. By construction every seed x = (v, B) is given by a quiver and a triangle such that 
the angles are given by n1α, n2α and n3α for some natural numbers satisfying n1 +n2 +n3 = 2n +1. By Proposition 6.28 the 
exchange graph contains at most 2 triangles of that kind for every quiver Q and every triple (n1, n2, n3) up to translation. 
Hence �/L is a finite graph. In particular, it is compact so that the group action is cocompact. The claim follows from the 
theorem of Schwarz and Milnor. �

Choose a basis B = {l1, . . . , lr} of the lattice L where r = rkZ(L) = ϕ(2n + 1)/2 denotes the rank. Then the Cayley graph 
of L with respect to B is isomorphic to Zr with two lattice points x, y ∈Zr being connected by an edge if and only if their 
Euclidean distance is equal to 1. In particular, � is quasi-isometric to Zr .
26



A. Felikson and P. Lampe Journal of Geometry and Physics 188 (2023) 104811
9.4. The growth rate of the exchange graph

We use the abbreviation x0 = (v0, B0) for the initial seed. Recall that � = (V 0, V 1) is the exchange graph of x0.

Definition 9.11 (Growth function). The growth function gr : N →N is defined by

gr(n) = |{ x ∈ V 0 | d(x0, x) ≤ n}|.

Definition 9.12 (Polynomial growth). We say that � has polynomial growth if gr(n) =O(nr) for some r ≥ 0. If this happens to 
be the case, then we call the smallest natural number r such that gr(n) =O(nr) the polynomial growth rate of �.

For example, let us consider Zr . Then f (n) is equal to the number of points x ∈Zr such that 
∑n

i=1|xi | ≤ n. The sequence 
gr(n) is also known as the crystal ball sequence in the literature. It is well known that gr(n) = λnr +O(nr−1) where λ = 2r/r!
is a constant (depending on r but not on n). In particular, Zr has polynomial growth with growth rate r.

Corollary 9.13. The exchange graph � has polynomial growth and its polynomial growth rate is equal to ϕ(2n + 1)/2.

Proof. By Corollary 9.10, � is quasi-isometric to the Cayley graph of L where L is a lattice of rank ϕ(2n + 1)/2. The Cayley 
graph of L is isomorphic to Zϕ(2n+1)/2 and therefore has polynomial growth with growth rate r = ϕ(2n + 1)/2.

Recall that x0 = (v0, B0) denotes the initial seed. We consider the map f : L → � given by f (w) = w + x0. Corollary 9.10
asserts that f is a quasi-isomorphism. Note that f (0) = x0.

According to the definition of a quasi-isomorphism we can pick a ≥ 1 and b ≥ 0 such that 1
a dL(u, w) − b ≤

d�( f (u), f (w)) ≤ adL(u, w) + b for all u, w ∈ L. Moreover, we can pick c ≥ 0 such that for all x ∈ V 0 there exists w ∈ L
such that d� (x, f (w)) ≤ c. Here, the subscripts indicate the metric spaces of the distance functions. Notice that for every 
w ∈ L there are only finitely many x ∈ V 0 satisfying d� (x, f (w)) ≤ c. In fact, since � is a 3-regular graph, the number of 
such x can be bounded by 3c . Notice that this constant does not depend on x.

Suppose that x ∈ V 0 is a seed in �. We choose a w ∈ L such that d� (x, f (w)) ≤ c. The triangle inequality implies

dL (w,0) ≤ a [d�( f (w), f (0)) + b] ≤ a [d�( f (w), x) + d�(x, x0) + b] ≤ ad�(x, x0) + a(b + c); (4)

dL (w,0) ≥ 1

a
[d�( f (w), f (0)) − b] ≥ 1

a
[−d�( f (w), x) + d�(x, x0) − b] ≥ 1

a
d�(x, x0) − b + c

a
. (5)

From inequality (4) we can conclude that

gr�(n) ≤ 3c grL (an + a(b + c)) = O(nr).

Here the superscripts indicate the metric space of the growth function. In particular, � has polynomial growth, and its 
growth rate is at most r. For any n � 0 there are λnr + O(nr−1) pairwise distinct elements w ∈ L such that dL(w, 0) ≤ n. 
Notice that the quasi-isomorphism f is injective by construction. Application of f yields λnr + O(nr−1) pairwise distinct 
seeds x in � such that d�(x, x0) ≤ an + b + c =O(n). �
10. Exchange graphs for even least common denominators

10.1. The structure of the exchange graphs

In this section we consider geometric mutations of seeds that are given by triangles in the Euclidean plane whose angles 
are rational multiples of π where the least common denominator of the three rational multiples is even.

Fix a natural number n ≥ 2, and put α = π/2n. Suppose that the initial seed (v0, B0) is given by a triangle 	0 =
A(0)

1 A(0)
2 A(0)

3 with angles A(0)
1 = α, A(0)

2 = (n − 1)α, and A(0)
3 = nα. For i ∈ {1, 2, 3} we denote the side of 	 opposite to A(0)

i

by a(0)
i . To construct a seed we introduce a quiver with vertices a(0)

1 , a(0)
2 , and a(0)

3 , and arrows a(0)
1 → a(0)

3 and a(0)
3 → a(0)

2 . 
As before, we assume that the reference point lies infinitely far away on the line b, which is constructed from the initial 
triangle by the billiard geometry. It is easy to check that this is the unique compatible choice of it.

The geometric considerations in Section 6.2 do not depend on the parity of the common denominator. In particular, there 
is a line b ⊆ E2 that contains the feet of two altitudes of every triangle 	 in the exchange graph. In this case, the line b
contains the vertex with the right angle of the initial triangle. Moreover, the quantity T (	) = a1 sin(A2) sin(A3) is conserved 
and hence is the same for every triangle 	 = A1 A2 A3 in �.

Some statements in Section 7 undergo a slight change when we switch to an even common denominator. Quintessen-
tially, equation (2) does not hold anymore. We put K = Q(2 cos(2α)) and consider the ring of integers OK . Then 
2 cos(α) /∈ K . (For example, when n = 2, then K =Q(2 cos(2α)) =Q but 2 cos(α) = √

2 /∈Q.) In particular,
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OK = 〈2 cos(2kα) | k ∈ [1,n], gcd(k,2n) = 1 〉Z � 〈2 cos(kα) | k ∈ [1,n], gcd(k,2n) = 1 〉Z .

Notice that rkZ(Z[2 cos(α)]) = ϕ(2n) is twice as large as rkZ(OK ) = ϕ(2n)/2. The lattice

R =
〈

d1
sin(α) sin(nα)

sin2(kα)
| k ∈ [1,n], gcd(k,2n) = 1

〉
Z

is generated by the lengths of all the finite sides bounding infinite regions in �. For every element w ∈ R the translation map 
(v, B) → w + (v, B) induces a symmetry of the exchange graph. We can show that rkZ(R) = ϕ(2n)/2 similar to Section 7.2. 
As before, let L denote the lattice of all elements w ∈ E2 such that the translation map (v, B) → w + (v, B) induces a 
symmetry of the exchange graph. As in Proposition 9.2 there exists a natural number d such that there are inclusions:

L ⊆ 1
dZ[2 cos(α)]d1

⊆ ⊆

R ⊆ Z[2 cos(α)]d1

However, in this situation the lower left corner of the diagram does not have the same rank as the upper right corner as 
before. We conclude with the following theorem.

Theorem 10.1.

(1) For every (n1, n2, n3) ∈ [0, 2n + 1] with gcd(n1, n2, n3) = 1 and every w ∈ L the exchange graph contains at most two 
additional vertices represented by (finite or infinite) triangles with angles n1α, n2α, n3α (with two different orienta-
tions). For a fixed triple (n1, n2, n3) together with a fixed orientation all these triangles are related to each other by 
translations by vectors in L.

(2) We have rkZ(L) = ϕ(2n)/2 or rkZ(L) = ϕ(2n).
(3) The exchange graph � is quasi-isometric to the Cayley graph of the lattice L, and a quasi-isomorphism is given by the 

map L → � with w → w + (v0, B0) where (v0, B0) is the initial seed of �.
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