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Abstract
We present models for convection in a mixture of viscous fluids when the layer is
heated from below and simultaneously the pointwise volume concentration of one
of the fluids is heavier below. This configuration produces a problem of competitive
double diffusion since heating from below promotes instability, but the greater density
of fluid below is stabilizing. The fluids are of linear viscous type which may contain
Kelvin–Voigt terms, but density gradients due to the mixture appear strongly in the
governing equations. The density gradients give rise to Korteweg stresses, but may
also be described by theory due to Kazhikhov and Smagulov. The systems of equations
which appear are thus highly nonlinear. The instability surface threshold is calculated
and this is found to have a complex nonlinear shape, very different from the linear ones
found in classical thermohaline convection in aNavier–Stokes fluid. It is shown that the
Kazhikhov–Smagulov terms, Korteweg terms and Kelvin–Voigt term play a key role
in acting as stabilizing agents but the associated effect is very nonlinear. Quantitative
values of the instability surface are displayed showing the effect Korteweg terms,
Kazhikhov–Smagulov terms, and the Kelvin Voigt term have. The nonlinear stability
problem is addressed bymeans of a generalized energy theory deriving different results
depending on which underlying theory is employed.

Keywords Kelvin–Voigt fluid · Double diffusion · Thermal convection · Instability ·
Solar pond · Kazhikhov–Samgulov equations · Korteweg stresses · Fluid mixtures

1 Introduction

Recent research is demonstrating that the classes of fluids or fluid mixtures being
employed in industrial engineering applications and in particular in renewable energy
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studies is increasingly diverse. Mixtures of fluids are highly complex and while they
may be described by a stess tensor which depends linearly on the velocity gradient it
is known that there has to be additionally a dependence on density gradients due to
the different constituents. Such complex fluids define a class which is often referred
to as generalized Navier–Stokes fluids, and these generalized fluids also encompass
those which include viscoelastic effects where the stress tensor depends on the history
of the velocity gradient, and this area is vast, as is witnessed by the work of [1–3, 16,
17, 23, 33, 34, 75]

In this article we study a mixture of miscible vicous fluids but we also allow the
mixture to be comprised of a particular class of viscoelastic fluids associated with the
names of Kelvin and of Voigt, cf. [3, 5, 57]. Analysis studies of Kelvin–Voigt fluids
(which encompass Navier–Stokes–Voigt) have been presented in much detail by [49,
50], and generalizations of these to incorporate temperature effects are given by [42,
48, 68] and [67], see also [40, 47, 53, 69]. Kelvin–Voigt fluids of order zero are also
known as Navier–Stokes–Voigt fluids and the equations for these have been analysed
in great detail with respect to questions of existence, behaviour of attractors by e.g.
[10, 20, 36, 37]. In connection with classes of viscoelastic fluids we point out that a
very useful account of Maxwell, Oldroyd and Kelvin–Voigt fluids of various orders is
given by [51] who discuss the solution existence question at length.

Double diffusion is caused by two effects such as a temperature gradient and a
concentration gradient and these may often be in opposition. For example if a layer
of water (or other solvent) has sodium chloride dissolved in it then instability may
be caused by the salt concentration being heavier at the top or by heating the base of
the layer and the resulting convective motion is witnessed in the fluid (Newtonian or
viscoelastic). This phenomenon is widely studied in the literature, see e.g. [7, 13, 14,
31, 52, 62–66, 73][pp. 238–268]. However, double or multi diffusive instability may
also be witnessed in a mixture of miscible liquids subject to a temperature gradient,
but where the density gradient due to the different fluids is also an ingredient for
instability. Indeed, double or multi diffusive instability for a mixture of miscible fluids
is an area which is increasingly occupying application areas. For example, diffusion
in glycerol–water mixtures has many applications, see e.g. [12, 21, 74]. Double or
multi diffusion convective instability is particularly important in the area of renewable
energy.A solar pond is a devicewhich employs theSun’s rays to produce electricity and
recent research in this area is concentrating on using different solvents and dissolved
salts, being a precise application of multi fluid mixture convection, see e.g. [4, 59].

In a mixture of viscous fluids one has the usual dependence of the stress tensor
upon the symmetric part of the velocity gradient, but there will in general also be
a dependence upon gradients of density. The idea of incorporating density gradients
into the stress is attributed to Korteweg, see e.g. [70, p. 514]. Further information on
Korteweg stress formulations be may found in [41, 46], and these writers analyse in
detail thermodynamic aspects and different flow regimes.

Apart from the applications mentioned above, Korteweg stresses are important in
real life and have application in vulcanology, see [71], and in other areas of geophysics,
see [45]. Beginning with equations of [26, 35] developed a model for a layer of fluid
mixture where the stress incorporated Korteweg terms, and they particularly studied
the stability of an isothermal liquid layer where convective motion may be driven
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by gravity if the upper part of the layer is denser than that below. [26] derived a
set of Korteweg–Boussinesq equations which are highly useful in this process. The
question of uniqueness of a solution to the isothermal Korteweg–Boussinesq equations
is addressed by [27]. Temperature effects were incorporated to stability problems
involving incompressible viscous fluids with Korteweg stresses by [54]. These writers
investigate instability arising due to density gradients via Korteweg stresses, but they
do not incorporate buoyancy effects as in [26, 27]. The Korteweg effect will dominate
in a zero gravity atmosphere, but even in low gravity conditions the joint effect of
buoyancy and density gradients should be important. One of the aims of this work
is to include the effect of gravity on instability in addition to the density gradient
contribution.

The effect of Korteweg terms upon fluid mechanics is increasingly becoming pop-
ular from a continuum mechanics point of view, see e.g. [18, 19, 28], but particularly
from a perspective of analysis in partial differential equations, see e.g. [11, 15, 32, 58,
60, 72].

A separate development to deriving a theory for amixture of isothermal fluidswhich
incorporates density gradient terms is due to [38, 39], and this theory was employed
to analyse gravitational instability when the fluid layer is heavier at the top by [24].
The [38, 39], theory has been investigated in some depth from an anlysis viewpoint of
existence and solution behaviour by [55, 56], and also by [8, 9]. More recent papers
on analysis of the Kazhikhov–Smagulov models is due to [29, 30].

In this work we firstly extend the Korteweg–Boussinesq model of [26] to include
temperature effects and thus be applicable to the double diffusive convection scenario.
We are particularly interested in the competitive case where temperature is destabi-
lizing whereas the concentration is stabilizing. However, we also develop the [38, 39]
model to include temperature effects. To do this we employ a suitable Boussinesq
approximation, see [6], and derive the model from the completely nonlinear set of
equations analysed in the isothermal case by [8]. This development is very interest-
ing because we show that in addition to the Navier–Stokes terms present in standard
double diffusion theory there arise two new sets of terms in the momentum equation.
One set of terms we attribute to the Kazhikhov–Smagulov development. The second
set of terms has the same form as those which arise from Korteweg theory. Hence,
the Kazhikhov–Smagulov full theory analysed by [8] contains the Korteweg terms
naturally. Thus, we effectively show that there are three models which arise. One cor-
responds to the Korteweg theory, the second corresponds to Kazhikhov–Smagulov
theory, and the third is a combination of both.

We perform a linear instability analysis and a complementary nonlinear stability
analysis for all three models for a mixture of fluids in the competitive double diffusion
situation. For the Korteweg model the nonlinear stability obtained is global, in the
sense that the stability is for all initial data. For the model derived by [8] from the
full set of Kazhikhov– Smagulov equations the nonlinear stability analysis obtained
is conditional upon the size of the initial data.
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2 Equations

Let x denote a spatial point in a three-dimensional body and let t denote time. If ρ(x, t)
denotes the density of a mixture of two miscible fluids then the Cauchy stress tensor,
ti j , for a linearly viscous fluid with Korteweg stress terms may be written as

ti j = (−P + β1ρ,kρ,k + β2ρ,kk)δi j + H1ρ,iρ, j + H2ρ,i j + γ dkkδi j + 2μdi j , (1)

see [41, 70, p. 514]. Here di j is the symmetric part of the velocity gradient, i.e.

di j = 1

2
(vi, j + v j,i ),

where vi is the velocity field.We employ standard indicial notation throughout together
with the Einstein summation convention. For example, the divergence of the velocity
field is

vi,i ≡
3∑

i=1

vi,i =∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

=∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z

where v = (v1, v2, v3) ≡ (u, v, w) and x = (x1, x2, x3) ≡ (x, y, z). A further
example is

viC,i ≡
3∑

i=1

viC,i = u
∂C

∂x
+ v

∂C

∂ y
+ w

∂C

∂z
,

for a function C depending upon x, t . In (1) P is the pressure in the fluid and we
here treat the coefficients, β1, β2, γ, H1, H2 as constants. For an incompressible fluid
the γ term is omitted from (1) and since the stress tensor appears in the momentum
equation as ti j, j the term in H2 can also be incorporated into a modified pressure of
form

p = −P + β1ρ,kρ,k + (β2 + H2)�ρ.

The momentum equation for a fluid in the Korteweg–Boussinesq equations as
derived by [26], employs a Boussinesq approximation, see [6]. The momentum equa-
tion of [26] in our notation may be written

vi,t + v jvi, j = − p,i

ρ0
+ (νdi j ), j − gρ

ρ0
ki − K1C,i�C, (2)

where ν(C) = μ(C)/ρ0 is the kinematic viscosity of the fluid, ρ0 is a constant
reference value of density, g is gravity, k = (0, 0, 1), and we have written K1 = −H1.
[26] mainly discuss the case H1 < 0 but they leave the possibility that it could be
positive. We choose to retain H1 negative since experimental values, cf. [54], suggest
this, and also this sign of coefficient arises naturally in the development from the
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full set of Kazhikhov–Smagulov equations. The function C is the concentration of
one of the fluids (the volume fraction) and we observe that [35] defines this quantity
for a mixture of water and glycerin to be C = VW /VT , where VW is the volume of
water and VT is the total volume. (This must be interpreted in the continuum mixture
sense where both constituents exist at each point and one considers a representative
elementary volume around a point x containing both water and glycerin and VW is
the limit as the volume tends to zero. Of course, VW in this way changes with time, in
general.) In [26] the density is written as

ρ = ρ0(1 + αc[C − C0]) , (3)

where C0 is a constant reference value, and αc is the expansion coefficient associated
with the concentration variation. Upon employing the density equation (3) in (2) we
arrive at the complete momentum equation in the Korteweg–Boussinesq approxima-
tion of [26], namely

vi,t + v jvi, j = − p,i

ρ0
+ (νdi j ), j − gαc C ki − K1C,i�C, (4)

where the constant term in the density, (3), has also been absorbed into the pressure.
The fluid is (in a sense) incompressible, see [26], and then the continuity equation is

vi,i = 0. (5)

The evolution equation for the concentration is

∂C

∂t
+ vi

∂C

∂xi
= κc�C . (6)

The Korteweg–Boussinesq system of equations of [26], Eqs. (4.11)–(4.13), is com-
prised of (4), (5), (6), and for clarity we rewrite them together here,

∂vi

∂t
+ v j

∂vi

∂x j
= − p,i

ρ0
+ ∂

∂x j

(
νdi j

) − gαc C ki − K1
∂C

∂xi
�C,

vi,i = 0,

∂C

∂t
+ vi

∂C

∂xi
= κc�C .

(7)

To extend the model of [26] to incorporate temperature we need to modify the
density in (3) to allow for variable temperature and thus the density is now written as

ρ = ρ0(1 − α[T − T0] + αc[C − C0]) , (8)

where ρ0, T0,C0 are constant reference values, T (x, t) is the temperature and α is the
expansion coefficient of the fluid.
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The evolution equation for the temperature field may now be written as

∂T

∂t
+ vi

∂T

∂xi
= κ�T , (9)

cf. [54], where κ is the thermal diffusivity which is assumed constant.
There is a case for the viscosity to depend on both temperature and concentration,

but as this is the first time we have seen work on the double diffusive convection
problem we choose to keep the kinematic viscosity constant and so proceeding in
this manner we may arrive at the full system of Korteweg–Boussinesq equations for
double diffusive convection in the form

∂vi

∂t
+ v j

∂vi

∂x j
= − p,i

ρ0
+ ν�vi + gαT ki − gαc C ki − K1

∂C

∂xi
�C,

vi,i = 0,

∂T

∂t
+ vi

∂T

∂xi
= κ�T ,

∂C

∂t
+ vi

∂C

∂xi
= κc�C .

(10)

The momentum equation of the [38, 39] equations is given by [8] as

ρ(vi,t + v jvi, j ) − μ�vi − λ(v jρ,i j + ρ, jvi, j )

+ λ2

ρ
(ρ, jρ,i j − 1

ρ
ρ, jρ, jρ,i + ρ,i�ρ) = −P,i + ρ fi

(11)

where λ > 0 is a constant we call the Kazhikhov–Smagulov parameter. In Eq. (11),
fi is the body force and P is a modified pressure given by

P = −λρ,t + p̂ + λ[(λ̃ + 2μ)�(log ρ)]

where p̂ is the actual fluid pressure and λ̃ is another constant, cf. [24], Eqs. (2.5), (2.6).
[8] writes that Kazhikhov and Smagulov consider the simplified equation which

follows from (11) by omitting the term involving λ2. This simplified system leads to
what [24] call the Kazhikhov–Smagulov equations. [8] also notes that Kazhikhov and
Smagulov require the condition

λ ≥ 2μ

M − m
, (12)

where M and m are the supremum and infimum of the initial density of the mixture.
[8] removes the condition (12) and establishes existence of a solution in a precise
sense working with the full equation (11).

We divide equation (11) by ρ > 0 and we observe that the resulting λ2 terms may
be rewritten as

−1

2

(
λ2|∇(log ρ)|2)

,i − λ2

ρ2 ρ,i�ρ.
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Now defined a modified pressure p by

p = P − 1

2
λ2|∇(log ρ)|2

and then we may write equation (11) as

vi,t + v jvi, j = − 1

ρ
p,i + λ

ρ
(ρ, jvi, j + v jρ,i j )

+ ν�vi + fi − λ2

ρ2 ρ,i�ρ.

(13)

We next employ a Boussinesq approximation on (13) and in a sense we follow the
development of [26] where they proceed from their Eqs. (4.3)–(4.7) to arrive at their
Korteweg–Boussinesq Eqs. (4.11)–(4.13). We assume that ρ is a constant, ρ0, when
it appears undifferentiated in that equation but we retain the spatial derivative terms.
The density in the body force component is assumed given by

ρ = ρ0(1 − α[T − T0] + αc[C − C0])

and then we replace the derivatives of ρ in terms of C (the volume concentration) and
appending equations (9), (6) for T and C we arrive at a Boussinesq—approximation
set of equations arising from the full set of nonlinear equations addressed by [8].

The full system of equations we derive has form

vi,t + v jvi, j − δ̂�vi,t = − 1

ρ0
p,i + λ

ρ0
(C, jvi, j + v jC,i j ) + ν�vi

+ αgT ki − αcgCki − λ2

ρ2
0

C,i�C,

vi,i = 0,

T,t + vi T,i = κ�T ,

C,t + viC,i = κc�C .

(14)

It should be observed that we have added a Kelvin–Voigt regularizing term, the term
involving δ̂, to the left hand side, [20]. When δ̂ = 0 we obtain a Navier–Stokes type
theory whereas when δ̂ > 0 there results a Navier–Stokes–Voigt type theory. We also
note that if we omit the λ/ρ0 term then this becomes analogous to the Korteweg theory
discussed earlier whereas whenwe omit the λ2/ρ2

0 termwe havewhat might be termed
a Kazhikhov– Smagulov type theory.
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3 Double Diffusive Convection

Suppose Eq. (14) hold in the horizontal layer R2 × {z ∈ (0, d)} with the velocity,
temperature and concentration prescibed on the boundaries z = 0 and z = d, as

vi = 0, z = 0, d;
T = TL , z = 0, T = TU , z = d;
C = CL , z = 0, C = CU , z = d;

(15)

for prescribed constant values TL , TU ,CL ,CU , with TL > TU > 0 and CL > CU

where TL , TU are in ◦K. Thus temperature has a tendency to destabilize whereas
concentration stabilizes.

The steady solution to (14) and (15) in whose stability we are interested is

v̄i ≡ 0, T̄ = −βz + TL , C̄ = −βcz + CL , (16)

where the temperature and concentration gradients, β, βc, are given by

β = TL − TU
d

, βc = CL − CU

d
.

The steady pressure p̄ may then be derived up to a constant at ones disposal from
(14)1.

To investigate stability of the steady solution (16) we introduce perturbations
(ui , θ, φ, π) by

vi = v̄i + ui , T = T̄ + θ, C = C̄ + φ, p = p̄ + π

where p̄ is the steady state pressure arising from (14)1.
The equations for the perturbations are then derived from (14) and these equations

are non-dimensionalized with the scalings,

ui = u∗
i U , xi = x∗

i d, t = t∗T , θ = θ∗T �, φ = φ∗C�, π = π∗ P̃,

where

U = κc

d
, T = d2

κc
, T � = βdκc

κ
, C� = βcd, P̃ = ρ0νU

d

and we define

δ = δ̂

d2
, Le = κ

κc
= Sc

Pr
, Pr = ν

κ
, Sc = ν

κc
,

where Le, Sc and Pr are the Lewis, Schmidt and Prandtl numbers. The Rayleigh
number, R, and concentration Rayleigh number, S, are introduced as

R = αgβd4

νκ
, S = αcβcgd4

κcν
, (17)
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and we introduce two further non-dimensional parameters, namely the Kazhikhov–
Samgulov parameter, α2, and the Korteweg parameter, α1, by

α1 = λ2νκc

ρ2
0α

2
c g

2d6
, α2 = λκc

ρ0αcgd3
. (18)

The fully nonlinear non-dimensional equations for (ui , θ, φ, π) then become (omit-
ting the *s)

1

Sc

(
ui,t + u jui, j

) − δ

Sc
�ui,t = −π,i + �ui + Rkiθ − Sφki

− α2Sui,3 + α2Sφ, j ui, j + α2Su jφ,i j + α1S
2�φki − α1S

2φ,i�φ ,

ui,i = 0,

1

Le

(
θ,t + uiθ,i

) = w + �θ ,

φ,t + uiφ,i = w + �φ ,

(19)

where w = u3, and these equations hold on the domain R
2 × {z ∈ (0, 1)} × {t > 0}.

The boundary conditions to be satisfied are

ui = 0, φ = 0, θ = 0, z = 0, 1, (20)

together with the fact that ui , φ, θ and π satisfy a plane tiling periodicity in the x, y
plane.

Webelieve this is thefirst analysis of thismodel and sowhileα1 andα2 are connected
we here treat them as independent constants in order to highlight the Kazhikhov–
Smagulov and Korteweg effects on stability and instability. Let us observe that if
α2 = 0, α1 �= 0, then (19) represents a direct extension of the Korteweg–Boussinesq
model of [26], to the double diffusive convection problem. If α1 = 0, α2 �= 0, then
(19) may be thought of as a Kazhikhov–Smagulov equationmodel for double diffusive
convection. When α1 �= 0, α2 �= 0, equations (19) are a double diffusive convection
model arising from the full set of Kazhikhov–Smagulov equations analysed by [8].
We point out that if we take δ = 0 then (19) is representative of Navier–Stokes theory
whereas when the Kelvin–Voigt parameter δ > 0, (19) is representative of Navier–
Stokes–Voigt theory.

4 Linear Instability Analysis

To establish a linear instability analysis of (19), (20), we discard the nonlinear terms
and seek a solution representation like ui = ui (x)eσ t , φ = φ(x)eσ t , θ = θ(x)eσ t ,

π = π(x)eσ t . We then remove the pressure term from equation (19)1 by taking
curl curl of the linearized version and retaining the third component. In this way one
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may show that the equations governing linear instability are

− σ

Sc
�w + δσ

Sc
�2w = −�2w + Ra2θ − Sa2φ

+ α2S�w,z − α1S
2�∗�φ,

σ

Le
θ = w + �θ,

σφ = w + �φ,

(21)

where w = u3 and �∗ = ∂2/∂x2 + ∂/∂ y2.
We seek now solutions likew = W (z)h(x, y), θ = �(z)h(x, y),φ = �(z)h(x, y),

where h is a function compatible with tiling the plane, and h satisfies �∗h = −a2h, a
being awavenumber.To illustrate the novel effects of theKortewegand theKazhikhov–
Smagulov terms, in Sect. 6 we concentrate on two stress free surfaces, cf. [22, 31],
and then the boundary conditions required are

W = D2W = � = � = 0, z = 0, 1,

where D = d/dz. Care has to be taken with deriving the boundary conditions. When
one solves for two fixed surfaces the condition D2W = 0 on z = 0, 1, is replaced
by DW = 0 on z = 0, 1. In deriving the appropriate condition for two stress free
surfaces we recall that the Cauchy stress tensor has the form

ti j = −pδi j − K1C,iC, j + 2μdi j ,

and this yields the following conditions on the stress tensor on the planes z = 0, 1,

tα = tα j n j = −K1(C̄ + φ),α(C̄ + φ),z + μ(uα,z + w,α) ,

where α = 1, 2. For the linearized case the K1 term contribution leads to

−K1φ,αC̄,z − K1C̄,αφ,z ,

on z = 0, 1, and since φ = 0 on z = 0, 1, and C̄ = C̄(z), these terms vanish, which
leads to the condition on D2W .

We firstly study the problem with only Korteweg terms and no Kazhikhov–
Smagulov contributions, so that α2 = 0, α1 �= 0. In this case the eigenvalue problem
for instability reduces to solving the determinant equation

∣∣∣∣∣∣∣∣∣

�2 + σ
( �

Sc
+ δ�2

Sc

)
−Ra2 Sa2 + α1S2a2�

−1
σ

Le
+ � 0

−1 0 � + σ

∣∣∣∣∣∣∣∣∣

= 0 (22)

where � = π2 + a2.
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One sees that the stationary convection boundary, σ = 0, is given by

Rstat = S(1 + α1S�) + �3

a2
, (23)

and the critical value for instability is obtained by minimizing Rstat in a2.
To determine the oscillatory convection critical Rayleigh number one solves (22).

This yields a cubic in σ which is then resolved into real and imaginary parts. After
some calculation one may then show that the oscillatory Rayleigh number is given by

Rosc = �3

a2

[
1 + 1

Le
+ 1

Sc

(
1 + 1

Le

)
(1 + δ�)

]

+ S(1 + α1S�)

{
1 − (1 + δ�)

[Sc + Le(1 + δ�)]
(
1 − 1

Le

)}
.

(24)

The critical value for oscillatory convection is found by minimizing Rosc in a2.
Numerical results for stationary and oscillatory convection are displayed in Sect.

6.
To determine the critical Rayleigh numbers in general (including for the cases

α1 = 0, α2 �= 0 or α1 �= 0, α2 �= 0), requires numerical solution of (21). This we do
by employing a Chebyshev-tau method coupled with the QZ algorithm. In this case
(21) are written in the form

(D2 − a2)W = χ,

− σ

Sc
χ + δσ

Sc
(D2 − a2)χ = −(D2 − a2)χ + Ra2� − Sa2�

+ α2SDχ + α1a
2S2(D2 − a2)�,

(D2 − a2)� + W = σ

Le
�,

(D2 − a2)� + W = σ�.

(25)

For fixed R, S, Sc, Le, δ, α1, α2, the eigenvalues σ are computed and the secant
method is employed to locate where σr = 0 (σ = σr + iσ1), and then this value
of R is minimized in a to yield the critical values of R.

5 Nonlinear Stability

Wenowanalyse nonlinear stability of the solution (16) for the fully nonlinear equations
(19), (20). To facilitate the nonlinear analysis we introduce the variable ψ by the
transformation ψ = Rθ, where R2 = R. This changes the Rθki term in (19)1 to
Rψki and it changes the w term in (19)3 to Rw.

Let V denote the period cell for the perturbation solution and denote by ‖ · ‖
and (·, ·) denote the norm and inner product on L2(V ). We have observed there are
effectively three systems of equations of partial differential equations in (19), (20).
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The Korteweg system with α2 = 0, α1 �= 0 is referred to as type I; the second system
when α1 = 0, α2 �= 0 is type II; and the third system when α1 �= 0, α2 �= 0 is type
III. Suppose H is the space of solutions for equations (19), (20), i.e.

H = {
ui ∈ H1

0 (V ), θ ∈ H1
0 (V ), φ ∈ H2

0 (V )
∣∣ui,i = 0, periodic conditions in x, y

}
.

Define REF I to be the solution to the maximization problem for the standard Bénard
problem

1

REF I
= max

H

IB
DB

, (26)

where
IB = 2(θ, w), DB = ‖∇u‖2 + ‖∇θ‖2,

and H in (26) is understood to refer only to ui and θ . It may be shown that REF I =
1707.76 for two fixed surfaces and REF I = 27π4/4 for two stress free surfaces, cf.
[62] pp. 68, 69 and p. 97.

We state the following theorem.
Theorem. A. The steady solution (16) to system I is globally nonlinearly stable (i.e.
for all initial data) if R < REF I .

B. The steady solution (16) for system III is nonlinearly stable if R < REF I and
the initial data satisfies E(0) < c, where E(0) is the measure

E(0) = 1

2Sc
‖u(0)‖2 + δ

2
‖∇u(0)‖2 + R

2Le
‖θ(0)‖2 + S

2
‖φ(0)‖2 + α1S2

2
‖∇φ(0)‖2,

and

c =
√
2 c21S

√
α1δ (REF I − R)

REF I (1 + 2c21c3)
,

with the constants in c being defined in the proof.
Proof.

Multiply (19)1 by ui (with Rθ ≡ Rψ) and integrate over V . After some integration
by parts and use of the boundary conditions one finds

d

dt

( 1

2Sc
‖u‖2 + δ

2Sc
‖∇u‖2

)
= −‖∇u‖2 + R(ψ,w) − S(φ,w) + α2S(φ, j ui, j , ui )

+ α2S(u jφ,i j , ui ) + α1S
2(�φ,w) − α1S

2(ui , φ,i�φ).

(27)
Next multiply equations (19)3 and (19)4 by ψ and φ, respectively, recallingRθ = ψ ,
and integrate each over V to obtain

d

dt

1

2Le
‖ψ‖2 = R(w,ψ) − ‖∇ψ‖2 , (28)

and
d

dt

1

2
‖φ‖2 = (w, φ) − ‖∇φ‖2 . (29)
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We require a further identity and so we follow an idea in [26, 27]. Hence, multiply
(19)4 by −�φ and integrate over V to find

d

dt

1

2
‖∇φ‖2 = −(w,�φ) − ‖�φ‖2 + (ui , φ,i�φ) . (30)

From (27)–(30) we may now arrive at a generalized energy equation of form

dE

dt
= RI − D + N , (31)

where

E = 1

2Sc
‖u‖2 + δ

2Sc
‖∇u‖2 + 1

2Le
‖ψ‖2 + S

2
‖φ‖2 + α1S2

2
‖∇φ‖2,

and
I = 2R(ψ,w),

and
D = ‖∇u‖2 + ‖∇ψ‖2 + S‖∇φ‖2 + α1S

2‖�φ‖2,
and

N = α2S(ui , φ, j ui, j ) + α2S(u jφ,i j , ui ).

For part A of the theorem, α2 = 0, and then N = 0, and we set

1

RE
= max

H

I

D
.

From (31) we find
dE

dt
≤ −D

(
1 − R

RE

)
. (32)

Since I only involves w and θ , RE may be replaced by REF I and using Poincaré’s
inequality

D ≥ c2E, (33)

where

c2 = min
{
Sc π2,

1

δ
, 2Le π2, 2π2

}
.

For R < REF I (≡ RE ) then put k = 1 − R/REF I > 0, and using (32) and (33) we
may arrive at

dE

dt
≤ −kc2E,

and so
E(t) ≤ E(0) exp(−kc2t).

Thus we have global nonlinear stability in the measure E(t), and part A is proved.
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To prove part B we note that using integration by parts

(ui , φ, j ui, j ) = − 1

2
(uiui ,�φ) ,

≤1

2
‖u‖24 ‖�φ‖ ,

≤ 1

2c21
‖∇u‖2 ‖�φ‖ , (34)

where ‖·‖4 denotes the normon L4(V ) and c1 is the constant in the Sobolev embedding
of H1

0 (V ) ⊂ L4(V ). Furthermore,

(ui , φ,i j u j ) = − (ui, jφ, j , ui ) ,

=(u j,i ui, j , φ) ,

≤ sup
V

|φ| ‖∇u‖2 ,

≤c3‖�φ‖ ‖∇u‖2 , (35)

where the constant c3 may be found in [25, pp. 280–283]. From the forms for E(t)
and D(t) one may show

‖�φ‖ ‖∇u‖2 ≤
√
2

S
√

α1δ
DE1/2 ,

and so employ this inequality together with the bounds (34) and (35) to obtain

N ≤ c4DE1/2, (36)

where

c4 =
√
2

S
√

α1δ

( 1

2c21
+ c3

)
.

Next, employ (36) in (31) together with the procedure leading to (32), (33) to find

dE

dt
≤ −D(k − c4E

1/2). (37)

If now E1/2(0) < k/c4 then one may use a continuity argument to show E(t) → 0,
exponentially, see e.g. [62, pp. 14–16], and part B follows.
Remark.

When α2 �= 0, α1 = 0 the above proof does not work. [24] also found difficulty
numerically to proceed with the reduced equations of Kazhikhov–Smagulov in their
analysis of convective overturning in the isothermal problem.
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6 Numerical Results

To understand the novel effects of this work we firstly discuss the instability diagram
for classical thermohaline convection in a linearly viscous fluid, see Fig. 1. This is
when α1 = 0, α2 = 0, δ = 0. Note that for S less than the threshold value S = 51.9
the instability curve is a straight line of slope one which is intersected by another
straight line which is the oscillatory convection threshold. Once S is larger than the
transition value oscillatory convection is the mechanism leading to instability.

In Fig. 2 we show a typical analogous picture when Korteweg terms are present,
i.e. α2 = 0, δ = 0, but α1 �= 0. Observe that the Korteweg terms have a very strong
effect on the instability curves. The curve for stationary convection is very nonlinear
as S increases. Once again there is a transition to oscillatory convection but at a much
smaller value of S = 5.6, indicating the strong stabilizing effect of the Korteweg
terms. The oscillatory convection curve is actually also very nonlinear. For example,
using the parameter values in Fig. 2, R increases from 709.424 at S = 0 to 713.043
when S = 10. However, when S = 100, R has value 1193.81. Figure3 shows the
stationary and oscillatory curves for the same parameter values as Fig. 2, but now the
effect of the Kelvin–Voigt parameter, δ, is seen. This parameter only affects oscillatory
convection, but it is seen that δ has a stabilizing effect. We have only presented details
for Le = 20 and Sc = 40, but similar behaviour is observed for all the other values
of Le and Sc we have employed. A referee has pointed out that oscillatory convection
only occurs when Le > 1. This is true, although for most fluids encountered in real
life this condition holds.

The effect of the Kazhikhov–Smagulov parameter, α2, upon the stationary convec-
tion threshold is observed in Tables 1 and 2. The parameter α2, like α1, has a strong
stabilizing effect. For the scaling chosen here the effect of α1 is greater than that of
α2, as seen in Table 1, but both parameters have a pronounced effect on the thresh-
old of convective motion. We also observe that as α1 increases a2 displays a strong
decrease whereas when α2 increases, a2 increases. This means that as α1 increases
the aspect ratio of the convection cells at the onset of convection is increasing and
so the cells become wider with increasing α1. Thus increasing internal stresses due
to density gradients are leading to wider cells. The Kazhikhov–Smagulov parameter
has the opposite effect. As α2 increases the cells become narrower. Hence, while both
effects stabilize the onset of stationary convection, each term has a very different effect
on the behaviour of the cell shape. We should point out that the eigenvalue problem
to calculate σ is a difficult one numerically, and spurious eigenvalues are definitely
witnessed.

7 Conclusions

We have produced a model to describe the behaviour of a mixture of two miscible
fluids where differences in concentration by volume of a given fluid lead to density
gradients in addition to the expansion by heating. The double diffusive convection
problem is analysed in detail by a linear instability technique, but also by a fully
nonlinear energy argument. There are two sources of terms which are not present in
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classical thermosolutal convection, these being associated with Korteweg effects and
also with effects due to work of Kazhikhov and Smagulov. Both effects are shown
to have a strong influence on the convection threshold and also upon the size of the
resulting convection cells.

Froma mathematical viewpoint the novelty of the Korteweg and of the Kazhikhov–
Smagulov terms may be seen by examining the linearized theory. Omitting the
nonlinear terms in (19) the equations governing linearized instability theory are

1

Sc
ui,t − δ

Sc
�ui,t = −π,i + �ui + Rkiψ − Sφki − α2Sui,3 + α1S

2�φki ,

ui,i = 0,

1

Le
ψ,t = Rw + �ψ ,

φ,t = w + �φ .

(38)

It is convenient to cast equations (38) together with the boundary conditions (20) in
the setting of an abstract system, defined in a Hilbert space,

Aut + Lu + N (u) + εMu = 0, (39)

cf. [61, p. 156]. For our purpose A and L are symmetric, unbounded linear operators,
M is a skew-symmetric linear operator, and N (u) is a nonlinear operator.

We operate on (38)4 by S − α1S2�, and derive the following equation

(S − α1S
2�)φ,t = (S − α1S

2�)w + (S − α1S
2�)�φ . (40)

Then (38) and (40) may be written in the form (39) where u = (u, v, w,ψ, φ)T and
essentially L and εM have the forms

−L =

⎛

⎜⎜⎜⎜⎝

� 0 0 0 0
0 � 0 0 0
0 0 � R 0
0 0 R � 0
0 0 0 0 S� − α1S2�2

⎞

⎟⎟⎟⎟⎠

and

−εM =

⎛

⎜⎜⎜⎜⎝

−α2S
∂
∂z 0 0 0 0

0 −α2S
∂
∂z 0 0 0

0 0 −α2S
∂
∂z 0 −S + α1S2�

0 0 0 0 0
0 0 S − α1S2� 0 0

⎞

⎟⎟⎟⎟⎠

[61, p. 156] points out that when ε = 0 (i.e. α1 = α2 = 0, or S = 0) then, under
suitable conditions on N , the linear and nonlinear stability boundaries coincide. If M
is bounded then σ will be real and the instability and nonlinear stability boundaries
remain within O(ε) of each other if ε is small enough. However, he also notes that
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Table 1 Critical Rayleigh and wave numbers for stationary convection versus S

S R(α1 = 0, α2 = 0.1) a2 R(α1 = 0.1, α2 = 0) a2

0 657.511 4.935 657.511 4.935

2 659.823 4.94 665.429 4.913

4 662.756 4.94 685.128 4.765

6 666.309 4.95 716.460 4.745

8 670.478 4.96 759.190 4.610

10 675.256 4.97 813.028 4.452

The second and third columns refer to only the Kazhikhov–Smagulov effect, whereas columns four and
five refer to only the Korteweg effect

Table 2 Critical Rayleigh and
wave numbers for stationary
convection versus α1 or α2

α2 R a2 α1 R a2

0 667.511 4.935 0 667.511 4.935

0.1 675.256 4.97 0.1 813.028 4.452

0.2 697.996 5.07 0.2 954.304 4.079

0.3 734.396 5.23 0.3 1092.26 3.783

0.4 782.626 5.42 0.4 1227.54 3.541

0.5 840.725 5.62 0.5 1360.60 3.338

0.6 906.855 5.84 0.6 1491.79 3.166

0.7 979.433 6.04 0.7 1621.38 3.017

0.8 1057.159 6.24 0.8 1749.58 2.887

0.9 1138.998 6.42 0.9 1876.55 2.772

1 1224.141 6.58 1 2002.44 2.669

The second and third columns refer to the case where α1 = 0, whereas
columns five and six refer to where α2 = 0. The parameter S = 10

there are many problems in applied mathematics in which ε is not small, citing the
rotating Bénard problem and themagnetohydrodynamic Bénard problem as examples.
The current work is also a novel example of this. It is typical that non-zero skew
symmetric terms in (39) lead to stabilizing effects and the α1 and α2 terms are each
involved with skew symmetric operators.

We also draw attention to the fact that [43, 44] have identified interesting attractors
and behaviour for ordinary differential equation systems derived from double diffusive
convection theory. We believe the new effects identified here could reveal yet further
interesting attractor behaviour.

It is worth stressing the application area of solar ponds for the type of work inves-
tigated here. Use of sodium chloride in a solar pond can have an adverse effect on
agriculture fields, and salts such asmuriate of potash and urea are being investigated as
alternatives. Other phase change materials and nanofluids may lead to better thermal
efficiency and storage, cf. [59], and a solvent of Navier–Stokes–Voigt type may be
preferable.
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Fig. 1 Graph of R versus S for standard thermohaline convection, α1 = 0, α2 = 0, Le = 20, Sc = 40,
δ = 0. The transition value to oscillatory convection is approximately R = 709.4, S = 51.9
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Fig. 2 Graph of R versus S for double diffusive convection with Korteweg stress, α1 = 0.1, α2 = 0,
Le = 20, Sc = 40, δ = 0. The transition value to oscillatory convection is approximately R = 709.42,
S = 5.6
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Fig. 3 Graph of R versus S for double diffusive convection with Korteweg stress, effect of Kelvin–Voigt
term, α1 = 0.1, α2 = 0, Le = 20, Sc = 40, δ = 0, δ = 0.1. The transition values to oscillatory convection
are approximately R = 709.42, S = 5.6 and R = 734.62, S = 6.9
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