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The Material Point Method (MPM) is well suited to modelling dynamic solid mechanics 
problems undergoing large deformations with non-linear, history dependent material 
behaviour. However, the vast majority of existing material point method implementations 
do not inherit conservation properties (momenta and energy) from their continuum 
formulations. This paper provides, for the first time, a dynamic updated Lagrangian 
material point method for elasto-plastic materials undergoing large deformation that 
guarantees momenta and energy conservation. Sources of energy dissipation during point-
to-grid and grid-to-point mappings for FLuid Implicit Particle (FLIP) and Particle In Cell 
(PIC) approaches are clarified and a novel time-stepping approach is proposed based on 
an efficient approximation of the Courant-Friedrich-Lewy (CFL) condition. The formulation 
provided in this paper offers a platform for understanding the energy conservation nature 
of future/existing features of material point methods, such as contact approaches.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The Material Point Method for solids (as originally described in [1–3]) is receiving significant interest for problems 
involving very large deformations, with particular relevance in geotechnical engineering. Recent reviews of the literature 
can be found in a number of papers [4,5]. Historically, the MPM for solid mechanics was derived from the FLIP (fluid-
implicit-particle) method [6,7] which, in turn, was a particularisation of the PIC (particle-in-cell) [8–10] method.1 The MPM 
works by decoupling the representation of the problem domain (using “material points”) with the calculation phase which 
is carried out on a finite element grid. Such a split requires mapping of information from material points to the grid prior to 
the calculation phase and then the other way following calculation. Momenta and energy conservation in the MPM remain 
a matter of concern with respect to these mappings, as evidenced by the numerous publications in this area: [6,8,11–14], 
among others.

Abbreviations: APIC, Affine Particle In Cell; CFL, Courant-Friedrich-Lewy; FEM, Finite Element Method; FLIP, FLuid Implicit Particle; GIMPM, Generalised 
Interpolation Material Point Method; MPM, Material Point Method; PIC, Particle In Cell; PolyPIC, POLYnomial Particle In Cell; TL, Total Lagrangian; UL, 
Updated Lagrangian; XPIC, eXtended Particle In Cell.

* Corresponding author.
E-mail address: w.m.coombs@durham.ac.uk (W.M. Coombs).

1 From this point on, the terms FLIP and PIC are used to define only the mapping procedures at the end of the step, and not the complete numerical 
methods.
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0021-9991/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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Dynamic solid mechanics problems are often solved using an explicit approach to time discretisation, and this is the 
case with the majority of MPM research to date (see [15–17]), although it should be noted that these publications are cast 
within small and not large deformation theory. Fewer researchers have used implicit time integration. Love’s and Sulsky’s 
2006 papers [18,19] provided theoretically sound bases for both the mapping procedures and the formulation of discrete 
equations, on the basis of the groundwork laid by several other publications (e.g. [20–25]). In particular, the constitutive 
relationship cast within finite deformation elasto-plasticity and the mid-point rule for the time integration scheme are 
discussed and assessed in the above-mentioned papers for the Finite Element Method.

If finite strain theory is taken into account, the difference between the current (or updated) and the initial (or total) 
Lagrangian reference frame is not negligible, making the frame used for the equilibrium equations a choice in terms of the 
numerical implementation of a method. For the MPM, the choice between an updated or a total Lagrangian formulation 
is discussed in [26], which concludes that total Lagrangian formulations are not ideal for MPMs as they require the basis 
functions to be mapped back to the original coordinates, which is “not practical as it would require mesh deformation throughout 
the analysis to be stored, destroying one of the key advantages of the material point method” [26]. Therefore, while Love and 
Sulsky [18,19] have provided an energy conserving total Lagrangian MPM, here we overcome the limitations of a total 
approach via the derivation, implementation, verification and validation of a new updated Lagrangian energy conserving 
MPM for large deformation elasto-plastic dynamic analysis. It should be emphasised that, while Love and Sulsky [19] state 
their approach to be “updated Lagrangian”, their actual formulation is total Lagrangian, as can be seen from the adopted 
stress measure and integration volume used when satisfying the governing equations (see Coombs et al. [26] for a detailed 
discussion on the differences between total and updated Lagrangian formulations in the material point method). In addition 
to this key contribution of the paper, we also investigate the grid-to-point and point-to-grid mappings that are required in 
the MPM in terms of energy conservation. The conditions under which (linear and angular) momenta and energy are and 
are not conserved are clearly defined for PIC and FLIP motion projections within the MPM.

Section 2 of this paper presents the continuum and discretised equations for a deformable body in updated Lagrangian 
(UL) and total Lagrangian (TL) frameworks. Section 3 reviews the MPM computational cycle, focusing on its implicit version. 
In Sections 4 and 5, conservation properties are assessed. In particular, Section 4 examines conservation applied to the 
mappings (PIC and FLIP), while Section 5 develops an UL version of the energy-conserving internal force vector. Due to the 
well-recognised link between the implicit MPM and standard finite elements (see Guilkey and Weiss [27]), the discussion 
in Section 5 can also be applied to the Finite Element Method. Since selecting an adequate time-step length for dynamic 
MPM simulations is critical to complete any simulation, an adaptive time-step technique is introduced in Section 6. Finally, 
in Section 7, numerical examples demonstrating the conserving properties are shown for the bi-dimensional and three-
dimensional cases. Section 8 concludes the paper with observations and possible future expansions of the current work.

2. Governing equations

In this section, the equations governing the continuum dynamics of a deformable body are briefly introduced. In partic-
ular, the balance of linear momentum is presented in different frames, both in strong and weak forms. Hyperelastic-plastic 
constitutive models are considered with isotropic finite strain multiplicative plasticity (a Hencky material). In what follows, 
non-bold quantities represent scalars, while bold symbols indicate vectors or matrices. The use of index notation when 
necessary not only avoids confusion among these quantities, i.e., vectors and matrices, but also indicates their dimensions. 
In particular, uppercase letters in italic font (I, J , . . . ) indicate the degrees of freedom of the grid, uppercase upright letters 
(A, B, . . . ) denote grid nodal values, and lowercase letters (i, j, α, . . . ) refer to the dimensions ndim of the Euclidean space 
under consideration. In addition, the Einstein summation notation for subscript indexes is used throughout unless specified 
otherwise.

2.1. Notation, strong and weak forms

Consider a body B, occupying an initial volume �0 of the Euclidean three-dimensional space E ⊂Rndim
. The boundaries 

of the initial volume are �0, partitioned into disjoint subsets such that �0 = �0
ϕ̄ ∪�0

t̄
, and �0

ϕ̄ ∩�0
t̄

= ∅. Particles constituting 
the volumes �0 have a reference density ρ0 and occupy an initial position X in the initial reference frame. Let the same 
particles be denoted by x in the current configuration �, and let us introduce a smooth mapping ϕ , i.e., the motion, such 
that ϕ : �0 × [0, T ] → E and x = ϕ (X, t), with t ∈ [0, T ] ⊂R being the time. Moreover, any motion ϕ belongs to the set of 
admissible configurations, defined as

K =
{
ϕ | det(F ) > 0 ∧ ϕ = ϕ̄ on�0

ϕ̄

}
, (1)

where ϕ̄ defines the prescribed motions on the boundary �0
ϕ̄ , and F indicates the deformation gradient, which is

Fij := ∂ϕi

∂ X
= ∂xi

∂ X
. (2)
j j
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The Jacobian J , which is the determinant of the deformation gradient F , can be used both to express the current density ρ =
J−1 ρ0 and its infinitesimal current volume dV = J dV 0, with dV 0 being the infinitesimal initial volume. We also introduce 
the difference between the reference and the current configuration of a particle, i.e., the displacement, as u (X, t) = x − X .

A point X has a material velocity defined as v := ϕ̇ , where the notation (•̇) indicates the material time derivative. 
Conventional stress measures are used: the Cauchy stress tensor σ , the Kirchhoff stress tensor τ and the first and the second 
Piola-Kirchhoff stress tensors P and S . The relationships between these quantities are

σ = J−1 τ = J−1 P F T = J−1 F S F T , (3)

where the superscript (•)T indicates the transpose of the quantity (•).
The local balance of momentum can be expressed in different frames. In the updated Lagrangian formulation, the equa-

tions are expressed in the current frame, leading the local balance of momentum per unit current volume to be

∂σi j

∂x j
+ ρ (bi − v̇ i) = 0, (4)

with (ρ b) being the body forces. In the total Lagrangian formulation, equations are based on the reference (or initial) frame, 
so the total counterpart of Eq. (4) per unit initial volume is

∂ Pij

∂ X j
+ ρ0 (bi − v̇ i) = 0. (5)

Eqs. (4) and (5) are expressed in a strong form. The multiplication of the above equations by weight functions η, belonging 
to the set of V =

{
η |η = 0 on�0

ϕ̄

}
, and the integration over the respective volumes permit the recasting of Eqs. (4) and (5)

into the weak forms∫
�

σi j
∂ symηi

∂x j
dV −

∫
�

ρ (b − v̇ i)ηi dV −
∫
�t̄

t̄iηi dA = 0, ∀η ∈ V ; (6)

∫
�0

Pij
∂ηi

∂ X j
dV 0 −

∫
�0

ρ0 (bi − v̇ i)ηi dV 0 −
∫
�0

t̄

t̄0
i ηi dA0 = 0, ∀η ∈ V , (7)

where a motion ϕ ∈ K and satisfying the initial conditions ϕ (X,0) = ϕ0 and ϕ̇ (X,0) = v0 has to be found. In the above 
equations, dA and dA0 represent the infinitesimal current and initial areas.

2.2. Space discretisation

Since the implicit MPM is closely related to the standard finite element method, we develop the discretised weak form 
firstly in the latter. Let an isoparametric finite element Cartesian grid discretise the continuum body B, with Nnodes being the 
total number of nodes in the grid. The interpolated values of admissible motions and weight functions, belonging to the 
finite-dimensional sets hK and hV , are given by

hϕi(x) = Ni I (x)ϕI ; (8)
hηi(x) = Ni I (x)ηI ; (9)

∂hηi

∂x j
(x) = ∇x j Ni I (x)ηI , (10)

where index I = 1, . . . , 
(
Nnodes × ndim

)
represents the degrees of freedom of the whole discretisation, while N (x) are the 

shape functions. Several options exist in the MPM for the shape functions, as discussed in Sołowski et al. [5]. However, in this 
work, linear shape functions (MPM) or a convolution of linear shape functions with step characteristic functions (GIMPM) 
are considered in the examples in Section 7 (for a detailed explanation of this procedure, see Bardenhagen and Kober [28]). 
The introduction of the grid allows Eqs. (6) and (7) to be written as∫

h�

(∇x j NI i
)
σi j dh V −

∫
h�

ρ NI i (bi − NiK v̇K) dh V −
∫

h�

NI i t̄i dh A ≈ 0; (11)

∫
h

(∇X j NI i
)

Fip S pj dh V 0 −
∫

h

ρ0 NI i (bi − NiK v̇K) dh V 0 −
∫

h

NI i t̄0
i dh A0 ≈ 0, (12)
�0 �0 �0

3
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where the dependency of the quantities in the above equations from the current position x or the displacement u is dropped 
for the sake of clarity.

Let also the same body B be described by a finite number of material points Npt . In the original MPM [1], material points 
are used as quadrature points to approximate the above integrals. Furthermore, to allow compact presentation of Eqs. (11)
and (12), the internal force vectors, the consistent mass matrix and the external force vectors are introduced along with their 
integral approximations

fint
I :=

∫
h�

(∇x j NI i
)
σi j ≈

N pt∑
pt

∇x j NI i
(
xpt) σi j

(
xpt) V pt; (13)

Fint
I :=

∫
h�0

(∇X j NI i
)

Fip S pj dh V 0 ≈
N pt∑
pt

∇X j NI i
(
xpt) Fip

(
xpt) S pj

(
xpt) V pt

0 ; (14)

MI K :=
∫

h�

ρ NI i NiK dh V =
∫

h�0

ρ0 NI i NiK dh V 0 ≈
N pt∑
pt

mptNI i
(
xpt) NiK

(
xpt) ; (15)

fext
I :=

∫
h�

ρ NI i bi dh V +
∫

h�

NI i t̄i dh A ≈
N pt∑
pt

mptNI i
(
xpt) bi +

∫
h�

NI i t̄i dh A; (16)

Fext
I :=

∫
h�0

ρ0 NI i bi dh V 0 +
∫

h�0

NI i t̄0
i dh A0 ≈

N pt∑
pt

mptNI i
(
xpt) bi +

∫
h�0

NI i t̄0
i dh A0, (17)

where the superscript (•)pt implies that the quantity (•) is computed at the material point location.
Since the lumped mass matrix M̄ is often used in place of a consistent mass matrix and evaluating the conservation 

properties for both of the cases is one of the scopes of this work, it is useful to introduce the effective mass matrix M̃ as a 
linear combination of the two. In this way, they can be both generically expressed as

M̃ := (1 − ε)M + ε M̄ with ε = [0,1], (18)

having introduced the lumped mass matrix defined as follows

M̄I K := δI K

∫
h�

ρ NK dh V ≈ δI K

N pt∑
pt=1

mpt NK
(
xpt) (no summation over K ). (19)

Thus, the approximated compact forms of Eqs. (11) and (12) are

rI (u) = fint
I + M̃I K v̇K − fext

I ≈ 0; (20)

RI (u) = Fint
I + M̃I K v̇K − Fext

I ≈ 0. (21)

2.3. Time discretisation

In a dynamic problem, the temporal problem duration [0, T ] is discretised into steps of length �t . Following Simo and 
Tarnow [20] for the FE method and Love and Sulsky for the MPM [19], we use the implicit mid-point rule since its use 
preserves angular momentum during the time-step when finite strain theory is considered.2 Thus, the configuration in 
which equilibrium is imposed is at time ϑ = t + �t/2. In this case, the relation between the kinematic variables becomes

uϑ = 1

2
(ut + ut+�t) = �uϑ ; (22)

vϑ = ut+�t − ut

�t
; (23)

aϑ = vt+�t − vt

�t
. (24)

2 It must be noted that the mid-point rule does not guarantee any conservation properties outside of the solution of the equilibrium equations, i.e., it 
does not apply to the mappings from material points to grid and back. This is the reason why mappings are assessed in Section 4 in terms of conservation 
properties.
4
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Fig. 1. Configurations taken into account by the current MPM formulation and associated quantities: grid positions, grid (incremental) displacements, 
material point deformation gradients.

In Eq. (22), it should be noted that initial displacements are null due to the introduction of a new mesh at the beginning of 
each time-step. The representation of the diverse configurations is given in Fig. 1. In addition, the relationship between the 
deformation gradients appearing in the same figure is as follows

F := ∂x

∂ X
= ∂x

∂xϑ

∂xϑ

∂ X̃

∂ X̃

∂ X
:= �F �t−ϑ �F ϑ F t . (25)

It should be highlighted that � (•) := (•)t+�t − (•)t usually indicates a difference between a quantity at the end of the step 
and its respective counterpart at the beginning, with the only exception being the deformation gradients �F �t−ϑ and �F ϑ , 
which are defined by Eq. (25).

3. The Material Point Method algorithm structure

The main algorithmic steps for the MPM match previous descriptions (see, for instance, Coombs and Augarde [29]) and 
only significant features of steps pertinent to the new method are discussed below. Having established the continuum 
mechanics and discretisation approaches in the previous section, this section details the main algorithmic steps for a given 
time-step of the proposed implicit algorithm (as represented in Fig. 2). The key steps A to E are described by Subsections 3.1
to 3.5. The final step, Step F, shows the deformed material point positions at the end of the loop, providing the starting 
point for the next loop through the algorithm.

3.1. A: Discretisation - material points and grid initialisation

Regardless of the ontology, whether considering material points and the grid as two different and communicating dis-
cretisations or seeing them as a single one in which the two groups play different roles, the strength of the MPM lies in 
the presence of (simultaneous or discontinuous depending on the considered substeps) and the non-trivial communication 
between these two groups (material points and grid). Therefore, the initial conditions on the displacements and velocities 
required for the solution of Eqs. (20) and (21) can be prescribed independently on both the material points and the grid. 
Due to the different mapping substeps, this information will be passed from one group to other (i.e., from the grid to the 
material points or vice versa).

3.2. B: Material points-to-grid mapping

A key issue for dynamic problems with the MPM is the need to maintain the same conservation properties (linear 
momentum, angular momentum and energies) of the material points representation as best as possible. The mapping pro-
cedures (substep B in Fig. 2) from material points to grid proposed in the literature (see, among others, Love and Sulsky [19]) 
can be expressed as follows
5
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Fig. 2. An MPM main loop subdivided into procedural substeps for a single time-step. This loop is run until the simulation is complete at time T . On the 
left-hand side, there are the substeps involving the material points, while, on the right-hand side, the substeps using (mainly) the grid-based calculations. 
A loop comprises several steps: (A) current position of material points on the background grid, (B) point-to-grid information mapping, (C) equilibrium 
equations formulated at nodes on the grid, (D) solve equilibrium equations for nodal motion, (E) grid-to-point motion & deformation mapping and (F) 
deformed body in equilibrium with external actions and distorted grid disposal.

M̃I K vK =
N pt∑
pt

mpt NI i
(
xpt) v pt

i . (26)

The conservation properties of mapping (26) were investigated in 2006 by Love and Sulsky [19]. However, some of this 
is revisited in Subsection 4.1 below, to assess the conservation properties of the grid-to-material points mappings presented 
in Subsection 4.2.

3.3. C: Grid equilibrium equation assemblage

In this substep (C in Fig. 2), Eqs. (20) and (21) are assembled at the grid nodes after having introduced the time 
discretisation explained in Subsection 2.3. As highlighted in [26,30], the gradient of the shape functions must include the 
variation in deformation over the time-step to correctly enforce the equilibrium equations. Moreover, as can be seen from 
Eqs. (16) and (17), while the part of the external forces dealing with the body forces can be approximated via the integral 
over the chosen material points, the Neumann boundary conditions cannot be assembled in the same fashion within the 
MPM context; some suggested approaches are given in Bing et al. [31] and Remmerswaal [32]. In this work, when Neumann 
boundary conditions are considered (as in Example 7.1), concentrated loads are applied to selected material points, as 
explained in Charlton et al. [30].

3.4. D: Essential boundary conditions and solution procedure

The solution of Eq. (20) can take the same approach as the standard FE method where Dirichlet boundary conditions 
are directly applied on the grid (substep D in Fig. 2). However, if the body boundaries (where the essential conditions are 
prescribed) do not match the grid, special techniques are necessary, such as proposed by Cortis et al. [33].

Iterative solutions to Eq. (20) are obtained via the Newton-Raphson algorithm, that is

δu(k)
t+�t = −

(
J(k−1)

)−1
r(k−1), (27)

where k indicates the current iteration, δu(k)
t+�t := u(k)

t+�t − u(k−1)
t+�t are the incremental displacements, and J(k−1) := ∂r

∂ut+�t
is 

the Jacobian matrix. In the case of the mid-point rule, the full expression of this matrix is
6
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J(k−1) = 2

�t2
M̃ + K(k−1),

with K(k−1) := ∂fint

∂ut+�t
being the global stiffness matrix. Since the computation of the global stiffness matrix is strongly 

dependent on the stress-strain relationship (and the constitutive relationship is modified to conserve energy, as explained 
in Subsection 5.1), its calculation is fully detailed in Appendix A. It should be noted that the primary variable for Eq. (27) is 
arbitrary, while the update of the secondary unknowns should be made according to Eqs. (22)-(24).

Each time-step is considered to have converged once the ratio between the current error f Err at the k-th iteration is less 
than a selected tolerance tol defined as

f Err =
(

f Err
)(k)(

f Err
)(1)

< tol, with
(

f Err
)(k) =

(
|r(k)|

)
I

(
|δu(k)

t+�t |
)

I
.

3.5. E: Grid-to-point mapping and update

Once the approximate solution to the equilibrium equation is found, it is necessary to pass the information from the grid 
to the material points (substep E in Fig. 2). Moreover, if the characteristic function is not the Dirac delta function, an update 
of the function domain must be carried out (for a discussion and a comparison of the options, see Coombs et al. [26]).

For the material points-to-grid mapping in a dynamics problem, several options are available in the literature, which are 
PIC [8–10], FLIP [6,7], XPIC [13], APIC [12,34], and PolyPIC [14]. The current work focuses on the first two (PIC and FLIP) and 
highlights why the former is considered dissipative while the latter not (see Subsection 4.2). For the sake of completeness, 
the difference between the two is expressed by their update equations

PIC:
(

v pt
t+�t

)
i
= Ni I

(
xpt) (vt+�t)I ; (28)

FLIP:
(

v pt
t+�t

)
i
=

(
v pt

t

)
i
+ Ni I

(
xpt) (vt+�t − vt)I . (29)

The update of the material point current position is given by(
xpt

t+�t

)
i
=

(
xpt

t

)
i
+ Ni I

(
xpt) (ut+�t)I = Ni I

(
xpt) (xt+�t)I . (30)

4. Properties of the mappings

The mapping procedures described by Eqs. (26), (28) and (29), which pass information back and forth, from the material 
points to the grid, are below assessed and their conservation of momenta (linear and angular) and of kinetic energy com-
puted and reviewed. It should be emphasised that, theoretically, the goal of each mapping process is to conserve momenta 
and energy at the given time (i.e. the quantities of interest should be computed at the beginning or, alternatively, at the 
end of the step). However, as will be detailed in Subsection 4.1, the initial mapping inevitably loses energy at the begin-
ning of each time-step. As a consequence, the objective of the mapping at the end of the time-step (i.e., grid-to-material 
points) changes in scope, having to eliminate (if possible) the error committed in the initial phase. For the grid-to-material 
points mapping process, the quantities of interest then become the time differences within the step. Therefore, it should be 
understood that, while the material points-to-grid mapping can be defined as a unique process, the grid-to-material points 
cannot be decoupled from the mapping at the beginning of the step.

The Einstein summation notation has not been applied in Section 4 to make operations clearer, with the summation 
being explicit when necessary.

4.1. The material points-to-grid mapping

The definitions of the momenta and kinetic energy computed on both the material points and the grid nodes are listed in 
Table 1. In particular, the former are denoted by the superscript (•)pt , while the latter by (•)h . Moreover, their differences, 
which were computed by Burgess et al. [11] for the consistent mass matrix and by Love and Sulsky [19] for the effective 
mass matrix, are reported in the same table.

To make the notation in Table 1 consistent with the definitions of mass matrices introduced by Eqs. (15), (18) and (19), 
it is useful to explain the relationship between them as follows

M =
∫

h�

ρ NA δki︸ ︷︷ ︸
:=NI i

δi j NB dh V =
∫

h�

ρ NI i NiK dh V , (31)

with I = 1, . . . , 
(
NNodes × ndim

) = A × k = (1, . . . , NNodes) × (
1, . . . ,ndim

)
.

7
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Table 1
Definitions of material points’ and grid linear momentum, angular momentum and kinetic energy. Their differences at 
the beginning of the step are computed using the mapping defined by Eq. (26).

Quantities Material Points’ Grid Difference

Linear momentum L Lpt :=
N pt∑
pt

mpt v pt ; Lh :=
Nnodes∑

A

Nnodes∑
B

M̃AB
(

vh
)

B; L pt
t − Lh

t = 0;

Angular momentum J J pt :=
N pt∑
pt

xpt × mpt v pt ; J h :=
Nnodes∑

A

(
xh

)
A ×

Nnodes∑
B

M̃AB
(

vh
)

B; J pt
t − J h

t = 0;

Kinetic energy K K pt := 1

2

N pt∑
pt

mpt
∥∥v pt

∥∥2;† K h := 1

2

Nnodes∑
A

(
vh

)
A ·

Nnodes∑
B

M̃AB
(

vh
)

B; K pt
t − K h

t ≥ 0.

† ‖(•)‖ is the Euclidean norm of (•).

Table 2
Résumé of differences between time-increments computed on material points’ and grid us-
ing initial mapping (26) with FLIP, Eq. (29), or mapping (26) with PIC, Eq. (28).

Differences Method Results

�Lpt − �Lh Eq. (26) + FLIP: = 0;
Eq. (26) + PIC: = 0;

� J pt − � J h Eq. (26) + FLIP: = −ε
NNodes∑

A

(
xh

t+�t

)
A

×
NNodes∑

B

(
M̄ − M

)
AB �vh

B;

Eq. (26) + PIC: = −ε
NNodes∑

A

(
xh

t+�t

)
A

×
NNodes∑

B

(
M̄ − M

)
AB

(
vh

t+�t

)
B

;

�K pt − �K h Eq. (26) + FLIP: = − ε

2

NNodes∑
A

�vh
A ·

NNodes∑
B

(
M̄ − M

)
AB �vh

B;

Eq. (26) + PIC: = − ε

2

NNodes∑
A

�vh
A ·

NNodes∑
B

(
M̄ − M

)
AB

(
vh

t+�t + vh
t

)
B

−T pt
t + 1

2

NNodes∑
A

(
vh

t

)
A · MAB

(
vh

t

)
B .

Furthermore, from [19] the difference between material points’ and grid kinetic energy for the mapping defined by 
Eq. (26), which is generically expressed as greater or equal than zero as reported in Table 1, can be quantified as

K pt
t − K h

t = 1

2

N pt∑
pt

mpt
∥∥∥v pt

t

∥∥∥2 − 1

2

Nnodes∑
A

(
vh

t

)
A

·
Nnodes∑

B

M̃AB

(
vh

t

)
B

= 1

2

N pt∑
pt

mpt
∥∥∥v pt

t

∥∥∥2 − 1

2

Nnodes∑
A

(
vh

t

)
A

·
Nnodes∑

B

MAB

(
vh

t

)
B

− ε

2

Nnodes∑
A

(
vh

t

)
A

·
Nnodes∑

B

(
M̄ − M

)
AB

(
vh

t

)
B

≥ 0. (32)

The above difference between the material points’ and grid kinetic energy presents a term (the third on the right-hand 
side) which is proportional to ε . As such, it goes to zero when the consistent mass matrix is used in lieu of the effective 
mass matrix. However, the difference between the first term (material points’ kinetic energy) and the second (proportional 
to the consistent mass matrix) does not cancel out entirely. In particular, as shown by Burgess et al. [11], this difference is 
greater or equal to zero since material points are usually more numerous than grid nodes. As previously mentioned, this 
unavoidable error changes the goal of the grid-to-material points mapping at the end of the step.

4.2. The grid-to-material points mapping

Differences of changes within the time-step between material points’ and grid quantities for PIC and FLIP are reported 
in Table 2, where, in the case of FLIP, results were obtained by Love and Sulsky [19]. Hence, changes of momenta involving 
FLIP are only reported in Table 2, while the change in kinetic energy using FLIP is given for a detailed comparison with PIC. 
This comparative evaluation is necessary because the combination of the effective mass matrix with PIC is a new result, 
which agrees with the results of Burgess et al. [11] in the case of a lumped or a consistent matrix.

The difference between linear momentum values is (utilising Eqs. (18) and (28))

�L pt − �Lh = Lpt − Lh

t+�t t+�t

8
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=
N pt∑
pt

mpt v pt
t+�t −

Nnodes∑
A

Nnodes∑
B

M̃AB

(
vh

t+�t

)
B

=
N pt∑
pt

mpt
NNodes∑

B

NB

(
vh

t+�t

)
A

− (1 − ε)

N pt∑
pt

mpt
NNodes∑

A

NA︸ ︷︷ ︸
=1

NNodes∑
B

NB

(
vh

t+�t

)
B

− ε

N pt∑
pt

mpt
NNodes∑

B

NB

(
vh

t+�t

)
B

= 0. (33)

As it can be seen, PIC mapping conserves the linear momentum increment within the time-step. The difference between 
angular momenta is (with the contribution of Eqs. (15), (18), (30), and (28))

� J pt − � J h = J pt
t+�t − J h

t+�t

=
N pt∑
pt

xpt
t+�t × mpt v pt

t+�t −
Nnodes∑

A

(
xh

t+�t

)
A

×
Nnodes∑

B

M̃AB

(
vh

t+�t

)
B

=
N pt∑
pt

Nnodes∑
A

NA

(
xh

t+�t

)
A

× mpt
Nnodes∑

B

NB

(
vh

t+�t

)
B

−
Nnodes∑

A

(
xh

t+�t

)
A

×
Nnodes∑

B

M̃AB

(
vh

t+�t

)
B

=
Nnodes∑

A

(
xh

t+�t

)
A

×
Nnodes∑

B

(
M − M̃

)
AB

(
vh

t+�t

)
B

= −ε

NNodes∑
A

(
xh

t+�t

)
A

×
NNodes∑

B

(
M̄ − M

)
AB

(
vh

t+�t

)
B
. (34)

Eq. (34) shows that the difference is proportional to the velocity at the end of the step 
(
vh

t+�t

)
I
. This result is different 

from that obtained using FLIP, where the same quantity (see Table (2)) is proportional to the difference in velocities within 
the time-step 

(
�vh

)
I . Therefore, the difference in angular momentum using PIC can be expected to be more significant, as 

the absolute velocity at the end of the step is likely to be greater in magnitude than the difference in velocity within the 
time-step. Nevertheless, in PIC and FLIP, errors are zero if the consistent mass matrix is employed. However, if the effective 
mass matrix is used, the difference in increment of angular momenta can either decrease (dissipative behaviour) or increase, 
as it is not possible to quantify more specifically the difference in Eq. (34).

Lastly, the difference between material points’ and grid kinetic energy at the end of the step is computed, both for PIC 
(using contributions from Eqs. (15) and (28))

K pt
t+�t − K h

t+�t = 1

2

N pt∑
pt

mpt
∥∥∥v pt

t+�t

∥∥∥2 − 1

2

Nnodes∑
A

(
vh

t+�t

)
A

·
Nnodes∑

B

M̃AB

(
vh

t+�t

)
B

= 1

2

N pt∑
pt

mpt

⎛
⎝NNodes∑

A

NA

(
vh

t+�t

)
A

⎞
⎠ ·

⎛
⎝NNodes∑

B

NB

(
vh

t+�t

)
A

⎞
⎠

− 1

2

Nnodes∑
A

(
vh

t+�t

)
A

·
Nnodes∑

B

M̃AB

(
vh

t+�t

)
B

= 1

2

Nnodes∑
A

(
vh

t+�t

)
A

·
Nnodes∑

B

(
M − M̃

)
AB︸ ︷︷ ︸

=−ε
(
M̄−M

)
AB

(
vh

t+�t

)
B

≤ 0, (35)

and FLIP (by using Eqs. (15), (26), and (29))

K pt
t+�t − K h

t+�t = 1

2

N pt∑
mpt

∥∥∥v pt
t+�t

∥∥∥2 − K h
t+�t
pt

9
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= 1

2

N pt∑
pt

mpt

⎛
⎝v pt

t +
NNodes∑

A

NA �vh
A

⎞
⎠ ·

⎛
⎝v pt

t +
NNodes∑

B

NB �vh
B

⎞
⎠ − K h

t+�t

= 1

2

N pt∑
pt

mpt
∥∥∥v pt

t

∥∥∥2 + 1

2

N pt∑
pt

mpt

⎛
⎝NNodes∑

A

NA �vh
A

⎞
⎠ ·

⎛
⎝NNodes∑

B

NB �vh
B

⎞
⎠

+
N pt∑
pt

mpt v pt
t ·

⎛
⎝NNodes∑

A

NA �vh
A

⎞
⎠ − K h

t+�t

= K pt
t + 1

2

NNodes∑
A,B

�vh
A · MAB �vh

B +
NNodes∑

A,B

�vh
A · M̃AB

(
vh

t

)
B

− K h
t+�t

= K pt
t + 1

2

NNodes∑
A,B

((
vh

t+�t

)
A

· MAB

(
vh

t+�t

)
B

+
(

vh
t

)
A

· MAB

(
vh

t

)
B

− 2
(

vh
t+�t

)
A

· MAB

(
vh

t

)
B

+ 2
(

vh
t+�t

)
A

· M̃AB

(
vh

t

)
B

− 2
(

vh
t

)
A

· M̃AB

(
vh

t

)
B

−
(

vh
t+�t

)
A

· M̃AB

(
vh

t+�t

)
B

)

= K pt
t − K h

t + 1

2

NNodes∑
A,B

�vh
A ·

(
M − M̃

)
AB︸ ︷︷ ︸

=−ε
(
M̄−M

)
AB

�vh
B. (36)

It should be noted that the inequality in Eq. (35) was proven previously in Love and Sulsky [19] via positive semi-
definiteness of the symmetric quantity M̄ − M. Suppose we consider Eqs. (35) and (36), we should see that, in the case 
of a consistent matrix, PIC would appear to be energy-conservative, while FLIP would repeat the error made at the begin-
ning of the time-step. However, by virtue of the initial error quantified by Eq. (32), Eqs. (35) and (36) are not of interest but 
the combination of these latter with Eq. (32) is. In the case of PIC, this calculations is

�K pt − �K h = K pt
t+�t − K h

t+�t︸ ︷︷ ︸
≤0

−
(

K pt
t − K h

t

)
︸ ︷︷ ︸

≤0

= −ε

2

Nnodes∑
A

(
vh

t+�t

)
A

·
Nnodes∑

B

(
M̄ − M

)
AB

(
vh

t+�t

)
B

− 1

2

N pt∑
pt

mpt
∥∥∥v pt

t

∥∥∥2

+ 1

2

Nnodes∑
A

(
vh

t

)
A

·
Nnodes∑

B

MAB

(
vh

t

)
B

+ ε

2

Nnodes∑
A

(
vh

t

)
A

·
Nnodes∑

B

(
M̄ − M

)
AB

(
vh

t

)
B

= −ε

2

NNodes∑
A

�vh
A ·

NNodes∑
B

(
M̄ − M

)
AB

(
vh

t+�t + vh
t

)
B

− T pt
t + 1

2

NNodes∑
A

(
vh

t

)
A

· MAB

(
vh

t

)
B

≤ 0. (37)

The same process (first described by Love and Sulsky [18]) can be applied to the FLIP method using Eqs. (32) and (36), i.e.,

�K pt − �K h = K pt
t+�t − K h

t+�t −
(

K pt
t − K h

t

)

= −ε

2

NNodes∑
A

(
�vh

A

)
·

NNodes∑
B

(
M̄ − M

)
AB �vh

B ≤ 0. (38)

As Eqs. (37) and (38) show, while FLIP can cancel the kinetic energy difference from the initial mapping procedure, PIC 
cannot. Hence, PIC is not dissipative per se, but the combination of the initial mapping defined by Eq. (26) with PIC (28) leads 
to dissipation at the end of the step, even when the consistent mass matrix is used. On the other hand, the combination of 
Eq. (26) with FLIP (29) does not lead to kinetic energy dissipation, as the initial difference is mathematically cancelled in 
the consistent mass matrix case.

In addition, since linear and angular momentum and kinetic energy do not depend on acceleration but only on velocity 
(linear momentum and kinetic energy) or position (angular momentum), there is no need to map the acceleration at the 
end of the time-step to ensure conservation. However, these mappings (back and forth) are sometimes performed (as in, 
for instance, Iaconeta et al. [35]) to visualise post-processed data and have the initial acceleration at the beginning of the 
time-step at to be non-zero.
10
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5. Properties of the Updated Lagrangian formulation

A key part of an implicit MPM formulation is calculation of the internal force vector and, for this new method, this is 
needed in the updated Lagrangian frame. As can be seen from Eq. (13), the most compact and natural writing of this internal 
force vector uses the Cauchy stress tensor σ or, similarly, the Kirchhoff stress tensor τ ,3 as shown in Eq. (3). Therefore, the 
second Piola-Kirchhoff stress tensor’s modified definition Smp (firstly proposed by Simo and Tarnow [20]) is pushed forward 
to the current configuration to obtain its analogue in Kirchhoff form τmp . Once this operation is performed, all conservation 
properties (momenta and strain energy conservation) related to Smp are transferred to τmp . The reader interested in the 
proofs of the conservation properties is referred to Simo and Tarnow [20] or Love and Sulsky [18,19].

To move the reference configuration, the internal force vector, expressed in a total Lagrangian formulation, is given 
from [20] as

Fint
ϑ =

∫
�0

(∇X N
)T

F ϑ Smp dV 0, (39)

with Smp being the energy-consistent second Piola-Kirchhoff stress tensor. The transition from a total Lagrangian formulation 
to an updated Lagrangian formulation leads to a change in the integration volume, i.e.,

fint
ϑ =

∫
�t+�t

(∇X N
)T

F ϑ Smp ( Jt+�t)
−1 dVt+�t . (40)

Moreover, it is useful to express the following quantities as

∇X N = ∂N

∂ X
= ∂N

∂x

∂x

∂ X
= ∇xN F ; (41)

F t+ϑ = ∂xt+ϑ

∂ X
= ∂xt+ϑ

∂ X̃

∂ X̃

∂ X
= �F ϑ F t . (42)

By using the above equations and the definition of the Kirchhoff stress in the current configuration, which is

Smp = (F )−1 τmp (F )−T , (43)

the internal force vector defined by Eq. (40) becomes

fint
ϑ =

∫
�t+�t

(∇xN
)T

�F ϑ F t (F )−1︸ ︷︷ ︸
=(�F �t−ϑ )−1

τmp ( Jt+�t)
−1 dVt+�t︸ ︷︷ ︸

=dV 0

. (44)

It should be noted that Eq. (44) is not a unique choice, since the Kirchhoff stress could be mapped to the intermediate 
configuration. This discrepancy between the configuration where the equilibrium is imposed (i.e., intermediate) and the one 
where the algorithmic Kirchhoff stress lives (i.e., the current configuration) leads the stress tensor (�F �t−ϑ )−1 τmp to be 
asymmetric (see, for a detailed discussion, Marsden and Hughes [39]). Despite this additional complication, the decision 
to push the Kirchhoff stress to the current configuration seems more streamlined, especially as the linearisation of τmp is 
independent from the considered intermediate configuration, which, if time integration schemes different from the mid-
point rule are considered, can vary between the previously converged and the current one.

5.1. Stress-strain modified relationship

As mentioned above, the stress-strain relationship must be modified to not dissipate energy within the framework 
of finite deformation theory. In this work, power conjugates are used to establish how this modification changes when 
the stress tensor is the Kirchhoff tensor, i.e., 1

2 S:Ċ = τ :d, with C := F T F being the right Cauchy-Green tensor, and 
d :=

(
Ḟ F −1 + (

Ḟ F −1
)T

)
/2 the symmetric part of the rate of deformation tensor. As incremental relationships are sub-

stituted by time-discretised ones, the time-difference of the right Cauchy-Green tensor �C is related to the averaged (over 
the time-step) rate of the deformation tensor, denoted as d̄. Therefore, the time-discretised power conjugates become

3 The authors recognise the importance of the study proposed by Bennet et al. [36] in which it is shown that an Eshelby-like stress tensor is the only 
one that satisfies both the second law of thermodynamics and the assumption of an intermediate stress-free configuration. However, in light of the same 
argument advanced by Choo and Sun [37] and in line with the tradition of the Kirchhoff tensor as a measure for plasticity at finite deformation (see, among 
others, de Souza Neto et al. [38]), the present work adopts the Kirchhoff tensor as the stress measure for the proposed updated Lagrangian framework. 
The Kirchhoff measure does not violate the second law of thermodynamics and therefore remains an excellent candidate for an energy-conserving MPM 
formulation.
11
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1

2
Smp :�C = τmp : d̄. (45)

Hence, by using Eq. (43), the definition of d̄ is

d̄ := 1

2
F −T �C F −1. (46)

The modified stress-strain relationship for a Hencky material using Smp 4 is here recalled

Smp = 1

2
(S t + S t+�t) + �C

‖�C‖2

(
2
(
�ψ + �D int

)
− 1

2
(S t + S t+�t) :�C︸ ︷︷ ︸

:=�H int

)
, (47)

where �ψ = ψt+�t − ψt is the difference in the free energy function ψ . The difference in internal dissipation �D int is, if 
associative flow rules are considered, given by

�D int = �γ

(
τ t+�t : ∂�

∂τ t+�t
+ qt+�t

∂�

∂qt+�t

)
,

with q := − ∂ψ
∂ξ

being a scalar hardening variable and ξ its conjugate responsible for isotropic hardening. By pre-multiplying 
by F and post-multiplying by F T Eq. (47), the stress strain-relationship can be written using τmp , i.e.,

τmp = F Smp F T = 1

2
F (S t + S t+�t) F T + F �C F T

(
�H int

‖�C‖2

)

= 1

2
F S t F T︸ ︷︷ ︸

=�F τ t �F T

+1

2
τ t+�t + F �C F T

(
�H int

‖�C‖2

)
= τ̄ + F �C F T

(
�H int

‖�C‖2

)
, (48)

where the trapezoidal stress τ̄ has been defined as

τ̄ := 1

2
F (S t + S t+�t) F T = 1

2

(
�F τ t �F T + τ t+�t

)
= 1

2

(
τ P F

t + τ t+�t

)
. (49)

In the above equation, the quantity τ P F
t = �F τ t �F T corresponds to the Kirchhoff stress evaluated at the previous step τ t , 

pushed forward to the current configuration. This is in compliance with the current Kirchhoff stress τ t+�t , which lives in 
the current configuration.

It is useful to consider what physical quantity corresponds to the product F �C F T appearing in the second term on the 
right-hand side of Eq. (48). To proceed, let us introduce the left Cauchy-Green tensor b := F F T , so it follows that

Fih (�C)hk F jk = Fih (Chk − (Ct)hk) F jk = Fih Fαh Fαk F jk − �Fiβ (Ft)βh (Ft)αh (Ft)αk �F jγ (Ft)γ k

= biα bα j − �Fiβ (bt)βα (bt)αγ �F jγ := �P F bi j, (50)

where, when the reference configuration is omitted in the subscripts, the quantities are referred to the current time t +
�t . Owing to the above equation, the quantity F �C F T can be seen as a difference between the squared current left 
Cauchy-Green strain tensor b and the same quantity evaluated at the previous step bt which has been pushed forward as a 
contravariant tensor. Therefore, Eq. (48) can be rewritten as

τmp = τ̄ + �P F b

(
�H int

‖�C‖2

)
. (51)

It can be shown that the following energy inequality holds for the finite work within the step defined by algorithmic stress 
tensor (51) and its conjugate kinematic variable (46), which is

1

2
Smp :�C = τmp : d̄ = �ψ + �D int ≥ �D int . (52)

Owing to Eqs. (48) and (46), it follows that

4 The definition (47) comes originally from Gonzalez [21], but the additive term �D int to include plastic dissipation was added by Meng and Laursen [24]. 
Moreover, the definition of an algorithmic stress tensor which satisfies the conservation of energy is not unique, as underlined by Armero and Romero [22]: 
there exist several formulations of discrete derivatives which conserve directionality and consistency (for a detailed discussion, see Love and Sulsky [18]).
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τmp : d̄ =
(

1

2

(
τ P F

t + τ t+�t

)
+ F �C F T

(
�H int

‖�C‖2

))
: 1

2

(
F −T �C F −1

)

= 1

4

(
τ P F

t + τ t+�t

)
:
(

F −T �C F −1
)

+ 1

2

�H int

‖�C‖2

(
F �C F T : F −T �C F −1

)
. (53)

The following simplifications can be made

F �C F T : F −T �C F −1 = �C :�C; (54)

1

2
(S t + S t+�t) :�C = (S t + S t+�t) : F T d̄ F =

(
�F τ t �F T + τ t+�t

)
: d̄ = 2 τ̄ : d̄. (55)

Therefore, the quantity �H int in Eq. (51) can be rewritten as

�H int = 2
(
�ψ + �D int

)
− 1

2
(S t + S t+�t) :�C = 2

(
�ψ + �D int

)
− 2 τ̄ : d̄.

By the use of Eqs. (54) and (56), inequality (52) can be verified

τmp : d̄ = 1

2

(
τ P F

t + τ t+�t

)
: d̄ + 1

2 ‖�C‖2

(
2
(
�ψ + �D int

)
− 2 τ̄ : d̄

)
�C :�C

= τ̄ : d̄ +
(
�ψ + �D int

)
− τ̄ : d̄

= �ψ + �D int ≥ �ψ. (56)

6. Adaptive time-step length based on the Courant-Friedrich-Lewy condition

For computational efficiency and stability, the choice of time-step size is important regardless of temporal discretisation. 
The maximum time-step size in explicit solution techniques is limited by the well-known CFL condition

�tC F L = min
i

(
hh

i

)√
ρ

M
, (57)

where hh
i is the mesh size in the i−th direction (∈ Rndim

), and ρ and M are the density and the P-wave modulus of the 
material being analysed. The above equation holds for any body under the assumption of small strains or for underformed 
Hencky materials within the finite strain theory. While the adaptation of this formula to deformed bodies within finite 
strain theory has been carried out by Sun et al. [40], this work underlines that, within the MPM, the CFL condition is not 
a steady quantity in the simulation, as some grid elements can be entirely filled with material points, while others only 
partially. Hence, when mapping information (masses and mechanical properties) from material points to grid nodes, the 
grid-averaged values of these quantities coming from partially filled elements are smaller than those coming from entirely 
filled elements. This variability in mass and stiffness affects the CFL limitation on the time-step size during the analysis. For 
implicit temporal discretisations, the CFL condition is not required to guarantee method stability however it can be used to 
provide an adaptive time-step size for efficiency. Understanding how this condition varies during a simulation is therefore, 
if not necessary is at least practical for adapting the time-step length.

To the authors’ knowledge, these considerations are new within the MPM framework, but they are well-recognised, for 
instance, in the cut finite element method (see Sticko et al. [41]), where a generalised eigenvalue problem of the discrete 
linear momentum conservation (Eq. (21)) is solved to compute the CFL condition. In this work we adopt a convenient 
computational simplification, which relies on the mapping at the beginning of the step. The CFL constraint in Eq. (57) can 
be mapped at the beginning of the step from the material points (where information such as density and elastic moduli lie) 
to the grid nodes as follows

mh
A =

N pt∑
pt

NA mpt; (58)

V h
A =

N pt∑
pt

NA V pt; (59)

Mh
A =

N pt∑
pt

NA M pt, (60)
13
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Fig. 3. The cantilever beam problem.

In this fashion, a grid-averaged value of these quantities is computed. Hence, the computation of the approximated time-step 
length based on the CFL condition becomes

�tC F L ≈ min
i

(
hh

i

)
min

A

⎛
⎝

√
mh

V h Mh

⎞
⎠

A

, with A = 1, . . . , Nnodes. (61)

Eq. (61) has to be intended as a rule of thumb more than as a strict rule, making it valuable for adapting the time-step in 
implicit schemes.

7. Numerical examples

The method outlined in the previous sections is applied here to four examples of dynamic problems. In compliance with 
the assumptions introduced in Section 2, the following numerical analyses consider a Hencky material. Since the aim of 
this work is to consider under which conditions energy and momenta are conserved, in accordance with Section 4, the 
consistent mass matrix (15) together with a FLIP mapping (29) are always used for the following numerical simulations. 
The time-step length was tailored for the different examples, remaining several times larger than the CFL condition value, 
without compromising optimal Newton-Raphson convergence. Moreover, the error tolerances (tol) have been set to a strict 
value of 10−11 to demonstrate the strong convergence behaviour of the proposed method.

7.1. 2D elastic cantilever beam

The first example is a bi-dimensional elastic beam represented in Fig. 3a. In particular, two analyses with different elastic 
parameters were run, the former, i.e., (A), with a compressible material, and the latter, i.e., (B) with a nearly-incompressible 
material. The analyses were run using GIMPM instead of the original MPM shape functions. As illustrated in Fig. 3b, the load, 
applied at the end of the free edge, is monotonically increased from 0 to its highest value P and then suddenly removed. 
The peak value of the load is reached at the time t1 = 25 s, while the whole simulation carries on until time T = 150 s. 
The effects of gravity were neglected. The external load vector is represented by the point load, which is split between 
the two end material points in the proximity of the x-axis. The material parameters, beam geometry and discretisation for 
the current two variants, i.e., analyses (A) and (B), are summarised in Table 3. In particular, the incremental time lengths 
�t shown in Table 1 correspond to 15 times the CFL time-step approximation defined at the beginning of the simulation 
by Eq. (57). Moreover, it can be noticed how the number of material points per element is particularly high. The reason 
of such an unusual number lies in one of the most common issues for the MPM, namely the integration error (see, for 
instance, Yamaguchi et al. [42] or Gan et al. [43]). This integration error is particularly evident when a grid node is active 
only due a single and misplaced (from an integration position perspective) material point. In this case, the badly-integrated 
quantity presents very small entry relative to that nodes. In turn, this small entries can give numerical difficulties when it is 
necessary to invert the badly-integrated quantity (as in the case of the mass matrix or the stiffness matrix). As predictable, 
this situation is less likely to occur if the mesh is pretty coarse and the number of material points per element is high, as 
less likely is the chance of an unique material point mapping to a given node. The chance of experiencing this issue can 
increase with the order of the shape functions, as bigger is their relative stencil.
14
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Table 3
Summary of the parameters considered in the analyses of the 2D elastic can-
tilever beam.

Parameter Settings Analysis (A) Analysis (B)

Material Parameters E 109 Pa 3 · 108 Pa
ν 0.2 0.49
ρ 7750 · 103 kg/m3

Geometry, Load and Timings lx , l y 10, 1 m
P 500 kN
t0, t1, T 0, 25, 150 s

Analysis Parameters Lx , L y 11, 20 m
hx, hy 0.5 m
†mmp 12
�t ≈ 0.6264 s ≈ 0.2194 s

† mmp is the number of material points per direction per element.

Table 4
Summary of the parameters considered in the analysis of the elastic cylinder collision.

Parameter Settings

Material Parameters E1, E2 100 Pa
ν1, ν2 0.3
ρ1, ρ2 5 kg/m3

Geometry, Velocities and Timings lx , l y 20, 12 m
r1, r2 2 m
(x1, y1), (x2, y2) (5.8, 5.5) m, (14.2, 6.5) m
‖v1‖ , ‖v2‖ 0.75 m/s
T 8 s

Analysis Parameters hx, hy 2 m
mmp 35
�t0, min (�t), max (�t), ≈ 0.0573, ≈ 0.0562, ≈ 0.0655 s

The periodic behaviour of the structure’s energies is reported in Fig. 4a for analysis (A), where total, material points’ 
kinetic, and strain energy are considered. The time-steps denoted by letters in the same figure correspond to sensitive 
configurations: the last time-step where the load is applied before its removal (A ≈ 24.43 s, 39th time-step), the maximum 
value of the strain energy (B ≈ 29.44 s, 47th time-step, and D ≈ 55.12 s, 88th time-step), and the maximum value of the 
kinetic energy (C ≈ 42.59 s, 68th time-step). As shown in Figs. 4b and 4c, after the load is removed (just after time-step A), 
the beam continues to move downwards until the inertia is wholly converted into strain energy (Figs. 4d and 4e, time-step 
B). As expected, Fig. 4d shows that a considerable amount of strain energy is located at the external fibres in the fixed end. 
On the other hand, the beam is unstrained in its original configuration at time-step C (Fig. 4f), while the kinetic energy 
(Fig. 4g) is distributed with a gradient along the x-axis, independent of the material points’ position along the vertical 
direction. Time-step D represents another maximum point of the strain energy, with D ’s deflection shape horizontally 
mirroring B ’s. However, when comparing the strain energy of the two configurations (Fig. 4h and 4d, respectively), it can 
be seen how the external fibres in B are more heavily loaded than their respective ones in D . With a closer look, it can be 
noted how the displacements at the free end of the beam in points B and D do not coincide. This inaccuracy is due to time 
sampling, which does not accurately capture the peak strain energy. Therefore, points B and D are not temporally spaced 
as the proper period of the beam would predict.

The energies time-response of simulation (B) is plotted in Fig. 5a. The structure presents periodic behaviour with a 
lower frequency time compared to simulation (A). Moreover, it can be seen how the total energy for this simulation is 
slightly higher than the one for analysis (A), which is due to a higher kinetic energy accumulated in the loading phase for 
simulation (B).

Fig. 5b shows the convergences of the Newton-Raphson algorithm for both the analyses, considering the time-steps from 
≈ 22 s to ≈ 32 s. Even though these steps take difficult passages of the structures into account (time-steps A and B are 
including in this time interval), it can be seen how the algorithms converge smoothly within three iterations for both the 
simulations. As highlighted by Coombs and Augarde [29], when dealing with implicit formulations of the MPM, the zeroth 
iteration is used to build the Jacobian matrix. As such, this iteration was not considered in Fig. 5b.

7.2. Collision of elastic cylinders

The second example (illustrated in Fig. 6) considers the collision of two elastic cylinders, and is a common example 
used in other MPM papers [1,19,44,45]. To model the shape of the cylinders, elements were fully populated by materials 
points. Materials points lying outside of the given geometry of the cylinders were then discharged. As shown in Table 4, 
15
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Fig. 4. Time plot of the energies during the simulation (top row) and deflection shapes representing the strain (left) and kinetic (right) energies for time-
steps A . . . D . Graphs refer all to analysis (A). (For interpretation of the colours in the figures, the reader is referred to the web version of this article.)

the time-step size was not constant during the simulation, but five times the time-step length defined by Eq. (61),5 was 
considered. Nonetheless, the variation of such size is minimal, and this is due to the grid size. As can be seen from Table 4, 

5 Note how running the simulation only five times above the CFL condition is justified by the fact that no numerical dissipation occurs for these 
simulations within the finite strain context. Hence, these multipliers of the CFL condition cannot be compared with the much larger coefficients used by 
Guilkey and Weiss [27], as their formulation exhibits numerical damping.
16



Fig. 5. Time plot of the energies for the simulation (B) (on the left-hand side), and convergence comparison for both the simulations (on the right-hand 
side).

Fig. 6. Illustration of the initial conditions of the cylinder impact problem.

the grid lengths and number of material points per direction per element (mmp) were both significant as this example 
which could present ill-conditioned mass or Jacobian matrices, as previously explained in 7.1. This issue is already known 
from the literature [19] and mainly associated with the poor integration of the above matrices. MPM was used here instead 
of GIMPM as the small overlap between material points’ volume and grid elements’ volume can be reduced when MPM is 
applied. Gravity effects were neglected.

Fig. 7a shows the time evolution of the energies for four selected time-steps corresponding to A ≈ 1.89 s, 32nd time-
step; B ≈ 2.7 s, 45th time-step; C ≈ 3.51 s, 58th time-step; and D ≈ 4.9 s, 80th time-step. In particular, A and C correspond 
to similar levels of energies (both kinetic and strain energy), with the former being more spread on material points 
(Figs. 7c, 7g), and the latter being more concentrated on the material point in the proximity of the nodes where con-
tact between cylinders is taking place (Figs. 7b, 7f). However, even if the overall amount of strain and kinetic energies in 
A and C appear to be very similar, these steps present different distributions of energies on material points, as is clear 
from a comparison of Figs. 7b, and 7c for time-step A, with Figs. 7f, and 7g for C . The minimum kinetic energy (Fig. 7e) 
corresponding to a maximum of the strain energy (Fig. 7d) occurs at time-step B . From this point on, kinetic energy starts 
to be recovered until time-step D is reached. This time-step is the end of no-slip (as usual within the MPM framework) 
contact between cylinders. As expected from elastic bodies, the deflection shapes of the cylinders (Figs. 7h, and 7i) recover 
circular sections, even though some elastic waves slightly modify them.
G. Pretti, W.M. Coombs, C.E. Augarde et al. Journal of Computational Physics 485 (2023) 112075
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Fig. 7. Time plot of the energies during the simulation (top row) and deflection shapes representing the strain (left) and kinetic (right) energies for time-
steps A . . . D .
18



Table 5
Summary of the parameters considered in the analysis of the Taylor bar impact.

Parameter Settings

Material Parameters K , G 130, 43.3 GPa
ρ 8930 kg/m3

Geometry, Velocities and Timings h0, r0 32.2, 3.2 mm
Lx, L y , Lz 7.2, 32.2, 7.2 mm
v y -227 m/s
T 80 μs

Analysis Parameters hx, hy , hz 0.8, 0.648, 0.8 mm
mmp 2
�t0, min (�t), max (�t) ≈ 0.375, ≈ 0.371, ≈ 0.375 μs

7.3. Elasto-plastic impact of cylinders

This example is very similar to examples in Meng and Laursen [24], and Love and Sulsky [18]. Even for this case, it 
has been decided to include two variants: analysis (A) (run using the original MPM shape functions) matches the example 
in 7.2, with the exception that the considered stress-strain relationship is elasto-plastic and the von Mises yield function is 
applied, that is

�(τ ) =
√

2 J2

ρy
− 1 ≤ 0, (62)

with J2 = si j s ji

2
, si j = τi j − τkk

3
δi j . On the other hand, analyses (B) (run using the GIMPM shape functions) presents a mesh 

4 times finer than the one used of (A), with mmp = 8. The parameters that differ from those used in Table 4 are presented 
below for both the analyses:

• (ρy)1 = (ρy)2 = 10 Pa, being the yield stress;
• min (�t) ≈ 0.0571 s, and ≈ 0.06020 s for analyses (A) and (B), respectively (being 5 times the minimum time-step size 

defined by Eq. (61));
• max (�t) ≈ 0.0666 s, and ≈ 0.06023 s for analyses (A) and (B), respectively (being 5 times the maximum time-step size 

defined by Eq. (61));

As can be seen from Fig. 8a, four time-steps were selected, and their relative deflection shape and energies are represented 
in Figs. 8b-8o: A at ≈ 2.9 s, B at 3.9 s, C at 4.4 s, and D at 6.7 s. From Fig. 8a, it can be noticed how the start of the 
collision, governed by the mesh size and the different stencils of the shape functions, is delayed for simulation (B). In this 
sense, it can be seen how time-step A, which corresponds to a minimum for the kinetic energy for simulation (A) (see 
Fig. 8c), defines instead the initial stages of contact for analysis (B) (Figs. 8d and 8e). In turn, time-step B is representative 
of the same levels of kinetic and strain energies for simulation (A) (Figs. 8f and 8g), while it is particularly close to the peak 
of contact for analyses (B) (maximum in strain energy, Fig. 8h). A second yielding takes place starting from time-step C
and, although with a decreasing trend, continues until the end of the simulation (A). The cause beyond this second yielding 
can be found in the waves propagating through the bodies after the collision, whose deviatoric part is progressively damped 
by the von Mises yield function. Time-step D defines the end of contact for simulation (A) (constant total energy, Figs. 8n 
and 8o), while it can be appreciated from Figs. 8p and 8q how contact is still persistent for analysis (B) at this stage.

From a comparison of the strain energies distributions of analysis (A) (Figs. 8b, 8f, 8j, and , 8n) with their respectives 
of simulation (B) (Figs. 8d, 8h, 8l, and , 8p), it can be noticed how the mesh refinement and the use of different shape 
functions do not entirely eliminate the dependency of the strain energies from the mesh. From a closer look, it can be 
appreciated how such strain energy localisations take place in correspondence of element edges or corners. This can be 
explained with the integration errors discussed in 7.1, as material points in correspondence of element boundaries are 
particularly misplaces from an integration perspective.

7.4. Impact of a Taylor bar

This example considers the classical three-dimensional example of the Taylor bar problem Fig. 9, which has been used 
in the literature as a benchmark for transient dynamic codes both for the FEM [24,46–49] and for the MPM [18]. The list of 
parameters necessary to run the analysis is presented in Table 5, and the GIMPM has been considered. The yield function is 
given by the following equation

�(τ ,q) =
√

2 J2

σ
−

√
2

3

(
1 − q

σ

)
≤ 0, (63)
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Fig. 8. Time course of the energies during the simulation (top row) and deflection shapes representing the simulation (A) (first two columns) and (B)

(last two columns). Strain energy (first and third column) and kinetic energy (second and fourth) column are considered for time-steps A . . . D . Physical 
dimension of contours are in Joule [J].
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Fig. 9. Illustration of the initial conditions of the Taylor bar problem. Only a quarter of the cylinder has been considered for the analysis.

Fig. 10. Time evolution of total, kinetic and strain energy for the elasto-
plastic cylinders collision.

Fig. 11. Displacement history of the maximum radial and axial displace-
ments.

Fig. 12. Deflection shape at the end of the simulation in the zy-plane. Con-
tours represent the displacement along the y-direction (expressed in [m]).
21
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where the values of the yield stress is σy = 0.4 GPa. The linear hardening parameter is assumed to be H = 0.1 GPa. 
The time-step length is kept 15 times the value given by Eq. (61). Given the lower number of material points per elements 
originally chosen, this simulation uses the ghost stabilisation (see, for instance, [41] or [50]) to avoid the integration problem 
described in 7.1.

The time-history of the energies represented (see Fig. 10), the maximum radial and axial displacements (see Fig. 11), and 
the final deflection shape (see Fig. 12) are in agreement with those in references [24,46–49] for the FEM and in [18] for the 
MPM.

8. Conclusions and future work

This paper extends the MPM to an updated Lagrangian formulation in the context of the isotropic multiplicative elasto-
plastic theory. Two mapping procedures are assessed (PIC and FLIP), and new light is shed on the connection between 
the material point-to-grid and grid-to-material point mappings in the case of deformable body dynamics. In addition, the 
presence of non-linearity requires careful choice of time-step size and it has been shown that the CFL condition can be used 
as an useful tool in setting the time step size for practical analyses. The standard approach of setting a constant time step 
size for a given analysis is problematic for the MPM as it requires the estimation of the worst case (the smallest time step 
size required for a given time step) a priori, which is almost impossible due to the evolving nature of the distribution of 
mass and stiffness within discretised governing equations during an analysis. The CFL-based adaptive approach proposed in 
this paper has the potential to improve the adaptivity of the time-step size for the implicit material point method.

It should be emphasised that the formulation is very convenient for low-frequency and lengthy problems, whose time 
duration, especially when extended, is ensured by maintaining the properties inherited from the continuous formulation and 
guaranteed by proper mapping procedures and compliant modifications of the constitutive relation. However, as pointed out 
in Example 7.4, the current method performs well for high-frequency problems, with the caveat that the time-step length 
should be changed to no more than one order of magnitude above the value defined by Eq. (61). In this fashion, the wave 
oscillating through the medium are entirely reproduced by this technique.

This method can additionally be used as a basis for validating other features which can be implemented in the MPM 
from an energy perspective, such as frictional contact, within the finite strain theory.

To further extend the convenience of the proposed algorithm, further work would be valuable to locate techniques to 
invert the mass matrix and the Jacobian matrix without incurring numerical errors. To avoid such errors, the proposed 
method recurred to the use of a higher number of integration points for the Examples 7.1-7.3. However, the stabilisation 
employed in the Example 7.4 proves that, when a lower number of integration points is considered, techniques to im-
prove the algorithm’s stability are necessary. The assessment of these methods under a conservation laws perspective will 
be part of further studies. Another natural extension of the algorithm would be the modelling of multi-phase materials. 
Such a method would have to be ascertained in terms of conservation properties for both the mappings and constitutive 
relationships, in the same way as proposed here for a deformable solid body.

A different interesting extension to the current model could consist in considering anisotropic behaviour, especially given 
that MPM has been used to model wood (see [51,52]), which exhibits orthotropic behaviour.

CRediT authorship contribution statement

Giuliano Pretti: Conceptualization, Methodology, Software, Validation, Visualization, Writing – original draft. William M. 
Coombs: Software, Supervision, Visualization, Writing – review & editing. Charles E. Augarde: Supervision, Writing – review 
& editing. Bradley Sims: Software. Marc Marchena Puigvert: Supervision. José Antonio Reyna Gutiérrez: Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential compet-
ing interests: Giuliano Pretti reports financial support was provided by Engineering and Physical Sciences Research Council 
(EP/R004900/1).

Data availability

All data created during this research are openly available at http://doi .org /10 .15128 /r2r494vk20f.

Acknowledgements

This research was supported by the UKRI Engineering and Physical Sciences Research Council (EPSRC) [grant number 
EP/R004900/1]. All data created during this research are openly available at http://doi .org /10 .15128 /r2r494vk20f. For the 
purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted 
Manuscript version arising.
22

http://doi.org/10.15128/r2r494vk20f
http://doi.org/10.15128/r2r494vk20f


G. Pretti, W.M. Coombs, C.E. Augarde et al. Journal of Computational Physics 485 (2023) 112075
Appendix A. Linearisation

A.1. Linearisation of the internal force vector

The internal force vector defined by Eq. (44) can be expressed in index notation as(
fint
ϑ

)
I
=

∫
�0

(∇xr N
)

Ip

(
�F −1

�t−ϑ

)
pq

τ
mp
qr dV 0. (A.1)

The linearisation of the above quantity with respect to the nodal displacements evaluated at the end of the time-step is 
the so-called stiffness matrix KI J , and it is useful to express it by using the following chain rule

KI J = ∂
(
fint
ϑ

)
I

∂ (un+1) J
=

∫
�0

(
∂ (•)I

∂ (F )mn

∂ (F )mn

∂ (un+1) J

)
dV 0 =

∫
�0

(
∂ (•)I

∂ (F )mn

∂

∂ (un+1) J

(
∂xm

∂ Xn

)
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=∂ (X + un+1)m

∂ Xn

)
dV 0 =

=
∫
�0

(
∂ (•)I

∂ (F )mn

∂

∂ (un+1) J

(
δmn + ∂NmH (un+1)H

∂ Xn

))
dV 0 =

∫
�0

(
∂ (•)I

∂ (F )mn

∂NmH δH J

∂ Xn

)
dV 0 =

=
∫
�0

(
∂ (•)I

∂ (F )mn
∇xs Nm J Fsn

)
dV 0. (A.2)

By using Eq. (A.2), the stiffness matrix can be expressed as

KI J =
∫

�t+�t

(
1

J

∂

∂ Fmn

(
∂NIp

∂xr

) (
�F −1
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pq
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mp
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To proceed with the linearisation process, it is convenient to re-write the quantity �F −1
�t−ϑ as

�F −1
�t−ϑ = ∂xϑ

∂ X

∂ X

∂x
= ∂

∂ X

(
X̃ + ϑ�u

) ∂ X

∂x
= ∂

∂ X

(
(1 − ϑ) X̃ + ϑx

) ∂ X

∂x

=
(
(1 − ϑ) F t + ϑ F

)
F −1 = (1 − ϑ)�F −1 + ϑ I (2), (A.4)

with I (2) being the second-order identity tensor, i.e. I (2) = δi j . Hence, the linearisation of the above quantity is straightfor-
ward and, in the case where ϑ = 1

2 (as assumed for the mid-point rule), its derivative becomes

∂
(
�F −1

�t−1/2

)
pq

∂ Fmn
= 1

2

∂

∂ Fmn

(
(Ft)pα

(
F −1)

αq + δpq

)
= −1

2
(Ft)pα

(
F −1)

αm

(
F −1)

nq .

Therefore, Eq. (A.3) can be written as

KI J =
∫

�t+�t

(
− 1

J
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pq

τ
mp
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It is also useful to gather the stress quantity �F −1
�t−ϑ τmp as a unique asymmetric tensor, which is defined as

P̌ pr =
(
�F −1

�t−ϑ

)
pq

τ
mp
qr . (A.6)

Moreover, the first term of Eq. (A.5) can be written as

∂NIp

∂xm
P̌ pr δrs

∂Nm J

∂xs
= ∂NIp

∂xm
P̌ ps

∂Nm J
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= ∂NIp
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∂Nm J

∂xs
. (A.7)

Owing to the above equations, the stiffness matrix becomes

KI J =
∫

�t+�t
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− 1
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The terms in the above equation can be collected in the so-called spatial tangent modulus ǎprms as follows

ǎprms := − 1

J
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:=Pprms

− 1

2 J
τ

mp
sr

(
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(
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pq
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mp
qr

∂ Fmn
Fsn. (A.9)

Therefore, the stiffness matrix can be concisely expressed as

KI J =
∫

�t+�t

∇xr NIp ǎprms ∇xs Nm J dVt+�t . (A.10)

It can be noticed that the first and last components of the fourth-order tensor ǎprms in Eq. (A.9) are the classical linearised 
terms which have to be computed in an updated Lagrangian formulation (see, for a comparison, de Souza Neto et al. [38]). 
The second additional term is due to the misalignment between the (intermediate) configuration where the equilibrium is 
imposed and the (current) configuration where the algorithmic Kirchhoff stress has been mapped.

A.2. Linearisation of the algorithmic Kirchhoff stress

Owing to the definition of τmp given in Eq. (51), the derivative of such quantity with respect to the deformation gradient 
is as follows:

∂τ
mp
qr

∂ Fmn
= ∂

∂ Fmn

(
τ̄qr + �P F bqr

(
�H int

‖�C‖2

))

= ∂τ̄qr

∂ Fmn
+ ∂�P F bqr

∂ Fmn

(
�H int

‖�C‖2

)
+ �P F bqr

‖�C‖4

(
∂�H int

∂ Fmn
‖�C‖2 − �H int ∂ ‖�C‖2

∂ Fmn

)
. (A.11)

The derivatives of the quantities in the above equation can be evaluated in this way:

∂τ̄qr

∂ Fmn
= 1

2

∂

∂ Fmn

(
�Fqα (τt)αβ �Frβ + (τt+�t)qr

)
= 1

2

(
δqm

(
F −1

t

)
nα

(τt)αβ �Frβ + �Fqα (τt)αβ δrm

(
F −1

t

)
nβ

+ ∂ (τt+�t)qr

∂ Fmn

)
; (A.12)

∂�P F bqr

∂ Fmn
= ∂

∂ Fmn

(
Fqα Fγ α Fγ β Frβ − Fqα (Ft)γ α (Ft)γ β Frβ

)
= δqm (�C)nβ Frβ + Fqα (�C)αn δrm + Fqn Fmβ Frβ + Fqα Fmα Frn; (A.13)

∂ ‖�C‖2

∂ Fmn
= ∂

∂ Fmn

(
(�C)αβ (�C)αβ

) = 2
(

Fmβ �Cnβ + Fmα �Cαn
) ;

∂�H int

∂ Fmn
= ∂

∂ Fmn

(
2
(
�ψ + �D int

)
− 2 τ̄δε d̄δε

)
= 2

∂�ψ

∂ Fmn
+ 2

∂�D int

∂ Fmn
− 2

(
∂τ̄δε

∂ Fmn
d̄δε + ∂d̄δε

∂ Fmn
τ̄δε

)
.
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To evaluate the derivative of the strain energy, it is necessary to introduce the kind of material we are considering. In 
this case, we take a Hencky material into account with isotropic hardening, whose strain energy function is defined by 

ψ = 1

2
εe De εe︸ ︷︷ ︸
ψe(εe)

+ 1

2
H ξ2︸ ︷︷ ︸

ψ p(ξ)

(with H ≥ 0 being the hardening parameter). Hence, it follows that

∂�ψ

∂ Fmn
= ∂ψ

(
εe

t+�t, ξt+�t
)

∂ Fmn
= ∂ψe

(
εe

t+�t

)
∂

(
εe

t+�t

)
cd

∂
(
εe

t+�t

)
cd

∂ (τt+�t)ab

∂ (τt+�t)ab

∂ Fmn
+∂ψ p (ξt+�t)

∂ξt+�t

∂ξt+�t

∂qt+�t

∂qt+�t

∂ Fmn
=

= (
εe

t+�t

)
ab

∂ (τt+�t)ab

∂ Fmn
−ξt+�t

∂qt+�t

∂ Fmn
. (A.14)

On the other hand, the derivative of the internal dissipation �D int is a function of the yield function �. In this case, we do 
not specify any yield function, so that the derivatives are the most general ones:

∂�D int

∂ Fmn
= ∂�D int

∂(εe,trial
t+�t )hk

∂(εe,trial
t+�t )hk

∂ Fmn

= ∂

∂(εe,trial
t+�t )hk

(
�γ (τt+�t)αβ

∂�

∂ (τt+�t)αβ

+�γ qt+�t
∂�

∂qt+�t

)
∂(εe,trial

t+�t )hk

∂ Fmn

=
(

∂�γ

∂(εe,trial
t+�t )hk

(
(τt+�t)αβ

∂�

∂ (τt+�t) αβ

+qt+�t
∂�

∂qt+�t

)
+ �γ I4,sym

αβab

∂ (τt+�t)ab

∂(εe,trial
t�t )hk

(
∂�

∂ (τt+�t) αβ

)

+ �γ (τt+�t)αβ

(
∂

∂(τt+�t)ab

(
∂�

∂ (τt+�t)αβ

)
∂ (τt+�t)ab

∂(εe,trial
t+�t )hk

+ ∂

∂qt+�t

(
∂�

∂ (τt+�t)αβ

)
∂qt+�t

∂(εe,trial
t+�t )hk

)

+ �γ

(
∂qt+�t

∂(εe,trial
t+�t )hk

∂�

∂qt+�t
+ qt+�t

(
∂

(τt+�t)ab

(
∂�

∂qt+�t

)
∂ (τt+�t)ab

∂(εe,trial
t�t )hk

+ ∂2�

(∂qt+�t)
2

∂qt+�t

∂(εe,trial
t�t )hk

)))
∂(εe,trial

t+�t )hk

∂ Fmn

=
((

∂�D int
,(1)

)
hk

+
(
∂�D int

,(2)

)
ab

∂ (τt+�t)ab

∂(εe,trial
t+�t )hk

)
∂
(
εe,trial

t+�t

)
hk

∂ Fmn
, (A.15)

where the quantities 
(
∂�D int

,(1)

)
hk

and 
(
∂�D int

,(2)

)
ab

have been defined as

(
∂�D int

,(1)

)
hk

:= ∂�γ

∂(εe,trial
t+�t )hk

(
(τt+�t)αβ

∂�

∂ (τt+�t)αβ

+qt+�t
∂�

∂qt+�t

)

+�γ
∂qt+�t

∂(εe,trial
t+�t )hk

(
(τt+�t)αβ

∂

∂qt+�t

(
∂�

∂ (τt+�t)αβ

)
+ ∂�

∂qt+�t
+ qt+�t

∂2�

(∂qt+�t)
2

)
; (A.16)

(
∂�D int

,(2)

)
ab

:= �γ

(
∂�

∂ (τt+�t) ab
+ (τt+�t)αβ

∂2�

∂ (τt+�t)ab ∂ (τt+�t)αβ

+qt+�t
∂

(τt+�t)ab

(
∂�

∂qt+�t

))
, (A.17)

and I4,sym
αβab = 1

2

(
δαa δβb + δαb δβa

)
is the fourth-order symmetric identity tensor. In the above equations, the first and second 

derivatives of the yield function and the derivative of the plastic multiplier and of the hardening variable with respect 
to the logarithmic trial elastic strain do not need to be additionally computed since they have been already evaluated 
for the Jacobian matrix and its inverse in the classical elasto-plastic subroutine (for details, see de Souza Neto [38], for 
instance). Moreover, if the Von Mises yield function expressed by Eq. (63) is considered, it can be seen that ∂2�

(∂qt+�t )
2 = 0

and ∂
τ t+�t

(
∂�

∂τ t+�t

)
:τ t+�t = ∂

τ t+�t

(
∂�

∂qt+�t

)
= 0.

The other derivatives in Eq. (A.14) are

∂τ̄δε

∂ Fmn
d̄δε = 1

2

(
δδm

(
F −1

t

)
nα

(τt)αβ �Fεβ + �Fδα (τt)αβ δεm

(
F −1

t

)
nβ

+ ∂ (τt+�t)δε

∂ Fmn

)
d̄δε

= 1

2

((
F −1

t

)
nα

(τt)αβ �Fεβ d̄mε + �Fδα (τt)αβ

(
F −1

t

)
nβ

d̄δm + ∂ (τt+�t)δε

∂ Fmn
d̄δε

)
; (A.18)
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∂d̄δε

∂ Fmn
τ̄δε = τ̄δε

∂

∂ Fmn

(
1

2

(
δδε − �F −1

αδ �F −1
αε

))
(A.19)

= 1

2
τ̄δε

((
�F −1)

αm

(
F −1)

nδ

(
�F −1)

αε
+ (

�F −1)
αδ

(
�F −1)

αm

(
F −1)

nε

)
. (A.20)

To collect the derivatives of the Kirchhoff stress evaluated at the end of the step with respect to the deformation gradient, 
the following index desaturations are necessary in Eq. (A.18)

∂ (τt+�t)δε

∂ Fmn
d̄δε = d̄δε I4,sym

δεab

∂ (τt+�t)ab

∂ Fmn
= d̄ab

∂ (τt+�t)ab

∂ Fmn
, (A.21)

where the unsolved derivative ∂(τt+�t )ab
∂ Fmn

can be classically developed via the chain rule (see, for instance, de Souza Neto et 
al. [38]) as follows

∂ (τt+�t)ab

∂ Fmn
= ∂ (τt+�t)ab

∂(εe, trial
t+�t )hk

∂(εe,trial
t+�t )hk

∂(be, trial
t+�t )lu

∂(be, trial
t+�t )lu

∂ Fmn
. (A.22)

Hence, it is useful to collect the terms in Eq. (A.11) in this fashion

∂τ
mp
qr

∂ Fmn
= Gqrmn +

(
Fqrab

∂ (τt+�t)ab

∂
(
εe,trial

t+�t

)
hk

+Hqrhk

)
∂(εe,trial

t+�t )hk

∂ Fmn
, (A.23)

where the fourth-order tensors Gqrmn , Fqrab and Hqrhk have been defined as

Gqrmn := 1

2

(
δqm

(
F −1

t

)
nα

(τt)αβ �Frβ + �Fqα (τt)αβ δrm

(
F −1

t

)
nβ

)

+ �H int

‖�C‖2

(
δqm (�C)nβ Frβ + Fqα (�C)αn δrm + Fqn Fmβ Frβ + Fqα Fmα Frn

)
− 1

‖�C‖2
�P F bqr

((
F −1

t

)
nα

(τt)αβ �Fεβ d̄mε + �Fδα (τt)αβ

(
F −1

t

)
nβ

d̄δm

+ τ̄δε

(
�F −1)

αm

(
F −1)

nδ

(
�F −1)

αε
+ τ̄δε

(
�F −1)

αδ

(
�F −1)

αm

(
F −1)

nε

+ 2
�H int

‖�C‖2

(
Fmβ �Cnβ + Fmα �Cαn

)); (A.24)

Fqrab := 1

2
I4,sym
qrab + 1

‖�C‖2
�P F bqr

(
2

(
εe

t+�t

)
ab + 2

(
∂�D int

,(2)

)
ab

− d̄ab

)
; (A.25)

Hqrhk := 2

‖�C‖2
�P F bqr

((
∂�D int

,(1)

)
hk

−ξt+�t
∂qt+�t

∂(εe,trial
t+�t )hk

)
(A.26)

As it can be seen from Eq. (A.9), the derivative of the algorithmic Kirchhoff stress is multiplied by the deformation gradient

∂τ
mp
qr

∂ Fmn
Fsn = Gqrmn Fsn +

(
Fqrab

∂ (τt+�t)ab

∂(εe,trial
t+�t )hk

+Hqrhk

)
∂(εe,trial

t+�t )hk

∂ Fmn
Fsn. (A.27)

Therefore, some simplifications are possible

Gqrmn Fsn = δqm

(
1

2

(
τ P F

t

)
rs

+ �H int

‖�C‖2
�P F brs

)
+ δrm

(
1

2

(
τ P F

t

)
qs

+ �H int

‖�C‖2
�P F bqs

)

+ �H int

‖�C‖2

(
bmp bqs + bqm brs

) − 2

‖�C‖2
�P F bqr

(
τ̄sm − (τt+�t)sε d̄mε + 2

�H int

‖�C‖2
�P F bsm

)
; (A.28)

Fqrab

(
∂ (τt+�t)ab

∂ Fmn

)
Fsn = 1

2
Fqrab Dalg

abhk Lhklu Blums; (A.29)

Hqrhk
∂(εe,trial

t+�t )hk

∂ Fmn
Fsn = 1

2
Hqrhk Lhklu Blums, (A.30)

where the fourth-order tensors appearing in the above equations have been defined as
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Dalg
abhk := ∂(τt+�t)ab

∂(εe, trial
t+�t )hk

; (A.31)

Lhklu := 2
∂(εe,trial

t+�t )hk

∂(be, trial
t+�t )lu

= ∂ log(be, trial
t+�t )hk

∂(be, trial
t+�t )lu

; (A.32)

Blums := ∂(be, trial
t+�t )lu

∂ Fmn
Fsn = (be, trial

t+�t )us δlm + (be, trial
t+�t )ls δum. (A.33)

The evaluation of the consistent tangent modulus Dalg
abhk is not necessary, since it has been computed by the elasto-plastic 

subroutine.
The spatial tangent modulus ǎprms , defined in Eq. (A.9), can be therefore expressed as

ǎprms = Pprms + �prms + 1

J

(
�F −1

�t−ϑ

)
pq

(
Gqrmn Fsn + 1

2

(
Fqrab Dalg

abhk +Hqrhk

)
Lhklu Blums

)
. (A.34)
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