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A B S T R A C T

The Material Point Method (MPM) is well suited to modelling dynamic
solid mechanics problems undergoing large deformations with non-linear, his-
tory dependent material behaviour. However, the vast majority of existing
material point method implementations do not inherit conservation properties
(momenta and energy) from their continuum formulations. This paper pro-
vides, for the first time, a dynamic updated Lagrangian material point method
for elasto-plastic materials undergoing large deformation that guarantees mo-
menta and energy conservation. Sources of energy dissipation during point-to-
grid and grid-to-point mappings for FLuid Implicit Particle (FLIP) and Particle
In Cell (PIC) approaches are clarified and a novel time-stepping approach is
proposed based on an efficient approximation of the Courant-Friedrich-Lewy
(CFL) condition. The formulation provided in this paper provides a platform
for understanding the energy conservation nature of future/existing features of
material point methods, such as contact approaches.

c© 2023 Elsevier Inc. All rights reserved.

1. Introduction1

The Material Point Method for solids, (as originally described in [1–3]) is receiving significant interest for problems2

involving very large deformations, with particular interest in geotechnical engineering. Recent reviews of the literature3

can be found in a number of papers [4; 5]. Historically, the MPM for solid mechanics was derived from the FLIP (fluid-4

∗Corresponding author: w.m.coombs@durham.ac.uk
APIC: Affine Particle In Cell; CFL: Courant-Friedrich-Lewy; FEM: Finite Element Method; FLIP: FLuid Implicit Particle; GIMPM: Gener-

alised Interpolation Material Point Method; MPM: Material Point Method; PIC: Particle In Cell; PolyPIC: POLYnomial Particle In Cell; TL: Total
Lagrangian; UL: Updated Lagrangian; XPIC: eXtended Particle In Cell.”
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implicit-particle) method [6; 7] which in turn, was a particularisation of the PIC (particle-in-cell) [8–10] method1. The5

MPM works by decoupling the representation of the problem domain (using “material points”) with the calculation6

phase which is carried out on a finite element grid. Such a split requires mapping of information from material7

points to the grid prior to the calculation phase and then the other way following calculation. Momenta and energy8

conservation in the MPM remain a matter of concern with respect to these mappings, as evidenced by the numerous9

publications in this area: [6; 8; 11–14], among others.10

Dynamic solid mechanics problems are often solved using an explicit approach to time discretisation, and this is11

the case with the majority of MPM research to date, see [15–17] although it should be noted that these publications are12

cast within small and not large deformation theory. Fewer researchers have used implicit time integration. Love’s and13

Sulsky’s 2006 papers [18; 19] provided theoretically sound bases for both the mapping procedures and the formulation14

of discrete equations, on the basis of the groundwork laid by several other publications (e.g. [20–25]). In particular, the15

constitutive relationship cast within finite deformation elasto-plasticity and the mid-point rule for the time integration16

scheme are discussed and assessed in the above-mentioned papers for the Finite Element Method.17

If finite strain theory is taken into account, the difference between the current (or updated) and the initial (or18

total) Lagrangian reference frame is not negligible, making the frame used for the equilibrium equations a choice in19

terms of the numerical implementation of a method. For the MPM, the choice between an updated or a total (spatial or20

material) Lagrangian formulation is discussed in [26] which concludes that total Lagrangian formulations are not ideal21

for MPMs as they require the basis functions to be mapped back to the original coordinates, which is “not practical22

as it would require mesh deformation throughout the analysis to be stored, destroying one of the key advantages of23

the material point method” [26]. Therefore, while Love and Sulsky [18; 19] have provided an energy conserving total24

Lagrangian MPM here we overcome the limitations of a total approach via the derivation, implementation, verification25

and validation of a new updated Lagrangian energy conserving MPM for large deformation elasto-plastic dynamic26

analysis. It should be emphasised that, while Love and Sulsky [19] state their approach to be “updated Lagrangian”,27

their actual formulation is total Lagrangian, as can be seen from the adopted stress measure and integration volume28

used when satisfying the governing equations (see Coombs et al. [26] for a detailed discussion on the differences29

between total and updated Lagrangian formulations in the material point method). In addition to this key contribution30

of the paper, we also investigate the grid-to-point and point-to-grid mappings that are required in the MPM in terms of31

energy conservation. The conditions under which (linear and angular) momenta and energy are and are not conserved32

are clearly defined for PIC and FLIP motion projections within the MPM.33

Section 2 of this paper presents the continuum and discretised equations for a deformable body in an UL and TL34

framework. Section 3 reviews the MPM computational cycle, focusing on its implicit version. In Sections 4 and 5,35

conservation properties are assessed. In particular, Section 4 examines conservation applied to the mappings (PIC36

and FLIP), while Section 5 develops an UL version of the energy-conserving internal force vector. Due to the well-37

1From this point on, the terms FLIP and PIC are used to define only the mapping procedures at the beginning and end of the step, and not the
complete numerical methods.
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recognised link between the implicit MPM and standard finite elements (see Guilkey and Weiss [27]), the discussion in38

Section 5 can also be applied to the Finite Element Method. Since selecting an adequate time-step length for dynamic39

MPM simulations is critical to complete any simulation, an adaptive time-step technique is introduced in Section 6.40

Finally, in Section 7, numerical examples demonstrating the conserving properties are shown for the bi-dimensional41

and three-dimensional cases. Section 8 concludes the paper with observations and possible future expansions of the42

current work.43

2. Governing equations44

In this section, the equations governing the continuum dynamics of a deformable body are briefly introduced. In par-45

ticular, the balance of linear momentum is presented in different frames and in strong and weak forms. Hyperelastic-46

plastic constitutive models are considered with isotropic finite strain multiplicative plasticity (a Hencky material). In47

what follows, non-bold quantities represent scalars, while bold symbols indicate vectors or matrices. The use of index48

notation when necessary not only avoids confusion among these quantities, i.e., vectors and matrices, but also indi-49

cates their dimensions. In particular, uppercase letters in italic font (I, J, . . . ) indicate the degrees of freedom of the50

grid, uppercase upright letters (A,B, . . . ) denote grid nodal values, and lowercase letters (i, j, α, . . . ) refer to the di-51

mensions ndim of the Euclidean space under consideration. In addition, the Einstein summation notation for subscript52

indexes is used throughout unless specified otherwise.53

2.1. Notation, strong and weak forms54

Consider a body B, occupying an initial volume Ω0 of the Euclidean three-dimensional space E ⊂ Rndim
. The55

boundaries of the initial volume are Γ0, partitioned into disjoint subsets such that Γ0 = Γ0
ϕ̄ ∪ Γ0

t̄ , and Γ0
ϕ̄ ∩ Γ0

t̄ = ∅.56

Particles constituting the volumes Ω0 have a reference density ρ0 and occupy an initial position X in the initial57

reference frame. Let the same particles be denoted by x in the current configuration Ω, and let us introduce a smooth58

mapping ϕ, i.e., the motion, such that ϕ : Ω0 × [0,T ] → E and x = ϕ (X, t), with t ∈ [0,T ] ⊂ R being the time.59

Moreover, any motion ϕ belongs to the set of admissible configurations, defined as60

K =
{
ϕ | det(F) > 0 ∧ ϕ = ϕ̄ on Γ0

ϕ̄

}
, (1)

where ϕ̄ defines the prescribed motions on the boundary Γ0
ϕ̄, and F indicates the deformation gradient, which is61

Fi j B
∂ϕi

∂X j
=
∂xi

∂X j
. (2)

The Jacobian J, which is the determinant of the deformation gradient F, can be used both to express the current den-62

sity ρ = J−1 ρ0 and its infinitesimal current volume dV = J dV0, with dV0 being the infinitesimal initial volume. We63

also introduce the difference between the reference and the current configuration of a particle, i.e., the displacement,64

as u (X, t) = x − X.65

A point X has a material velocity defined as v B ϕ̇, where the notation (•̇) indicates the material time derivative.66

Conventional stress measures are used: the Cauchy stress tensor σ, the Kirchhoff stress tensor τ and the first and the67
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second Piola-Kirchhoff stress tensors P and S. The relationships between these quantities are68

σ = J−1 τ = J−1 PFT = J−1FSFT , (3)

where the superscript (•)T indicates the transpose of the quantiy (•).69

The local balance of momentum can be expressed in different frames. In the updated Lagrangian formulation, the70

equations are expressed in the current frame, leading the local balance of momentum to be71

∂σi j

∂x j
+ ρ (bi − v̇i) = 0, (4)

with (ρ b) being the body forces. In the total Lagrangian formulation, equations are based on the reference (or initial)72

frame, Eq. (4) becomes73

∂Pi j

∂X j
+ ρ0 (bi − v̇i) = 0. (5)

Equations (4) and (5) are expressed in a strong form. The multiplication of the above equations by weight functions74

η, belonging to the set of V =
{
η | η = 0 on Γ0

ϕ̄

}
, and the integration over the respective volumes permit the recasting75

of Eqs. (4) and (5) into the weak forms76 ∫
Ω

σi j
∂symηi

∂x j
dV −

∫
Ω

ρ (b − v̇i) ηi dV −
∫

Γt̄

t̄iηi dA = 0, ∀η ∈ V ; (6)

77 ∫
Ω0

Pi j
∂ηi

∂X j
dV0 −

∫
Ω0

ρ0 (bi − v̇i) ηi dV0 −

∫
Γ0

t̄

t̄0
i ηi dA0 = 0, ∀η ∈ V , (7)

where a motion ϕ ∈ K and satisfying the initial conditions ϕ (X, 0) = ϕ0 and ϕ̇ (X, 0) = v0 has to be found. In the78

above equations, dA and dA0 represent the infinitesimal current and initial areas.79

2.2. Space discretisation80

Since the implicit MPM is closely related to the standard finite element method, we develop the discretised weak81

form firstly in the latter. Let an isoparametric finite element Cartesian grid discretise the continuum body B, with82

Nnodes being the total number of nodes in the grid. The interpolated values of admissible motions and weight functions,83

belonging to the finite-dimensional sets hK and hV , are given by84

hϕi(x) = NiI(x)ϕI ; (8)

hηi(x) = NiI(x)ηI ; (9)

∂hηi

∂x j
(x) = ∇x j NiI(x)ηI , (10)

where index I = 1, . . . ,
(
Nnodes × ndim

)
represents the degrees of freedom of the whole discretisation, while N (x)85

are the shape functions. Several options exist in the MPM for the shape functions as discussed in Sołowski et al. [5].86

However, in this work, linear shape functions (MPM) or a convolution of linear shape functions with step characteristic87

functions (GIMPM) are considered in the examples in Section 7 (for a detailed explanation of this procedure, see88
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Bardenhagen and Kober [28]). The introduction of the grid allows Eqs. (6) and (7) to be written as89 ∫
hΩ

(
∇x j NIi

)
σi j dhV −

∫
hΩ

ρNIi (bi − NiK v̇K) dhV −
∫

hΓ

NIi t̄i dhA ≈ 0; (11)

90 ∫
hΩ0

(
∇X j NIi

)
FipS p j dhV0 −

∫
hΩ0

ρ0 NIi (bi − NiK v̇K) dhV0 −

∫
hΓ0

NIi t̄0
i dhA0 ≈ 0, (12)

where the dependency of the quantities in the above equations from the current position x or the displacement u is91

dropped for the sake of clarity.92

Let also the same body B be described by a finite number of material points Npt. In the original MPM [1],93

material points are used as quadrature points to approximate the above integrals. Furthermore, to allow compact94

presentation of Eqs. (11) and (12), the internal force vectors, the consistent mass matrix and the external force vectors95

are introduced along with their integral approximations96

fint
I B

∫
hΩ

(
∇x j NIi

)
σi j ≈

Npt∑
pt

∇x j NIi

(
xpt

)
σi j

(
xpt

)
V pt; (13)

Fint
I B

∫
hΩ0

(
∇X j NIi

)
FipS p j dhV0 ≈

Npt∑
pt

∇X j NIi

(
xpt

)
Fip

(
xpt

)
S p j

(
xpt

)
V pt

0 ; (14)

MIK B

∫
hΩ

ρNIi NiKdhV =

∫
hΩ0

ρ0 NIi NiKdhV0 ≈

Npt∑
pt

mptNIi

(
xpt

)
NiK

(
xpt

)
; (15)

fext
I B

∫
hΩ

ρNIi bi dhV +

∫
hΓ

NIi t̄i dhA ≈
Npt∑
pt

mptNIi

(
xpt

)
bi +

∫
hΓ

NIi t̄i dhA; (16)

Fext
I B

∫
hΩ0

ρ0 NIi bi dhV0 +

∫
hΓ0

NIi t̄0
i dhA0 ≈

Npt∑
pt

mptNIi

(
xpt

)
bi +

∫
hΓ0

NIi t̄0
i dhA0, (17)

where the superscript (•)pt implies that the quantity (•) is computed at the material point location.97

Since the lumped mass matrix M̄ is often used in place of a consistent mass matrix and evaluating the conservation98

properties for both of the cases is one of the scopes of this work, it is useful to introduce the effective mass matrix M̃99

as a linear combination of the two. In this way, they can be both generically expressed as100

M̃ B (1 − ε) M + ε M̄ with ε = [0, 1], (18)

having introduced the lumped mass matrix defined as follows101

M̄IK B δIK

∫
hΩ

ρNK dhV ≈ δIK

Npt∑
pt=1

mpt NK

(
xpt

)
(no summation over K). (19)

Thus, the approximated compact forms of Eqs. (11) and (12) are102

rI (u) = fint
I + M̃IK v̇K − fext

I ≈ 0; (20)

RI (u) = Fint
I + M̃IK v̇K − Fext

I ≈ 0. (21)
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Previously Converged
Configuration at time t

Ωt

Mid-point
Configuration
at time ϑ

Ωϑ

Current
Configuration
at time t + ∆t

Ωt+∆t

∆F ϑ
∆F∆t−ϑ

Lagrangian Reference System

Ω0

Initial Configuration at time t0

F t

FF ϑ
X

X̃

x

xϑ

∆uϑ

∆u∆t−ϑ

Fig. 1: Configurations taken into account by the current MPM formulation and associated quantities: grid positions, grid (incremental) displace-
ments, material point deformation gradients.

2.3. Time discretisation103

In a dynamic problem, the temporal problem duration [0,T ] is discretised into steps of length ∆t. Following Simo and104

Tarnow [20] for the FE method and Love and Sulsky for the MPM [19], we use the implicit mid-point rule since its use105

preserves angular momentum during the time-step when finite strain theory is considered2. Thus, the configuration106

in which equilibrium is imposed is at time ϑ = t + ∆t/2. In this case, the relation between the kinematic variables107

becomes108

uϑ =
1
2

(ut + ut+∆t) = ∆uϑ; (22)

vϑ =
ut+∆t − ut

∆t
; (23)

aϑ =
vt+∆t − vt

∆t
. (24)

In Eq. (22) it should be noted that initial displacements are null due to the introduction of a new mesh at the beginning109

of each time-step. The representation of the diverse configurations is given in Figure 1. In addition, the relationship110

between the deformation gradients appearing in the same figure is as follows111

F B
∂x
∂X

=
∂x
∂xϑ

∂xϑ
∂X̃

∂X̃
∂X
B ∆F∆t−ϑ ∆Fϑ Ft. (25)

It should be highlighted that ∆ (•) B (•)t+∆t − (•)t usually indicates a difference between a quantity at the end of the112

step and its respective counterpart at the beginning, with the only exception being the deformation gradients ∆F∆t−ϑ113

and ∆Fϑ, which are defined by Eq. (25).114

2It must be noted that the mid-point rule does not guarantee any conservation properties outside of the solution of the equilibrium equations,
i.e., it does not apply to the mappings. This is the reason why mappings are assessed in Section 4 in terms of conservation properties.
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MPs-based Grid-based

New step

A

B

C

D

E

F

Fig. 2: An MPM main loop subdivided into procedural substeps for a single time-step. This loop is run until the simulation is complete at time
T . On the left-hand side, there are the substeps involving the material points, while, on the right-hand side, the substeps using (mainly) the grid-
based calculations. A loop comprises several steps: (A) current position of material points on the background grid, (B) point-to-grid information
mapping, (C) equilibrium equations formulated at nodes on the grid, (D) solve equilibrium equations for nodal motion, (E) grid-to-point motion &
deformation mapping and (F) deformed body in equilibrium with external actions and distorted grid disposal.

3. The Material Point Method algorithm structure115

The main algorithmic steps for the MPM used here match previous descriptions (see, for instance, Coombs and Au-116

garde [29]) and only significant features of steps pertinent to the new method are discussed here. Having established117

the continuum mechanics and discretisation approaches in the previous section, this section details the main algorith-118

mic steps for a given time-step of the proposed implicit algorithm (as represented in Figure 2). The key steps A to E119

are described by Subsections 3.1 to 3.5. The final step, Step F, shows the deformed material point positions at the end120

of the loop, providing the starting point for the next loop through the algorithm.121

3.1. A: Discretisation - material points and grid initialisation122

Regardless of the ontology, whether considering material points and the grid as two different and communicating123

discretisations or seeing them as a single one in which the two groups play different roles, the strength of the MPM lies124

in the presence of (simultaneous or discontinuous depending on the considered substeps) and the non-trivial commu-125

nication between these two groups (material points and grid). Therefore, the initial conditions on the displacements126

and velocities required for the solution of Eqs. (20) and (21) can be prescribed independently on both the material127
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points and the grid. Due to the different mapping substeps, this information will be passed from one group to other128

(i.e., from the grid to the material points or vice versa).129

3.2. B: Material points-to-grid mapping130

A key issue for dynamic problems with the MPM is the need to maintain the same conservation properties (linear131

momentum, angular momentum and energies) of the material points representation as best as possible. The mapping132

procedures (substep B in Figure 2) from material points to grid proposed in the literature (see, among others, Love133

and Sulsky [19]) can be expressed as follows134

M̃IK vK =

Npt∑
pt

mpt NIi

(
xpt

)
vpt

i . (26)

The conservation properties of mapping (26) were investigated in 2006 by Love and Sulsky [19]. However,135

some of this is revisited in Subsection 4.1 below, to assess the conservation properties of the grid-to-material points136

mappings presented in Subsection 4.2.137

3.3. C: Grid equilibrium equation assemblage138

In this substep (C in Figure 2), Eqs. (20) and (21) are assembled at the grid nodes after having introduced the time139

discretisation explained in Subsection (2.3). As highlighted in [26; 30], the gradient of the shape functions must in-140

clude the variation in deformation over the time-step to correctly enforce the equilibrium equations. Moreover, as can141

be seen from Eqs. (16) and (17), while the part of the external forces dealing with the body forces can be approximated142

via the integral over the chosen material points, the Neumann boundary conditions cannot be assembled in the same143

fashion within the MPM context; some suggested approaches are given in Bing et al. [31] and Remmerswaal [32]. In144

this work, when Neumann boundary conditions are considered (as in Example 7.1), concentrated loads are applied to145

selected material points, as explained in Charlton et al. [30].146

3.4. D: Essential boundary conditions and solution procedure147

The solution of Eq. (20) can take the same approach as the standard FE method where Dirichlet boundary condi-148

tions are directly applied on the grid (substep D in Figure 2). However, if the body boundaries (where the essential149

conditions are prescribed) do not match the grid, special techniques are necessary, such as proposed by Cortis et150

al. [33].151

Iterative solutions to Eq. (20) are obtained via the Newton-Raphson algorithm, that is152

δu(k)
t+∆t = −

(
J(k−1)

)−1
r(k−1), (27)

where k indicates the current iteration, δu(k)
t+∆t B u(k)

t+∆t − u(k−1)
t+∆t are the incremental displacements, and J(k−1) B

∂r
∂ut+∆t

153

is the Jacobian matrix. In the case of the mid-point rule, the full expression of this matrix is154

J(k−1) =
2

∆t2 M̃ + K(k−1),
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with K(k−1) B
∂fint

∂ut+∆t
being the global stiffness matrix. Since the computation of the global stiffness matrix is155

strongly dependent on the stress-strain relationship (and the constitutive relationship is modified, as explained in156

Subsection 5.1), its calculation is fully detailed in Appendix A. It should be noted that the primary variable for157

Eq. (27) is arbitrary, while the update of the secondary unknowns should be made according to Eqs. (22) -(24).158

Each time-step is considered to have converged once the ratio between the current error f Err at the k-th iteration159

is less than a selected tolerance tol defined as160

f Err =

(
f Err

)(k)(
f Err)(1) < tol, with

(
f Err

)(k)
=

(
|r(k)|

)
I

(
|δu(k)

t+∆t |
)

I
.

3.5. E: Grid-to-point mapping and update161

Once the approximate solution to the equilibrium equation is found, it is necessary to pass the information from the162

grid to the material points (substep E in Figure 2). Moreover, if the characteristic function is not the Dirac delta163

function, an update of the function domain must be carried out (for a discussion and a comparison of the options, see164

Coombs et al. [26]).165

For the material points-to-grid mapping in a dynamics problem, several options are available in the literature,166

which are PIC [8–10], FLIP [6; 7], XPIC [13], APIC [12; 34], and PolyPIC [14]. The current work focuses on the first167

two (PIC and FLIP) and highlights why the former is considered dissipative while the latter not (see Subsection 4.2).168

For the sake of completeness, the difference between the two is expressed by their update equations169

PIC:
(
vpt

t+∆t

)
i
= NiI

(
xpt

)
(vt+∆t)I ; (28)

FLIP:
(
vpt

t+∆t

)
i
=

(
vpt

t

)
i
+ NiI

(
xpt

)
(vt+∆t − vt)I . (29)

The update of the material point current position is given by170

(
xpt

t+∆t

)
i
=

(
xpt

t

)
i
+ NiI

(
xpt

)
(ut+∆t)I = NiI

(
xpt

)
(xt+∆t)I . (30)

4. Properties of the mappings171

The mapping procedures described by Eqs. (26), (28) and (29), which pass information back and forth, from the172

material points to the grid, are now assessed and their conservation of momenta (linear and angular) and of kinetic173

energy computed and reviewed. It should be emphasised that, theoretically, the goal of each mapping process is to174

conserve momenta and energy at the given time (i.e. the quantities of interest should be computed at the beginning175

or, alternatively, at the end of the step). However, as will be detailed in Subsection 4.1, the initial mapping inevitably176

loses energy at the beginning of each time-step. As a consequence, the objective of the mapping at the end of the177

time-step (i.e., grid-to-material points) changes in scope, having to eliminated (if possible) the error committed in178

the initial phase. For the grid-to-material points mapping process, the quantities of interest then become the time179

differences within the step. Therefore, it should be understood that, while the material points-to-grid mapping can be180
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defined as a unique process, the grid-to-material points cannot be decoupled from the mapping at the beginning of the181

step.182

The Einstein summation notation has not been applied in Section 4 to make operations clearer, with the summation183

being explicit when necessary.184

4.1. The material points-to-grid mapping185

The definitions of the momenta and kinetic energy computed on both the material points and the grid nodes are186

listed in Table 1. In particular, the former are denoted by the superscript (•)pt, while the latter by (•)h. Moreover, their187

differences, which were computed by Burgess et al. [11] for the consistent mass matrix and by Love and Sulsky [19]188

for the effective mass matrix, are reported in the same table.189

Table 1: Definitions of material points’ and grid linear momentum, angular momentum and kinetic energy. Their differences at the beginning of
the step are computed using the mapping defined by Eq. (26).

Quantities Material Points’ Grid Difference

Linear momentum L Lpt B
Npt∑
pt

mpt vpt; Lh B
Nnodes∑

A

Nnodes∑
B

M̃AB

(
vh

)
B
; Lpt

t − Lh
t = 0;

Angular momentum J J pt B
Npt∑
pt

xpt × mpt vpt; Jh B
Nnodes∑

A

(
xh

)
A
×

Nnodes∑
B

M̃AB

(
vh

)
B
; J pt

t − Jh
t = 0;

Kinetic energy K K pt B
1
2

Npt∑
pt

mpt
∥∥∥vpt

∥∥∥2
;† Kh B

1
2

Nnodes∑
A

(
vh

)
A
·

Nnodes∑
B

M̃AB

(
vh

)
B
; K pt

t − Kh
t ≥ 0.

† ‖(•)‖ is the Euclidean norm of (•).

To make the notation in Table 1 consistent with the definitions of mass matrices introduced by Eqs. (15), (18) and190

(19), it is useful to explain the relationship between them as follows.191

M =

∫
hΩ

ρ NA δki︸︷︷︸
BNIi

δi j NB dhV =

∫
hΩ

ρNIi NiKdhV, (31)

with I = 1, . . . ,
(
NNodes × ndim

)
= A × k = (1, . . . ,NNodes) ×

(
1, . . . , ndim

)
.192

Furthermore, from [19] the difference between material points’ and grid kinetic energy for the mapping defined193

by Eq. (26), which, in Table 1 is generically expressed as greater or equal than zero, i.e.,194

K pt
t − Kh

t =
1
2

Npt∑
pt

mpt
∥∥∥vpt

t

∥∥∥2
−

1
2

Nnodes∑
A

(
vh

t

)
A
·

Nnodes∑
B

M̃AB

(
vh

t

)
B

=
1
2

Npt∑
pt

mpt
∥∥∥vpt

t

∥∥∥2
−

1
2

Nnodes∑
A

(
vh

t

)
A
·

Nnodes∑
B

MAB

(
vh

t

)
B

−
ε

2

Nnodes∑
A

(
vh

t

)
A
·

Nnodes∑
B

(
M̄ −M

)
AB

(
vh

t

)
B
≥ 0. (32)

Hence, the difference between the material points’ and grid kinetic energy has a term (the third on the right-hand side)195

which is proportional to ε. As such, it goes to zero when the consistent mass matrix is used in lieu of the effective mass196

matrix. However, the difference between the first term (material points’ kinetic energy) and the second (proportional to197
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Table 2: Résumé of differences between time-increments computed on material points and grid using initial mapping (26) with FLIP, Eq. (29), or
mapping (26) with PIC, Eq. (28).

Differences Method Results

∆Lpt − ∆Lh Eq. (26) + FLIP: = 0;

Eq. (26) + PIC: = 0;

∆J pt − ∆Jh Eq. (26) + FLIP: = −ε
NNodes∑

A

(
xh

t+∆t

)
A
×

NNodes∑
B

(
M̄ −M

)
AB

∆vh
B;

Eq. (26) + PIC: = −ε
NNodes∑

A

(
xh

t+∆t

)
A
×

NNodes∑
B

(
M̄ −M

)
AB

(
vh

t+∆t

)
B
;

∆K pt − ∆Kh Eq. (26) + FLIP: = −
ε

2

NNodes∑
A

∆vh
A ·

NNodes∑
B

(
M̄ −M

)
AB

∆vh
B;

Eq. (26) + PIC: = −
ε

2

NNodes∑
A

∆vh
A ·

NNodes∑
B

(
M̄ −M

)
AB

(
vh

t+∆t + vh
t

)
B

−T pt
t +

1
2

NNodes∑
A

(
vh

t

)
A
·MAB

(
vh

t

)
B
.

the consistent mass matrix) does not cancel out entirely. In particular, as shown by Burgess et al. [11], this difference198

is greater or equal to zero since material points are usually more numerous than grid nodes. As previously mentioned,199

this unavoidable error changes the goal of the grid-to-material points mapping at the end of the step.200

4.2. The grid-to-material points mapping201

Differences of changes within the time-step between material points’ and grid quantities for PIC and FLIP are202

reported in Table 2, where, in the case of FLIP, results were obtained by Love and Sulsky [19]. Hence, changes of203

momenta involving FLIP are only reported in Table 2, while the change in kinetic energy using FLIP is given for204

a detailed comparison with PIC. This comparative evaluation is necessary because the combination of the effective205

mass matrix with PIC is a new result, which agrees with the results of Burgess et al. [11] in the case of a lumped or a206

consistent matrix.207

The difference between linear momentum values is (utilising Eqs. (28) and (18))208

∆Lpt − ∆Lh = Lpt
t+∆t − Lh

t+∆t

=

Npt∑
pt

mpt vpt
t+∆t −

Nnodes∑
A

Nnodes∑
B

M̃AB

(
vh

t+∆t

)
B

=

Npt∑
pt

mpt
NNodes∑

B

NB

(
vh

t+∆t

)
A
− (1 − ε)

Npt∑
pt

mpt
NNodes∑

A

NA︸   ︷︷   ︸
=1

NNodes∑
B

NB

(
vh

t+∆t

)
B

− ε

Npt∑
pt

mpt
NNodes∑

B

NB

(
vh

t+∆t

)
B

= 0. (33)

As it can be seen, PIC mapping conserves the linear momentum increment within the time-step. The difference209

between angular momenta is (with the contribution of Eqs. (30), (28), (15), and (18))210

∆J pt − ∆Jh = J pt
t+∆t − Jh

t+∆t
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=

Npt∑
pt

xpt
t+∆t × mpt vpt

t+∆t −

Nnodes∑
A

(
xh

t+∆t

)
A
×

Nnodes∑
B

M̃AB

(
vh

t+∆t

)
B

=

Npt∑
pt

Nnodes∑
A

NA

(
xh

t+∆t

)
A
× mpt

Nnodes∑
B

NB

(
vh

t+∆t

)
B
−

Nnodes∑
A

(
xh

t+∆t

)
A
×

Nnodes∑
B

M̃AB

(
vh

t+∆t

)
B

=

Nnodes∑
A

(
xh

t+∆t

)
A
×

Nnodes∑
B

(
M − M̃

)
AB

(
vh

t+∆t

)
B

= −ε

NNodes∑
A

(
xh

t+∆t

)
A
×

NNodes∑
B

(
M̄ −M

)
AB

(
vh

t+∆t

)
B
. (34)

Eq. (34) shows that the difference is proportional to the velocity at the end of the step
(
vh

t+∆t

)
I
. This result is different211

from that obtained using FLIP, where the same quantity (see Table (2)) is proportional to the difference in velocities212

within the time-step
(
∆vh

)
I
. Therefore, the difference in angular momentum using PIC can be expected to be more213

significant, as the absolute velocity at the end of the step is likely to be greater in magnitude than the difference in214

velocity within the time-step. Nevertheless, in PIC and FLIP, errors are zero if the consistent mass matrix is employed.215

However, if the effective mass matrix is used, the difference in increment of angular momenta can decrease (dissipative216

behaviour) or increase.217

Lastly, the difference between material points’ and grid kinetic energy at the end of the step is computed, both for218

PIC (using contributions from Eqs. (28) and (15))219

K pt
t+∆t − Kh

t+∆t =
1
2

Npt∑
pt

mpt
∥∥∥vpt

t+∆t

∥∥∥2
−

1
2

Nnodes∑
A

(
vh

t+∆t

)
A
·

Nnodes∑
B

M̃AB

(
vh

t+∆t

)
B

=
1
2

Npt∑
pt

mpt

NNodes∑
A

NA

(
vh

t+∆t

)
A

 ·
NNodes∑

B

NB

(
vh

t+∆t

)
A

 − 1
2

Nnodes∑
A

(
vh

t+∆t

)
A
·

Nnodes∑
B

M̃AB

(
vh

t+∆t

)
B

=
1
2

Nnodes∑
A

(
vh

t+∆t

)
A
·

Nnodes∑
B

(
M − M̃

)
AB︸       ︷︷       ︸

=−ε(M̄−M)AB

(
vh

t+∆t

)
B
≤ 0, (35)

and FLIP (by using Eqs. (29), (15), and (26))220

K pt
t+∆t − Kh

t+∆t =
1
2

Npt∑
pt

mpt
∥∥∥vpt

t+∆t

∥∥∥2
− Kh

t+∆t

=
1
2

Npt∑
pt

mpt

vpt
t +

NNodes∑
A

NA ∆vh
A

 ·
vpt

t +

NNodes∑
B

NB ∆vh
B

 − Kh
t+∆t

=
1
2

Npt∑
pt

mpt
∥∥∥vpt

t

∥∥∥2
+

1
2

Npt∑
pt

mpt

NNodes∑
A

NA ∆vh
A

 ·
NNodes∑

B

NB ∆vh
B

 +

Npt∑
pt

mpt vpt
t ·

NNodes∑
A

NA ∆vh
A

 − Kh
t+∆t

= K pt
t +

1
2

NNodes∑
A,B

∆vh
A ·MAB ∆vh

B +

NNodes∑
A,B

∆vh
A · M̃AB

(
vh

t

)
B
− Kh

t+∆t

= K pt
t +

1
2

NNodes∑
A,B

((
vh

t+∆t

)
A
·MAB

(
vh

t+∆t

)
B

+
(
vh

t

)
A
·MAB

(
vh

t

)
B
− 2

(
vh

t+∆t

)
A
·MAB

(
vh

t

)
B

+ 2
(
vh

t+∆t

)
A
· M̃AB

(
vh

t

)
B
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− 2
(
vh

t

)
A
· M̃AB

(
vh

t

)
B
−

(
vh

t+∆t

)
A
· M̃AB

(
vh

t+∆t

)
B

)
= K pt

t − Kh
t +

1
2

NNodes∑
A,B

∆vh
A ·

(
M − M̃

)
AB︸       ︷︷       ︸

=−ε(M̄−M)AB

∆vh
B. (36)

It should be noted that the inequality in Eq. (35) was proven previously in Love and Sulsky [19] via positive semi-221

definiteness of the symmetric quantity M̄ −M. Suppose we consider Eqs. (35) and (36), we should see that, in the222

case of a consistent matrix, PIC would appear to be energy-conservative, while FLIP would repeat the error made at223

the beginning of the time-step. However, by virtue of the error quantified by Eq. (32), Eqs. (35) and (36) are not of224

interest but the combination of these latter with Eq. (32) is. In the case of PIC, this calculations is225

∆K pt − ∆Kh = K pt
t+∆t − Kh

t+∆t︸          ︷︷          ︸
≤0

−
(
K pt

t − Kh
t

)︸         ︷︷         ︸
≤0

= −
ε

2

Nnodes∑
A

(
vh

t+∆t

)
A
·

Nnodes∑
B

(
M̄ −M

)
AB

(
vh

t+∆t

)
B
−

1
2

Npt∑
pt

mpt
∥∥∥vpt

t

∥∥∥2
+

1
2

Nnodes∑
A

(
vh

t

)
A
·

Nnodes∑
B

MAB

(
vh

t

)
B

+
ε

2

Nnodes∑
A

(
vh

t

)
A
·

Nnodes∑
B

(
M̄ −M

)
AB

(
vh

t

)
B

= −
ε

2

NNodes∑
A

∆vh
A ·

NNodes∑
B

(
M̄ −M

)
AB

(
vh

t+∆t + vh
t

)
B
− T pt

t +
1
2

NNodes∑
A

(
vh

t

)
A
·MAB

(
vh

t

)
B
≤ 0. (37)

The same process (first described by Love and Sulsky [18]) can be applied to the FLIP method using Eqs. (36)226

and (32), i.e.,227

∆K pt − ∆Kh = K pt
t+∆t − Kh

t+∆t −
(
K pt

t − Kh
t

)
= −

ε

2

NNodes∑
A

(
∆vh

A

)
·

NNodes∑
B

(
M̄ −M

)
AB

∆vh
B ≤ 0. (38)

As Eqs. (37) and (38) show, while FLIP can cancel the kinetic energy difference from the initial mapping proce-228

dure, PIC cannot. Hence, PIC is not dissipative per se, but the combination of the initial mapping defined by Eq. (26)229

with PIC (28) leads to dissipation at the end of the step, even when the consistent mass matrix is used. On the other230

hand, the combination of Eq. (26) with FLIP (29) does not lead to kinetic energy dissipation, as the initial difference231

is mathematically cancelled in the consistent mass matrix case.232

In addition, since linear and angular momentum and kinetic energy do not depend on acceleration but only on233

velocity (linear momentum and kinetic energy) or position (angular momentum), there is no need to map the accel-234

eration at the end of the time-step to ensure conservation. However, these mappings (back and forth) are sometimes235

performed (as in, for instance, Iaconeta et al. [35]) for the post-processing phase and to have the initial acceleration236

at the beginning of the time-step at non-zero.237
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5. Properties of the Updated Lagrangian formulation238

A key part of an implicit MPM formulation is calculation of the internal force vector and for the new method239

this is needed in the updated Lagrangian frame. As can be seen from Eq. (13), the most compact and natural writing240

of this internal force vector uses the Cauchy stress tensor σ or, similarly, the Kirchhoff stress tensor τ3, as shown241

in Eq. (3). Therefore, the second Piola-Kirchhoff stress tensor’s modified definition Smp (firstly proposed by Simo242

and Tarnow [20]) is pushed forward to the current configuration to obtain its analogue in Kirchhoff form τmp. Once243

this operation is performed, all conservation properties (momenta and strain energy conservation) related to Smp
244

are transferred to τmp. The reader interested in the proofs of the conservation properties is referred to Simo and245

Tarnow [20] or Love and Sulsky [18; 19].246

To move the reference configuration, the internal force vector, expressed in a total Lagrangian formulation, is247

given from [20] as248

Fint
ϑ =

∫
Ω0

(
∇XN

)T Fϑ Smp dV0, (39)

with Smp being the energy-consistent second Piola-Kirchhoff stress tensor. The transition from a total Lagrangian249

formulation to an updated Lagrangian formulation leads to a change in the integration volume, i.e.,250

fint
ϑ =

∫
Ωt+∆t

(
∇XN

)T Fϑ Smp (Jt+∆t)−1 dVt+∆t. (40)

Moreover, it is useful to express the following quantities as251

∇XN =
∂N
∂X

=
∂N
∂x

∂x
∂X

= ∇xN F; (41)

Ft+ϑ =
∂xt+ϑ

∂X
=
∂xt+ϑ

∂X̃
∂X̃
∂X

= ∆Fϑ Ft. (42)

By using the above equations and the definition of the Kirchhoff stress in the current configuration, which is252

Smp = (F)−1 τmp (F)−T , (43)

the internal force vector defined by Eq. 40 becomes253

fint
ϑ =

∫
Ωt+∆t

(
∇xN

)T
∆Fϑ Ft (F)−1︸          ︷︷          ︸

=(∆F∆t−ϑ)−1

τmp (Jt+∆t)−1 dVt+∆t︸             ︷︷             ︸
=dV0

. (44)

It should be noted that Eq. (44) is not a unique choice, since the Kirchhoff stress could be mapped to the interme-254

diate configuration. This discrepancy between the configuration where the equilibrium is imposed (i.e., intermedi-255

ate) and the one where the algorithmic Kirchhoff stress lives (i.e., the current configuration) leads the stress tensor256

3The authors recognise the importance of the study proposed by Bennet et al. [36] in which it is shown that an Eshelby-like stress tensor is the
only one that satisfies both the second law of thermodynamics and the assumption of an intermediate stress-free configuration. However, in light
of the same argument advanced by Choo and Sun [37] and in line with the tradition of the Kirchhoff tensor as a measure for plasticity at finite
deformation (see, among others, de Souza Neto et al. [38]), the present work adopts the Kirchhoff tensor as the stress measure for the proposed
updated Lagrangian framework. The Kirchhoff measure does not violate the second law of thermodynamics and therefore remains an excellent
candidate for an energy-conserving MPM formulation.
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(∆F∆t−ϑ)−1 τmp to be asymmetric (see, for a detailed discussion, Marsden and Hughes [39]). Despite this additional257

complication, the decision to push the Kirchhoff stress to the current configuration seems more streamlined, especially258

as the linearisation of τmp is independent from the considered intermediate configuration, which, if time integration259

schemes different from the mid-point rule are considered, can vary between the previously converged and the current260

one.261

5.1. Stress-strain modified relationship262

As mentioned above, the stress-strain relationship used above does not dissipate energy within the framework263

of finite deformation theory. In this work, power conjugates are used to establish how this modification changes264

when the stress tensor is the Kirchhoff tensor, i.e., 1
2 S : Ċ = τ : d, with C B FT F being the right Cauchy-Green265

tensor, and d B
(
Ḟ F−1 +

(
Ḟ F−1

)T
)
/2 the rate of deformation tensor. As incremental relationships are substituted266

by time-discretised ones, the time-difference of the right Cauchy-Green tensor ∆C is related to the averaged (over the267

time-step) rate of the deformation tensor, denoted as d̄. Therefore, The time-discretised power conjugates become268

1
2

Smp : ∆C = τmp : d̄. (45)

Hence, by using Eq. (43), the definition of d̄ is269

d̄ B
1
2

F−T ∆C F−1. (46)

The modified stress-strain relationship for a Hencky material using Smp4 is here recalled270

Smp =
1
2

(St + St+∆t) +
∆C
‖∆C‖2

(
2
(
∆ψ + ∆D int

)
−

1
2

(St + St+∆t) : ∆C︸                                           ︷︷                                           ︸
B∆H int

)
, (47)

where ∆ψ = ψt+∆t − ψt is the difference in the free energy function ψ. The difference in internal dissipation ∆D int is,271

if associative flow rules are considered, given by272

∆D int = ∆γ

(
τt+∆t :

∂Φ

∂τt+∆t
+ qt+∆t

∂Φ

∂qt+∆t

)
,

with q B − ∂ψ
∂ξ

being a scalar hardening variable and ξ its conjugate responsible for isotropic hardening. By pre-273

multiplying by F and post-multiplying by FT the Eq. 47, the stress strain-relationship can be written using τmp,274

i.e.,275

τmp = F Smp FT =
1
2

F (St + St+∆t) FT + F ∆C FT
(
∆H int

‖∆C‖2

)
=

=
1
2

F St FT︸  ︷︷  ︸
=∆F τt ∆FT

+
1
2
τt+∆t + F ∆C FT

(
∆H int

‖∆C‖2

)
= τ̄ + F ∆C FT

(
∆H int

‖∆C‖2

)
, (48)

4The definition (47) comes originally from Gonzalez [21], but the additive term ∆D int to include plastic dissipation was added by Meng and
Laursen [24]. Moreover, the definition of an algorithmic stress tensor which satisfies the conservation of energy is not unique, as underlined by
Armero and Romero [22]: there exist several formulations of discrete derivatives which conserve directionality and consistency (for a detailed
discussion, see Love and Sulsky [18]).
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where the trapezoidal stress τ̄ has been defined as276

τ̄ B
1
2

F (St + St+∆t) FT =
1
2

(
∆F τt ∆FT + τt+∆t

)
=

1
2

(
τPF

t + τt+∆t

)
. (49)

In the above equation, the quantity τPF
t = ∆F τt ∆FT corresponds to the Kirchhoff stress evaluated at the previous277

step τt, pushed forward to the current configuration. This is in compliance with the current Kirchhoff stress τt+∆t,278

which lives in the current configuration.279

It is useful to consider what physical quantity corresponds to the product F ∆C FT . To proceed, let us introduce280

the left Cauchy-Green tensor b B F FT , so it follows that281

Fih (∆C)hk F jk = Fih (Chk − (Ct)hk) F jk = Fih Fαh Fαk F jk − ∆Fiβ (Ft)βh (Ft)αh (Ft)αk ∆F jγ (Ft)γk

= biα bα j − ∆Fiβ (bt)βα (bt)αγ ∆F jγ B ∆PFbi j, (50)

where, when the reference configuration is omitted, the quantities are referred to the current time t + ∆t. Owing282

to the above equation, the quantity F ∆C FT can be seen as a difference between the squared current left Cauchy-283

Green strain tensor b and the same quantity evaluated at the previous step bt which has been pushed forward as a284

contravariant tensor. Therefore, Eq. (48) can be rewritten as285

τmp = τ̄ + ∆PF b
(
∆H int

‖∆C‖2

)
. (51)

It can be shown that the following energy inequality holds for the finite work within the step defined by algorithmic286

stress tensor (51) and its conjugate kinematic variable (46), which is287

1
2

Smp : ∆C = τmp : d̄ = ∆ψ + ∆D int ≥ ∆D int. (52)

Owing to Eqs. (48) and (46), it follows that288

τmp : d̄ =

(
1
2

(
τPF

t + τt+∆t

)
+ F ∆C FT

(
∆H int

‖∆C‖2

))
:

1
2

(
F−T ∆C F−1

)
=

1
4

(
τPF

t + τt+∆t

)
:
(
F−T ∆C F−1

)
+

1
2

∆H int

‖∆C‖2
(
F ∆C FT : F−T ∆C F−1

)
. (53)

The following simplifications can be made289

F ∆C FT : F−T ∆C F−1 = ∆C : ∆C; (54)
1
2

(St + St+∆t) : ∆C = (St + St+∆t) : FT d̄ F =
(
∆F τt ∆FT + τt+∆t

)
: d̄ = 2 τ̄ : d̄. (55)

Therefore, the quantity ∆H int in the Eq. (51) can be rewritten as290

∆H int = 2
(
∆ψ + ∆D int

)
−

1
2

(St + St+∆t) : ∆C = 2
(
∆ψ + ∆D int

)
− 2 τ̄ : d̄.
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By the use of Eqs. (54) and (56), inequality (52) can be verified291

τmp : d̄ =
1
2

(
τPF

t + τt+∆t

)
: d̄ +

1
2 ‖∆C‖2

(
2
(
∆ψ + ∆D int

)
− 2 τ̄ : d̄

)
∆C : ∆C

= τ̄ : d̄ +
(
∆ψ + ∆D int

)
− τ̄ : d̄

= ∆ψ + ∆D int ≥ ∆ψ. (56)

6. Adaptive time-step length based on the Courant-Friedrich-Lewy condition292

For computational efficiency and stability, the choice of time-step size is important regardless of temporal discretisa-293

tion. The maximum time-step size in explicit solution techniques is limited by the well-known CFL condition294

∆tCFL = min
i

(
hh

i

) √
ρ

M
, (57)

where hh
i is the mesh size in the i−th direction (∈ Rndim

), and ρ and M are the density and the P-wave modulus295

of the material being analysed. The above equation holds for any body under the assumption of small strains or for296

underformed Hencky materials within the finite strain theory. While the adaptation of this formula to deformed bodies297

within finite strain theory has been carried out by Sun et al. [40], this work underlines that, within the MPM, the CFL298

condition is not a steady quantity in the simulation, as some grid elements can be entirely filled with material points,299

while others only partially. Hence, when mapping information (masses and mechanical properties) from material300

points to grid nodes, the grid-averaged values of these quantities coming from partially filled elements are smaller301

than those coming from entirely filled elements. This variability in mass and stiffness affects the CFL limitation on the302

time-step size during the analysis. For implicit temporal discretisations, the CFL condition is not required to guarantee303

method stability however it can be used to provide an adaptive time-step size for efficiency. Understanding how this304

condition varies during a simulation is therefore, if not necessary is at least practical for adapting the time-step length.305

To the authors’ knowledge, these considerations are new within the MPM framework, but they are well-recognised,306

for instance, in the cut finite element method (see Sticko et al. [41]) where a generalised eigenvalue problem of the307

discrete linear momentum conservation (Eq. (21)) is solved to compute the CFL condition. In this work we adopt a308

convenient computational simplification, which relies on the mapping at the beginning of the step. The CFL constraint309

in Eq. (57) can be mapped at the beginning of the step from the material points (where information such as density310

and elastic moduli lie) to the grid nodes as follows311

mh
A =

Npt∑
pt

NA mpt; (58)

Vh
A =

Npt∑
pt

NA V pt; (59)

Mh
A =

Npt∑
pt

NA Mpt, (60)
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Fig. 3: The cantilever beam problem.

In this fashion, a grid-averaged value of these quantities is computed. Hence, the computation of the approximated312

time-step length based on the CFL condition becomes313

∆tCFL ≈ min
i

(
hh

i

)
min

A


√

mh

Vh Mh


A

, with A = 1, . . . ,Nnodes. (61)

Eq. (61) has to be intended as a rule of thumb more than as a strict rule, making it valuable for adapting the time-step314

in implicit schemes.315

7. Numerical examples316

The method outlined in the previous sections is applied here to three examples of low-frequency dynamic prob-317

lems. In compliance with the assumptions introduced in Section 2, the following numerical analyses consider a318

Hencky material. Since the aim of this work is to consider under which conditions energy and momenta are con-319

served, in accordance with Section 4, the consistent mass matrix (15) together with a FLIP mapping (29) are always320

used for the following numerical simulations. The time-step length was adapted manually for the different exam-321

ples, remaining several times larger than the CFL condition value, without compromising optimal Newton-Raphson322

convergence. Moreover, the error tolerances (tol) have been set to a strict value of 10−11 to demonstrate the strong323

convergence behaviour of the proposed method.324

7.1. 2D elastic cantilever beam325

The first example is a bi-dimensional elastic beam represented in Figure 3a. In particular, two analyses with326

different elastic parameters were run, the former, i.e., (A), with a compressible material, and the latter, i.e., (B) with327

a nearly-incompressible material. The analyses were run using GIMPM instead of the original MPM formulation.328
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Table 3: Summary of the parameters considered in the analyses of the 2D elastic cantilever beam.

Parameter Settings Analysis (A) Analysis (B)

Material Parameters
E 109 Pa 3 · 108 Pa

ν 0.2 0.49

ρ 7750 · 103 kg/m3

Geometry, Load and Timings
lx, ly 10, 1 m

P 500 kN

t0, t1, T 0, 25, 150 s

Analysis Parameters

Lx, Ly 11, 20 m

hx, hy 0.5 m
†mmp 12

∆t ≈ 0.6264 s ≈ 0.2194 s
† mmp is the number of material points per direction per element.

As illustrated in Figure 3b, the load, applied at the end of the free edge, is monotonically increased from 0 to its329

highest value P and then suddenly removed. The peak value of the load is reached at the time t1 = 25 s, while the330

whole simulation carries on until time T = 150 s. The effects of gravity were neglected. The external load vector331

is represented by the point load, which is split between the two end material points in the proximity of the x-axis.332

The material parameters, beam geometry and discretisation for the current two variants, i.e., analyses (A) and (B), are333

summarised in Table 3. In particular, the incremental time lengths ∆t shown in Table 1 correspond to 15 times the334

CFL time-step approximation defined at the beginning of the simulation by Eq. (57). Moreover, it can be noticed how335

the number of material points per element is particularly high. The reason of such an unusual number lies in one of336

the most common issues for the MPM, namely the integration error (see, for instance, Yamaguchi et al. [42] or Gan337

et al. [43]). This integration error is particularly evident when a grid node is active only due a single and misplaced338

(from an integration position perspective) material point. In this case, the badly-integrated quantity will present very339

small entry relative to that nodes. In turn, this small entries can give numerical difficulties when it is necessary to340

invert the badly-integrated quantity (as in the case of the mass matrix or the stiffness matrix). As predictable, this341

situation is less likely to occur if the mesh is pretty coarse and the number of material points per element is high, as342

less likely is the chance of an unique material point mapping to a given node. The chance of experiencing this issue343

can increase with the order of the shape functions, as bigger is their relative stencil.344

The periodic behaviour of the structure’s energies is reported in Figure 4a for analysis (A), where total, material345

points’ kinetic, and strain energy are considered. The time-steps denoted by letters in the same figure correspond to346

sensitive configurations: the last time-step where the load is applied before its removal (A ≈ 24.43 s, 39th time-step),347

the maximum value of the strain energy (B ≈ 29.44 s, 47th time-step, and D ≈ 55.12 s, 88th time-step), and the348

maximum value of the kinetic energy (C ≈ 42.59 s, 68th time-step). As shown in Figures 4b and 4c, after the load349

is removed (just after time-step A), the beam continues to move downwards until the inertia is wholly converted into350

strain energy (Figures 4d and 4e, time-step B). As expected , Figure 4d shows that a considerable amount of strain351



20 G. Pretti et al. / Journal of Computational Physics (2023)

20 40 60 80 100 120 140
0

2

4

6

·105

A B C D

t [s]

E
n
er
gi
es

[J
]

Total Energy

Kinetic Energy

Strain Energy

(a) Time evolution of total, kinetic and strain energy for the cantilever beam problem, analysis (A).

0

500

1,000

St
ra

in
En

er
gy

[J
]

(b) Strain Energy, time-step A, analysis (A).

0

200

400

K
in

et
ic

En
er

gy
[J

]

(c) Kinetic Energy, time-step A, analysis (A).

0

500

1,000

St
ra

in
En

er
gy

[J
]

(d) Strain Energy, time-step B, analysis (A).

0

200

400

K
in

et
ic

En
er

gy
[J

]

(e) Kinetic Energy, time-step B, analysis (A).

0

500

1,000

St
ra

in
En

er
gy

[J
]

(f) Strain Energy, time-step C, analysis (A).

0

200

400

K
in

et
ic

En
er

gy
[J

]

(g) Kinetic Energy, time-step C, analysis (A).

0

500

1,000

St
ra

in
En

er
gy

[J
]

(h) Strain Energy, time-step D, analysis (A).

0

200

400

K
in

et
ic

En
er

gy
[J

]

(i) Kinetic Energy, time-step D, analysis (A).

Fig. 4: Time plot of the energies during the simulation (top row) and deflection shapes representing the strain (left) and kinetic (right) energies for
time-steps A . . .D. Graphs refer all to analysis (A).
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right-hand side).

energy is located at the external fibres in the fixed end. On the other hand, the beam is unstrained in its original352

configuration at time-step C (Figure 4f), while the kinetic energy (Figure 4g) is distributed with a gradient along353

the x-axis, independent of the material points’ position along the vertical direction. Time-step D represents another354

maximum point of the strain energy, with D’s deflection shape horizontally mirroring B’s. However, when comparing355

the strain energy of the two configurations (Figure 4h and 4d, respectively), it can be seen how the external fibres in B356

are more heavily loaded than their respective ones in D. With a closer look, it can be noted how the displacements at357

the free end of the beam in points B and D do not coincide. This inaccuracy is due to time sampling, which does not358

accurately capture the peak strain energy. Therefore, points B and D are not temporally spaced as the proper period of359

the beam would predict. The energies time-response of simulation (B) is plotted in Figure 5a. The structure presents360

periodic behaviour with a lower frequency time compared to simulation (A). Moreover, it can be seen how the total361

energy for this simulation is slightly higher than the one for analysis (A), which is due to a higher kinetic energy362

accumulated in the loading phase for simulation (B).363

Figure 5b shows the convergences of the Newton-Raphson algorithmfor both the analyses, considering the time-364

steps from ≈ 22 s to ≈ 32 s. Even though these steps take difficult passages of the structures into account (time-steps A365

and B are including in this time interval), it can be seen how the algorithms converge smoothly within three iterations366

for both the simulations. As highlighted by Coombs and Augarde [29], when dealing with implicit formulations of the367

MPM, the zeroth iteration is used to build the Jacobian matrix. As such, this iteration was not considered in Figure 5b.368

7.2. Collision of elastic cylinders369

The second example is the collision of two elastic cylinders, and is a common example used in other MPM370

papers [1; 19; 44; 45]. To model the shape of the cylinders, elements were fully populated by materials points.371

Materials points lying outside of the given geometry of the cylinders were then discharged. As shown in Table 4,372
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Table 4: Summary of the parameters considered in the analysis of the elastic cylinder collision.

Parameter Settings

Material Parameters
E1, E2 100 Pa

ν1, ν2 0.3

ρ1, ρ2 5 kg/m3

Geometry, Velocities and Timings

lx, ly 20, 12 m

r1, r2 2 m

(x1, y1), (x2, y2) (5.8, 5.5) m, (14.2, 6.5) m

‖v1‖ , ‖v2‖ 0.75 m/s

T 8 s

Analysis Parameters
hx, hy 2 m

mmp 35

∆t0, min (∆t), max (∆t), ≈ 0.0573, ≈ 0.0562, ≈ 0.0655 s

the time-step size was not constant during the simulation, but five times the time-step length defined by Eq. (61)5,373

was considered. Nonetheless, the variation of such size is minimal, and this is due to the grid size. As can be seen374

from Table 4, the grid lengths and number of material points per direction per element (mmp) were both significant375

as this example which could present ill-conditioned mass or Jacobian matrices. This issue is already known from the376

literature [19] and mainly associated with the poor integration of the above matrices. MPM was used here instead of377

GIMPM as the small overlap between material points’ volume and grid elements’ volume is reduced when MPM is378

applied. Gravity effects were neglected.379

Figure 7a shows the time evolution of the energies for four selected time-steps corresponding to A ≈ 1.89 s, 32nd
380

5Note how running the simulation only five times above the CFL condition is justified by the fact that no numerical dissipation occurs for these
simulations within the finite strain context. Hence, these multipliers of the CFL condition cannot be compared with the much larger coefficients
used by Guilkey and Weiss [27], as their formulation exhibits numerical damping.
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time-step; B ≈ 2.7 s, 45th time-step; C ≈ 3.51 s, 58th time-step; and D ≈ 4.9 s, 80th time-step. In particular, A381

and C correspond to similar levels of energies (both kinetic and strain energy), with the former being more spread on382

material points (Figures 7c, 7g), and the latter being more concentrated on the material point in the proximity of the383

nodes where contact between cylinders is taking place (Figures 7b, 7f). However, even if the overall amount of strain384

and kinetic energies in A and C appear to be very similar, these steps present different distributions of energies on385

material points, as is clear from a comparison of Figures 7b, and 7c for time-step A, with Figures 7f, and 7g for C. The386

minimum kinetic energy (Figure 7e) corresponding to a maximum of the strain energy (Figure 7d) occurs at time-step387

B. From this point on, kinetic energy starts to be recovered until time-step D is reached. This time-step is the end of388

no-slip contact (computed on the grid, as usual within the MPM framework) between cylinders. As expected from389

elastic bodies, the deflection shapes of the cylinders (Figures 7h, and 7i) recover circular sections, even though some390

elastic waves slightly modify them.391

7.3. Elasto-plastic impact of cylinders392

This example is very similar to examples in Meng and Laursen [24], and Love and Sulsky [18]. Even for this case,

it has been decided to include two variants: analysis (A) (run using the original MPM shape functions) matches the

second example above, with the exception that the considered stress-strain relationship is elasto-plastic and the von

Mises yield function is applied, that is

Φ (τ) =

√
2 J2

ρy
− 1 ≤ 0, (62)

with J2 =
si j s ji

2
, si j = τi j −

τkk

3
δi j. On the other hand, analyses (B) (run using the GIMPM shape functions) presents393

a mesh 4 times finer than the one used of (A), with mmp = 8. The parameters that differ from those used in Table 4394

are presented below:395

• (ρy)1 = (ρy)2 = 10 Pa, being the yield stress;396

• min (∆t) ≈ 0.0571 s, and ≈ 0.06020 s for analyses (A) and (B), respectively (being 5 times the minimum397

time-step size defined by Eq. (61));398

• max (∆t) ≈ 0.0666 s, and ≈ 0.06023 s for analyses (A) and (B), respectively (being 5 times the maximum399

time-step size defined by Eq. (61));400

As can be seen from Figure 8a, four time-steps were selected, and their relative deflection shape and energies are401

represented in Figures 8b-8o: A at ≈ 2.9 s, B at 3.9 s, C at 4.4 s, and D at 6.7 s. From Figure 8a, it can be noticed how402

the start of the collision, governed by the mesh size and the different stencils of the shape functions, is delayed for403

simulation (B). In this sense, it can be seen how time-step A, which corresponds to a minimum for the kinetic energy404

for simulation (A) (see Figure 8c), defines instead the initial stages of contact for analysis (B) (Figures 8d and 8e).405

In turn, time-step B is representative of the same levels of kinetic and strain energies for simulation (A) (Figures 8f406

and 8g), while it is particularly close to the peak of contact for analyses (B) (maximum in strain energy, Figure 8h).407

A second yielding takes place starting from time-step C and, although with a decreasing trend, continues until the408
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Fig. 7: Time plot of the energies during the simulation (top row) and deflection shapes representing the strain (left) and kinetic (right) energies for
time-steps A . . .D.
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end of the simulation (A). The cause beyond this second yielding can be found in the waves propagating through the409

bodies after the collision, whose deviatoric part is progressively damped by the von Mises yield function. Time-step410

D defines the end of contact for simulation (A) (constant total energy, Figures 8n and 8o), while it can be appreciated411

from Figures 8p and 8q how contact is still persistent for analysis (B) at this stage.412

From a comparison of the strain energies distributions of analysis (A) (Figures 8b, 8f, 8j, and , 8n) with their413

respectives of simulation (B) (Figures 8d, 8h, 8l, and , 8p), it can be noticed how the mesh refinement and the use414

of different shape functions do not entirely eliminate the dependency of the strain energies from the mesh. From415

a closer look, it can be appreciated how such strain energy localisations take place in correspondence of element416

edges or corners. This can be explained with the integration errors discussed in Example 7.1, as material points in417

correspondence of element boundaries are particularly misplaces from an integration perspective.418

7.4. Impact of a Taylor bar419

This example considers the classical three-dimensional example of the Taylor bar problem Figure 9, which has

been used in the literature as a benchmark for transient dynamic codes both for the FEM [24; 46–49] and for the

MPM [18]. The list of parameters necessary to run the analysis is presented in Table 5, and the GIMPM has been

considered. The yield function is given by the following equation

Φ (τ, q) =

√
2 J2

σy
−

√
2
3

(
1 −

q
σy

)
≤ 0, (63)

where the values of the yield stress is σy = 0.4 GPa. The linear hardening parameter is assumed to be H = 0.1 GPa.420

The time-step length is kept 15 times the value given by Eq. (61). Given the lower number of material points per421

elements originally chosen, this simulation uses the ghost stabilisation (see, for instance, [41] or [50]) to avoid the422

integration problem described in 7.1.423

The time-history of the energies represented (see Figure 10), the maximum radial and axial displacements (see424

Figure 11), and the final deflection shape (see Figure 12) are in agreement with those in references [24; 46–49] for425

the FEM and in [18] for the MPM.

Table 5: Summary of the parameters considered in the analysis of the Taylor bar impact.

Parameter Settings

Material Parameters
K, G 130, 43.3 GPa

ρ 8930 kg/m3

Geometry, Velocities and Timings

h0, r0 32.2, 3.2 mm

Lx, Ly, Lz 7.2, 32.2, 7.2 mm

‖v‖ = vy, -227 m/s

T 80 µs

Analysis Parameters
hx, hy, hz 0.8, 0.648, 0.8 mm

mmp 2

∆t0, min (∆t), max (∆t) ≈ 0.375, ≈ 0.371, ≈ 0.375 µs

426
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Fig. 8: Time course of the energies during the simulation (top row) and deflection shapes representing the simulation (A) (first two columns) and
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8. Conclusions and future work427

This paper extends the MPM to an updated Lagrangian formulation in the context of the isotropic multiplicative428

elasto-plastic theory. Two mapping procedures are assessed, and new light is shed on the connection between the429

material point-to-grid and grid-to-material point mappings in the case of deformable body dynamics. In addition,430

the presence of non-linearity requires careful choice of time-step size and it has been shown that the CFL condition431

can be used as an useful tool in setting the time step size for practical analyses. The standard approach of setting a432

constant time step size for a given analysis is problematic for the MPM as it requires the estimation of the worst case433

(the smallest time step size required for a given time step) a priori, which is almost impossible due to the evolving434

nature of the distribution of mass and stiffness within discretised governing equations during an analysis. The CFL-435

based adaptive approach proposed in this paper has the potential to improve the adaptivity of the time-step size for436

the implicit material point method.437

It should be emphasised that the formulation is very convenient for low-frequency problems, whose time duration,438

especially when extended, is ensured by maintaining the properties inherited from the continuous formulation and439

guaranteed by proper mapping procedures and compliant modifications of the constitutive relation. However, ongoing440

studies show that the current method performs well for high-frequency problems, with the caveat that the time-step441

length should be changed to no more than one order of magnitude above the value defined by Eq. (61). In this fashion,442

the wave oscillating through the medium are entirely reproduced by this technique.443



28 G. Pretti et al. / Journal of Computational Physics (2023)

This method can additionally be used as a basis for validating other features which can be implemented in the444

MPM from an energy perspective, such as frictional contact, within the finite strain theory.445

To further extend the convenience of the proposed algorithm, further work would be valuable to locate techniques446

to invert the mass matrix and the Jacobian matrix without incurring numerical errors. To avoid such errors, the447

proposed method recurred to the use of a higher number of integration points for the Examples 7.1-7.3. However,448

the stabilisation employed in the Example 7.4 proves that, when a lower number of integration points is considered,449

techniques to improve the algorithm’s stability are necessary. The assessment of these methods under a conservation450

laws perspective will be part of further studies. Another natural extension of the algorithm would be the modelling of451

multi-phase materials. Such a method would have to be ascertained in terms of conservation properties for both the452

mappings and constitutive relationships, in the same way as proposed here for a deformable solid body.453

A different interesting extension to the current model could consist in considering anisotropic behaviour, especially454

given that MPM has been used to model wood (see [51; 52]), which exhibits orthotropic behaviour.455
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Appendix A. Linearisation461

Appendix A.1. Linearisation of the internal force vector462

The internal force vector defined by Eq. (44) can be expressed in index notation as463

(
fint
ϑ

)
I

=

∫
Ω0

(
∇xr N

)
I p

(
∆F−1

∆t−ϑ

)
pq
τ

mp
qr dV0. (A.1)

The linearisation of the above quantity with respect to the nodal displacements evaluated at the end of the time-step464

is the so-called stiffness matrix KIJ , and it is useful to express it by using the following chain rule465

KIJ =
∂
(
fint
ϑ

)
I

∂ (un+1)J
=

∫
Ω0

(
∂ (•)I

∂ (F)mn

∂ (F)mn

∂ (un+1)J

)
dV0 =

∫
Ω0

(
∂ (•)I

∂ (F)mn

∂

∂ (un+1)J

(
∂xm

∂Xn

)
︸ ︷︷ ︸

=
∂ (X + un+1)m

∂Xn

)
dV0 =

=

∫
Ω0

(
∂ (•)I

∂ (F)mn

∂

∂ (un+1)J

(
δmn +

∂NmH (un+1)H

∂Xn

))
dV0 =

∫
Ω0

(
∂ (•)I

∂ (F)mn

∂NmH δHJ

∂Xn

)
dV0 =

=

∫
Ω0

(
∂ (•)I

∂ (F)mn
∇xs NmJ Fsn

)
dV0. (A.2)

By using Eq. (A.2), the stiffness matrix can be expressed as466

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/R004900/1
https://collections.durham.ac.uk/
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KIJ =

∫
Ωt+∆t

1
J

∂

∂Fmn

(
∂NI p

∂xr

) (
∆F−1

∆t−ϑ

)
pq
τ

mp
qr ∇xs NmJ Fsn +

1
J
∇xr NI p

∂
(
∆F−1

∆t−ϑ

)
pq

∂Fmn
τ

mp
qr ∇xs NmJ Fsn

+
1
J
∇xr NI p

(
∆F−1

∆t−ϑ

)
pq

∂τ
mp
qr

∂Fmn
∇xs NmJ Fsn

 dVt+∆t

467

=

∫
Ωt+∆t

1
J
∂NI p

∂Xu

∂
(
F−1

)
ur

∂Fmn

(
∆F−1

∆t−ϑ

)
pq
τ

mp
qr ∇xs NmJ Fsn +

1
J
∇xr NI p

∂
(
∆F−1

∆t−ϑ

)
pq

∂Fmn
τ

mp
qr ∇xs NmJ Fsn

+
1
J
∇xr NI p

(
∆F−1

∆t−ϑ

)
pq

∂τ
mp
qr

∂Fmn
∇xs NmJ Fsn

 dVt+∆t. (A.3)

To proceed with the linearisation process, it is convenient to re-write the quantity ∆F−1
∆t−ϑ as468

∆F−1
∆t−ϑ =

∂xϑ
∂X

∂X
∂x

=
∂

∂X

(
X̃ + ϑ∆u

) ∂X
∂x

=
∂

∂X

(
(1 − ϑ) X̃ + ϑx

) ∂X
∂x

=
(
(1 − ϑ) Ft + ϑF

)
F−1 = (1 − ϑ) ∆F−1 + ϑI(2), (A.4)

with I(2) being the second-order identity tensor, i.e. I(2) = δi j. Hence, the linearisation of the above quantity is469

straightforward and, in the case where ϑ = 1
2 (as assumed for the mid-point rule), its derivative becomes470

∂
(
∆F−1

∆t−1/2

)
pq

∂Fmn
=

1
2

∂

∂Fmn

(
(Ft)pα

(
F−1

)
αq

+ δpq

)
= −

1
2

(Ft)pα

(
F−1

)
αm

(
F−1

)
nq
.

Therefore, Eq. (A.3) can be written as471

KIJ =

∫
Ωt+∆t

 − 1
J
∇xm NI p

(
∆F−1

∆t−ϑ

)
pq
τ

mp
qr δrs ∇xs NmJ −

1
2 J
∇xr NI p τ

mp
qr

(
∆F−1

)
pm
δqs∇xs NmJ

+
1
J
∇xr NI p

(
∆F−1

∆t−ϑ

)
pq

∂τ
mp
qr

∂Fmn
∇xs NmJ Fsn

 dVt+∆t. (A.5)

It is also useful to gather the stress quantity ∆F−1
∆t−ϑ τ

mp as a unique asymmetric tensor, which is defined as472

P̌pr =
(
∆F−1

∆t−ϑ

)
pq
τ

mp
qr . (A.6)

Moreover, the first term can be written as473

∂NI p

∂xm
P̌pr δrs

∂NmJ

∂xs
=
∂NI p

∂xm
P̌ps

∂NmJ

∂xs

=
∂NI p

∂xr
P̌ps δrm

∂NmJ

∂xs
. (A.7)

Owing to the above equations, the stiffness matrix becomes474

KIJ =

∫
Ωt+∆t

 − 1
J
∇xr NI p P̌ps δrm ∇xs NmJ −

1
2 J
∇xr NI p τ

mp
sr

(
∆F−1

)
pm
∇xs NmJ
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+
1
J
∇xr NI p

(
∆F−1

∆t−ϑ

)
pq

∂τ
mp
qr

∂Fmn
∇xs NmJ Fsn

 dVt+∆t. (A.8)

The terms in the above equation can be collected in the so-called spatial tanget modulus ǎprms as follows475

ǎprms B −
1
J

P̌ps δrm︸       ︷︷       ︸
BPprms

−
1

2 J
τ

mp
sr

(
∆F−1

)
pm︸                   ︷︷                   ︸

BΘprms

+
1
J

(
∆F−1

∆t−ϑ

)
pq

∂τ
mp
qr

∂Fmn
Fsn. (A.9)

Therefore, the stiffness matrix can be concisely expressed as476

KIJ =

∫
Ωt+∆t

∇xr NI p ǎprms ∇xs NmJ dVt+∆t. (A.10)

It can be noticed that the first and last components of the fourth-order tensor ǎprms in Eq. (A.9) are the classical477

linearised terms which have to be computed in an updated Lagrangian formulation (see, for a comparison, de Souza478

Neto et al. [38]). The second additional term is due to the misalignment between the (intermediate) configuration479

where the equilibrium is imposed and the (current) configuration where the algorithmic Kirchhoff stress has been480

mapped.481

Appendix A.2. Linearisation of the algorithmic Kirchhoff stress482

Owing to the definition of τmp given in Eq. (51), the derivative of such quantity with respect to the deformation483

gradient is as follows:484

∂τ
mp
qr

∂Fmn
=

∂

∂Fmn

(
τ̄qr + ∆PFbqr

(
∆H int

‖∆C‖2

))
=

∂τ̄qr

∂Fmn
+
∂∆PFbqr

∂Fmn

(
∆H int

‖∆C‖2

)
+

∆PFbqr

‖∆C‖4

(
∂∆H int

∂Fmn
‖∆C‖2 − ∆H int ∂ ‖∆C‖2

∂Fmn

)
. (A.11)

The derivatives of the quantities in the above equation can be evaluated in this way:485

∂τ̄qr

∂Fmn
=

1
2

∂

∂Fmn

(
∆Fqα (τt)αβ ∆Frβ + (τt+∆t)qr

)
=

1
2

(
δqm

(
F−1

t

)
nα

(τt)αβ ∆Frβ + ∆Fqα (τt)αβ δrm

(
F−1

t

)
nβ

+
∂ (τt+∆t)qr

∂Fmn

)
; (A.12)

486

∂∆PFbqr

∂Fmn
=

∂

∂Fmn

(
Fqα Fγα Fγβ Frβ − Fqα (Ft)γα (Ft)γβ Frβ

)
= δqm (∆C)nβ Frβ + Fqα (∆C)αn δrm + Fqn Fmβ Frβ + Fqα Fmα Frn; (A.13)

487

∂ ‖∆C‖2

∂Fmn
=

∂

∂Fmn

(
(∆C)αβ (∆C)αβ

)
= 2

(
Fmβ ∆Cnβ + Fmα ∆Cαn

)
;

488

∂∆H int

∂Fmn
=

∂

∂Fmn

(
2
(
∆ψ + ∆D int

)
− 2 τ̄δε d̄δε

)
= 2

∂∆ψ

∂Fmn
+ 2

∂∆D int

∂Fmn
− 2

(
∂τ̄δε
∂Fmn

d̄δε +
∂d̄δε
∂Fmn

τ̄δε

)
.
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To evaluate the derivative of the strain energy, it is necessary to introduce the kind of material we are considering. In489

this case, we take a Hencky material into account with isotropic hardening, whose strain energy function is defined490

by ψ =
1
2
εe
D

e εe︸      ︷︷      ︸
ψe(εe)

+
1
2

H ξ2︸ ︷︷ ︸
ψp(ξ)

(with H ≥ 0 being the hardening parameter). Hence, it follows that491

∂∆ψ

∂Fmn
=
∂ψ

(
εe

t+∆t, ξt+∆t

)
∂Fmn

=
∂ψe (εe

t+∆t)

∂
(
εe

t+∆t

)
cd

∂
(
εe

t+∆t

)
cd

∂ (τt+∆t)ab

∂ (τt+∆t)ab

∂Fmn
+
∂ψp (ξt+∆t)
∂ξt+∆t

∂ξt+∆t

∂qt+∆t

∂qt+∆t

∂Fmn
=

=
(
εe

t+∆t

)
ab

∂ (τt+∆t)ab

∂Fmn
−ξt+∆t

∂qt+∆t

∂Fmn
. (A.14)

On the other hand, the derivative of the internal dissipation ∆D int is a function of the yield function Φ. In this case,492

we do not specify any yield function, so that the derivatives are the most general ones6:493

∂∆D int

∂Fmn
=

∂∆D int

∂(εe,trial
t+∆t )hk

∂(εe,trial
t+∆t )hk

∂Fmn

=
∂

∂(εe,trial
t+∆t )hk

(
∆γ (τt+∆t)αβ

∂Φ

∂ (τt+∆t)αβ
+∆γ qt+∆t

∂Φ

∂qt+∆t

)
∂(εe,trial

t+∆t )hk

∂Fmn

=

 ∂∆γ

∂(εe,trial
t+∆t )hk

(
(τt+∆t)αβ

∂Φ

∂ (τt+∆t)αβ
+qt+∆t

∂Φ

∂qt+∆t

)
+ ∆γ I4,sym

αβab
∂ (τt+∆t)ab

∂(εe,trial
t∆t )hk

(
∂Φ

∂ (τt+∆t)αβ

)
+ ∆γ (τt+∆t)αβ

(
∂

∂(τt+∆t)ab

(
∂Φ

∂ (τt+∆t)αβ

)
∂ (τt+∆t)ab

∂(εe,trial
t+∆t )hk

+
∂

∂qt+∆t

(
∂Φ

∂ (τt+∆t)αβ

)
∂qt+∆t

∂(εe,trial
t+∆t )hk

)

+∆γ

 ∂qt+∆t

∂(εe,trial
t+∆t )hk

∂Φ

∂qt+∆t
+ qt+∆t

 ∂

(τt+∆t)ab

(
∂Φ

∂qt+∆t

)
∂ (τt+∆t)ab

∂(εe,trial
t∆t )hk

+
∂2Φ

(∂qt+∆t)2

∂qt+∆t

∂(εe,trial
t∆t )hk

 ∂(εe,trial
t+∆t )hk

∂Fmn

=

(∂∆D int
,(1)

)
hk

+
(
∂∆D int

,(2)

)
ab

∂ (τt+∆t)ab

∂(εe,trial
t+∆t )hk

 ∂(εe,trial
t+∆t

)
hk

∂Fmn
, (A.15)

where the quantities
(
∂∆D int

,(1)

)
hk

and
(
∂∆D int

,(2)

)
ab

have been defined as494

(
∂∆D int

,(1)

)
hk
B

∂∆γ

∂(εe,trial
t+∆t )hk

(
(τt+∆t)αβ

∂Φ

∂ (τt+∆t)αβ
+qt+∆t

∂Φ

∂qt+∆t

)
+∆γ

∂qt+∆t

∂(εe,trial
t+∆t )hk

(
(τt+∆t)αβ

∂

∂qt+∆t

(
∂Φ

∂ (τt+∆t)αβ

)
+

∂Φ

∂qt+∆t
+ qt+∆t

∂2Φ

(∂qt+∆t)2

)
; (A.16)

(
∂∆D int

,(2)

)
ab
B ∆γ

(
∂Φ

∂ (τt+∆t) ab
+ (τt+∆t)αβ

∂2Φ

∂ (τt+∆t)ab ∂ (τt+∆t)αβ
+qt+∆t

∂

(τt+∆t)ab

(
∂Φ

∂qt+∆t

))
, (A.17)

and I4,sym
αβab = 1

2

(
δαa δβb + δαb δβa

)
is the fourth-order symmetric identity tensor. In the above equations, the first and495

second derivatives of the yield function and the derivative of the plastic multiplier and of the hardening variable with496

respect to the logarithmic trial elastic strain need to be additionally computed since they have been already evaluated497

for the Jacobian matrix and its inverse in the classical elasto-plastic subroutine (for details, see de Souza Neto [38],498

for instance). Moreover, due to the chosen yield function, it can be seen that ∂2Φ

(∂qt+∆t)2 = 0 and ∂
τt+∆t

(
∂Φ
∂τt+∆t

)
: τt+∆t =499

6Nonetheless, the hardening parameter q is neglected since this term would add no further mathematical complexity to the considered problem.
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∂
τt+∆t

(
∂Φ
∂qt+∆t

)
= 0.500

The other derivatives in Eq. (A.14) are501

∂τ̄δε
∂Fmn

d̄δε =
1
2

(
δδm

(
F−1

t

)
nα

(τt)αβ ∆Fεβ + ∆Fδα (τt)αβ δεm

(
F−1

t

)
nβ

+
∂ (τt+∆t)δε
∂Fmn

)
d̄δε

=
1
2

((
F−1

t

)
nα

(τt)αβ ∆Fεβ d̄mε + ∆Fδα (τt)αβ
(
F−1

t

)
nβ

d̄δm +
∂ (τt+∆t)δε
∂Fmn

d̄δε

)
; (A.18)

502

∂d̄δε
∂Fmn

τ̄δε = τ̄δε
∂

∂Fmn

(
1
2

(
δδε − ∆F−1

αδ ∆F−1
αε

))
(A.19)

=
1
2
τ̄δε

((
∆F−1

)
αm

(
F−1

)
nδ

(
∆F−1

)
αε

+
(
∆F−1

)
αδ

(
∆F−1

)
αm

(
F−1

)
nε

)
. (A.20)

To collect the derivatives of the Kirchhoff stres evaluated at the end of the step with respect to the deformation gradient,503

the following index desaturations are necessary in Eq. (A.18)504

∂ (τt+∆t)δε
∂Fmn

d̄δε = d̄δε I4,sym
δεab

∂ (τt+∆t)ab

∂Fmn
= d̄ab

∂ (τt+∆t)ab

∂Fmn
, (A.21)

where the unsolved derivative ∂(τt+∆t)ab
∂Fmn

can be classically developed via the chain rule (see, for instance, de Souza Neto505

et al. [38]) as follows506

∂ (τt+∆t)ab

∂Fmn
=
∂ (τt+∆t)ab

∂(εe, trial
t+∆t )hk

∂(εe,trial
t+∆t )hk

∂(be, trial
t+∆t )lu

∂(be, trial
t+∆t )lu

∂Fmn
. (A.22)

Hence, it is useful to collect the terms in Eq. (A.11) in this fashion507

∂τ
mp
qr

∂Fmn
= Gqrmn +

Fqrab
∂ (τt+∆t)ab

∂
(
εe,trial

t+∆t
)
hk

+Hqrhk

 ∂(εe,trial
t+∆t )hk

∂Fmn
, (A.23)

where the fourth-order tensors Gqrmn, Fqrab andHqrhk have been defined as508

Gqrmn B
1
2

(
δqm

(
F−1

t

)
nα

(τt)αβ ∆Frβ + ∆Fqα (τt)αβ δrm

(
F−1

t

)
nβ

)
+
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‖∆C‖2
(
δqm (∆C)nβ Frβ + Fqα (∆C)αn δrm + Fqn Fmβ Frβ + Fqα Fmα Frn
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1
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((
F−1

t

)
nα
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+ τ̄δε
(
∆F−1

)
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F−1
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nδ

(
∆F−1

)
αε

+ τ̄δε
(
∆F−1

)
αδ

(
∆F−1

)
αm

(
F−1

)
nε

+ 2
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(
Fmβ ∆Cnβ + Fmα ∆Cαn
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; (A.24)

509

Fqrab B
1
2

I4,sym
qrab +

1
‖∆C‖2

∆PFbqr

(
2

(
εe

t+∆t

)
ab

+ 2
(
∂∆D int

,(2)

)
ab
− d̄ab

)
; (A.25)

510

Hqrhk B
2

‖∆C‖2
∆PFbqr

(∂∆D int
,(1)

)
hk
−ξt+∆t

∂qt+∆t

∂(εe,trial
t+∆t )hk

 (A.26)

As it can be seen from Eq. (A.9), the derivative of the algorithmic Kirchhoff stress is multiplied by the deformation511



G. Pretti et al. / Journal of Computational Physics (2023) 33

gradient512

∂τ
mp
qr

∂Fmn
Fsn = Gqrmn Fsn +

Fqrab
∂ (τt+∆t)ab

∂(εe,trial
t+∆t )hk

+Hqrhk

 ∂(εe,trial
t+∆t )hk

∂Fmn
Fsn. (A.27)

Therefore, some simplifications are possible513

Gqrmn Fsn = δqm

(
1
2

(
τPF

t

)
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+
∆H int

‖∆C‖2
∆PFbrs

)
+ δrm

(
1
2

(
τPF

t

)
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+
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‖∆C‖2
∆PFbqs

)
+
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(
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)
−

2
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τ̄sm − (τt+∆t)sε d̄mε + 2
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)
; (A.28)

514

Fqrab

(
∂ (τt+∆t)ab

∂Fmn

)
Fsn =

1
2
FqrabD

alg
abhk Lhklu Blums; (A.29)

515

Hqrhk
∂(εe,trial

t+∆t )hk

∂Fmn
Fsn =

1
2
Hqrhk Lhklu Blums, (A.30)

where the fourth-order tensors appearing in the above equations have been defined as516

D
alg
abhk B

∂(τt+∆t)ab

∂(εe, trial
t+∆t )hk

; (A.31)

Lhklu B 2
∂(εe,trial

t+∆t )hk

∂(be, trial
t+∆t )lu

=
∂ log(be, trial

t+∆t )hk

∂(be, trial
t+∆t )lu

; (A.32)

Blums B
∂(be, trial

t+∆t )lu

∂Fmn
Fsn = (be, trial

t+∆t )us δlm + (be, trial
t+∆t )ls δum. (A.33)

The evaluation of the consistent tangent modulus Dalg
abhk is not necessary, since it has been computed by the elasto-517

plastic subroutine.518

The spatial tangent modulus ǎprms, defined in Eq. (A.9), can be therefore expressed as519

ǎprms = Pprms + Θprms +
1
J

(
∆F−1

∆t−ϑ

)
pq

(
Gqrmn Fsn +

1
2

(
FqrabD

alg
abhk +Hqrhk

)
Lhklu Blums

)
. (A.34)
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most numerical analysis codes artificially lose 
energy through numerical dissipation

in MPMs energy balance must be enforced at 
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the material points and the background grid

the conservation of energy is a core concept 
within physics and engineering

1 2 3 4 5 6 7 8
0

10

20

30

40 A B C D

Total Energy

Kinetic Energy

Strain Energy

kinetic energy distribution

time (s)

en
er

g
y 

(J
)

Algorithm steps: (A) material points on background grid, (B) point-to-grid 
information mapping, (C) equilibrium equations formulated at nodes on the grid, (D) 
solve equilibrium equations for nodal motion, (E) grid-to-point motion & deformation 

mapping and (F) deformed body in equilibrium with external actions.    

strain energy

+

The mass used in the point-to-grid and grid-to-point 
mappings is critical for energy conservation.  A new 
energy conserving MPM for elasto-plastic analysis based 
on an updated Lagrangian description of motion is 
presented.  Compatibility issues with total Langrangian 
approachs and the MPM are avoided by this approach.   
This paper provides a platform for energy conservation 
studies for new methods under large deformations.     

Conclusion 

Pretti et al. (2023)   
existing energy conserving MPMs are based on a 

Total Langrangian (TL) description of motion 

TL formulations require mesh deformations to be 
tracked, removing a key advantage of the MPM

a new energy conserving updated Lagrangian MPM 
is formulated that restores this key advantage

strain energy
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