
Journal Pre-proofs

Discrete modelling of externally bonded composite layers on masonry struc-
tures

F. Cannizzaro, B. Pantò, S. Caddemi, I. Caliò

PII: S0263-8223(23)00281-7
DOI: https://doi.org/10.1016/j.compstruct.2023.116937
Reference: COST 116937

To appear in: Composite Structures

Received Date: 28 June 2021
Revised Date: 8 February 2023
Accepted Date: 16 March 2023

Please cite this article as: Cannizzaro, F., Pantò, B., Caddemi, S., Caliò, I., Discrete modelling of externally
bonded composite layers on masonry structures, Composite Structures (2023), doi: https://doi.org/10.1016/
j.compstruct.2023.116937

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compstruct.2023.116937
https://doi.org/10.1016/j.compstruct.2023.116937
https://doi.org/10.1016/j.compstruct.2023.116937


Discrete modelling of externally bonded composite layers  
on masonry structures  

 
F. Cannizzaroa, B. Pantòb, S. Caddemia, I. Caliòa 

 
a: Department of Civil Engineering and Architecture, Università di Catania, Via Santa Sofia 64, Catania, Italy 

b: Department of Civil and Environmental Engineering, Durham University, Durham, UK 
 
Abstract  

 

The safeguard of existing masonry structures requires the adoption of structural retrofitting 

strategies able to preserve the architectural of the construction. Numerous strengthening 

techniques are available for the rehabilitation of exitsting structures, including historic and 

monumental buildings, most of them based on the application of Externally Bonded 

Composite (EBC) layers on the masonry surfaces. Such a technique represents a low-invasive 

retrofitting strategy widely used in engineering practice. In this paper, within the framework 

of the Discrete Macro-Element Method (DMEM) already introduced by the authors, an 

original macro-element for modelling the interaction between masonry elements and EBC 

layers is presented. The proposed model is able to provide a reliable simulation of the EBC 

layer applications to masonry structures although maintaining a low computational burden. 

After a theoretical description of the EBC macro-element, the new macro-modelling approach 

is validated against experimental and numerical tests available in the literature. 
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1. Introduction 

The maintenance and restoration of existing structures, including historic and monumental 

masonry buildings, require ad hoc strategies able to guarantee the preservation of the original 

structural scheme and the architectural and historic value. Therefore, retrofitting techniques 

should be characterized by low invasiveness and reversibility. Reinforcement of masonry 

structures by means of the application of FRP (Fibre Reinforced Polymer) or, more recently, 

by means of FRCM (Fiber Reinforced Cementitious Matrix) composites nowadays represent 

commonly adopted retrofitting techniques due to their simplicity of application, low weight, 

adaptivity to curved geometry, low invasiveness [1] time and cost of installation [2],[3], and 

vapour permeability in the case of FRCM systems. The fibre reinforcement materials can be 

constituted by organic (e.g., carbon) or inorganic (e.g., glass or basalt) fibres. The adherence 

with the masonry surface can be realized by means of epoxy resins in the case of FRP systems 

or, alternatively, organic matrix, such as lime or cementitious mortar in the case of FRCM 

systems. The fibre-reinforced composite material can be applied to the masonry support 

through one-dimensional (i.e. strips) or bi-dimensional (i.e. layers) layouts. 

Both of the above-mentioned reinforcement techniques are applied on the external surface 

of the masonry and for that reason can be addressed to as Externally Bonded Composites 

(EBC). EBC-reinforced masonry structures exhibit a highly non-linear behaviour due to the 

complex interaction between the EBC material and the masonry support. Several 

experimental tests have been performed on EBC-reinforced masonry structural elements 

aimed at investigating various aspects such as: i) the interaction between EBC and masonry 
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[4]-[8], ii) the in-plane shear response of a reinforced masonry panel [9],[10], iii) the out of 

plane response of reinforced masonry walls [11],[12], iv) the ultimate behaviour of EBC 

curved masonry structures such as arches and vaults under different loading contitions 

[13],[14], v) the efficacy of different reinforcement typologies and their geometrical 

arrangements [15]-[17]. 

The collapse mechanisms related to the EBC materials are related to the sheer rupture in 

tension of the reinforcement itself, or its debonding from the masonry support. In this regard, 

two main bond-failure mechanisms between the reinforcement and the masonry support can 

occur, usually classified as normal pure opening (mode I) and shear bond-slip (mode II) [18], 

associated with normal tensile and shear stresses at the EBC-masonry interface, respectively. 

In the case of FRCM systems the debonding mechanisms can occur following different 

modes, as effectively described in [19],[20]. In particular, damage can occur in the substrate, 

at the reinforcement-to-substrate interface with a complete detachment of the reinforcement, 

and at the textile-to-matrix interface, with sliding of the textile within the reinforcement 

thickness, and with tensile rupture of the textile. 

Given the experimental evidence of the EBC reinforcement efficacy, attention has been 

devoted in the literature to a proper modelling of the interaction between EBC and masonry 

support considered on masonry modelling strategies. To describe the complex non-linear 

EBC-masonry interaction many contributions have been provided to formulate suitable 

constitutive laws for the shear-stress transfer mechanisms between the EBC layers and the 



 4 

flat or curved masonry supports. The simplest of these analytical formulations is a bilinear 

law proposed in the Italian guidelines [21]. Other more complex strategies, able to consider 

combined damage mechanisms, can be found in [22]-[27]. Concerning the FRCM technique, 

an analytical rigid-trilinear cohesive law for simulating the bond-slip behaviour, was recently 

proposed in [26]. A theoretical formulation accounting for the bond-slip behaviour on curved 

surfaces has been proposed in [28]. Alternatively, a simplified model based on a spring-model 

strategy has been presented in [29] and validated in [30]. 

Generally speaking, detailed modelling of masonry structures reinforced with EBC for the 

simulation of their complex non-linear behaviour can be performed by refined Finite Element 

descriptions. Detailed  simulations employing three-dimensional elements considering finite 

element meso-scale approaches have been performed in [31]-[35] or limit analysis [36]-[38] 

have been performed to assess the ultimate behaviour of EBC-reinforced masonry structures.  

However, it is widely recognised that these approaches are computationally demanding 

and unsuitable for large systems. For the latter reason, different strategies that drastically 

reduce the computational cost and providing sufficiently accurate results, have been proposed 

in the literature [39]-[42]. A low-cost and reliable finite element model, specifically 

conceived for the analysis of EBC-reinforced masonry arches, has been recently proposed by 

Bertolesi et al. [39]. In this approach the reinforcing fibres are modelled by means of 2-node 

truss elements characterised by elastic-brittle behaviour in tension and no strength in 

compression. A more detailed modelling strategy that can be used at the macro-scale can be 
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found in [40], where six-nodes wedges describe masonry and the EBC material is described 

by three-node flat elements. Finally, the interaction between masonry and EBC elements is 

simulated by means of triplets of springs which govern the debonding phenomenon between 

the EBC material and the masonry support. Such an approach is combined with a Sequential 

Quadratic Programming (SQP) solving strategy, able to identify subsequent stages of the non-

linear status of the structure, considering approximated constitutive laws by means of a 

piecewise constant discontinuous function [41]. A further macro-modelling approach relying 

on a two-step discrete homogenization technique capable of capturing the average properties 

of FRCM reinforced masonry portions has been recently proposed [42]. Precisely, masonry 

is described by elastic cells linked by homogenized interfaces, where the non-linearities are 

lumped. In contrast, the 2D fibre-reinforced grid is described by elastic-plastic trusses and 

additional layers of solid elements represent the cementitious matrix.  

Within the context of the macro-modelling approaches, this paper addresses the modelling 

of EBC reinforcing techniques in the Discrete Macro Element Model (DMEM) framework, 

able to simulate the non-linear response of unreinforced masonry structures, introduced by 

the authors in the last decade [43]-[46]. In particular, this study completes and extends a novel 

simplified approach recently sketched by the authors [47][48], and also responds to a 

validation request, concerning available experimental data. Zero thickness flat rigids element 

accounting for the presence of EBC strips or layers along the masonry surface, are devised. 

These macro-elements are connected to each other by means of non-linear one-dimensional 
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continuous interfaces; in addition, a novel continuous bi-dimensional non-linear interface, 

entitled to model the interaction between the EBC layer and the masonry, is introduced. The 

continuous one-dimensional EBC-EBC interfaces are conceived to model the non-linear 

tensile behaviour of the composite as well as the tensile rupture of the textile. On the other 

hand, the continuous plane EBC-masonry interface is formulated to simulate the debonding 

phenomenon due to mode I and mode II mechanisms.  

The proposed strategy possesses some advantages with respect to other simplified models. 

The DMEM allows to strongly reduce the computational burden being characterised by very 

few degrees of freedom and allowing non-conforming mesh discretizations. The proposed 

strategy is able to grasp the progressive transfer of the shear stresses between the EBC strips 

and the masonry support and to explicitly distinguish the failure modes of the EBC-EBC 

(tensile failure) and the EBC-masonry interfaces by shear failure. It is particularly suitable 

simulating curved geometry masonry structures, such as arches, vaults, domes etc including 

the elements with continuous section variability still mantaining a very low computational 

cost. In view of the above consideration the model can be considered sufficiently accurate 

although simplified, and particularly suitable for practical engineering purposes.   

In this paper the model is validated against experimental bond-slip tests performed on 

straight and curved specimens [50], out-of-plane loaded EBC-reinforced masonry panels [49] 

and arches [50][51]. The results are also compared with other numerical simulations [39],[50] 

showing the effectiveness and the accuracy of the proposed simplified numerical strategy. 
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2. The modelling strategy: discrete macro-element for the EBC coating 

The proposed approach aims at modelling the presence of EBC coating attached to the 

masonry support under the form of strips or layers. The approach relies on the formulation 

of a novel macro-element applied in accordance with the real position of the EBC strips or 

layers to simulate the non-linear behaviour and the corresponding failure mechanism of the 

reinforcement and its interaction with the masonry substrate. The masonry structure is 

described according to a three-dimensional discrete macro-model formulated to simulate the 

behaviour of unreinforced masonry structures  [46][52]-[55] also in presense of curved 

geometry [44],[45],[56].  

The EBC textile reinforcement is modelled through quadrilateral flat macro-elements 

connected to the contiguous macro-elements by means of one-dimensional zero-thickness 

continuous interfaces entitled to govern the non-linear behaviour in traction of the composite 

material. Precisely, the element deformability is lumped at each one-dimensional interface 

embedding the contribution of the fibres along the direction orthogonal to the interface 

length. The disposal of interfaces along two opposite sides of the new EBC macro-element 

applies to strip modelling; on the other hand, interfaces applied to four sides of the EBC 

macro-element is an efficacious strategy to model 2D grid-type fibre reinforcements, even 

with anisotropic characteristics, able to represent the application of EBC layers. The 

mechanical scheme for the proposed modelling of a EBC textile is depicted in Error! 

Reference source not found. coupled with a DMEM of the masonry support where the 

contiguous zero thickness EBC-EBC interfaces are represented as thin rectangles. 
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The interaction between the EBC coating and the masonry element is modelled by a plane 

continuous non-linear interface, with zero-thickness and a three-dimensional behaviour, that 

is entitled to simulate the presence of the adhesive, organic or cementitious matrix, as also 

depicted in Error! Reference source not found.. The plane interface between EBC elements 

and the masonry support is conceived to model the transfer of the normal and tangential stress 

between the reinforcement and the masonry. By doing so, the bond-shear and bond-tensile 

behaviour of the mortar layer connecting the EBC textile to the masonry can be adequately 

described. 

 

Figure 1. Figure 1 EBC coating macro-model attached to the front (rear) of the masonry macro 
elements according to strip or layer patterns 

It is worth noticing that the proposed mechanical scheme is not limited to the case of EBC 

macro-elements applied on the front/rear surfaces of masonry elements and with sides 

parallel to the masonry element edges, as in Error! Reference source not found.. In fact, 

other layouts with different orientation of the EBC elements (Figure 2a) as well as along the 

perimeter of the masonry macro-elements can be simulated (Error! Reference source not 

found.).  
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Although the proposed approach is not devoted to a micro-modelling of EBC-reinforced 

masonry elements, it can be applied to model reinforcement layouts useful for applications 

in engineering practice. In fact, the above-described reinforcement schemes can be repeated 

to model applications of composite coating on masonry portions with curved geometry 

(vaults or domes) using of irregular macro-elements both for the EBC reinforcement and the 

masonry support. One example is reported in Error! Reference source not found.. 

 (a) 

 (b)  (c) 

Figure 2. Strip coating macro-model attached to: a) the front (rear) of the masonry macro elements 
with strips not parallel to the masonry element edges; b) to the perimeter of the masonry macro elements; 

c) to the front (rear) or perimeter of irregular masonry macro elements adopted for curved geometry. 
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In addition, crossed/overlapped reinforcing elements can be considered provided that only 

the needed interfaces are created (i.e. crossed reinforcing strips do not interact with each 

other). 

3. Kinematics of the interfaces 

The macro-element to model the EBC layers can be regarded as a rigid plate where the 

relevant deformability and non-linear behaviour are ruled by the EBC-EBC and EBC-

masonry interfaces. The kinematics of the interfaces related to the Lagrangian parameters of 

the connected macro-elements is described in the following sub-sections. The definition of 

their mechanical behaviour will then be addressed in the next section. 

3.1. The EBC-EBC interface  

With regard to a local reference system ( , ,x y ze e e ), as in Figure 3a and better detailed in 

Appendix A, the generic r-th EBC macro-element is characterized by six (translations and 

rotations of the centre of gravity G) rigid-body degrees of freedom collected in the vector 

 T
r r r r r r rU V W   d  (Figure 3b). 

The zero-thickness one-dimensional interface, connecting two r and s adjacent EBC rigid 

elements, lies between contact edges of contiguous elements and is conceived to rule the non-

linear behaviour along a specified direction of the EBC reinforcement. A local reference 

system ( , ,  e e e ) with the origin located at the midpoint   of the EBC-EBC interface is 

assumed as in Figure 3a and better specified in Appendix A. At the generic coordinate , 
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ranging in the interval  2 , 2i il l  where il  is the length of the interface, the 

displacements of the interface edges corresponding to the r and s elements expressed in the 

interface local reference system are denoted as        T
r r r ru v w      u  and 

       T
s s s su v w      u , respectively. In Figure 3c the specific case of coplanar EBC 

plate elements lying on the global XY plane is depicted.  r u  and  s u  can be expressed 

in terms of the middle point displacements and the rotations of the r-th and s-th elements 

(auxiliary degrees of freedom represented in Figure 3b and collected in the vectors 

T
r r r r r r ru v w      u  and T

s s s s s s su v w      u , respectively) as 

follows:  

                       
       r f r s f s    u N u u N u    (1) 

where  

                        
 

1 0 0 0 0 0
0 1 0 0 0
0 0 1 0 0

f  


 
   
  

N    (2) 

On the other hand, the relationships between the auxiliary degrees of freedom T
ru  and T

su

, and the Lagrangian parameters of the r-th and s-th elements collected in the vectors rd , sd , 

governing the EBC element kinematics, can be expressed as follows 

                      

;r r r s s s u A d u A d                                             (3) 
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where the ,r sA A  6 6  compatibility matrix operators have been introduced and fully defined 

in Appendix A. 

 
(a)                                                                     (b) 

 
(c) 

Figure 3. EBC elements and the relevant EBC-EBC interface: (a) reference systems, (b) degrees of 
freedom and (c) relative displacements at the interface in the case of coplanar EBC plate elements 

In view of Eqs. (1)-(3), the local displacements  r u  and  s u  along the two edges of 

the interface can be expressed as a function of the Lagrangian parameters collected in the 

vectors ,r sd d  of the r-th and s-th EBC elements, respectively, as follows: 

       ;r r r s s rf f    u N A d u N A d

                                        

(4) 

Finally, based on Eq. (4), the relative displacement function  m̂   of the interface connecting 

the r-th and s-th EBC elements can be expressed as follows: 

      ˆ
T

r sr sf fm       eN A d N A d  (5) 
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3.2. The EBC-masonry interface  

The kinematics of the EBC-masonry interface connecting the EBC elements with the 

masonry macro-elements is presented in this section. The relationships between the local 

kinematic parameters of the interface and the Lagrangian parameters of the two connected 

elements (EBC plate and masonry panel) are formulated.  

The generic p-th 3D masonry macro-element (defined, in accordance to the DMEM 

approach, as a shear deformable regular or irregular quadrilateral with rigid sides) is endowed 

with 7 degrees of freedoms T
p p p p p p p pU V W       d , referred to a local 

reference system , ,px py pze e e . The three translations Up, Vp, Wp and the three rotations 

ppp of the centre of gravity G of the masonry macro-element are associated with the 

spatial rigid body motion of the element, while p is associated with the generalised shear 

deformation, as expressed in detail in [44] ( Figure 4). 

The interaction between the flat EBC element and the attached masonry macro-element is 

described by a bi-dimensional quadrilateral interface covering an area, denoted as intA , lying 

on the front/rear surface (or along the perimeter) of the masonry element (Figure 4a). Each 

EBC-masonry interface is modelled by two rigid plates whose kinematics is governed by 6 

degrees of freedom each (denoted as auxiliary degrees of freedom), which are duly inherited 

by the connected r-th EBC and p-th masonry elements, as better described in what follows.  
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(a) 

 

                          (b)                                                        (c) 

Figure 4. EBC-masonry interface: (a) reference systems, (b) degrees of freedom of the EBC and 
masonry element and (c) auxiliary degrees of freedom of the interface  

By assuming a local reference system ( , , e e e ) coincident with the reference system (

, ,rx ry rze e e ) of the EBC element (Figure 4a), two local coordinates  and  are introduced 

on the interface plane and its kinematics is defined by the local displacements 

       , , , ,T
r r r ru v w          u  and        , , , ,T

p p p pu v w          u  of 

the  ,   points of the two plates confining the interface itself. The latter two vectors can be 

expressed in terms of 12 auxiliary local degrees of freedom (namely the three translations 

and the three rotations of the two plates in correspondence of the centre of gravity Gr of the 

EBC element) oriented along the axes of the reference system, and conveniently collected in 
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the two vectors T
r r r r r r ru v w      u  and T

p p p p p p pu v w      u  

(Figure 4c), which govern the kinematics of the two opposite rigid plates, as follows:  

       , , , ,r r p p        u N u u N u

                             

(6) 

where the following  , N  matrix is also introduced.   

  
1 0 0 0 0

, 0 1 0 0 0
0 0 1 0


  

 

 
   
  

N   (7) 

The 12 auxiliary local degrees of freedom of the two r, p plates of the EBC-masonry 

interface, collected in the vectors ,r pu u , can be in turn related to the global Lagrangian 

parameter vectors ,r pd d  of the connected EBC and masonry elements, respectively, as 

follows: 

 r r r p p p u A d u A d   (8) 

where the 6 6  matrix rA  and the 6 7  matrix pA  are compatibility matrices duly defined 

in Appendix B. 

In view of Eq. (8) the local displacements of the  ,   points of the two plates, provided 

by Eq. (6), can be expressed in terms of the EBC and masonry element degrees of freedoms 

as follows: 

        , , ; , ,r r r p p p        u N A d u N A d   (9) 
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On account of Eq. (9), the relative displacement vector function 

     ,ˆ , , ,r p r p      u u u  entitled to describe the deformation of the EBC-masonry 

interface can be expressed as follows: 

  
 
 
 

   
,

, ,

,

ˆ ,
ˆ ˆ, , , ,

ˆ ,

r p

r p r p r r p p

r p

u
v
w

 
       

 

 
    
  

u N A d N A d  (10) 

4. EBC-EBC interface mechanical behaviour 

As already discussed in section 2, the mechanical characteristics of the composite textile 

are concentrated at the EBC-EBC interfaces. In particular, the latter are responsible for the 

modelling of the textile non-linear axial/flexural behaviour while the EBC shear stiffness 

orthogonal to the fibre direction is neglected. In the following sub-sections 4.1 and 4.2 the 

stiffness matrix for the EBC-EBC interface and the adopted non-linear constitutive laws, 

respectively, are proposed and explicitly formulated. 

4.1. EBC-EBC interface stiffness matrix 

The zero-thickness one dimensional uniaxial EBC-EBC interfaces are characterised by a 

non-linear behaviour described by the incremental relationship between the increments of the 

internal force distribution  d f   along the interface axis and the increment  ˆdm   of the 

relative displacement  m̂  , introduced in Eq. (5), as follows:  

      ˆd dTf k m    (11) 
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where  Tk   represents the tangent stiffness distribution of the EBC-EBC interface along 

the local coordinate  . 

In view of Eq. (5), the force increment  d f   of the EBC-EBC interface, given by Eq. 

(11), can be also expressed as function of the degrees of freedom increment vectors of the r-

th and s-th connected elements, denoted as d ,dr sd d , as follows: 

        d d d
T

T f r r f s sf k       N A d N A d e  (12) 

Considering Eq. (12), upon application of the principle of virtual work, the 12 12  tangent 

stiffness matrix of the EBC-EBC interface, related to the global degrees of freedom of the 

two adjacent r,s elements is obtained as follows: 

      
0

il T T
Tf f f f fk d    K A N N A   (13) 

being 

      ;r T
f f f f

s
  

       
  

A 0A N N N
0 A

   (14) 

The tangent stiffness matrix fK  rules the non-linear behaviour of the EBC-EBC interface 

and its current value is related to the tangent interface stiffness distribution  Tk   which is 

given once the constitutive behaviour of the EBC textile is duly defined as reported in the 

following sub-section.  
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4.2. EBC-EBC interface non-linear constitutive law 

According to the proposed model, the EBC- EBC interface stiffness matrix is 

representative of the elastic/inelastic axial and flexural behaviours of adjacent portions of 

EBC elements, considered as an equivalent homogeneous medium. Based on the latter 

assumption, the tangent interface stiffness distribution  Tk   inherits the behaviour of the 

EBC textile in accordance with a specified uniaxial non-linear constitutive law of the EBC 

textile. 

The constitutive law adopted for the EBC textile is elastic-brittle in tension with tensile 

strength y , Young's modulus fE , and ultimate strain y , while compression force cannot 

be exerted (Figure 5a). It is worth to mention that the adoption of an elastic-brittle constitutive 

behaviour is a simplified choice representative of the textile only that does not take into 

account the contribution of a mortar layer which might be significant in the case of FRCM 

technique (at least before cracking). On the other hand, the proposed formulation of EBC-

EBC interface can accommodate more complex constitutive behaviours. In the case of FRCM 

technique a more sophisticated constitutive law, able to account for the mortar cracking [61], 

would be more appropriate (for example by adopting the constitutive laws proposed in 

[62],[63]). 

The constitutive properties of the EBC textile depicted in Figure 5a are concentrated at the 

EBC-EBC interface by considering an effective thickness, denoted by ft , and an influence 

length over the adjacent EBC element, denoted by ( )fl  (Figure 5b). Precisely, the chosen 
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constitutive law at the generic abscissa   of the interface is reformulated in the force 

distribution-relative displacement ˆ,f m  plane where ff t  and ˆ fm l . 

  

(a)                                                                   (b) 

Figure 5. (a) Mechanical characterization of the constitutive law relative to the EBC textile and (b) 
influence length of the EBC-EBC interface. 

On account of the latter definitions, the tangent stiffness distribution of the EBC-EBC 

interface along the abscissa 0 il   is obtained as follows: 

 
ˆ ˆ( ) for 0

( )
ˆ ˆ ˆ( ) 0 for or 0

f f
T y y f

f

T y y f

E t
k m m l

l
k m m l m

 


 

   

   
  (15) 

where ˆ ym represents the ultimate relative displacement of the interface which is reached at 

the relevant tensile force per unit length y y ff t .  

Once the tangent stiffness distribution of the EBC-EBC interface has been defined as in Eq. 

(15), the integration of the incremental Eq. (11) can be numerically performed according to 

a uniform fibre discretisation of the EBC-EBC interface and the adjacent elements, as 




 y

y
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depicted in Figure 6. The interface has been discretised into vn  cells centred at abscissae j

, 1, , vj n   and, correspondingly, the two EBC connected macro-elements r and s, have 

been discretised according to vn  substrips. The adopted cell interval for the EBC-EBC 

interface is denoted with  and each cell is endowed with an influence length over the 

adjacent EBC elements denoted as ( )jfl  . 

 

Figure 6. Fibre discretisation of the EBC-EBC interface in the case of non-rectangular geometry of 
the EBC elements  

The discretised expression of the interface stiffness matrix proposed in Eq. (13) can now be 

formulated as follows: 

      
1

vn
T T

f f j T j f j
j

k   


 K A N N A    (16) 

5. EBC-masonry interface mechanical behaviour 

The crucial aspect of the EBC retrofitting technique is the interaction between the textile 

and the masonry support. The EBC-masonry interface represented in Figure 4, whose “ad 
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hoc” kinematic formulation has been proposed in subsection 3.2, is entitled to model the 

above interaction. An appropriate calibration of the mechanical non-linear behaviour of the 

interface, based on the phenomenological description of the EBC-masonry interaction, is 

pursued in this section.  

A mechanical description of the above normal-flexural and tangential mechanisms is 

obtained by means of the formulation of the interface stiffness matrix and the calibration 

procedure of the relevant parameters apt to describe the non-linear constitutive laws, as 

reported in the following two subsections.  

5.1. EBC-masonry interface stiffness matrix 

The zero-thickness continuous EBC-masonry interfaces are characterised by a non-linear 

behaviour described by the incremental relationship between the increments of the internal 

tangential  d ,   ,  d ,   , and normal  d ,    stresses along the two in-plane 

longitudinal ,   and the orthogonal   directions of the interface, respectively. The internal 

stress increments, collected in the vector        d , d , d , d ,T
               σ , 

can be expressed in terms of the relative displacement increment  ˆd , u  of the vector 

 ˆ , u , introduced in Eq. (10) where the subscripts r,p referred to the two connected EBC 

and masonry elements have been omitted for brevity, as follows:  

      ˆd , , d ,T     σ k u   (17) 



 22 

It has to be pointed out that the relationship introduced in Eq. (17) relates stress to 

displacement increments, rather than deformations, on account of the zero-thickness 

assumption for the interface. In Eq. (17), the 3x3 tangent stiffness distribution matrix 

 ,T  k  of the EBC-masonry interface along the local coordinates ,   can be defined as 

follows: 

  
     
     
     

, , ,

, , ,

, , ,

T T T

T T T T

T T T

k k k

k k k

k k k

  

 

   

     

      

     

 
 
 
 
 
 

k  (18) 

where, the subscripts , ,    identify the two in-plane and the orthogonal directions of the 

generic EBC-masonry interface. 

In view of Eq. (10), the force increment vector at the interface  d , σ , given by Eq. (17), 

can be also expressed as function of the degrees of freedom increments of the corresponding 

adjacent elements, denoted as d ,dr pd d , as follows: 

        d , , , d , dT r r p p          σ k N A d N A d   (19) 

By considering Eq. (19) and applying the principle of virtual work, the 13 13  tangent 

stiffness matrix of the EBC-masonry interface, dependent on the stiffness distribution 

 ,T  k , is obtained as follows: 

      , , ,
int

T T
T

A

d d        K A N k N A   (20) 
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being 

      ; , , ,r

p
     

 
    

 
  

A 0
A N N N0 A

  (21) 

The generic EBC-masonry interface, through the above stiffness matrix definition, is 

representative of the elastic/inelastic normal and tangential behaviours of adjacent portions 

of masonry and EBC textile, considered as an equivalent homogeneous medium.  

The integration in Eq. (20) providing the tangent stiffness matrix K , can be numerically 

performed according to the discretisation of the EBC-masonry interface depicted in Error! 

Reference source not found.. The interface is here discretised into n n   cells centred at 

points ( ,i j  ) each characterised by the area ijA , 1, ,i n  , 1, ,j n  , and the EBC-

masonry stiffness matrix defined in Eq. (20) may be evaluated according to the following 

discretised expression: 

      
1 1

, , ,
n n

T T
i j i j i j ijTf f

i j
A

 

     
 

K A N k N A    (22) 

 

Figure 7. Cell discretisation of the EBC-masonry interface  
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In the next subsection, the relevant procedure for the calibration of the components of the 

interface stiffness matrix will be presented in detail for a specific constitutive behaviour. 

However, it must be borne in mind that the proposed macro-element modelling procedure 

can accommodate any non-linear constitutive law to model the interaction between the EBC 

textile and the masonry support, also in view of the type of reinforcement at hand. 

5.2. Non-linear constitutive laws and stiffness calibration of the EBC-masonry interface 

In this subsection, the strategy for a straightforward calibration of the EBC-masonry 

interface stiffness distribution is presented. The proposed calibration procedure, without loss 

of generality, is based on a choice of the non-linear constitutive law governing the EBC-

masonry interaction.  

The EBC-masonry plane interface is responsible of governing the non-linear behaviour 

associated with a progressive detachment of the EBC textile from the masonry due to the 

action of normal tensile stresses as well as the progressive transfer of the tangential force 

between the EBC strips and the masonry support.  

Aiming at offering a simplified calibration procedure of the interface constitutive 

behaviour, a partial decoupling of the normal tensile/compressive stress from the shear 

stresses, analogously to the constitutive laws presented in [70] for the case of r/c cross 

sections in accordance to a fibre approach, is considered. Specifically, the shear mode 

behaviour is ruled by the stress resultant, accounting for both shear components, and depends 

on the normal stress as a state parameter. The adopted laws are formulated in what follows 
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as stress-displacement curves, accounting for the fracture energy, leading to a limited mesh 

dependency. Plastic strains have the same orientation of the normal stress for mode I, and of 

the shear stress resultant for mode II and not orthogonal to the yielding domain (non-

associative flow rule). In accordance to the latter assumptions in the following sub-sections 

the constitutive behaviour related to the normal tensile/compressive stress and to the shear 

stress are presented and a simplified calibration of the tangent stiffness matrix of the interface 

is discussed.  

5.2.1 Non-linear modelling of EBC-masonry interface normal stresses  

Characterisation of the behaviour associated with normal tensile/compressive stresses   

in the direction orthogonal to the EBC-masonry interface is here provided. A specific non-

linear constitutive law decoupled from the shear stresses ,    that allows an independent 

calibration of the tangent stiffness component ( , )Tk

  , by assuming null the coupling 

terms ( , ), ( , ), ( , ), ( , )T T T Tk k k k           , is formulated. Nevertheless, the influence 

of the normal stress   on the bond-slip phenomenon related to the shear stresses ,    

will be accounted for as shown in the next subsection.  

The behaviour under consideration is governed by the elasto-plastic constitutive law 

represented in Figure 8 in terms of normal stress   and relative displacement of the 

interface  ,ˆ ,r pw   . The behaviour depicted in Figure 8 is elastic in traction (compression) 

up to the tensile (compressive) elastic limit point ˆ,t tw  ( ˆ,c cw ) characterised by the elastic 
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stiffness nk  both in traction and compression. The tensile (compressive) elastic range is 

followed by a descending linear softening branch up to a limit relative displacement ,ˆu tw  (

,ˆu cw ) attained upon development of a corresponding tensile (compressive) fracture energy 

level tG  ( cG ), i.e. , 2ˆ ˆt tu t tGw w   ( , 2ˆ ˆc cu c cGw w  ). The softening branches in 

traction and compression are hence characterised by the tangent stiffness 

 ,ˆ ˆt u t tt w wk    ,  ,ˆ ˆc u c cc w wk    , respectively.  

In view of the above-described constitutive behaviour along the   axis across the entire 

interface field, the components of the tangent stiffness distribution in Eq. (18) are defined as 

follows: 
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  (23) 

 

Figure 8. Debonding constitutive law 
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The above constitutive behaviour is considered to simulate the possibility of crushing of 

the masonry support, or the mortar interface in case of FRCM, as well as the detachment of 

the EBC element from the masonry substrate due to the achievement of ultimate tensile stress. 

The relevant parameters characterising the behaviour in tension can be calibrated in 

accordance with specific pull off tests. On the other hand, the compression parameters could 

be inferred by the masonry properties for the case of FRP, while the mortar parameters should 

also be accounted for in the case of FRCM. However, the attainment of the limit elastic stress 

in compression is not generally observed.   

5.2.2 Bond-slip constitutive law associated with shear stresses 

Characterisation of the behaviour associated with shear stresses acting between the EBC 

textile and the masonry support allows the calibration of the tangent stiffness components 

( , ), ( , )T Tk k      , ( , ), ( , )T Tk k      of the stiffness matrix in Eq. (18) characterising 

the two in-plane directions parallel to the EBC-masonry interface. 

The numerical simulation of the bond-slip failure mechanism of a EBC masonry element 

appears a very difficult task and not many papers have been devoted to a proper study of the 

phenomenon [29]. On the contrary, in the literature, many authors [39] and codes [21] often 

treat this phenomenon by considering perfect adherence between the masonry and the EBC 

material and by assigning to the latter a fictitious tensile strength, to be calculated mainly 

according to the properties of the fibres and of the masonry support. However, the physical 

phenomenon is characterized by a progressive transfer of the tangential action between the 
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reinforcements and the masonry, which leads to the definition of the so-called optimal bond 

length, that is the required length of the reinforcement strips to properly activate all the 

tangential strength resources in the EBC-masonry interface. To this regard, it is clear that a 

model based on a fictitious EBC tensile strength considers either the debonding stress or the 

tensile strength of the composite and is not able to identify the progressive transfer of 

tangential forces along the EBC-masonry interfaces. Only a few proposals in the literature 

are devoted to a proper identification of a bond-slip law, considering FRP-concrete systems 

[22],[23] and strengthened masonry [25]-[28]. The interface element described in this 

subsection belongs to this latter framework. In particular, an effective bi-directional 

tangential modelling of the cohesive-friction type ruling the non-linear behaviour of the EBC-

masonry interface is introduced in what follows. 

It is worth mentioning that the proposed model can be ideal when the bond-slip behaviour 

can occur in accordance to a single failure mode such as, for instance, the case of FRP 

strengthening techniques. On the other hand, the different possible tangential collapse 

mechanisms characterising the case of FRCM reinforcement, are condensed in the model in 

a single constitutive behaviour.  

Without loss of generality, a Mohr-Coulomb approach is assumed adopting a yield 

dominium   across the area intA  of the EBC-masonry interface as follows:  

 2 2 for
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1 for
( , ) 0

p
p d

sl

p d

W
W G
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where 2 2
    represents the modulus of the resultant shear stress vector 

    τ e e  and where the mechanical parameters cohesion c and coupling factor µ have 

been introduced. The last term in Eq. (24) has been introduced to account for a linear isotropic 

softening shrinkage dependent on the development of the plastic work pW  up to the 

achievement of the delamination fracture energy dG . The yield dominium in Eq.(24) is 

represented in Figure 9a. The behaviour is assumed elastic when the shear stress resultant lies 

inside the dominium ( ( , ) 0   ) while it is plastic otherwise. Plastic slip s  is assumed to 

develop in the direction parallel to the shear stress resultant vector at the beginning of each 

step of the non-linear analysis implying the adoption of a forward Euler integration rule. The 

latter assumption corresponds to a non-associated flow rule with a plastic potential defined 

by a circle centred at the origin in the ,    stress space and represented by the direction 

parallel to the   axis in the ,    plane in Figure 9a.  

For simplicity reasons only, the variable   in Eq. (24) is treated as a parameter, rather than 

a proper variable, whose value is updated when equilibrium at the interface level is enforced. 

As a consequence, in order to account for the influence of the normal stress on the tangential 

behaviour, the yield dominium can be treated as a single variable yield function indicated as 

( ; )   in what follows. In accordance with the latter reasoning, the non-linear shear 

behaviour of the interface is described by a bi-linear constitutive law undergoing softening 
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descending branches dependent on the normal stress  . The latter constitutive law is 

represented in Figure 9b in terms of shear stress 2 2
     and relative displacement 

2 2ˆ ˆ ˆRu u v   resultant moduli in the ,   plane of the interface.  

(a) 

(b) 

Figure 9. Bond slip constitutive law of the EBC-masonry interface: (a) Mohr-Coulomb yield domain; 
(b) tangential stress versus tangential displacement for different values of normal stress 

The elastic branch represented in Figure 9b is characterised by a shear elastic stiffness ok , 

and the elastic limit shear stress value ( )o c     , correspondent to the displacement 

value ( )ˆ ( ) o oo ku     . The softening behaviour is characterised by a constant negative 

stiffness ˆ ˆ( ) ( )u os c u uk       , where ˆ ( )uu   is the ultimate displacement attained 

upon development of the corresponding mode II fracture energy dG  evaluated as follows: 

 ˆ ˆ( ) 2 ( )d
u o

Gu u
c      (25) 
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The plateau in Figure 9b corresponds to the residual tangential strength of the EBC on the 

masonry support depending on the friction action and related to the acting normal stress. An 

estimation of such parameter can be obtained through bond-slip tests on a flat support where 

a constant normal action is applied on the EBC, or by bond-slip tests considering a curved 

support. 

The stiffness sk , characterising the softening behaviour, can be inferred by Eq. (25) as 

2 2 sls c Gk   . The components of the interface stiffness matrix are derived by the above 

constitutive law where, in particular, the coupling terms ( , ), ( , )T Tk k      are neglected, 

as follows: 

2 2
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 
(26)  

It has to be remarked that the effort produced in the formulation of the proposed model 

aims at devising an approach able to conjugate the need of an adequate and reliable modelling 

of the complex interaction at hand with the aspiration to keep low the computational cost of 

the simulations and simple the interpretation of the outcome of the numerical analyses.  

The latter results was pursued in accordance to two main aspects: 

i) keeping the size of the problem as low as possible by considering the essential 

degrees of freedom in the elements  
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ii) adopting uniaxial constitutive laws.  

With regard to the second aspect, the complexity of the problem would rigorously imply 

the adoption of coupled multi-axial constitutive laws; however, there are quite a few proposal 

in the literature of constitutive behaviours for externally bonded composites applied to 

masonry structures which fall within the uniaxial behaviours (e.g. [39]). In this regard, in the 

adopted procedure, although based on uniaxial constitutive laws, a proper three-dimensional 

behaviour of the models is retrieved considering the detailed discretisation by means of the 

fibre approach of the interfaces. The fibre approach proved to be effective in the case of 

reinforced concrete structures [65], considering that all the uni-axial fibres are distributed 

over the integration domain. In any case, when the adoption of a multi-axial constitutive 

behaviour seems to play a more relevant role (e.g. the tangential behaviour of the EBC-

masonry interface) a biaxial behaviour is assumed, also able to account for the interaction 

with normal force acting on the interface although treated in a simplified manner.  

It is worth to note the proposed model, rather than aiming at a refined approach able to 

obtain a micro-modelling of the response, is devoted to a discrete macro-modelling strategy 

able to describe the effect of composite reinforcement on entire structural elements.  

All the adopted constitutive laws and the subsequent calibration of the model are energy-

based and the proposed approach was compared, at least for unreinforced curved masonry 

structures, with more refined approaches [71]; in addition, comparisons of the results obtained 
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by means of the DMEM both at the macro- and at the meso-scale in the case of unreinforced 

masonry structures are also available [64]. 

6. Model validation on single shear lap tests 

The validation of the proposed model has been performed by means of numerical 

simulations of an experimental campaign led at the University of Minho [50] and a 

consequent thorough comparison. Precisely, a complete numerical simulation aiming at 

considering single shear lap tests on Glass Fiber Reinforced Polymer (GFRP) applied on a 

masonry support will be presented and discussed in what follows.  

In the experimental campaign conducted at the University of Minho [50] tensile tests on 

the dry glass fibres (employed in the GFRP) with equivalent thickness 0.149 mm were 

conducted, leading to the definition of the material properties summarized in Table 1.  

Table 1. Adopted mechanical properties for the GFRP reinforcements 

Material Ef [MPa] y [MPa] y tf [mm] 

GFRP 45000 1473 3.19 0.149 

 

In order to validate the capability of the proposed model to describe the progressive 

transfer of the tangential forces along the EBC-masonry interface and its capability of 

predicting mode II failure mode, bond-slip tests are reproduced. The reference specimen, 

identified by G150R, is composed of a GFRP strip applied with epoxy resin, with a 25 mm 

width and 150 mm length, glued onto the top surface of a masonry prism with length 260 

mm, width 130 mm and height 100 mm. 
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Four further specimens have been considered in the numerical simulations in order to 

investigate the effects of the anchorage length (la) and of the radius (R) of the masonry 

support:  

- G100R: flat surface and la =100 mm; 

- G200R: flat surface and la =200 mm; 

- G150X: convex surface of the masonry support with R= 1262.5 mm, and la =150mm; 

- G150E: concave surface of the masonry support with R= 1262.5 mm, and la =150mm. 

The mechanical properties that characterise the bond-slip behaviour of the EBC-masonry 

interfaces, are taken from [50] (and reported in Table 2), where also detailed analyses by 

finite element models have been performed, considering a composite interface model 

formulated within the framework of plasticity, which includes a tension cut-off for mode I, 

the Coulomb friction envelope for mode II, and a cap mode for compressive failure, 

according to [72]. The adopted mesh size, both for the FRP and the masonry elements, is 1 

cm. Masonry for this application is assumed to be elastic with Young’s and shear moduli 

equal to 2040 MPa and 850 MPa, respectively.  

Table 2. Adopted bond slip mechanical properties for the masonry-FRP reinforcement interfaces 

kn [N/mm3] t [MPa] Gt [N/mm] c [MPa] Gc [N/mm] ks [N/mm3] c [MPa]  Gd [N/mm] 

48 0.44 0.15 7.8 90 20 1.3 0.75 2.5 

 

Figure 10 shows the numerical curves for the G150R specimen, in terms of external force 

(F) and displacement at the loaded point (u), compared with the envelope of the experimental 
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data (grey area). In the same Figure 10 the numerical results obtained in [50] are also 

reported.  

The curve obtained by the proposed model is in good agreement both with the finite 

element curve and with the experimental envelope. Limited difference between the results of 

the FEM and the proposed discrete model can be observed in terms of ultimate load though 

both lie in the experimental envelope grey zone. In particular, the difference between the two 

models in terms of ultimate force is about 13%. Regarding to displacement capacity 

(displacement at ultimate load) the two models are in a very good agreement.  

 

Figure 10. Bond-slip tests on flat surface masonry prism; comparison between numerical curves and 
experimental envelope (G150R).  

Figure 11 reports the numerical responses, compared with the experimental data, relative 

to the flat specimens with different anchorage lengths G100R (Figure 11a) and G200R 

(Figure 11b), while Figure 12 is relative to the curved specimens G150E (Figure 12a) and 

G150X (Figure 12b).  

u [mm] 

Experimental envelope 
Proposed model 
Finite Element Model [50] 
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In all the investigated cases the proposed model is able to simulate experimental tests with 

a good accuracy. Larger discrepancies can be observed in the case of concave surface (Figure 

12a); however, also for this case a satisfactory prevision of the ultimate experimental load is 

obtained. It has to be noted that the numerical results provided by the detailed finite element 

model and the proposed model are coherent to each other in all the investigated cases, both 

in terms of ultimate load and capacity displacement. 

(a)  (b) 

Figure 11. Influence of the anchorage length on the Bond-slip response; (a) L=100mm (G100R); (b) 
L=200mm (G200R).   

(a) (b) 

Figure 12. Bond-slip response on curved support with R=1262.5 mm; (a) concave surface (G150E); (b) 
convex surface (G150X).   

A further comparison between numerical results and experimental outcomes can be done 

in terms of longitudinal stresses along the length of the fibre reinforced strip which were 

Experimental envelope 
Proposed model 
Finite Element Model [50]

u [mm] u [mm] 

u [mm] u [mm] 

Experimental envelope 
Proposed model 
Finite Element Model [50]

Experimental envelope 
Proposed model 
Finite Element Model [50] 

Experimental envelope 
Proposed model 
Finite Element Model [50]



 37 

experimentally measured by means of strain gauges for different values of the applied 

external load (25% and 75% of the peak load). Precisely, in Figure 13 the longitudinal stress 

obtained with the proposed model as well as with numerical simulations conducted in [50] 

are compared with the experimental measurements. The agreement between experimental 

data and numerical simulations seems to be very good, thus demonstrating how the proposed 

model is able to catch the real stress distribution and evolution along the fibre reinforced 

strips. 

Based on the accuracy of the proposed model shown by the comparison with experimental 

results further aspects on the interaction between the fibre reinforced textile and the masonry 

support are investigated in what follows. 

In order to better highlight the influence of the anchorage length on the accuracy proposed 

model, in Figure 14a, the numerical results obtained with the proposed model relative to three 

of the considered specimens have been compared (G100R, G150R, G200R). The results 

show how the peak load increases with the anchorage length, till getting very close to the 

force inducing tensile rupture of the fibre reinforced strips implying a sudden reduction of 

the carrying capacity without reaching the so-called effective bond length. Indeed, in [50] the 

author states that «If the anchorage length is large (200 mm) before the anchorage slides, the 

FRP strip fails in tension». For the latter reason the effective bond length doesn’t seem to be 

a significant parameter for the case at hand. In Figure 14b the superposition of curves relative 

to the proposed macro-model for all the analysed curvatures, is reported. It can be observed, 
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in presence of a coupling factor, an increment of the ultimate load for the convex model 

(G150X) and a decrement for the concave model (G150E) with respect to the flat model 

(G150R) because of the influence of the normal stress, in the direction orthogonal to the layer 

reinforcement, on the shear strength.  

  (a) 

  (b) (c)  

(d) (e) 

Figure 13. Comparison among the delamination tests in terms of longitudinal stress along the strips for 
different values of the applied external load: (a) G150R, (b) G100R, (c) G200R, (d) G150X, (e) G150E. 
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The influence of the coupling factor is better shown in Figure 15 where the peak load 

relative for three masonry supports (flat, concave and convex) is reported as a function of .  

 (a)  (b) 

Figure 14. Comparison among the delamination tests: (a) effect of the anchorage length and (b) effect 
of the curvature of the masonry support surface. 

 

Figure 15. Influence of the coupling factor on the ultimate strength. 

In Figure 15 it can be observed that for the convex model the ultimate load increases with 

the coupling factor   up to the value about 3.5   corresponding to an overstrength of 

about 40% with respect to the uncoupled condition. Above that point the ultimate load is 

governed by the rupture of the fibre reinforced strips. On the other hand, for the concave 

model the influence of the coupling factor   leads to a continuously decreasing trend of the 

u [mm] u [mm] 
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capacity strength. In Figure 16 the numerical responses for the cases of the two curved 

masonry supports, for the values 0, 2, 4  ,are reported. It can be observed how the 

ultimate displacement decreases with the coupling factor for the concave support and on the 

contrary it increases for the convex support unless the tensile collapse of the fibre reinforced 

textile occurs as shown by the sudden drop of the curve for 4  . 

(a)  (b) 

Figure 16. Load-displacement curves for several values of the coupling factor: (a) concave surface 
(G150E); (b) convex surface (G150X).   

7. Validation of the model against out-of-plane loaded reinforced masonry walls 

This section presents a validation of the proposed approach with respect to out-of-plane 

loaded reinforced masonry panels. The presented application is significant for two main 

reasons: 

i) the prevention of out-of-plane mechanisms in masonry walls is a common scope 

of the application of fibre-reinforced textiles on masonry structures;  

ii) the considered application is made with a Basalt Fibre Reinforced Cementitious 

Mortar (BFRCM) technique, thus demonstrating the possibility to apply the model 

also in presence of different techniques. 

u [mm] u [mm] 
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There is a wide literature on the flexural experimental behaviour of out-of-plane loaded 

masonry walls reinforced with composites. A comprehensive comparative study on the field 

can be found in [73]. Among the studies therein collected, a case treated more in detail in 

[49] and object of experimental test, characterising the efficacy of the BFRCM technique to 

improve the out-of-plane response of masonry wallets, has been selected. Precisely, after a 

proper component characterization (masonry, basalt fibre mesh reinforcement), unreinforced 

and reinforced masonry wallets are subjected to three-point (line) flexural loading. 

To characterise the masonry, made of solid clay bricks and cement-sand mortar, masonry 

prisms were subjected to uniaxial loading. The experimental stress-strain curves envelope of 

the six tests is reported in Figure 17 with a grey band, subsequently employed to calibrate the 

masonry mechanical properties on the basis of the value of the average compressive strength 

and assuming a parabolic law in compression, represented with the solid line in Figure 17. 

The relevant data are reported in Table 3. 

In [49] four out-of-plane bending tests on unreinforced wallets were also executed, and the 

corresponding results in terms of load-displacement curves envelope are reported in Figure 

18a with the grey band. The latter results are here exploited to calibrate the tensile properties 

of the masonry. The relevant results are reported with a solid line in Figure 18a by adopting 

tensile strength and fracture energy reported in Table 3, in accordance to a proper fitting of 

the experimental tests. An exponential softening in tension was assumed, whereas the 

diagonal and sliding shear non-linear failure modes were inhibited. 
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Figure 17. Compressive strain-stress curve adopted for the uniaxial behaviour of masonry.  

Table 3. Masonry mechanical properties  

E [MPa] t [MPa] Gt [N/mm] c [MPa]  Gc [N/mm] G [MPa] w [kN/m3] 

4000 0.12 0.03 7.62  10 1600 18 

 

For the reinforcement a 25 mm basalt fibre grid embedded in a cement mortar layer has 

been considered. The equivalent properties of the employed BFRCM reinforcement are 

summarized in Table 4. Since no nominal thickness for the textile was provided in the 

description of the experimental tests, but rather mechanical properties per unit length were 

given, the nominal thickness is a free parameter of the model which was arbitrarily set equal 

to 0.01 mm; the corresponding limit tensile strength y was related to the tensile strength of 

the grid (66 kN/m) divided by the nominal thickness, whereas the Young’s modulus E was 

obtained dividing the tensile strength y by ultimate strain u equal to 0.0114. Although it 

could be preferable to adopt more sophisticated constitutive laws to simulate the axial 

behaviour of BFRCM, a simple elastic-brittle constitutive law was assumed for the 

reinforcement package. Regarding the BFRCM-masonry interface characterization, no 

specific tests were conducted, therefore the normal behaviour is considered elastic and the 



 43 

adopted properties were conveniently chosen within typical range for the reinforcement 

typology [74]. 

 (a) (b) 

Figure 18. Load-displacement curves of the (a) unreinforced and (b) strengthened masonry walls.  

Table 4. Mechanical properties adopted for the BFRCM  

Uniaxial EBC element 
properties EBC-masonry interface properties 

E [MPa] y [MPa] kn 
[N/mm3] 

t 
[MPa]

Gt 
[N/mm] 

c 
[MPa]

Gc 
[N/mm] 

ks 
[N/mm3] 

c 
[MPa]  Gd 

[N/mm] 

57895 660 48 - - - - 75 0.75 0 0.26 

 

The comparison in terms of load-displacement curve, considering the envelope of the four 

experimental tests with a grey band, and the numerical simulation, is reported in Figure 18b, 

showing a very good agreement in terms initial stiffness peak load and brittle behaviour. In 

the same figure, the collapse mechanism, involving the rupture of the reinforcement in the 

middle part of the masonry wall, consistent with the outcome of the experimental tests, is 

also shown. 
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8. Model validation on circular arches 

In this section the proposed macro-element model is validated by means of numerical 

simulations relative to a set of circular masonry arches tested at the university of Minho 

[50],[51] under unreinforced and GFRP reinforcement arrangements according to different 

layouts. The arch width is 450 mm, the radius is 770 mm, the inner span 1500 mm and the 

thickness is 50 mm. Five different configurations for the arch have been considered: 

- US - unstrengthened arch, Figure 19a; 

- LS – locally strengthened arch by means of 4 strips at the extrados (4x70 mm width 

GFRP strips) and 2 strips at the intrados (2x80 mm width GFRP strips) whose length 

is p/4 (p is the perimeter of the arch), as better shown in Figure 19b;  

- CSEa - arch strengthened at the extrados with 2x50 mm width GFRP continuous strips, 

Figure 19c; 

- CSEb - arch strengthened at the extrados with 2x80 mm width GFRP continuous strips, 

Figure 19d; 

- CSI - arch strengthened at the intrados with 2x50 mm width GFRP continuous strips, 

Figure 19e. 

All the arch configurations were subjected to the same load scenario, that is a concentrated 

vertical load applied at a quarter of the arch span. Further details on the test layout can be 

found in [50][51]. 

 



 45 

 Lateral view Plan view 

US 

LS 
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CSI 

Figure 19. Experimental layout for the arches: (a) US, (b) LS, (c) CSEa, (d) CSEb, (e) CSI. 

A homogenized continuous material is considered for the masonry support. The 

mechanical properties adopted in the analyses are reported in Table 5 where Gsl indicates the 

fracture energy relative to the sliding mechanism. The mechanical parameters that govern the 

bond-slip and normal stress interaction between masonry and GFRP reinforcements, are 

reported in Table 6. 

Table 5. Mechanical properties adopted for the masonry support  

E [MPa] t [MPa] Gt [N/mm] c [MPa] Gc [N/mm] G [MPa] c [MPa]  Gsl [N/mm] w [kN/m3] 

2040 0.28 0.02 7.8 90 850 0.28 0.4 0.1 15 

Table 6. Mechanical properties adopted for the EBC strip-masonry interface 

kn [N/mm3] t [MPa] Gt [N/mm] c [MPa] Gc [N/mm] ks [N/mm3] c [MPa]  Gd [N/mm] 

48 0.44 0.15 7.8 90 20 0.65 0.75 0.25 

 

The numerical models were discretised consistently with the units’ arrangement of the 

experimental specimens. For computational convenience, due to the symmetry of the 

specimens and of the reinforcements, although in the experimental tests the strips were 

always applied in pairs, in the numerical model single strips with double width were 

considered. Specifically, the number of masonry and EBC elements adopted in the models 
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and the corresponding computational demand in terms of degrees of freedom, are reported in 

Table 7. 

The non-linear behaviour of the analysed arch configurations is expressed in terms of: 

i) capacity curve, i.e. the external applied force versus the vertical displacement of 

the force application point, reporting the opening sequence of the plastic hinges; 

ii) collapse mechanisms, together with a damage map in terms of plastic strain; 

iii) characterization of the plastic hinges, identifying typology (flexural or shear) 

location (intrados or extrados) and position in terms of distance from the left end 

of the arch.  

Table 7. Number of elements and degrees of freedom adopted for the numerical modelling 

Arch Masonry discrete elements EBC discrete elements Degrees of freedom 

US 59 0 413 

LS 59 44 677 

CSEa 59 59 767 

CSEb 59 59 767 

CSI 59 59 767 

 

The results are compared with the experimental tests, but also with the numerical 

simulations reported in [50] and, for some of the analysed cases, in [39]. In the latter paper, 

the strength of the equivalent rods is selected as the minimum strength among all those 

leading to possible failure modes which involve the FRP reinforcement; in particular, the 

results reported in the applications with regard to the latter approach are relative to the Set 

III strategy, according to the terminology adopted in the referenced paper [39].  
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8.1. Unstrengthened arch (US) 

The experimental tests for the case of the unstrengthened arch reported in [51] lead to the 

observation that the collapse is due to the opening of four flexural hinges according to the 

sequence reported in Table 8.  

The opening sequence and positions of the hinges identified in the numerical simulations 

coincide with those experimentally observed (except for a slight difference of the position of 

the last hinge) and with the numerical results reported in [50]. On the other hand, a significant 

discrepancy of the present results, with respect to previous numerical simulations reported in 

[39], is encountered. Precisely, the proposed model seems to be more adherent to the 

experimental evidence with respect to the model proposed in [39]. In Figure 20 the capacity 

curves obtained with the present approach and the model proposed in [39] are compared with 

the envelope of the load displacement curves obtained with the two experiments [50], also 

showing the correspondence with the opening sequence of the four hinges, till the collapse 

condition reported in Figure 21. 

Table 8. Hinge opening sequence for the US arch tests 

Hinge 
Experimental tests [50] Basilio [50] Bertolesi et al.[39] Proposed model 

Typology Position 
[mm] Typology Position 

[mm] Typology Position 
[mm] Typology Position 

[mm] 

H1 Flexural – 
intrados 

355 Flexural – 
intrados 397 Flexural – 

intrados 
397 Flexural – 

intrados 397 

H2 Flexural – 
intrados 

1517 Flexural – 
intrados 1517 Flexural – 

extrados 
30 Flexural – 

intrados 1517 

H3 Flexural – 
extrados 

1087 Flexural – 
extrados 1120 Flexural – 

intrados 
1517 Flexural – 

extrados 1120 

H4 Flexural - 
extrados 

57 Flexural - 
extrados 57 Flexural - 

extrados 
1120 Flexural - 

extrados 30 
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Figure 20. Comparison of the capacity curves for the US arch. 

 

Figure 21. Collapse mechanism of the US arch. 

8.2. Locally strengthened arch (LS) 

The experimental tests for the case of the locally strengthened arch [50] lead to the 

observation that the collapse is due to the opening of four flexural hinges according to the 

opening sequence reported in Table 9. With respect to the unstrengthened arch, in this case 
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the presence of the FRP reinforcement implies a shift of the flexural hinges and leads to a 

higher carrying capacity. 

In Figure 22 and Figure 23 the obtained results show a good agreement with the 

experimental tests in terms of capacity curve, collapse mechanism, damage pattern and 

evolution. 

  

Figure 22. Comparison of the pushover curves for the LS arch. 

  

Figure 23. Collapse mechanism of the LS arch. 
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Table 9. Hinge opening sequence for the LS arch tests 

Hinge 
Experimental tests [50] Basilio [50] Proposed model 

Typology Position 
[mm] Typology Position 

[mm] Typology Position 
[mm] 

H1 Flexural – 
intrados 

1517 Flexural – 
intrados 1517 Flexural – 

intrados 1517 

H2 Flexural – 
intrados 

775 Flexural – 
extrados 1293 Flexural – 

intrados 600 

H3 Flexural – 
extrados 

1341 Flexural - 
extrados 0 Flexural – 

extrados 1293 

H4 Flexural - 
extrados 

0 - - Flexural - 
extrados 0 

8.3. Continuously strengthened arches at the extrados (CSEa and CSEb) 

The experimental tests for the case of arch strengthened at the extrados lead to a more 

complex collapse mechanism involving both flexural and shear hinges. The collapse 

configuration and the hinge opening sequence is described in detail in Table 10. In this case 

the different FRP reinforcement layouts do not modify the collapse mechanism, but simply 

increase the global strength and ductility. The results obtained in terms of hinge opening 

sequence with the proposed model show a good agreement with those of the experimental 

campaign; a slight shift of the hinge locations is encountered only. 

In Figure 24 the proposed model shows a good match with the experimentally observed 

peak load in both the reinforcement configurations; on the other hand, the experimental 

results show a higher ductility which is not reproduced by any of the other reported numerical 

simulations, characterised by a comparable accuracy of the present approach.  

It is also worth mentioning that in the case of the bond-slip tests, which are conducted on 

smaller specimens and therefore more manageable and verifiable, the proposed approach, 

whose simulations were reported in section 6, exhibits a satisfactory reliability. 
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  (a) 

 (b) 

Figure 24. Comparison of the capacity curves for the arches reinforced at the extrados: (a) CSEa and 
(b) CSEb. 
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Table 10. Hinges opening sequence for the CSEa and CSEb arches 

Hinge 
Experimental tests [50] Basilio [50] Bertolesi et al.(only CSEa) 

[39] 
Proposed model 

Typology Position 
[mm] Typology Position 

[mm] Typology Position 
[mm] Typology Position 

[mm] 

H1 Flexural – 
intrados 

330 Flexural – 
intrados 

366 Flexural – 
intrados 

366 Flexural – 
intrados 

366 

H2 Flexural – 
intrados 

1517 Flexural – 
intrados 

1517 Flexural – 
extrados 

43 Flexural – 
intrados 

1517 

H3 Shear 330 Flexural - 
extrados  

43 Flexural – 
intrados 

1508 Shear 366 

H4 Flexural - 
extrados 

0 - - Flexural - 
extrados 

1120 Flexural - 
extrados  

43 

 

In Figure 25 the red lines correspond to a shear hinge, occurred with the yielding along the 

tangential direction at one of the interfaces, which was also experimentally observed. 

 (a) 

 (b) 

Figure 25. Collapse mechanism of the (a) CSEa and (b) CSEb arches. 
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8.4. Continuously strengthened arch at the intrados (CSI) 

The experimental tests for the case of the arch continuously strengthened at the intrados 

lead to the observation that the collapse is due to the opening of four flexural hinges according 

to the opening sequence reported in Error! Reference source not found.. However, in this 

case the carrying capacity is mainly governed by the delamination phenomenon at the 

interface between the FRP reinforcement and the masonry. In this case the opening hinge 

sequence obtained with the proposed model is quite different from those obtained by the 

experimental results and by the numerical simulations in [50]. 

In Figure 26 the capacity curves obtained with the numerical simulations, in spite of the 

discrepancy in terms of opening sequence of the plastic hinges, matches the experimental 

envelope in terms of initial stiffness, peak load and displacement capacity.  

  

Figure 26. Comparison of the pushover curves for the CSI arch. 
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In Figure 27 the red lines correspond to the occurrence of delamination between the fibre 

reinforced strips and the masonry support. The ultimate load of the reinforced arch attained 

by the capacity curve in Figure 27 can be attributed to the occurrence of the delamination 

phenomenon which starts to propagate as the third flexural hinge opens. 

Table 11. Hinges opening sequence for the CSI arches  

Hinge 
Experimental tests [50] Basilio [50] Bertolesi et al. [39] Proposed model 

Typology Position 
[mm] Typology Position 

[mm] Typology Position 
[mm] Typology Position 

[mm] 

H1 Flexural – 
extrados 

1167 Flexural – 
extrados 

1120 Flexural – 
intrados 

366 Flexural – 
extrados 

1120 

H2 Flexural – 
intrados 

1517 Flexural – 
intrados 

1517 Flexural – 
extrados 

43 Flexural – 
extrados 

43 

H3 Flexural – 
extrados 

0 Flexural – 
extrados 

43 Flexural – 
extrados 

1508 Flexural – 
intrados 

366 

H4 - - - - Flexural - 
extrados 

1120 Flexural - 
intrados 

1508 

 

            

Figure 27. Collapse mechanism of the CSI arch. 

9. Conclusions 

In this paper a numerical strategy to assess the structural behaviour of masonry structures 

retrofitted by means of the application of EBC strips is presented. The proposed approach 

can be considered within the larger framework of the discrete macro-element strategies. 

H3 

H1 

H4 
H2 
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In particular, masonry is modelled by means of a discrete macro-element already proposed 

by the same authors in previous works. On the other hand, the EBC strips are modelled by 

means of a novel specific flat discrete element which can interact with other EBC elements 

(along the edges) and with masonry elements (through the contact surface) by means of 

continuous interfaces whose calibration procedures are extensively presented. Although 

simplified, the proposed strategy possesses the following features: 

i) it is able to distinguish the correct damage propagation in the EBC-masonry 

interface (proper of mode II failure);  

ii) it is able to grasp the effect of its actual geometric disposal: layers (strips) on the 

front (rear) of the masonry element, parallel (not parallel) to the masonry element 

edges, on the perimeter along the thickness of the masonry element, and also the 

case of overlapping textiles; 

iii) it allows a three-dimensional disposal of the reinforcements; 

iv) it requires a limited computational effort with respect to classic FEM approaches, 

because of the conceived parsimonious strategy; 

v) the limit of the presented model is strictly related to the adoption of simple partially 

uncoupled uni-axial constitutive laws; however, the formulation of the proposed 

interfaces has been devised to accommodate alternative constitutive behaviours 

according to the desired detail and to the problem at hand; 



 57 

vi) the adoption of uni-axial constitutive laws strongly increases the robustness of the 

numerical approach; 

vii) although based on constitutive uni-axial constitutive laws the three-dimensional 

behaviour of the structural model is assured.  

The suitability and reliability of the proposed approach was tested both on local models 

and whole structural elements (out-of-plane loaded panels and arches). Several comparisons 

are presented considering experimental tests and numerical results which employ both 

simplified and more detailed approaches. In all the considered cases the proposed model is 

able to describe accurately the non-linear behaviour of the EBC-reinforced masonry systems 

experimentally observed, and the results are comparable with those obtained with the 

advanced numerical simulations which make use of refined FE approaches.  
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APPENDIX A: Reference systems and matrix operators of the EBC-EBC interface 
 

The degrees of freedom of the generic r-th EBC element collected in the vector 

 T
r r r r r r rU V W   d  are referred to a local reference system ( , ,rx ry rze e e ), 

centred at the centre of gravity G, being rxe  and rye  orthogonal unit vectors lying on the 

plane of the EBC element and rze  the orthogonal direction. In particular, rxe  is parallel to 

the direction of the fibres embedded in the EBC element. 

The 12 auxiliary local degrees of freedom of the EBC-EBC interface connecting the r-th 

and s-th EBC elements, T
r r r r r r ru v w      u  and T

s s s s s s su v w      u

, are referred to a local reference system ( , ,  e e e ) with origin at the midpoint   of the 

EBC-EBC interface described as follows: the unit vector e  indicates the axis oriented along 

the line interface direction, the unit vector e  represents the average direction between the 

two unit vectors orthogonal to the edges of two connected r and s EBC elements, whereas 

e  is obtained by the cross product between e  and e . 

The 6 6  compatibility matrix operators ,r sA A  introduced in Eq. (3) to express ,r su u  in 

terms of ,r sd d , respectively, are be defined for the generic r-th EBC plate element as follows:  

3,3

r r r

r

r

 
  
 

  
 
 
 
 

R R W

A

0 R

            (A1) 
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where rR  is the transformation matrix able to relate the reference systems of the connected 

element and the interface, while rW  is the skew matrix of the vector identifying the position 

of the origin of the reference system of the interface. Such matrices are defined as follows: 

0
; 0

0

r r

r r

r r

G Grx ry rz

r rx ry rz r G G

rx ry rz G G

z z y y

z z x x

y y x x

  

  

  

 

 

 

     
          
         

e e e e e e
R e e e e e e W

e e e e e e
   (A2) 

sR  and sW  are defined analogously. 
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APPENDIX B: Matrix operators of the EBC-EBC interface 
 
The compatibility matrices ,r pA A  appearing in Eq. (8), to link the auxiliary degrees of 

freedom of the interface with those of the connected elements, are dependent on the geometry 

of the elements as follows: 

 6r A I                  (B1) 

3,3 3,1

p

 
   
 

  
 
 
 
 

ΓR R W R d

A

0 R 0

               (B2) 

where 6I  is the identity matrix of order 6 and R  and W , analogously to what already 

introduced in Eq. (A2), are defined as follows: 

0

; 0
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   (B3) 

being the coordinates of Gp and Gr expressed in the local reference system of the masonry 

panel. The vector d  appearing in Eq. (B2) collects the displacements components of Gr in 

the local reference systems of the masonry element associated with a unit distortion of the 

degree of freedom p , and can be defined as follows: 
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In Eq.(B4)  ,
r rG Gu v  are the coordinates of the projection of Gr on the average plane of 

the panel in an intrinsic local reference system ,u v      1,1 , 1,1u v    . , 1,..., 4il i   and 

, 1,...,4i i   represent the length of the i-th edge and the angle at the i-th vertex of the 

masonry element, respectively. 
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