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Abstract

We prove that if X is a finite area non-compact hyperbolic surface, then
for any ϵ > 0, with probability tending to one as n → ∞, a uniformly
random degree n Riemannian cover of X has no eigenvalues of the Laplacian
in [0, 1

4
− ϵ) other than those of X, and with the same multiplicities.

As a result, using a compactification procedure due to Buser, Burger, and
Dodziuk, we settle in the affirmative the question of whether there exists a
sequence of closed hyperbolic surfaces with genera tending to infinity and
first non-zero eigenvalue of the Laplacian tending to 1

4
.
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1 Introduction

Let X be a finite-area hyperbolic surface, that is, a smooth surface with
Riemannian metric of constant curvature −1. In this paper, all hyperbolic
surfaces are assumed complete and orientable. The Laplacian operator ∆X

on L2(X) has spectrum in [0,∞). The bottom of the spectrum is always a
discrete eigenvalue at 0 that is simple if and only if X is connected.

If X is non-compact, which is the first focus of our paper, then the
spectrum of ∆X in [0, 14) consists of finitely many discrete eigenvalues and
the spectrum is absolutely continuous in [14 ,∞) [LP81]. As such, the spectral
gap between 0 and the rest of the spectrum has size at most 1

4 .
We are interested in the size of this spectral gap for random surfaces. The

random model we use is the random covering model from [MN20, MNP20,
MN21]. For any n ∈ N, the space of degree n Riemannian covering spaces
of X is a finite set that we equip with the uniform probability measure. We
say that a family of events, depending on n, holds asymptotically almost
surely (a.a.s.) if they hold with probability tending to one as n → ∞. We
also note that any eigenvalue of the Laplacian on X will be an eigenvalue
of any cover of X, with at least as large multiplicity. Therefore these ‘old
eigenvalues’ must always be taken into account. As we explain in §§2.1, a
theorem of Dixon [Dix69] implies that a uniformly random degree n covering
space of a fixed connected non-compact X will be connected a.a.s.

The first theorem of the paper is the following.

Theorem 1.1. Let X be a finite-area non-compact hyperbolic surface. Let
Xn denote a uniformly random degree n covering space of X. For any ϵ > 0,
a.a.s.

spec(∆Xn) ∩
[
0,

1

4
− ϵ

)
= spec(∆X) ∩

[
0,

1

4
− ϵ

)
and the multiplicities on both sides are the same.

This theorem is the analog, for finite-area non-compact hyperbolic sur-
faces of Friedman’s theorem [Fri08] (formerly Alon’s conjecture [Alo86]) stat-
ing that random d-regular graphs have almost optimal spectral gaps. Fried-
man also proposed in [Fri03] that a variant of Alon’s conjecture should hold
for random covers of any fixed finite graph, and this extended conjecture
was recently proved by Bordenave and Collins [BC19].

If X has Euler characteristic χ(X) = −1, then a result of Otal and Rosas
[OR09, Thm. 2] states that spec(∆X) ∩

[
0, 14
)
is just the multiplicity one

eigenvalue at 0. Taking such an X as the base surface in Theorem 1.1 we
therefore obtain the following corollary.
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Corollary 1.2. There exist connected finite-area non-compact hyperbolic
surfaces Xi with χ(Xi) → −∞ and

inf (spec(∆Xi) ∩ (0,∞)) → 1

4
.

In fact one can take χ(Xi) = −i.

The corresponding question for closed surfaces X is as follows. If X is
closed then the spectrum of ∆X consists of eigenvalues

0 = λ0(X) ≤ λ1(X) ≤ · · · ≤ λi(X) ≤ · · ·

with λi(X) → ∞ as i → ∞. Suppose that Xi are a sequence of closed
hyperbolic surfaces with genera g(Xi) → ∞. Huber proved in [Hub74] that
in this case,

lim supλ1(Xi) ≤
1

4
.

Therefore 1
4 is an asymptotically optimal lower bound for λ1(Xi). In the

same scenario, it was conjectured in [Bus78] that limi→∞ λ1(Xi) → 0. This
was corrected in [Bus84] where it was put forward that ‘probably’ there exist
a sequence of Xi as above with

lim
i→∞

λ1(Xi) =
1

4
.

See [WX18, Conj. 5], [Wri20, Problem 10.3] for more recent iterations of
the question of whether λ1(Xi) can go to 1

4 as the genus tends to infinity.
We are able to resolve this question here by combining Corollary 1.2 with

the ‘handle lemma’ of Buser, Burger, and Dodziuk [BBD88]; see Brooks and
Makover [BM01, Lemma 1.1] for the extraction of the lemma. We obtain

Corollary 1.3. There exist closed hyperbolic surfaces Xi with genera
g(Xi) → ∞ and λ1(Xi) → 1

4 . In fact one can take g(Xi) = i.

1.1 Prior work

The analog of Theorem 1.1 was proved for conformally compact infinite
area hyperbolic surfaces by the second named author and Naud in [MN21],
following a previous work with an intermediate result [MN20]. The reader
should see however [MN21] for details because the spectral theory is more
subtle for infinite area surfaces and moreover the results in [MN21] go beyond
statements about L2 eigenvalues.
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The very first uniform spectral gap for certain combinatorial models of
random surfaces (the ‘Brooks—Makover’ models), yielding both finite-area
non-compact and closed surfaces, appears in work of Brooks and Makover
[BM04]. This spectral gap is non-explicit.

The analog of Theorem 1.1 for closed hyperbolic surfaces is still un-
known. The best known result in the random cover model is due to the
second named author, Naud, and Puder [MNP20], building on [MP20], that
gives an a.a.s. relative1 spectral gap of size 3

16 − ϵ for random covers of a
closed hyperbolic surface. The fact that a Weil—Petersson random closed
hyperbolic surface enjoys spectral gap of size 3

16 −ϵ with probability tending
to one as genus → ∞ was proved independently by Wu and Xue [WX21]
and Lipnowski and Wright [LW21]. The first uniform spectral gap of size
≈ 0.0024 for Weil—Petersson random closed surfaces was proved by Mirza-
khani in [Mir13]. Prior to the current work, the first named author proved in
[Hid22] that Weil—Petersson random surfaces of genus g with O(gα) cusps,
with α < 1

2 , have an explicit positive uniform spectral gap depending on α
as g → ∞, which coincides (for any fixed ϵ > 0) with 3

16 − ϵ if α = 0.
The fact that all models of random closed hyperbolic surfaces are cur-

rently stuck at λ1 = 3
16 − ϵ is an obstacle to proving Corollary 1.3 by the

more direct method of proving that random closed surfaces of large genus
have almost optimal spectral gaps. This 3

16 barrier bears explanation; it
also appears in the famous 3

16 Theorem of Selberg [Sel65]. Very roughly
speaking, this barrier corresponds to fine control of probability events con-
cerning simple closed geodesics in random surfaces and not having as fine
control on non-simple geodesics. This splitting of geodesics into simple and
non-simple goes back to work of Broder and Shamir [BS87] in the graph
theoretic setting. The appearance of 3

16 in [Sel65] is for different reasons
relating to Selberg’s use of Weil’s bounds [Wei48] on Kloosterman sums.

The previous best results towards Corollary 1.2, just for the case of
χ(Xi) → −∞, all came from arithmetic hyperbolic surfaces. The records
were held by Selberg [Sel65] (spectral gaps of size 3

16 = 0.1875), Gelbart and
Jacquet [GJ78] (existence of spectral gaps larger than 3

16), Luo, Rudnick,
and Sarnak [LRS95] (spectral gaps of size 171

784 ≈ 0.218), Kim and Shahidi
[KS02b, KS02a] (spectral gaps of size 77

324 ≈ 0.23765), and currently, Kim
and Sarnak [Kim03, Appendix 2] (spectral gaps of size 975

4096 ≈ 0.23804).
The history of Corollary 1.3 began with McKean’s paper [McK72, McK74]

where it was wrongly asserted that the first eigenvalue of any compact hyper-
bolic surface is at least 1

4 ; this was disproved by Randol in [Ran74] who ac-

1Here relative refers to disregarding eigenvalues of the base surface.
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tually showed that there can be arbitrarily many eigenvalues in (0, 14). Buser
proved in [Bus84] using Selberg’s 3

16 theorem and the Jacquet—Langlands
machinery [JL70] that there exist closed hyperbolic surfaces Xi with gen-
era g(Xi) → ∞ and λ1(Xi) ≥ 3

16 . Buser, Burger, and Dodziuk proved in
[BBD88] that one can get the slightly weaker result λ1(Xi) → 3

16 but with-
out using Jacquet—Langlands. This turns out to be instrumental in the
current work; see Lemma 8.1 below.

Following these works, all progress towards Corollary 1.3 ran parallel
to the previously discussed progress to Corollary 1.2. In particular, the
previous best known result towards Corollary 1.3 comes from combining the
Kim-Sarnak bound with either Jacquet—Langlands or [BBD88] to obtain
the first part of Corollary 1.3 with 1

4 replaced by 975
4096 .

1.2 Overview of proof

The proof of Theorem 1.1 follows the following strategy. We view

X = Γ\H

where Γ is a discrete torsion free subgroup of PSL2(R) and H is the hyper-
bolic upper half plane. We explain in §2 that the random degree n covers
of X are parameterized by

ϕ ∈ Hom(Γ, Sn) 7→ Xϕ

where ϕ is a uniformly random homomorphism of the free group Γ into the
symmetric group Sn. Because we disregard eigenvalues and eigenfunctions
lifted from X, we restrict our attention to the space L2

new(Xϕ) of functions
that are orthogonal to all lifts of L2 functions from X. The strategy is then,
for any s0 >

1
2 , to asymptotically almost surely produce a bounded resolvent

operator
RXϕ

(s) : L2
new(Xϕ) → H2

new(Xϕ)

where H2
new(Xϕ) ⊂ L2

new(Xϕ) is a suitable Sobolev space (see §2.2) such that
for any s ∈ [s0, 1] the identity(

∆Xϕ
− s(1− s)

)
RXϕ

(s) = IdL2
new(Xϕ),

makes sense and holds true; this will forbid new eigenvalues in [0, s0(1−s0)].
The way we build our resolvent is by a parametrix construction. The

fundamental structure of parametrix construction is to produce a bounded
operator

Mϕ(s) : L
2
new(Xϕ) → H2

new(Xϕ)
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such that (
∆Xϕ

− s(1− s)
)
Mϕ(s) = IdL2

new(Xϕ) + Lϕ(s)

where we aim to prove Lϕ(s) has norm less than one as a bounded operator
on L2

new(Xϕ) so that we can obtain our bounded resolvent

RXϕ
(s) = Mϕ(s)

(
IdL2

new(Xϕ) + Lϕ(s)
)−1

.

Often in a parametrix construction one also wants the L term to be
compact: this will also be the case here and turns out to be essential for the
application of random operator results.

The way we build Mϕ(s) is by patching together a ‘cuspidal parametrix’
Mcusp

ϕ (s) based on a model resolvent in the cusps and an an interior parametrix

Mint
ϕ (s) that only depends on the localization of its argument to a compact

part of Xϕ. We then let

Mϕ(s) = Mint
ϕ (s) +Mcusp

ϕ (s)

and we get a resulting splitting

Lϕ(s) = Lint
ϕ (s) + Lcusp

ϕ (s).

In §4 we show that for any ϕ, the term Mcusp
ϕ (s) can be designed so that

∥Lcusp
ϕ (s)∥ ≤ 1

5 (or any small number), so that it will not essentially interfere
with our plans of obtaining ∥Lϕ(s)∥ < 1. The ability to do this is a particular
feature of the geometry of hyperbolic cusps.

The term Mint
ϕ (s) is based on averaging the resolvent kernel of the hy-

perbolic plane over the fundamental group of Γ (suitably twisting by ϕ) to
obtain an integral operator on L2

new(Xϕ). The problem with this is that the
averaging will not obviously converge, so we have to multiply the hyperbolic
resolvent kernel by a radial cutoff that localizes to radii ≤ T + 1 to get a
priori convergence for all s ∈ (12 , 1]. This gives us that Mint

ϕ (s) is bounded
(Lemma 5.5).

The effect of this cutoff is that the error term Lint
ϕ (s) is an integral

operator with smooth kernel. We prove that we can unitarily conjugate
Lint
ϕ (s) to ∑

γ∈Γ
aγ(s)⊗ ϕ(γ)

acting on L2(F ) ⊗ V 0
n , where F is a Dirichlet fundamental domain for Γ

and V 0
n is the standard n − 1 dimensional irreducible representation of Sn.
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The aγ(s) are compact operators on L2(F ) and there are only finitely many
γ ∈ Γ for which aγ(s) is non-zero.

If instead, the aγ(s) were elements of End(Cr) for some fixed finite r,
because Γ is free we would now be exactly in the situation to apply the
breakthough results of Bordenave and Collins from [BC19]. These random
operator results, combined with a linearization trick of Pisier [Pis18], would
tell us that for any ϵ > 0, a.a.s.

∥Lint
ϕ (s)∥ ≤

∥∥∥∥∥∥
∑
γ∈Γ

aγ(s)⊗ ρ∞(γ)

∥∥∥∥∥∥+ ϵ (1.1)

where ρ∞ : Γ → End(ℓ2(Γ)) is the right regular representation. Because the
aγ(s) are in reality compact operators on Hilbert spaces we can approximate
by finite rank operators to the same effect.

The key point (which is a sticking point in other approaches to this
problem using e.g. transfer operators) is that we understand the operator
in the right hand side of (1.1) well: it can be unitarily conjugated to an
operator on L2(H) that is the composition of multiplication with a cutoff
(with norm ≤ 1) and an integral operator with real-valued radial kernel that
localizes to radii in [T, T + 1].

The key is that as this latter operator is self-adjoint we can use the
theory of the Selberg transform to estimate its norm in Lemma 5.2. By
choosing T sufficiently large in the beginning, we can force the norm in the
right hand side of (1.1) to be as small as we like, given any s0 >

1
2 , for all

s ≥ s0.
Assembling these arguments, for any s ≥ s0 >

1
2 , a.a.s. 1+Lϕ(s) can be

inverted which rules out Xϕ having a new eigenvalue at s(1− s). To be able
to get this result for all s ≥ s0 with probability tending to one, we make
sure that ∥Lϕ(s)∥ ≤ 3

5 at a fine enough net of s ∈ [s0, 1] and then use a
deviations estimate (Lemma 6.1) to show (deterministically) that ∥Lϕ(s)∥
fluctuates at most by 1

5 from point to point.
A historical remark: a similar parametrix method in the context of hy-

perbolic surfaces (albeit for completely different purposes) goes back to work
of Guillopé and Zworski [GZ95] who used the method to give sharp upper
bounds on the number of resonances of geometrically finite hyperbolic sur-
faces in balls. In turn this method is based on Vodev’s ‘impressive refinement
of the Fredholm determinant method’ (ibid.) [Vod91, Vod92, Vod94] for the
control of scattering poles of perturbed Laplacians in Euclidean spaces.
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2 Random covers

2.1 Construction

Let X be a finite area non-compact connected hyperbolic surface. We view
X as

X = Γ\H

where
H = {x+ iy : x, y ∈ R, y > 0 }

with metric
dx2 + dy2

y2

where Γ is a discrete torsion-free subgroup of PSL2(R) that acts, via Möbius
transformations, by orientation preserving isometries on H.

For n ∈ N let [n]
def
= {1, . . . , n} and Sn denote the group of permutations

of [n]. For any homomorphism ϕ ∈ Hom(Γ, Sn) we construct a hyperbolic
surface as follows. Let Γ act on H× [n] by

γ(z, x)
def
= (γz, ϕ(γ)[x])

and let
Xϕ

def
= Γ\ϕ (H× [n])

denote the quotient by this action. If we choose ϕ uniformly at random in
Hom(Γ, Sn), the resulting Xϕ is a uniformly random degree n covering space
of X. Note that Γ is a free group freely generated by some

γ1, . . . , γd ∈ Γ

and choosing ϕ is the same as choosing

σi
def
= ϕ(γi), i = 1, . . . , d
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independently and uniformly at random in Sn.
The surface Xϕ is connected if and only if Γ acts transitively on [n] via

ϕ. By a theorem of Dixon [Dix69], two independent and uniformly random
permutations in Sn generate Sn or An a.a.s and it follows that a uniformly
random cover Xϕ is connected a.a.s.

Let Vn
def
= ℓ2([n]) and V 0

n ⊂ Vn the subspace of functions on [n] with zero
mean. The representation of Sn on ℓ2([n]) is its standard representation by
0-1 matrices and the subspace V 0

n is an irreducible subspace of dimension
(n− 1): we write

ρϕ : Γ → End(V 0
n )

for the random representation of Γ induced by the random ϕ.

2.2 Function spaces

We define
L2
new(Xϕ)

to be the space of L2 functions on Xϕ that are orthogonal to all pullbacks
of L2 functions from X. The elements f ∈ L2

new(Xϕ) have mean value 0
fiber-wise in the sense that for almost every x ∈ X we have

∑n
i=1 f(xi) = 0

where xi are the lifts of x to Xϕ.
We have

L2(Xϕ) ∼= L2
new(Xϕ)⊕ L2(X).

This induces a multiplicity respecting inclusion spec(∆X) ⊂ spec(∆Xϕ
). All

other eigenvalues of ∆Xϕ
(with multiplicities) arise from eigenfunctions in

the subspace L2
new(Xϕ).

Let F denote a Dirichlet fundamental domain for X, that is, for some
fixed o ∈ H,

F
def
=

⋂
γ∈Γ\{id}

{ z ∈ H : d(o, z) < d(z, γo) }.

This choice will be convenient for the proof of Lemma 5.4. Let C∞(H;V 0
n )

denote the smooth V 0
n -valued functions on H. There is an isometric linear

isomorphism between
C∞(Xϕ) ∩ L2

new(Xϕ)

and the space of smooth V 0
n -valued functions on H satisfying

f(γz) = ρϕ(γ)f(z) (2.1)

9



for all γ ∈ Γ, with finite norm

∥f∥2L2(F )
def
=

∫
F
∥f(z)∥2V 0

n
dH <∞

We will denote C∞
ϕ (H;V 0

n ) ⊂ C∞(H;V 0
n ) for these functions. Under this

isomorphism, the Laplacian on C∞(Xϕ)∩L2
new(Xϕ) is intertwined with the

Laplacian that acts on C∞
ϕ (H;V 0

n ) in the obvious way (this can be defined

by choosing any basis of V 0
n and letting the Laplacian act coordinatewise

on V 0
n -valued functions). The completion of C∞

ϕ (H;V 0
n ) with respect to

∥ • ∥L2(F ) is denoted by L2
ϕ(H;V 0

n ); the isomorphism above extends to one

between L2
new(Xϕ) and L

2
ϕ(H;V 0

n ).

Let C∞
c,ϕ(H;V 0

n ) denote the elements of C∞
ϕ (H;V 0

n ) that are compactly

supported when restricted to F̄ (in other words, compactly supported mod-
ulo Γ).

We also consider the following Sobolev spaces. Let H2(H) denote the
completion of C∞

c (H) with respect to the norm

∥f∥2H2(H)
def
= ∥f∥2L2(H) + ∥∆f∥2L2(H).

We let H2
ϕ(H;V 0

n ) denote the completion of C∞
c,ϕ(H;V 0

n ) with respect to the
norm

∥f∥2H2
ϕ(H;V 0

n )

def
= ∥f∥2L2(F ) + ∥∆f∥2L2(F ).

We let H2(Xϕ) denote the completion of C∞
c (Xϕ) with respect to the norm

∥f∥2H2(Xϕ)
def
= ∥f∥2L2(Xϕ)

+ ∥∆f∥2L2(Xϕ)
.

Viewing H2(Xϕ) as a subspace of L2(Xϕ) in the obvious way, we let

H2
new(Xϕ)

def
= H2(Xϕ) ∩ L2

new(Xϕ).

Similarly to before there is an isometric isomorphism between H2
new(Xϕ)

and H2
ϕ(H;V 0

n ) that intertwines the two relevant Laplacian operators.

3 Background random matrix theory

In this section we give an account of the breakthrough result of Bordenave
and Collins [BC19] and its amplification through a linearization trick that
appears in Pisier [Pis18, Cor. 14] (see also, historically, [Pis96, HT05], and
[BC19, §6]).
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Let stdn : Sn → End(V 0
n ) denote the linear action of Sn on V 0

n . We let
ρ∞ : Γ → End(ℓ2(Γ)) denote the right regular representation of Γ. We are
going to use the following direct consequence of [BC19, Thm. 2].

Theorem 3.1 (Bordenave—Collins). Suppose that r ∈ N and a0, a1, . . . ad ∈
Matr×r(C). Suppose a∗0 = a0. Then for any ϵ > 0, with probability tending
to one as n→ ∞, we have∥∥∥∥∥a0 ⊗ IdV 0

n
+

d∑
i=1

ai ⊗ stdn(σi) + a∗i ⊗ stdn(σ
−1
i )

∥∥∥∥∥
Cr⊗V 0

n

≤

∥∥∥∥∥a0 ⊗ Idℓ2(Γ) +

d∑
i=1

ai ⊗ ρ∞(γi) + a∗i ⊗ ρ∞(γ−1
i )

∥∥∥∥∥
Cr⊗ℓ2(Γ)

+ ϵ.

The norm on the top is the operator norm on Cr ⊗ V 0
n . The norm on the

bottom is the operator norm on Cr ⊗ ℓ2(Γ).

Remark 3.2. Note in the above that stdn(σi) = ρϕ(γi).

This will be combined with the following result of Pisier [Pis18, Cor. 14
and following remark].

Proposition 3.3 (Pisier). The result of Theorem 3.1 implies that for any
R, k ∈ N, any non-commutative polynomials

P1, P2, . . . , Pk

in the variables σ1, . . . , σd, σ
−1
1 , · · · , σ−1

d with complex coefficients, and any
a1, . . . , ak ∈ MatR×R(C) we have the following. For any ϵ > 0, with proba-
bility tending to one as n→ ∞, we have∥∥∥∥∥

k∑
i=1

ai ⊗ stdn(Pi(σ1, . . . , σd, σ
−1
1 , . . . , σ−1

d ))

∥∥∥∥∥
CR⊗V 0

n

(3.1)

≤

∥∥∥∥∥
k∑

i=1

ai ⊗ ρ∞(Pi(γ1, . . . , γd, γ
−1
1 , . . . , γ−1

d ))

∥∥∥∥∥
CR⊗ℓ2(Γ)

+ ϵ.

This type of ‘linearization’ is obviously extremely powerful and has
played a role in many of the major breakthroughs in random operators
in recent years [HT05, CM14, BC19]. Notice that one way to obtain an
operator as in (3.1) is as ∑

γ∈Γ
aγ ⊗ ρϕ(γ)
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where all aγ ∈ MatR×R(C) and there are only finitely many non-zero aγ .
Therefore we obtain combining Theorem 3.1 and Proposition 3.3 the follow-
ing:

Corollary 3.4. For any r ∈ N and any finitely supported map γ ∈ Γ 7→
aγ ∈ Matr×r(C), for any ϵ > 0, with probability tending to one as n → ∞
we have ∥∥∥∥∥∥

∑
γ∈Γ

aγ ⊗ ρϕ(γ)

∥∥∥∥∥∥
Cr⊗V 0

n

≤

∥∥∥∥∥∥
∑
γ∈Γ

aγ ⊗ ρ∞(γ)

∥∥∥∥∥∥
Cr⊗ℓ2(Γ)

+ ϵ.

No originality is claimed here: Corollary 3.4 is essentially already con-
tained in [BC19] and in fact, [BC19, Thm. 3] is the version of this corollary
when all ai are scalar.

4 Cusp parametrix

To simplify notation, we assume there is just one cusp of the finite-area
non compact hyperbolic surface X. This does not affect the arguments. It
follows from the Collar Lemmas [Bus92, Thm. 4.4.6] that this single cusp
can be identified with

C def
= (1,∞)× S1

with the metric
dr2 + dx2

r2
; (4.1)

here the x coordinate is in S1 def
= R/Z and the r coordinate is in [1,∞). In

the following, χ+
C , χ

−
C : C → [0, 1] will be functions that are identically zero

in a neighborhood of {1} × S1, identically equal to 1 in a neighborhood of
{∞} × S1, and such that

χ+
C χ

−
C = χ−

C . (4.2)

We will extend both these functions by zero to functions on X, and define

χ±
C,ϕ

def
= χ±

C ◦ πϕ : Xϕ → [0, 1]

where πϕ : Xϕ → X is the covering map. Indeed, the cusp of X splits in Xϕ

into several regions of the form

(1,∞)× (R/mZ) , (4.3)
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with m ∈ N, and with the same metric (4.1). In these coordinates the
covering map sends

πϕ : (r, x+mZ) 7→ (r, x+ Z).

In particular, it preserves the r coordinate.

Lemma 4.1. For any ϵ > 0, it is possible to choose χ±
C as above so that for

any ϕ
∥∇χ+

C,ϕ∥∞, ∥∆χ
+
C,ϕ∥∞ ≤ ϵ.

Proof. Given ϵ > 0, let χ+
C : [0,∞) → [0, 1] be a function such that χ+

C (τ) ≡
0 for τ in [0, 1], χ+

C (τ) ≡ 1 for τ ≥ τ0, for some τ0 > 0, and such that we
have the following bounds for the derivatives of χ+

C

sup
[0,∞)

|(χ+
C )

′|, sup
[0,∞)

|(χ+
C )

′′| ≤ ϵ

2

(this can be achieved by scaling some fixed cutoff).
Let C′ be any cusp region of Xϕ as in (4.3). Using the change of coordi-

nates r = eτ we view C′ as

(0,∞)τ ×R/mZ

with the metric (dτ)2 + e−2τ (dx)2; x being the coordinate in R/mZ. In
these coordinates, one calculates directly from the formula for the metric
that

∥∇χ+
C,ϕ∥(τ, x+mZ) = |[χ+

C ]
′(τ)| ≤ ϵ

and

|∆χ+
C,ϕ|(τ, x+mZ) = |[χ+

C ]
′′(τ)− [χ+

C ]
′(τ)| ≤ ϵ

as required. Finally, one can easily choose χ−
C to be a function with χ−

C (τ)
≡ 0 for τ ≤ τ0 and χ−

C (τ) ≡ 1 for τ ≥ 2τ0. This will fulfill (4.2).

Let Cϕ denote the subset of Xϕ that covers C. It is convenient, to avoid
complicated discussions about Sobolev spaces, to extend C to the parabolic
cylinder

C̃ def
= (0,∞)× S1

with the same metric (4.1), and let C̃ϕ be the corresponding extension of Cϕ
(the union of extensions of (4.3) to (0,∞)×R/mZ).
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Let H2(C̃ϕ) denote the completion of C∞
c (C̃ϕ) with respect to the given

norm
∥f∥2H2

def
= ∥f∥2L2 + ∥∆f∥2L2 .

The Laplacian ∆ = ∆C̃ϕ extends uniquely from C∞
c (C̃ϕ) to a self-adjoint

unbounded operator on L2(C̃ϕ) with domain H2(C̃ϕ).

Lemma 4.2. For any f ∈ H2(C̃ϕ), we have ⟨∆f, f⟩ ≥ 1
4∥f∥

2.

Proof. This is similar to [Mag15, Lemma 3.2]. It suffices to prove this for
C̃ϕ replaced by (0,∞) × (R/mZ) with the metric (4.1) i.e. with only one
connected component. Then changing coordinates to τ we are working in
the region (−∞,∞) × (R/mZ) with the metric (dτ)2 + e−2τ (dx)2. The
corresponding volume form is e−τdτ ∧ dx and the Laplacian is given by
∆ = −eτ ∂

∂τ e
−τ ∂

∂τ − e2τ ∂2

∂θ2
. Now suppose f ∈ C∞

c ((−∞,∞) × (R/mZ)).
We calculate

e−τ/2∆eτ/2 = − ∂2

∂τ2
+

1

4
− e2τ

∂2

∂θ2

so if g = e−τ/2f ∈ C∞
c ((−∞,∞)× (R/mZ)) we have∫

∆[f ]f̄ e−τdτ ∧ dx =

∫ ∞

−∞

∫ n

0
[e−τ/2∆eτ/2] (g) ḡdτ ∧ dx

≥ 1

4

∫ ∞

−∞

∫ n

0
gḡdτ ∧ dx =

1

4

∫ ∞

−∞

∫ n

0
ff̄e−τdτ ∧ dx.

The inequality here used integrating by parts. The inequality obtained
now extends to H2(C̃ϕ) by density of C∞

c (C̃ϕ) therein and continuity of
⟨∆f, f⟩.

Lemma 4.2 implies that the resolvent operator

RC̃ϕ(s)
def
= (∆− s(1− s))−1 : L2(C̃ϕ) → H2(C̃ϕ)

is a holomorphic family of bounded operators in Re(s) > 1
2 , each a bijection

to their image. This gives an a priori bound for the resolvent: using

(∆− s(1− s))RC̃ϕ(s)f = f

and Lemma 4.2 we obtain that for f ∈ L2(C̃ϕ) and s ∈ (12 ,∞)

∥RC̃ϕ(s)f∥L2 ≤
(
1

4
− s(1− s)

)−1

∥f∥L2 (4.4)
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and as
∆RC̃ϕ(s)f = f + s(1− s)RC̃ϕ(s)f

we obtain for s ∈ (12 ,∞)

∥∆RC̃ϕ(s)f∥L2 ≤ ∥f∥L2 + s(1− s)∥RC̃ϕ(s)f∥L2

≤

(
1 +

s(1− s)
1
4 − s(1− s)

)
∥f∥L2

=
1

1− 4s(1− s)
∥f∥L2 . (4.5)

We now define the cusp parametrix as

Mcusp
ϕ (s)

def
= χ+

C,ϕRC̃ϕ(s)χ
−
C,ϕ. (4.6)

Here,

� (multiplication by) χ−
C,ϕ is viewed as an operator from L2(Xϕ) to

L2(C̃ϕ) by mapping first to L2(Cϕ) and then extending by zero. This
is a bounded linear operator.

� RC̃ϕ(s) is a bounded operator from L2(C̃ϕ) to H2(C̃ϕ).

� (multiplication by) χ+
C,ϕ is viewed as a operator fromH2(C̃ϕ) toH2(Xϕ),

using that χ+
C,ϕ localizes to Cϕ and then extending by zero. This opera-

tor is bounded because derivatives of χ+
C,ϕ are bounded and compactly

supported.

Hence
Mcusp

ϕ (s) : L2(Xϕ) → H2(Xϕ)

is a bounded operator.
The covering map Cϕ → C extends in an obvious way to a covering map

C̃ϕ → C̃ that intertwines the two Laplacian operators. This, together with
the fact that multiplication by χ−

C,ϕ and χ+
C,ϕ leave invariant the subspaces

of functions lifted through the covering map, one sees that

Mcusp
ϕ (s)(L2

new(Xϕ)) ⊂ H2
new(Xϕ).

Because χ+
C,ϕχ

−
C,ϕ = χ−

C,ϕ,

(∆−s(1−s))Mcusp
ϕ (s) = χ−

C,ϕ+[∆, χ+
C,ϕ]RC̃ϕ(s)χ

−
C,ϕ = χ−

C,ϕ+Lcusp
ϕ (s) (4.7)
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where
Lcusp
ϕ (s)

def
= [∆, χ+

C,ϕ]RC̃ϕ(s)χ
−
C,ϕ

and [A,B]
def
= AB − BA denotes the commutator of linear maps. Here

again we view χ−
C,ϕ and RC̃ϕ(s) as above, and [∆, χ+

C,ϕ] : H
2(C̃ϕ) → L2(Xϕ).

This means that Lcusp
ϕ (s) is an operator on L2(Xϕ). By similar arguments

to before, using that [∆, χ+
C,ϕ] only involves radial derivatives (since χ+

C,ϕ is
radial), we obtain

Lcusp
ϕ (s)

(
L2
new(Xϕ)

)
⊂ L2

new(Xϕ).

Lemma 4.3. Given s0 >
1
2 , there exists C(s0) > 0 such that for s ∈ [s0, 1],

the operator Lcusp
ϕ (s) is a self-adjoint, bounded operator on L2(Xϕ) with

operator norm

∥Lcusp
ϕ (s)∥L2 ≤

(
∥(∆χ+

C,ϕ)∥∞ + 2∥∇χ+
C,ϕ∥∞

)
C(s0).

Proof. As an operator on H2(C̃ϕ)

[∆, χ+
C,ϕ] = (∆χ+

C,ϕ)− 2(∇χ+
C,ϕ) · ∇.

The first summand is a multiplication operator; for f ∈ H2(C̃ϕ) we have

∥(∆χ+
C,ϕ)f∥L2 ≤ ∥(∆χ+

C,ϕ)∥∞∥f∥L2 (4.8)

and by Schwarz inequality if ∥f∥H2 ≤ 1 then

∥(∇χ+
C,ϕ) · ∇f∥L2 ≤ ∥∇χ+

C,ϕ∥∞∥∇f∥L2

= ∥∇χ+
C,ϕ∥∞⟨∆f, f⟩

1
2 ≤ ∥∇χ+

C,ϕ∥∞∥∆f∥
1
2 ∥f∥

1
2

≤ ∥∇χ+
C,ϕ∥∞. (4.9)

The two estimates (4.8), (4.9) hence show that [∆, χ+
C,ϕ] has norm bounded

by ∥(∆χ+
C,ϕ)∥∞ + 2∥∇χ+

C,ϕ∥∞ as a map H2(C̃ϕ) → L2(Xϕ). Since multipli-

cation by χ−
C,ϕ has norm ≤ 1 from L2 to L2, and RC̃ϕ(s) has norm ≤ C(s0)

from L2(C̃ϕ) to H2(C̃ϕ) by (4.4) and (4.5), we obtain the stated result.

We can now obtain the following key proposition by combining Lemmas
4.1 and 4.3.
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Proposition 4.4. Given any s0 >
1
2 , we can choose χ+

C and χ−
C (depending

on s0) such that for any n ∈ N and ϕ ∈ Hom(Γ, Sn) and any s ∈ [s0, 1], we
have for the operator norm of Lcusp

ϕ (s) on L2(Xϕ)

∥Lcusp
ϕ (s)∥L2 ≤ 1

5
.

We assume that χ−
C and χ+

C have now been fixed to satisfy Proposition 4.4
in the rest of the paper. Hence all constants may depend on these functions.

5 Interior parametrix

5.1 Background on spectral theory of hyperbolic plane

Resolvent

Let

RH(s) : L
2(H) → L2(H),

RH(s)
def
= (∆H − s(1− s))−1.

Since spec(∆H) ⊂ [14 ,∞) [Bor16, Thm. 4.3], this is well defined as a bounded
operator for Re(s) > 1

2 .
Given x, y ∈ H, we write r = dH(x, y) where dH is hyperbolic distance

and
σ

def
= cosh2

(r
2

)
.

The operator RH(s) is an integral operator with kernel [Bor16, Prop. 4.2]

RH(s;x, y) =
1

4π

∫ 1

0

ts−1(1− t)s−1

(σ − t)s
dt. (5.1)

For σ > 1 and t ∈ (0, 1) we have

∂

∂r

ts−1(1− t)s−1

(σ − t)s
=− s sinh

(r
2

)
cosh

(r
2

) ts−1(1− t)s−1

(σ − t)s+1
,

∂

∂s

ts−1(1− t)s−1

(σ − t)s
= log

(
t(1− t)

(σ − t)

)
ts−1(1− t)s−1

(σ − t)s
,

∂2

∂s∂r

ts−1(1− t)s−1

(σ − t)s
=− sinh

(r
2

)
cosh

(r
2

) ts−1(1− t)s−1

(σ − t)s+1

·
[
1 + s log

(
t(1− t)

(σ − t)

)]
.
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Each of these are smooth in (s, r, t) ∈ [12 , 1] × [1,∞) × (0, 1). Because for
s, r in a fixed compact set of [12 , 1] × [1,∞), these all have absolute values
majorized by integrable functions of t ∈ (0, 1), we can interchange derivatives
and integrals to get corresponding bounds for RH as follows. We define

RH(s; r)
def
= RH(s;x, y).

Firstly, there is a constant C > 0 such that for r0 ≥ 1 and s ∈ [12 , 1]we have

|RH(s; r0)| ,
∣∣∣∣∂RH
∂r

(s; r0)

∣∣∣∣ ≤ Ce−sr0 . (5.2)

Secondly, for any T > 1 and r0 in the compact region [1, T + 1] we obtain
for constant c = c(T ) > 0, for all s0 ∈ [12 , 1],∣∣∣∣∂RH

∂s
(s0; r0)

∣∣∣∣ , ∣∣∣∣∂2RH
∂s∂r

(s0; r0)

∣∣∣∣ ≤ c(T ). (5.3)

Integral operators

If k0 : [0,∞) → R is smooth and compactly supported, which will suffice
here, then one can construct a kernel

k(x, y)
def
= k0(dH(x, y))

with corresponding integral operator C∞(H) → C∞(H)

K[f ](x)
def
=

∫
y∈H

k(x, y)f(y)dH(y)

where dH is the hyperbolic area form on H. Such an operator commutes
with the Laplacian on H and hence preserves its generalized eigenspaces. If
f ∈ C∞(H) is a generalized eigenfunction of ∆ with eigenvalue 1

4+ξ
2, ξ ≥ 0,

then by [Ber16, Thm. 3.7, Lemma 3.9] (cf. also Selberg’s original article
[Sel56])

K[f ] = h(ξ)f

where

h(ξ) =
√
2

∫ ∞

−∞
eiξu

∫ ∞

|u|

k0(ρ) sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu.

By our assumptions on k0 the integral above is convergent. It will be esti-
mated more precisely for particular choice of k0 in the proof of Lemma 5.2.
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For now note that if k0 is real valued then h is the Fourier transform of a
real valued even function and hence real-valued. Since L2(H) has a general-
ized eigenbasis of C∞ eigenfunctions of the Laplacian, by Borel functional
calculus K extends from e.g. C∞

c (H) to a (possibly unbounded) self-adjoint
operator on L2(H) with operator norm

∥K∥L2(H) = sup
ξ≥0

|h(ξ)|. (5.4)

5.2 Interior parametrix on hyperbolic plane

Let χ0 : R → [0, 1] denote a smooth function with χ0|(−∞,0]≡ 1 and
χ0|[1,∞)= 0. Then let

χT (t)
def
= χ0(t− T )

so χT is supported on (−∞, T + 1]; note for later that all derivatives of χT

are supported in [T, T + 1] and have uniform bounds independent of T .
We define

R
(T )
H (s; r)

def
= χT (r)RH(s; r).

Let R
(T )
H (s) denote the corresponding integral operator. In radial coordi-

nates the Laplacian on H is given by [Bor16, pg. 65]

− ∂2

∂r2
− 1

tanh r

∂

∂r
− 1

sinh2 r

∂2

∂θ2
.

We now perform the following calculation, writing ∆x for the Laplacian
acting on coordinate x:

[∆x − s(1− s)]R
(T )
H (s; r) = [∆x − s(1− s)] (χT (r)RH(s; r))

=

[
− ∂2

∂r2
− 1

tanh r

∂

∂r
, χT

]
RH(s; r) + δr=0 (5.5)

which is understood in a distributional sense. We further calculate[
− ∂2

∂r2
− 1

tanh r

∂

∂r
, χT

]
= − ∂2

∂r2
[χT ]− 2

∂

∂r
[χT ]

∂

∂r
− 1

tanh r

∂

∂r
[χT ]. (5.6)

Combining (5.5) and (5.6) we expect an identity of operators

[∆− s(1− s)]R
(T )
H (s) = 1 + L(T )

H (s) (5.7)
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where L(T )
H (s) is the integral operator with real-valued radial kernel

L(T )
H (s; r0)

def
=

(
− ∂2

∂r2
[χT ]−

1

tanh r

∂

∂r
[χT ]

)
RH(s; r0)− 2

∂

∂r
[χT ]

∂RH
∂r

(s; r0).

(5.8)
The identity (5.7) will be established in Lemma 5.3 below.

We note the following properties of this kernel that are straightforward
consequences of the way χT was chosen and (5.2), (5.3).

Lemma 5.1. We have

1. For T > 0 and s ∈ [12 , 1], L
(T )
H (s; •) is smooth and supported in [T, T +

1].

2. There is a constant C > 0 such that for any T > 0 and s ∈ [12 , 1] we
have

|L(T )
H (s; r0)| ≤ Ce−sr0

3. For any T > 0 there is a constant c(T ) > 0 such that for any r0 ∈
[T, T + 1] ∣∣∣∣∣∂L

(T )
H
∂s

(s0; r0)

∣∣∣∣∣ ≤ c(T ).

We can now show the following.

Lemma 5.2. There is a constant C > 0 such that for any T > 0 and

s ∈ [12 , 1] the operator L(T )
H (s) extends to a bounded operator on L2(H) with

operator norm

∥L(T )
H (s)∥L2 ≤ CTe(

1
2
−s)T .
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Proof. We do this using (5.4) which tells us

∥L(T )
H (s)∥L2 = sup

ξ≥0

∣∣∣∣∣√2

∫ ∞

−∞
eiξu

∫ ∞

|u|

L(T )
H (s; ρ) sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu

∣∣∣∣∣
≤

√
2

∫ ∞

−∞

∫ ∞

|u|

|L(T )
H (s; ρ)| sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu

≤ 2
√
2C

∫ T+1

0

∫ T+1

max(|u|,T )

e−sρ sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu

≤ C ′e−sT

∫ T+1

0

∫ T+1

max(|u|,T )

sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu

= C ′e−sT

∫ T+1

0

∫ cosh(T+1)

coshmax(|u|,T )

dy√
y − cosh(u)

du

= C ′′e−sT

∫ T+1

0

[√
cosh(T + 1)− coshu

−
√
coshmax(|u|, T )− cosh |u|

]
du

≤ C ′′′Te(
1
2
−s)T

where the third inequality used Lemma 5.1.

The implication of this is that for any s0 >
1
2 we can choose T = T (s0)

such that for all s ∈ [s0, 1] we have

∥L(T )
H (s)∥L2 ≤ 1

5
.

We will do this later. The following lemma shows that smoothly cutting off
RH(s) at radius T does not significantly affect its mapping properties.

Lemma 5.3. For any T > 0 and s ∈ [12 , 1], for any compact K ⊂ H, there
is C = C(s,K, T ) > 0 such that:

1. For any f ∈ C∞
c (H) with supp(f) ⊂ K we have R

(T )
H (s)f ∈ H2(H)

and
∥R(T )

H (s)f∥H2 ≤ C(s,K, T )∥f∥L2 .

2. Furthermore, with f as above

(∆− s(1− s))R
(T )
H (s)[f ] = f + L(T )

H (s)[f ]

in the sense of equivalence of L2 functions.

21



Proof. Suppose that compactK is given and f ∈ C∞
c (H) with supp(f) ⊂ K.

For y ∈ K we have R
(T )
H (s;x, y) = 0 unless

x ∈ K ′(T,K)
def
= {x : d(x,K) ≤ T + 1 }

with K ′ compact. Therefore using the usual Hilbert-Schmidt inequality we
obtain

∥R(T )
H (s)[f ]∥2L2(H)

=

∫
x∈K′

∣∣∣∣∫
y∈K

R
(T )
H (s;x, y)f(y)dH(y)

∣∣∣∣2 dH(x)

≤
∫
x∈K′

(∫
y∈K

R
(T )
H (s;x, y)2dH(y)

)(∫
y∈K

|f(y)|2dH(y)

)
dH(x). (5.9)

Recall that we write r = dH(x, y), hence the inner integral can be written
in polar coordinates as∫

y∈K
R

(T )
H (s;x, y)2dH(y) =

∫ 2π

0

∫ ∞

0
R

(T )
H (s; r)2 sinh r dr dθ

≤ 2π

∫ M

0
R

(T )
H (s; r)2 sinh r dr (5.10)

for M = M(K,T ). Because χT ≡ 1 near 0, the type of singularity that

R
(T )
H,n(s; r) has at r = 0 is exactly the same as the type of singularity of

RH(s; r) near r = 0; namely by [Bor16, (4.2)]

R
(T )
H (s; r) = − 1

4π
log
(r
2

)
+O(1) (5.11)

as r → 0. The function R
(T )
H (s; r) is smooth away from 0. Hence, since(

log
(
r
2

))2
sinh r → 0 as r → 0, R

(T )
H (s; r) is in particular square integrable

on [0,M ]. This gives from (5.9)

∥R(T )
H (s)[f ]∥2L2(H) ≤

∫
x∈K′

C(s,K, T )∥f∥2L2(H)dH(x) ≤ C ′(s,K, T )∥f∥2L2(H).

(5.12)

We now aim for a bound on ∥∆R(T )
H (s)[f ]∥2L2(H) so as to proveR

(T )
H (s)[f ] ∈

H2(H) and bound its H2-norm.
Let g ∈ C∞

c (H) be a test function and f ∈ C∞
c (H) with support as

above. Consider

⟨R(T )
H (s)[f ],∆g⟩ =

∫
x∈H

(∫
y∈H

R
(T )
H (s;x, y)f(y)dH(y)

)
∆g(x)dH(x).

22



Because f and g are compactly supported and the singularity of R
(T )
H (x, y)

is locally L1 using (5.11), we can use Fubini to get

⟨R(T )
H (s)[f ],∆g⟩ =

∫
y∈H

(∫
x∈H

R
(T )
H (s;x, y)∆g(x)dH(x)

)
f(y)dH(y).

(5.13)
We use hyperbolic polar coordinates for the inner integral, writing r =

d(x, y) and θ for polar angle, Gy(r, θ)
def
= ḡ(x), and the inner integral is

understood as an improper integral as follows:∫
x∈H

R
(T )
H (s;x, y)∆g(x)dH(x)

=− lim
ϵ→0

∫ ∞

ϵ

∫ 2π

0
R

(T )
H (s; r̃)

(
∂

∂r

(
sinh r

∂Gy

∂r

)
(r̃, θ̃) +

1

(sinh r)2
∂2Gy

∂θ2
(r̃, θ̃)

)
dθ̃dr̃

=− lim
ϵ→0

∫ ∞

ϵ

∫ 2π

0
R

(T )
H (s; r̃)

(
∂

∂r

(
sinh r

∂Gy

∂r

)
(r̃, θ̃)

)
dθ̃dr̃

=− lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ
R

(T )
H (s; r̃)

(
∂

∂r

(
sinh r

∂Gy

∂r

)
(r̃, θ̃)

)
dr̃dθ̃

= lim
ϵ→0

R
(T )
H (s; ϵ) sinh ϵ

∫ 2π

0

∂Gy

∂r
(ϵ, θ̃)dθ̃

+ lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ

∂R
(T )
H
∂r

(s; r̃) sinh r̃
∂Gy

∂r
(r̃, θ̃)dr̃dθ̃

= lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ

∂R
(T )
H
∂r

(s; r̃) sinh r̃
∂Gy

∂r
(r̃, θ̃)dr̃dθ̃ (5.14)

where the last equality used (5.11) with smoothness of Gy. Now a similar
calculation gives

lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ

∂R
(T )
H
∂r

(s; r̃) sinh r
∂Gy

∂r
(r̃, θ̃)dr̃dθ̃

=− lim
ϵ→0

∂R
(T )
H
∂r

(s; ϵ) sinh ϵ

∫ 2π

0
Gy(ϵ, θ̃)dθ̃

− lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃)Gy(r̃, θ̃)dr̃dθ̃

=ḡ(y)− lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃)Gy(r̃, θ̃)dr̃dθ̃. (5.15)

23



The second equality used [Bor16, pg. 66]

∂R
(T )
H
∂r

(s; ϵ) = − 1

2πϵ
+O(1)

as ϵ→ 0 with limϵ→0Gy(ϵ, θ̃) = ḡ(y). Now we note

− 1

sinh r

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃) = ∆R

(T )
H (s; r̃)

and so using (5.5), (5.6) and (5.8) we get, for r̃ > 0,

− 1

sinh r

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃) = s(1− s)R

(T )
H (s; r̃) + L(T )

H (s; r̃).

Therefore

− lim
ϵ→0

∫ 2π

0

∫ ∞

ϵ

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃)Gy(r̃, θ̃)dr̃dθ̃

= lim
ϵ→0

∫
d(x,y)>ϵ

(
s(1− s)R

(T )
H (s; r̃) + L(T )

H (s; d(x, y))
)
ḡ(x)dH(x)

=

∫
x∈H

(
s(1− s)R

(T )
H (s; d(x, y)) + L(T )

H (s; d(x, y))
)
ḡ(x)dH(x) (5.16)

and this last integral is easily seen to converge by working in polar coordi-
nates centered at y and using g ∈ C∞

c (H) and (5.11).
Now combining (5.14), (5.15), and (5.16) gives, for (5.13),

⟨R(T )
H (s)[f ],∆g⟩

=

∫
y∈H

f(y)ḡ(y)dH(y)

+

∫
y∈H

(∫
x∈H

(
s(1− s)R

(T )
H (s; d(x, y)) + L(T )

H (s; d(x, y))
)
ḡ(x)dH(x)

)
f(y)dH(y)

= ⟨f, g⟩+ ⟨s(1− s)R
(T )
H (s)[f ], g⟩+ ⟨L(T )

H (s)[f ], g⟩.

Note that by (5.12) and Lemma 5.2 all functions above are in L2(H). This
identity now clearly extends to any g ∈ H2(H) and now self-adjointness of

∆H on H2(H) (see [Str83]) gives that R
(T )
H (s)[f ] ∈ H2(H) and moreover

(∆− s(1− s))R
(T )
H (s)[f ] = f + L(T )

H (s)[f ]
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in the sense of elements of L2(H). This proves part 2 of the lemma.
We now rewrite this identity as

∆R
(T )
H (s)[f ] = f + s(1− s)R

(T )
H (s)[f ] + L(T )

H (s)[f ]

and using Lemma 5.2 and (5.12) now gives

∥∆R(T )
H (s)[f ]∥L2(H) ≤ c(s,K, T )∥f∥L2(H).

Combining this with (5.12), this proves part 1 of the lemma.

5.3 Automorphic kernels

At two points in the rest of the paper we use the following geometric lemma.
Recall that F is a Dirichlet fundamental domain for Γ in H.

Lemma 5.4. For any compact set K ⊂ F̄ , and T > 0, there is another
compact set K ′ = K ′(K,T ) ⊂ F̄ and a finite set S = S(K,T ) ⊂ Γ such that
for all x, y ∈ H with

x ∈ F̄ , y ∈
⋃
γ∈Γ

γ(K), d(x, y) ≤ T,

we have
x ∈ K ′, y ∈

⋃
γ∈S

γ(K).

Proof. Suppose that y = γy′ with y′ ∈ K, x ∈ F̄ , γ ∈ Γ and d(x, y) ≤ T .
Then d(γy′, x) = d(y′, γ−1x) ≤ T implies γ−1F intersects the compact set

{ z : d(z,K) ≤ T }.

Since we took F to be a Dirichlet fundamental domain, by [Bea83, Thm.
9.4.2] there are only a finite number of γ for which this is possible. Let S
be this finite subset of Γ. Then furthermore, if we let o denote a fixed point
in K we have

d(x, o) ≤ d(x, γy′) + d(γy′, γo) + d(γo, o).

≤ T + d(y′, o) + d(γo, o) ≤ C ′(K,T ).

This implies that x must be in some compact set K ′ = K ′(K,T ) ⊂ F̄ .
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Define

R
(T )
H,n(s;x, y)

def
= R

(T )
H (s;x, y)IdV 0

n
,

L(T )
H,n(s;x, y)

def
= L(T )

H (s;x, y)IdV 0
n
,

andR
(T )
H,n(s),L

(T )
H,n(s) the corresponding integral operators. In the next lemma

we describe the mapping properties of these integral operators and describe
a functional identity that they satisfy that arises from (5.7). In the follow-
ing we regard the function χ−

C defined in §4 as a Γ-invariant C∞ function
on H. The action of multiplication by χ−

C,ϕ on new functions in L2
new(Xϕ)

corresponds to multiplication by the scalar-valued invariant function χ−
C on

L2
ϕ(H;V 0

n ).

Lemma 5.5. For all s ∈ [12 , 1],

1. The integral operator R
(T )
H,n(s)(1 − χ−

C ) is well-defined on C∞
c,ϕ(H;V 0

n )
and extends to a bounded operator

R
(T )
H,n(s)(1− χ−

C ) : L
2
ϕ(H;V 0

n ) → H2
ϕ(H;V 0

n ).

2. The integral operator L(T )
H,n(s)(1 − χ−

C ) is well-defined on C∞
c,ϕ(H;V 0

n )

and and extends to a bounded operator on L2
ϕ(H;V 0

n ).

3. We have

[∆− s(1− s)]R
(T )
H,n(s)(1− χ−

C ) = (1− χ−
C ) + L(T )

H,n(s)(1− χ−
C ) (5.17)

as an identity of operators on L2
ϕ(H;V 0

n ).

Proof. Suppose first that f ∈ C∞
c,ϕ(H;V 0

n ) (i.e. automorphic, smooth, and
compactly supported modulo Γ). We have for x ∈ F

R
(T )
H,n(s)(1− χ−

C )[f ](x)
def
=

∫
y∈H

R
(T )
H (s;x, y)(1− χ−

C (y))f(y)dH(y). (5.18)

The integrand here is non-zero unless d(x, y) ≤ T + 1 and y is in the
the support of 1 − χ−

C , which is a union of the Γ-translates of a compact
set K of of F̄ . Applying Lemma 5.4 tells us then that there is compact
K1 = K1(T ) ⊂ F̄ and finite set S = S(T ) such that the integrand in (5.18)

is supported on the compact set K2
def
= ∪γ∈Sγ

−1K and the whole integral is
zero unless x ∈ K1 (given x ∈ F̄ to begin with).
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Let ψ be a smooth function that is ≡ 1 in K2 ∪K, valued in [0, 1] and
compactly supported. Let {ei : i ∈ [n − 1]} denote an orthonormal basis
for V 0

n and let

fi
def
= ⟨f, ei⟩ ∈ C∞(H).

The above shows that for x ∈ F we have

R
(T )
H,n(s)(1− χ−

C )[f ](x) = R
(T )
H,n(s)(1− χ−

C )[ψf ](x)

=
n−1∑
i=1

R
(T )
H (s)

[(
1− χ−

C
)
ψfi
]
(x)ei (5.19)

hence

∥R(T )
H,n(s)(1− χ−

C )[f ](x)∥
2
V 0
n
=

n−1∑
i=1

∣∣∣R(T )
H (s)

[(
1− χ−

C
)
ψfi
]
(x)
∣∣∣2 ,

∥∆R(T )
H,n(s)(1− χ−

C )[f ](x)∥
2
V 0
n
=

n−1∑
i=1

∣∣∣∆R(T )
H (s)

[(
1− χ−

C
)
ψfi
]
(x)
∣∣∣2 .

Each function
(
1− χ−

C
)
ψfi is smooth here and has has compact support

depending only on T and χ−
C .

Now using Lemma 5.3 Part 1, the fact that
(
1− χ−

C
)
is valued in [0, 1],

using ψ is supported only on finitely many Γ-translates of F , together with
automorphy of f , we get by integrating over F

∥R(T )
H,n(s)(1− χ−

C )[f ]∥
2
L2(F ) ≤ C

∑
i

∥ψfi∥2L2(H) ≤ C ′∥f∥2L2(F ),

∥∆R(T )
H,n(s)(1− χ−

C )[f ]∥
2
L2(F ) ≤ C

∑
i

∥ψfi∥2L2(H) ≤ C ′∥f∥2L2(F ),

where C,C ′ depend on s, T . Now this bound clearly extends to f ∈ L2
ϕ(H;V 0

n ).
This proves the first statement of the lemma.

The statement that L(T )
H,n(s) is well-defined and bounded on L2

ϕ(H;V 0
n )

is just an easier version of the previous proof using Lemma 5.2 instead of
Lemma 5.3. This proves the second statement of the lemma. We note that
we also obtain

L(T )
H,n(s)(1− χ−

C )[f ] =

n−1∑
i=1

L(T )
H (s)

[(
1− χ−

C
)
ψfi
]
ei (5.20)

analogously to (5.19).
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Now going back to (5.19) and using Lemma 5.3 Part 2 gives, considered
by restriction as equivalence classes of measurable functions on F ,

(∆− s(1− s))R
(T )
H,n(s)(1− χ−

C )[f ]

=

n−1∑
i=1

(∆− s(1− s))R
(T )
H (s)

[(
1− χ−

C
)
ψfi
]
ei

=
n−1∑
i=1

((
1− χ−

C
)
ψfi + L(T )

H (s)
[(
1− χ−

C
)
ψfi
])
ei

=
(
1− χ−

C
)
f + L(T )

H,n(s)
(
1− χ−

C
)
[f ] .

On the other hand, the fact that all functions at the two ends of the string
of equalities above satisfy the automorphy equation (2.1) almost everywhere
implies that indeed

(∆− s(1− s))R
(T )
H,n(s)(1− χ−

C )[f ] =
(
1− χ−

C
)
f + L(T )

H,n(s)
(
1− χ−

C
)
[f ]

as equivalence classes of measurable functions on H. This proves the final
part of the lemma.

Lemma 5.5 allows us to define our interior parametrix

Mint
ϕ (s) : L2

new(Xϕ) → H2
new(Xϕ)

to be the operator corresponding under L2
new(Xϕ) ∼= L2

ϕ(H;V 0
n ) andH

2
new(Xϕ) ∼=

H2
ϕ(H;V 0

n ) to the integral operator R
(T )
H,n(s)(1−χ

−
C ). The equation (5.17) be-

comes for s > 1
2

(∆Xϕ
− s(1− s))Mint

ϕ (s) = (1− χ−
C,ϕ) + Lint

ϕ (s) (5.21)

where
Lint
ϕ (s) : L2

new(Xϕ) → L2
new(Xϕ)

is the operator corresponding under L2
new(Xϕ) ∼= L2

ϕ(H;V 0
n ) to the integral

operator L(T )
H,n(s)(1 − χ−

C ) (the dependence on T is suppressed here but re-
membered).

Therefore if we define

Mϕ(s)
def
= Mint

ϕ (s) +Mcusp
ϕ (s),

we have
Mϕ(s) : L

2
new(Xϕ) → H2

new(Xϕ)
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and combining (4.7) and (5.21) we obtain(
∆Xϕ

− s(1− s)
)
Mϕ(s) = (1− χ−

C,ϕ) + Lint
ϕ (s) + χ−

C,ϕ + Lcusp
ϕ (s)

= 1 + Lint
ϕ (s) + Lcusp

ϕ (s). (5.22)

The aim is to show that, with high probability, we can invert the right hand
side of (5.22) to define a bounded resolvent in s ≥ s0 >

1
2 . Since we have

already suitably bounded Lcusp
ϕ (s) in Proposition 4.4, it remains to bound

the operator Lint
ϕ (s); this random operator will be studied in detail in the

next section.

6 Random operators

6.1 Set up

Suppose that f ∈ C∞
ϕ (H;V 0

n ) with ∥f∥2L2(F ) <∞. We have

L(T )
H,n(s)(1− χ−

C )[f ](x) =

∫
y∈H

L(T )
H,n(s;x, y)(1− χ−

C (y))f(y)

=
∑
γ∈Γ

∫
y∈F

L(T )
H,n(s; γx, y)ρϕ(γ

−1)(1− χ−
C (y))f(y).

(6.1)

Using that L(T )
H,n(s;x, y) localizes to d(x, y) ≤ T +1, Lemma 5.4 implies that

there is a compact set K = K(T ) ⊂ F and a finite set S = S(T ) ⊂ Γ such
that for x, y ∈ F̄ and γ ∈ Γ

L(T )
H,n(s; γx, y)ρϕ(γ

−1)(1− χ−
C (y)) = 0

unless x, y ∈ K and γ ∈ S.
The point of view we take in the rest of this section is that there is an

isomorphism of Hilbert spaces

L2
ϕ(H;V 0

n )
∼= L2(F )⊗ V 0

n ;

f 7→
∑
ei

⟨f |F , ei⟩V 0
n
⊗ ei

where ei is an orthonormal basis of V 0
n (the choice of this basis does not

matter). When conjugated by this isomorphism, (6.1) shows that

L(T )
H,n(s)(1− χ−

C )
∼=
∑
γ∈S

a(T )
γ (s)⊗ ρϕ(γ

−1)
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where

a(T )
γ (s) : L2(F ) → L2(F )

a(T )
γ (s)[f ](x)

def
=

∫
y∈F

L(T )
H (s; γx, y)(1− χ−

C (y))f(y)dH(y).

Again, this sum is supported on a finite set S = S(T ) ⊂ Γ depending on T
(and the fixed χ−

C ).

Since L(T )
H (s; γx, y) is bounded depending on T and smooth we have∫
x,y∈F

|L(T )
H (s; γx, y)|2(1− χ−

C (y))
2dH(x)dH(y) =∫

x,y∈K
|L(T )

H (s; γx, y)|2(1− χ−
C (y))

2dH(x)dH(y) <∞.

This shows that each integral operator a
(T )
γ (s) is bounded, and in fact

Hilbert-Schmidt, so compact. We also produce the following deviations es-

timate for the a
(T )
γ (s).

Lemma 6.1. For fixed T > 0, there is a constant c1 = c1(T ) > 0 such that
for s1, s2 ∈ [12 , 1] and γ ∈ S(T ) we have

∥a(T )
γ (s1)− a(T )

γ (s2)∥L2(F ) ≤ c1|s1 − s2|.

Proof. Suppose s1, s2 ∈ [12 , 1], and γ is fixed. The operator a
(T )
γ (s1)−a(T )

γ (s2)
is a Hilbert-Schmidt operator on L2(F ) with kernel

[L(T )
H (s1; γx, y)− L(T )

H (s2; γx, y)](1− χ−
C (y));

once again this is zero unless x, y are in compact set K(T ).
We have by Lemma 5.1 Part 3 that for all x, y ∈ K∣∣∣L(T )

H (s1; γx, y)− L(T )
H (s2; γx, y)

∣∣∣ ≤ c(T )|s1 − s2|.

It follows that there is a constant c1 = c1(T ) such that, writing ∥ • ∥H.S. for
Hilbert-Schmidt norm of a Hilbert-Schmidt operator on L2(F ), we have

∥a(T )
γ (s1)− a(T )

γ (s2)∥L2(F ) ≤ ∥[L(T )
H (s1)− L(T )

H (s2)](1− χ−
C )∥H.S.

≤ c1(T )|s1 − s2|.

Finally, because γ is in the finite set S(T ), the estimate can be taken uni-
formly over all γ ∈ S(T ) by taking the maximal value of c1.
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6.2 The operator on the free group

We are momentarily going to apply Corollary 3.4 to the random operator

L(T )
s,ϕ

def
=
∑
γ∈S

a(T )
γ (s)⊗ ρϕ(γ

−1)

Up to an intermediate step, where we approximate the coefficients a
(T )
γ (s)

by finite rank operators, we expect to learn that the operator norm of L(T )
s,ϕ

is close to the operator norm of

L(T )
s,∞

def
=
∑
γ∈S

a(T )
γ (s)⊗ ρ∞(γ−1)

on L2(F )⊗ ℓ2(Γ), where

ρ∞ : Γ → End(ℓ2(Γ)))

is the right regular representation of Γ. So we must understand the operator

L(T )
s,∞. Under the isomorphism

L2(F )⊗ ℓ2(Γ) ∼= L2(H),

f ⊗ δγ 7→ f ◦ γ−1

(with f ◦ γ−1 extended by zero from a function on γF ) the operator L(T )
s,∞ is

conjugated to none other than

L(T )
H (s)(1− χ−

C ) : L
2(H) → L2(H)

from §§5.2. Since (1−χ−
C ) is valued in [0, 1], multiplication by it has operator

norm ≤ 1 on L2(H). Hence we obtain the following corollary of Lemma 5.2.

Corollary 6.2. For any s0 >
1
2 there is T = T (s0) > 0 such that for any

s ∈ [s0, 1] we have

∥L(T )
s,∞∥L2(F )⊗ℓ2(Γ) ≤

1

5
.

6.3 Probabilistic bounds for operator norms

The aim of this section is to prove the following result as a consequence of
Corollary 3.4.
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Proposition 6.3. For any s0 >
1
2 there is T = T (s0) > 0 such that for s

fixed in [s0, 1], with probability tending to one as n→ ∞,

∥L(T )
s,ϕ ∥L2(F )⊗V 0

n
≤ 2

5
.

Proof. Let T be the one provided by Corollary 6.2 for the given s0, so that

∥L(T )
s,∞∥L2(F )⊗ℓ2(Γ) ≤

1

5
. (6.2)

Fix s ∈ [s0, 1]. Recall that the coefficients a
(T )
γ (s) are supported on a finite

set S = S(T ) ⊂ Γ. Because the a
(T )
γ (s) are Hilbert-Schmidt, and hence

compact, we can find a finite-dimensional subspace

W ⊂ L2(F )

and operators b
(T )
γ (s) :W →W such that

∥b(T )
γ (s)− a(T )

γ (s)∥L2(F ) ≤
1

20|S(T )|

for all γ ∈ S(T ). Therefore, since each ρϕ(γ) is unitary on V 0
n we get

∥L(T )
s,ϕ −

∑
γ∈S

b(T )
γ (s)⊗ ρϕ(γ

−1)∥L2(F )⊗V 0
n
≤ 1

20
. (6.3)

We now apply Corollary 3.4 to the operator
∑

γ∈S b
(T )
γ (s) ⊗ ρϕ(γ

−1) to
obtain that with probability → 1 as n→ ∞,

∥
∑
γ∈S

b(T )
γ (s)⊗ρϕ(γ−1)∥W⊗V 0

n
≤ ∥

∑
γ∈S

b(T )
γ (s)⊗ρ∞(γ−1)∥W⊗ℓ2(Γ)+

1

20
. (6.4)

(Above, 1
20 could be replaced by any ϵ > 0 but this is not needed here.)

On the other hand, we also have by the same argument as led to (6.3)

∥L(T )
s,∞ −

∑
γ∈S

b(T )
γ (s)⊗ ρ∞(γ−1)∥L(F )⊗ℓ2(Γ) ≤

1

20
. (6.5)

Then combining (6.2), (6.3), (6.4), and (6.5) gives the result.
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7 Proof of Theorem 1.1

Given ϵ > 0 let s0 =
1
2 +

√
ϵ so that s0(1− s0) =

1
4 − ϵ. We assume χ±

C were
chosen as in Proposition 4.4 for this s0 so that

∥Lcusp
ϕ (s)∥L2 ≤ 1

5
(7.1)

for all s ∈ (s0, 1].
Let T = T (s0) be the value provided by Proposition 6.3 for this s0. To

control all values of s ∈ [s0, 1] we use a finite net. For s1, s2 ∈ [s0, 1] we have

L(T )
s1,ϕ

− L(T )
s2,ϕ

=
∑
γ∈S

[a(T )
γ (s1)− a(T )

γ (s2)]⊗ ρϕ(γ
−1) (7.2)

where S ⊂ Γ is a finite set depending on T . Lemma 6.1 tells us that for
c1 = c1(T ) > 0 we have

∥a(T )
γ (s1)− a(T )

γ (s2)∥L2(F ) ≤ c1|s1 − s2|

for all γ ∈ S and s1, s2 ∈ [s0, 1]; hence we obtain from (7.2) and as each
ρϕ(γ

−1) is unitary that

∥L(T )
s1,ϕ

− L(T )
s2,ϕ

∥ ≤ |S|c1|s1 − s2|. (7.3)

We choose a finite set Y , depending on s0, of points in [s0, 1] such that every
point of [s0, 1] is within

1

5|S|c1
of some element of Y . Now, applying Proposition 6.3 to each point of Y we
obtain that with probability tending to one as n→ ∞ we have

∥L(T )
s,ϕ ∥L2(F )⊗V 0

n
≤ 2

5

for all s ∈ Y . Hence also using (7.3) we obtain that with probability tending
to one as n→ ∞ we have

∥L(T )
s,ϕ ∥L2(F )⊗V 0

n
≤ 3

5

for all s ∈ [s0, 1].
Recall that we defined

Mϕ(s)
def
= Mint

ϕ (s) +Mcusp
ϕ (s).
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By Lemma 5.5 and the discussion after (4.6), for s > 1
2 Mϕ(s) is a bounded

operator from L2
new(Xϕ) to H

2
new(Xϕ). We also proved in (5.22)(

∆Xϕ
− s(1− s)

)
Mϕ(s) = 1 + Lint

ϕ (s) + Lcusp
ϕ (s)

on L2
new(Xϕ). The operator Lint

ϕ (s) is unitarily conjugate to L(T )
s,ϕ as in

§§6.1 and hence a.a.s. has operator norm at most 3
5 . Hence also using the

deterministic bound (7.1) we obtain that

∥Lint
ϕ (s) + Lcusp

ϕ (s)∥L2
new(Xϕ) ≤

4

5

and hence a.a.s. (
1 + Lint

ϕ (s) + Lcusp
ϕ (s)

)−1

exists as a bounded operator from L2
new(Xϕ) to itself. We now get(

∆Xϕ
− s(1− s)

)
Mϕ(s)

(
1 + Lint

ϕ (s) + Lcusp
ϕ (s)

)−1
= 1

which shows there is a bounded right inverse to
(
∆Xϕ

− s(1− s)
)
; this shows

that
(
∆Xϕ

− s(1− s)
)
maps H2

new(Xϕ) onto L2
new(Xϕ) and since it is self-

adjoint for s ∈ [12 , 1], cannot have any kernel in L2
new(Xϕ). This shows a.a.s.

that ∆Xϕ
has no new eigenvalues λ with λ ≤ s0(1 − s0) = 1

4 − ϵ. This
concludes the proof of Theorem 1.1.

8 Proof of Corollary 1.3

Take X to be a once-punctured torus or thrice-punctured sphere and apply
Corollary 1.2 to obtain a sequence of connected orientable finite area non-
compact hyperbolic surfaces Xi with χ(Xi) = −i and

inf (spec(∆Xi) ∩ (0,∞)) → 1

4
.

Suppose Xi has genus gi and ni cusps. We have

−i = χ(Xi) = 2− 2gi − ni

which shows
i ≡ χ(Xi) ≡ ni mod 2.

In particular, for even i, we have an even number of cusps in Xi. We use the
following result of Buser, Burger, and Dodziuk [BBD88]. See Brooks and
Makover [BM01, Lemma 1.1] for the extraction of this lemma from [BBD88].
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Lemma 8.1 (Handle Lemma). Let X be a finite area hyperbolic surface
with an even number of cusps {Ci}. It is possible to deform the surface
X in a certain way to a finite area hyperbolic surface with boundary, where
each cusp becomes a bounding geodesic of length t, and then glue the geodesic
corresponding to C2i−1 to the one corresponding to C2i to form a family of
closed hyperbolic surfaces X(t) such that

lim sup
t→0

λ1(X
(t)) ≥ inf (spec(∆X) ∩ (0,∞)) .

In particular, since each X2k has an even number of cusps, we can con-
struct a closed hyperbolic surface X̃2k of Euler characteristic −2k and

λ1(X̃2k) ≥ inf (spec(∆X2k
) ∩ (0,∞))− 1

k
.

On the other hand, the upper bound of Huber [Hub74] now implies λ1(X̃2k) →
1
4 as required. □
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