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Toxin–antitoxin systems as mediators of phage defence 
and the implications for abortive infection 
Abigail Kelly, Tom J Arrowsmith, Sam C Went and Tim R Blower   

Bacteria have evolved a broad range of defence mechanisms to 
protect against infection by their viral parasites, bacteriophages 
(phages). Toxin–antitoxin (TA) systems are small loci found 
throughout bacteria and archaea that in some cases provide 
phage defence. The recent explosion in phage defence system 
discovery has identified multiple novel TA systems with 
antiphage activity. Due to inherent toxicity, TA systems are 
thought to mediate abortive infection (Abi), wherein the host cell 
dies in response to phage infection, removing the phage, and 
protecting clonal siblings. Recent studies, however, have 
uncovered molecular mechanisms by which TA systems are 
activated by phages, how they mediate toxicity, and how 
phages escape the defences. These new models reveal 
dazzling complexity in phage–host interactions and provide 
further evidence that TA systems do not in all cases inherently 
perform classic Abi, suggesting an evolved conceptual 
definition is required. 
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Toxin–antitoxin systems as mediators of 
phage defence 
Our understanding of bacteria–bacteriophage (phage) 
interactions is rapidly expanding. This is due to an un-
precedented rise in the discovery of phage defence 
systems. Classic examples include restriction-modifica-
tion systems [1], abortive infection (Abi) systems [2], and 
CRISPR-cas [3]. ‘Guilt-by-association’ approaches have 
now provided a much broader range of novel systems 
evolved by bacteria to protect from their viral parasites  

[4,5]. These can be clustered into genetic loci called 
‘defence islands’ [6] that demonstrate widespread and 
conserved modes of regulation [7]. Amongst these dis-
coveries are multiple examples of novel toxin–antitoxin 
(TA) systems involved in phage defence [8–10]. 

TA systems are canonically thought of as small loci en-
coding a toxin and an antagonistic antitoxin. They are 
sorted into families based on related structures [11], and 
types according to interactions between their compo-
nents [12]. TA systems were first implicated in phage 
defence through demonstration that the type I TA 
system Hok/Sok inhibited T4 propagation [13]. Type II 
TA systems followed suit through MazEF inhibition of 
P1 [14], the type III system ToxIN was then shown to 
inhibit multiple phages [15], and the type IV AbiEi/ 
AbiEii system similarly provided phage defence in 
Lactococcus lactis [16]. The AbiE system was first iden-
tified as an Abi system, and later shown to consist of the 
two AbiEi and AbiEii components acting as a TA system  
[17]. Phage defence is considered a primary evolutionary 
role for TA systems, though as many do not display clear 
antiphage activity, other functions should be con-
sidered [12]. 

Abi systems are themselves a grouping of disparate 
systems that have been identified as providing phage 
defence by enforcing cell death on the infected host  
[2,18,19]. In the classical Abi model, the phage will ab-
sorb and inject DNA as per a normal infection, but later 
infection stages are inhibited, resulting in fewer or zero 
phage progeny and host cell killing [19]. It follows that 
cell death removes the phage from the environment and 
protects the clonal bacterial population. Just as not all 
TA systems can be linked to phage defence, not all Abi 
systems are themselves TA systems. Furthermore, 
whilst recent articles have sometimes claimed TA- 
mediated phage defence occurs through an Abi me-
chanism, this has been considered a conflation between 
toxin activity and the outcome of an initiated phage in-
fection [20]. For example, a toxin may provide phage 
defence by interfering with, or blocking production of, 
mature virions, but in itself does not kill the cell and may 
even be simply bacteriostatic when activated. Mean-
while, early infection phage products might be rapidly 
killing the cell through a range of processes (such as 
chromosomal degradation) that lead to cell death in-
dependently from TA system toxicity. The distinction as 
to the cause of cell death becomes more complex when 
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considering whether toxin levels are native or artificially 
over-expressed. This review aims to address this com-
plexity by summarising recent discoveries in mechan-
isms of phage defence provided by TA systems. We will 
consider the contributions of TA systems in cell killing 
as a response to phage, and how best to combine our 
growing molecular understanding of toxicity with con-
sideration of the classic Abi phenotype. 

Activation of toxin–antitoxin mediated phage 
defence 
Whilst the number of TA loci implicated in phage de-
fence continues to increase, mechanistic details that 
underpin their activation are comparably elusive. As of 
Dec 2022, only a handful of specific routes to activation 
have been identified in the context of phage defence 
(Table 1). 

Direct toxin release 
Our canonical understanding of type II TA systems is 
that the toxin protein is held inert by the antitoxin 
protein, before activation due to antitoxin degradation. 
The DNA-modifying E. coli DarTG system appears to 
be rapidly activated post-infection, with ∼fivefold lower 
DNA synthesis rates in cells harbouring direct toxin 
release (DarTG) compared with DarGΔT deletion 
strains as early as 5 min after exposure to phage RB69  
[9]. It is proposed that the fast onset of toxicity is reliant 
on constitutively active DarT toxin being sequestered 
by DarG antitoxin, before phage-mediated liberation of 
DarT (Figure 1a), though further work is required to 
demonstrate complex dissociation and whether there is 
degradation of DarG [9]. DarTG homologues have also 
been shown to confer immunity in a phage-specific 
manner, likely due to individual recognition of specific 
phage factors to allow release of DarT, rather than 
through a conserved trigger for complex dissociation [9]. 
Similarly, activation of the monocistronic CapRelSJ46 TA 
module, encoded by numerous E. coli prophages, has 
been linked to direct binding of phage capsid protein 
Gp57, and its homologues, to the catalytically active 
conformation of the fused CapRel protein [21]. Cru-
cially, these findings suggest that type II TA systems can 
be activated in response to phage infection without an-
titoxin degradation, in agreement with work suggesting 
that not all type II systems are activated as a result of 
antitoxin proteolysis [22]. 

Transcriptional shutoff 
Many bacteriophages, such as T4, trigger rapid shutdown 
of host transcriptional and translational machinery to fa-
cilitate the production of phage progeny [23,24]. The type 
III TA phage defence system ToxIN, first characterised in 
P. atrosepticum [15,25,26], was hypothesised to be activated 
due to destabilisation of the ToxI:ToxN ratio following 
phage infection [15]. This has now been demonstrated for 
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E. coli ToxIN, as due to phage-induced transcriptional 
inhibition, infected cells were unable to synthesise suffi-
cient ToxI RNA antitoxins to inhibit the ToxN ribonu-
clease toxin (Figure 1a) [10]. Similar mechanisms of 
activation have been proposed for RnlAB and Hok-Sok 
TA systems, with auxiliary degradation of labile antitoxic 
proteins and RNAs attributed to toxin liberation, respec-
tively [13,27]. Interestingly, there is new evidence de-
monstrating how TA system activation through depletion 

of antitoxin expression might also actively promote the 
phage life-cycle by allowing cell lysis, as observed for 
hokW-sokW in E. coli O157 [28]. This builds on similar 
recent evidence of prophage-encoded TA systems con-
trolling phage immunity and production [29,30]. Further-
more, a newly discovered widespread tripartite type VII  
[31] TA system, Kinase-Kinase-Phosphatase (KKP), is 
proposed to provide phage defence against lytic phages 
whilst also regulating prophage lysogeny [32]. 

Figure 1  

Current Opinion in Microbiology

Phage defence by selected TA systems DarTG, ToxIN, and Retron-Sen2. Whilst many examples are present in the literature (see main text), these 
systems were selected due to recent progress in determining the molecular processes involved. (a) Activation of TA systems can occur through 
DarTG, transcriptional shutoff (ToxIN), or activation of the toxin (Retron-Sen2), (b) Once released, toxins prevent phage replication either by ADP- 
ribosylating phage DNA to prevent replication elongation (DarT), degradation of phage transcripts (ToxN), or (as hypothesised for RcaT), hydrolysis of 
nucleotides and nucleosides. (c) Phages can escape TA-mediated phage defence by mutating polymerases to circumvent template nucleic acid 
modifications (SECɸ18 versus DarTG), reducing their activity to evade detection (T7 versus ToxIN), or encoding a direct toxin inhibitor (RacC 
versus RcaT).   
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Retron activation 
Retron TA systems encode an effector toxin, a non-
coding RNA, and a reverse transcriptase (RT) re-
sponsible for generating multicopy single-stranded DNA 
(msDNA) [8]. Toxin activation appears to be in-
trinsically coupled to disruption of the msDNA-RT an-
titoxin complex (Figure 1a) [8,33]. It is not currently 
fully understood, however, how the toxin is antagonised 
in the absence of infection [34]. In S. enterica, activation 
of Retron-Sen2 was demonstrated by induction of 
prophage-encoded components that resulted in either 
degradation or methylation of mature msDNA, causing 
release of the RcaT toxin (Figure 1a) [8], though it re-
mains to be demonstrated whether these are effective 
triggers during a phage infection. Activation of E. coli 
retrons Ec48, Ec73 and Ec86 has been attributed to re-
cognition of phage proteins by the msDNA within the 
msDNA-RT complex, as each retron offers defence 
against a different range of phages, though the exact 
recognition mechanisms remain to be identified [33]. 
This again demonstrates that activation is likely multi-
faceted and that as studies continue, we will discover 
additional layers of complexity. 

Mode of action for toxin–antitoxin mediated 
phage defence 
Once activated, toxins have varied means of impacting 
cell growth. Reduced cell growth is thought to then lead 
to phage defence through an Abi mechanism, though the 
direct and causal links have not always been clear. New 
studies are suggesting more specific mechanisms by 
which TA systems provide defence (Table 1). 

Interference with DNA replication 
Modification of ssDNA by DarT was first described in 
2016, with the cognate antitoxin DarG shown to reverse 
this modification [35]. Induction of DarT leads to an 
SOS response and bacteriostasis [35]. DarTG has since 
been shown to provide phage defence, supposedly 
through an Abi mechanism, as it was demonstrated that 
DarT prevents phage DNA replication elongation, 
though not initiation (Figure 1b), leading to an altered 
protein production profile, prevention of virion forma-
tion, and cell death [9]. 

Whilst the involvement of retrons in phage defence has 
previously been investigated [36], only recently have 
they been described as tripartite TA systems responding 
to phage infection [8,33,34]. Modes of action have not 
been fully investigated, but the Ec48 retron system ap-
pears to inhibit bacterial DNA repair, thereby blocking 
cell growth and phage propagation, though this remains 
to be demonstrated conclusively [33]. Similarly, the 
RcaT toxin from Retron-Sen2 is hypothesised to hy-
drolyse nucleosides and nucleotides, and thereby 

interfere with cellular DNAs and RNAs, though this 
activity is yet to be confirmed (Figure 1b) [8]. 

Building on work showing RelA-SpoT Homologues 
(RSHs) can mediate phage defence, such as myco-
bacterial prophage Phrann gp29 [30], induction of the 
recently identified Cellulomonas marina FaRel RSH TA 
system rapidly depletes cellular GTP and ATP, with an 
accompanying increase in ppApp and ppGpp alarmones  
[37]. This leads to decondensation of the nucleoid, in-
hibition of transcription, and later translation and DNA 
replication [37]. 

Interference with translation 
Sequence-specific endoribonuclease toxin PemK was 
initially implicated in plasmid maintenance in S. aureus  
[38]. More recently, PemK has also been implicated in 
phage defence in clinical strains of Klebsiella pneumoniae  
[39]. Post-infection, PemK expression increased, and cell 
growth was inhibited due to mRNA cleavage leading to 
metabolic arrest, which would reduce phage replication  
[39]. In contrast, the sequence-specific endoribonuclease 
ToxN appears to directly inhibit the expression of phage 
genes and ultimately prevents phage propagation 
(Figure 1b) [10]. As per PemK, the previous hypothesis 
for ToxN had been that toxin release causes cell arrest 
leading to death and therefore protects from phage by 
Abi; however, these new data show that ToxN prevents 
virion formation rather than impacting cell fate per se  
[10]. Therefore, as per ToxIN, the hypothesis should 
now be developed, in that phage infection itself might 
directly block host transcription, leading to a loss of 
cellular homoeostasis and ultimately growth arrest or cell 
death [10]. Furthermore, whilst the newly identified 
CrlTA system in P. aeruginosa shows dose-dependent 
bacterial mRNA cleavage, leading to growth arrest as 
seen in other endoribonuclease TA systems, again it is 
not suggested that this is responsible for an Abi phe-
notype [40]. Instead, as antitoxin CrlA is a Cro-like 
DNA-binding protein, it was hypothesised that the an-
tiphage activity is a result of direct binding to incoming 
phage DNA resulting in reduced replication. 

Recent studies on AbiE homologues have further 
probed the bacteriostatic nucleotidyltransferase activity 
of AbiEii [17]. AbiEii homologues found in Serratia sp. 
and Mycobacterium tuberculosis were demonstrated to 
perturb tRNA charging [41,42]. Consequently, the 
common model would suggest that reduced translation 
results in cell growth arrest and death, with concomitant 
reduction in phage replication. This should perhaps be 
reconsidered based on the new ToxIN hypothesis, 
wherein the phage infection leads to host cell death, but 
phage replication is prevented through the action of 
AbiEii [10]. 
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Global responses 
The prophage-encoded tripartite kinase-kinase-phos-
phatase (KKP) TA system of P. aeruginosa encodes two 
toxin kinases, PfpA and PfpB [32]. Targets of the ki-
nases include cell division, transcription, and translation- 
associated proteins, with phosphorylation thought to 
disrupt cellular processes and result in phage defence 
through Abi [32]. Whilst the mechanistic link for KKP is 
unclear, Hok/Sok TA systems are known to disrupt the 
cell membrane and cause global loss of proton motive 
force, thereby directly preventing phage replication  
[13,43,44]. 

Escape from toxin–antitoxin mediated phage 
defence 
As bacteria have evolved new TA system modalities, 
phages have evolved to counteract or circumvent these 
defences. This relationship is the driving force behind 
the incredible complexity and multiplicity of phage 
defence systems, and concurrently TA systems, across 
the microbiome. Though many studies omit TA system 
escape, scientists have utilised phage escape to provide 
valuable insight (Table 1). 

Mutations in early phage genes prevent toxin–antitoxin 
system activation 
An extensive study used 19 different phage defence 
systems to isolate escape phages and identify escape 
mutations, to help determine which phage components 
are activating host defences [45]. Of the systems as-
sayed, only ShosTA [46] and the Eco8, Se72 and Ec67 
retron systems [33] are confirmed as having TA func-
tionality. Phages that escape these systems pre-
dominantly contained mutations in early phage genes; 
for ShosTA, ssDNA binding (SSB) proteins, an inhibitor 
of host RNA polymerase and a DNA primase/helicase; 
for Eco8, SSB family proteins; for Se72, a RecBCD in-
hibitor protein, a ssDNA annealing protein and an exo-
nuclease; for Ec67, the DNA transfer protein, A1 [45]. 
Further study is needed to ascertain whether these 
phage escape mutations directly or indirectly affect ac-
tivation of TA systems. 

Prophages can bootstrap host toxin–antitoxin systems 
A high-throughput reverse genomics approach success-
fully identified proteins that act as either blockers or 
activators of the Salmonella enterica retron Sen2 [8]. 
Perhaps unsurprisingly, TA blockers and activators were 
enriched within prophages. Of the five prophage genes 
identified as blockers (racC, dicC, ydaW, yfjH, yjhC), only 
racC was further investigated [8]. Interestingly, racC is 
conserved adjacent to an activator gene, recE. Together, 
these two genes form a linked blocker/activator pair in 
which racC directly inhibits the RcaT toxin and recE 
actively degrades msDNA (Figure 1a and c) [8]. Thus, 
lysogenic phages can evolve ways to bootstrap host TA 
systems and escape by applying their own mechanisms 

of control, adding an additional layer of complexity to 
TA system function. 

Phages can evolve different escape mechanisms for a 
single toxin–antitoxin system 
Further documentation of phage escape is sporadic in 
recent studies (Table 1). Nevertheless, identification of 
differing escape mechanisms for a single TA system may 
provide additional mechanistic insight. RB69 phages 
were shown to escape DarTG by mutations to a native 
DarT1 inhibitor, 61.2 [1]. The mutation was sufficient to 
abolish DNA ribosylation and restore plaquing efficiency 
of WT RB69 when coexpressed in host cells. A second 
population of SECφ18 escape phages found several in-
dividual mutations in the SECφ18 DNA polymerase 
which allowed the phage to replicate despite DNA ri-
bosylation (Figure 1c) [9]. 

ToxIN phage escape via RNA antitoxin mimics has 
previously been documented [47,48]. Phage ɸM1 was 
also shown to produce a single mutation in a non-
essential gene, m1-23, which provided protection against 
two type III TA systems — ToxIN and TenpIN — 
through preventing early TA system activation [49]. 
More recently, phage T7 has been shown to avoid full 
activation of ToxIN through only partially shutting off 
host transcription, maintaining plaquing efficiency but 
displaying a much smaller burst size (Figure 1c) [10]. 
Such measures illustrate how escape mutations can often 
decrease short-term phage fitness whilst allowing infec-
tion of otherwise resistant bacteria. The interaction of 
ToxIN and T7 suggests that the phage-bacteria arms 
race should perhaps be viewed as a gradient of phage 
infectivity rather than the black-and-white view of bac-
teria either being resistant or susceptible. 

Concluding remarks 
Multiple TA systems have recently been shown to 
provide phage defence (Table 1). Whilst encouraging, 
most studies are largely exploratory, describing the in-
itial discovery of the TA system. We suggest it is im-
portant to use known systems for deeper exploration. 
To our knowledge, only a few TA phage defence sys-
tems have been described more deeply, including 
DarTG, ToxIN and AbiE, but more work is needed to 
fully characterise activating triggers, molecular details 
of toxicity and phage defence, and how phages can 
escape. 

Experimental design should be carefully considered. 
Recent work examining the impact of stress-induced 
transcription on toxin activation demonstrated that le-
vels of transcription do not necessarily correlate with 
degree of toxicity and should not be used as a proxy 
measurement [50]. This finding can now also be applied 
to examine the impact of stress-induced TA locus tran-
scription on TA-mediated phage defence. A further 
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experimental factor to consider is how infection at low 
multiplicity of infection (MOI) may result in growth 
arrest, whilst high MOI may result in cell death [9]. This 
detail is important to consider whilst determining if a 
system acts through Abi, or temporary inhibition of 
growth followed by death as a result of phage infection. 

As described elsewhere [51], future assessments of 
toxicity and target identification might be more effective 
when performed closer to in vivo conditions, for ex-
ample, by working under the native promoter [10,20,51] 
via a proteomics approach [32] or via deletion of system 
components in the native host [14]. Of course, it is noted 
that this may not always be possible especially in the 
case of plasmid-borne systems [39]. Assessment of the 
critical matter of cell growth arrest or cell death could be 
probed more rigorously, for example, via measurements 
of NADPH activity [39], cell proliferation assays [39], or 
live/dead staining [40]. 

Finally, greater precision and consistency in language 
use may help to clarify conclusions with regards to 
outcomes of phage infection under physiological con-
ditions. Previous commentaries have noted that TA 
systems likely allow for a tactical reduction in growth 
rate that prevents phage replication, but death is a re-
sult of the phage infection itself, rather than toxin ac-
tivity [20,51]. Much of the current literature refers to 
cell death upon TA system induction as occurring by 
Abi. On the one hand, use of ‘Abi’ could strictly refer to 
processes wherein a host system has been shown to 
directly cause cell death in response to phage infection, 
thereby preventing phage replication. Using that defi-
nition, many TA systems can be said to prevent phage 
replication but should not be labelled as operating as 
Abi systems. On the other hand, using an evolving 
definition of Abi, we could consider TA systems as 
causing Abi if the defence mechanism prevents phage 
replication with concomitant cell death due to irrever-
sible damage caused by the initial phage infection or 
prolonged growth arrest. As noted elsewhere [51], it is 
difficult to differentiate between these two outcomes; 
either cell death caused by a cell-produced effector (i.e. 
a toxin) responding to phage infection, or cell death as a 
direct consequence of the original phage infection. 
Using an evolved definition of Abi could solve this 
complexity. We therefore suggest that reductions in 
cell growth are not conflated with Abi, where the ae-
tiology of cell death is unknown, until the field can 
reach a consensus on the definition of Abi itself. These 
efforts will be bolstered by deeper molecular under-
standing of how cell death occurs post-infection. 
Nevertheless, recent studies into TA systems and their 
roles in phage defence have highlighted dazzling layers 
of complexity. Clearly, extensive interactions remain to 
be discovered between diverse phages, hosts, plasmids, 
and defence systems across the microbiome. 
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