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1. Introduction 
 
 
An ERM is a loan made to a property-owning borrower late in life that is 
collateralised by the value of their property. The amount of the loan compounds 
over time at the loan interest rate and the loan is repaid when the borrower 
leaves their property by dying or going into care. In the UK, ERMs typically 
include No-Negative Equity Guarantees (NNEGs) which stipulate that the 
amount of the loan due for repayment is capped by the property value at the time 
the loan is repaid, i.e., the borrower or their estate will owe no more than the 
minimum of the rolled-up loan amount and the property value at the time of 
repayment. This obligation to repay the minimum of two future values implies 
that the NNEG involves put options granted by the lender to the borrower. 
 
The question then is how to value the NNEG guarantee. We propose a ‘market 
consistent’ (MC) valuation approach.1 We can define an MC valuation as a ‘fair 
value’ valuation based on the International Financial Report Standards (IFRS) 
definition of a fair value price, namely 
 

The price that would be received to sell an asset or paid to transfer a 
liability in an orderly transaction between market participants at the 
measurement date2   

 
An alternative (and for our purposes practically equivalent) definition is that 
provided by Tim Gordon: he defines a market consistent valuation as one which 
is consistent with modern finance theory as the term is used in Exley, Mehta and 
Smith (1997).3 More precisely, we use a MC approach that combines the Black 
’76 put pricing model and the M5 CBD mortality model (Cairns et al. 2006, 2009).  
 
In the UK context, the earlier NNEG literature includes Hosty et al. (2008), Li et 
al. (2010), Dowd (2018), Jeffery and Smith (2019), Buckner and Dowd (2020a 
on which the present paper draws), Dowd et al. (2019) and a series of regulatory 
documents set out by the UK Prudential Regulatory Authority (see e.g., PRA, 
2016, 2018).  
 
The present paper contributes to the literature on NNEG and ERM valuation in 
that it provides a new analysis of the volatility inputs (note the plural) to the put 
option valuation formula that is used to obtain the NNEG valuation. It turns out 
that there is no single ‘one size fits all’ volatility input that applies to borrowers 
of all ages, as had hitherto been supposed. Instead, there is a term structure of 
volatility inputs spanning the borrower’s possible future lifetime, and their 
gender too.  
 

 
1 For more on market consistent valuation see, e.g., Malamud et alia (2008) or Wüthrich (2016). 
2 See, e.g., https://www.iasplus.com/en/standards/ifrs/ifrs13. 
3 See Gordon (1999) and Exley et al. (1997). 

https://www.iasplus.com/en/standards/ifrs/ifrs13
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This article is organised as follows. Section 2 sets out the basics of NNEG and 
ERM valuation. Section 3 discusses net rental and deferment rates. Section 4 
discusses the volatility inputs to the option pricing equation. Section 5 provides 
some illustrative results and section 6 concludes.  
 
 
2. The Basics of NNEG and ERM Valuation  
 
 
The NNEG valuation model has two key ingredients: a set of expected home-exit 
probabilities and a put option pricing model. 
 
Exit probabilities 
 
The home-exit probabilities refer to the probabilities that the borrower will exit 
the home (and hence terminate the loan) over each of the next 1, 2, 3, … etc years. 
We assume away complicating factors such the possibility of early repayment of 
the loan and the possibility that the individual will spend time in a care home at 
the end of his or her life.4 We assume instead that the individual will die at home, 
i.e., so home exit occurs at death. Under these assumptions, the exit probability 
for year 𝑡 is equal to  
 
(1)            𝑒𝑥𝑖𝑡 𝑝𝑟𝑜𝑏𝑡 = 𝑞𝑡 × 𝑆𝑡   
 
where 𝑞𝑡 is the mortality rate for year 𝑡 and 𝑆𝑡 is the probability that an 
individual alive now will survive to year 𝑡. Note that  𝑆0 = 1  and 𝑆𝑡 = (1 −
𝑞𝑡−1)𝑆𝑡−1 for all 𝑡 > 0. 
 
The home-exit probabilities for males currently aged 70 are illustrated in Figure 
1: 
 

Figure 1 House Exit Probabilities for Males Currently Aged 70 

 
4 For more on early repayment and long-term care and on how they can be handled by equity 
release modellers, see Buckner and Dowd (2020a, chapters 15 and 11) respectively.  
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Notes: House exit probabilities are based on CBD-M5 model (Cairns et alia, 2006, 2009) cohort 
mortality rate projections using male England & Wales deaths rate data estimated over ages 
55:89 and years 1971:2017. Source: Life & Longevity Markets Association. 

 
The left hand (low 𝑡) house exit probabilities are close to the low 𝑡 mortality rates 
and reflect the early high survival probabilities (i.e., that people aged 70 have a 
high probability of living at least a few years), and the later (high 𝑡) house exit 
probabilities primarily reflect the fact that the probabilities of living to extreme 
old age are low and approach zero in the limit. 
 
Valuation Issues and the Put Pricing Model 
 
The present value 𝐸𝑅𝑀 of the Equity Release Mortgage loan can be considered 
to be the present value 𝐿 of a risk-free loan, one which is guaranteed to be repaid 
in full, minus the present value 𝑁𝑁𝐸𝐺 of the NNEG guarantee: 
 
(2)            𝐸𝑅𝑀 = 𝐿 − 𝑁𝑁𝐸𝐺 
 
The original loan amount grows at the loan rate (sometimes called the rollup 
rate) 𝑙 from its current amount until the time when the loan ends. Therefore 𝐿 is 
given by 
 

(3)           𝐿 = ∑ [𝑒𝑥𝑖𝑡 𝑝𝑟𝑜𝑏𝑡 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑎𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑒(𝑙−𝑟)𝑡]𝑡  
 
where 𝑟 is the risk-free interest rate.5 
 
The valuation of 𝐿 is straightforward. 
 

 
5 Note the implicit distinction here between the loan amount or rolled up loan amount, on the 
one hand, and 𝐿, the (economic) value of the loan, on the other. The former is the amount loaned 
plus the interest accumulated since the inception of the loan, whereas the latter is the value of 
the loan to the lender, including the expected profit on the loan. A concrete example of the 
distinction between the two is given in Table 1. Note too that the economic value of the loan is 
not to be confused with the accounting book value of the loan, which is another issue again.  
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𝑁𝑁𝐸𝐺 is the sum of the products of the exit probabilities for each future time 𝑡 
and the present value of the NNEG guarantee for each future time 𝑡: 
 
(4)           𝑁𝑁𝐸𝐺 = ∑ [𝑒𝑥𝑖𝑡 𝑝𝑟𝑜𝑏𝑡 × 𝑁𝑁𝐸𝐺𝑡]𝑡  
 
where 𝑁𝑁𝐸𝐺𝑡  is the present value of the NNEG guarantee for period 𝑡.  
 
The question is then how to value each of these individual 𝑁𝑁𝐸𝐺𝑡  terms.  
 
Recall that the NNEG gives the borrower (or the person acting for the borrower) 
the right to repay the loan by paying the lender the minimum of the loan value 
or the house price at the time of death.  
 
The right to repay the minimum of two future values (one of which, the future 
house price, is uncertain) at some given future time implies a European put 
option granted by the lender to the borrower. Since the time of exercise is 
uncertain, we can think of the NNEG as involving a portfolio of such put options.  
 
In the case of our put options the underlying variable is a residential property 
(‘house’) or more precisely, a forward contract on a house, and we should think 
of a house as an asset that bears a continuous yield in the form of a net rental 
yield. This net rental yield reflects the use benefit of living in the house or the 
(net, after costs) rental income we might get by renting the house out.  
 
A natural option pricing model to use in these circumstances is the Black ’76 
model (Black, 1976). Black ’76 is an appropriate pricing model when the 
underlying is a forward contract with a maturity coterminous with that of the 
option itself. This model is a near-relative of the famous Black-Scholes-Merton 
model (Black and Scholes, 1973; Merton, 1973).6  
 
The Black ’76 formula for the price 𝑝𝑡 of a European put option with maturity 𝑡 
on a forward contract on a commodity bearing a continuous yield q is given by 
the formula: 
 
(5)           𝑝𝑡 = 𝑒−𝑟𝑡[𝐾𝑡𝑁(−𝑑2) − 𝐹𝑡𝑁(−𝑑1)] 
 
where 𝐾𝑡 is the strike or exercise price for period 𝑡, 𝐹𝑡 is the forward house price 
for period 𝑡, the function 𝑁(… ) is the value of the cumulative standard normal 
distribution at the value specified in brackets, and 𝑑1 and 𝑑2 are given by: 
 

(6)           𝑑1 = [𝑙𝑛(𝐹𝑡/𝐾𝑡) + 𝜎𝑡
2𝑡/2]/(𝜎√𝑡) 

 

 
6 In principle, we can also use the BSM model if we allow the underlying to bear a continuous 
dividend yield, which will be the net rental yield. The equivalence of the two models under these 
circumstances is shown in Buckner and Dowd (2020a, appendix to chapter 3). 
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(7)          𝑑2 = 𝑑1 − 𝜎𝑡√𝑡 
 
where 𝜎𝑡  is the volatility of the forward house price for maturity 𝑡. 
  
The strike price 𝐾𝑡 is then the rolled up or accumulated loan amount by period 
𝑡: 
 
(8)          𝐾𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑎𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑒𝑙𝑡  
    
and the forward price 𝐹𝑡, the price agreed now to be paid on possession in period 
𝑡, is: 
 

(9)          𝐹𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑜𝑢𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 × 𝑒(𝑟−𝑞̃)𝑡  
 
where 𝑞̃ is the deferment rate, namely the discount rate applied to the current 
house price to give the deferment price, the price we would agree to pay today to 
take possession of the house in 𝑡 years’ time. Thus, the deferment house price 𝑅𝑡 
is given by: 
 
(10)        𝑅𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑜𝑢𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 × 𝑒−𝑞̃𝑡  
 
The difference between the forward house contract and the deferment house 
contract is that with the forward we settle when we take possession in 𝑡 years’ 
time, but with the deferment contract we settle today.7 Therefore, the deferment 
house price 𝑅𝑡 is the present value of the forward price, where the present value 
is obtained by discounting at the risk-free rate 𝑟. 
 
It is important to note that the deferment house price will be less than the 
current house price 𝑆0 because the deferment rate 𝑞̃ > 0.  
 
The forward house price 𝐹𝑡 should not be confused with future house prices or 
expected future house prices: 
 

• Forward prices for future period 𝑡 are known (or can be approximated) 
now and we need to be able to price options using information available 
now.  

• Options cannot be priced using future house prices because future house 
prices are currently unknown. 

• Expectations of future prices do not appear in the Black ‘76 option pricing 
formula. 

 
We should also keep in mind that although the original Black ‘76 article 
discussed options on futures, futures prices are the prices of futures contracts, a 
form of forward contract, not actual or expected future prices of any sort.  

 
7 See PRA SS 3/17 (p. 12, note 2). 
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A mistake to be particularly avoided – the one common among UK ERM actuaries 
– is to confuse forward and expected future prices. This mistake typically 
manifests itself in the inputting of an assumed expected house price inflation rate 
into (9) instead of the forward rate 𝑟 − 𝑞̃.  
 
To repeat: it is not the future or expected future price of a contract for immediate 
possession that we use in the option pricing equation, but rather the current 
price of a contract for future possession.  
 
Finally, we make the point that the most important of these parameters in terms 
of their impacts on results are 𝑞̃ and 𝜎𝑡 . 
 
 
3. Net Rental Yield and Deferment Rate 
 
 
Let’s start by some clarifying definitions. We first decompose the net rental yield 
as:  
 
(11)             𝑛𝑒𝑡 𝑟𝑒𝑛𝑡𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 = 𝑦 − 𝑣 − 𝑐 − 𝑚 
 
where 𝑦 is the gross rental yield or the yield paid by the tenant, 𝑣 is the void rate, 
𝑐 is management cost rate and 𝑚 is the maintenance cost rate, where yield and 
cost rates are annual and expressed relative to the property price.  
 
The deferment rate, as defined by the regulator, the Prudential Regulation 
Authority (PRA), is “the discount rate that applies to the spot price of an asset 
resulting in the deferment price, where the deferment price is the price that 
would be agreed and settled today to take ownership of the asset at some point 
in the future”.8 The deferment price reflects the foregone income or use during 
the deferment period. 
 
These two rates are mathematically identical, but are defined differently.  
 
From the above definition, the deferment rate is the discount rate that when 
applied to the freehold price of vacant possession results in the price of deferred 
possession. The deferment rate itself is not directly market observable, but it can 
be estimated as a function of market variables. The method proposed here uses 
net rental yields, as follows. 
 
Let 𝑑 be the current net nominal annual rental, the current time being the 
beginning of the year. (We use ‘𝑑’ here because the approach we are using 

 
8 PRA SS 3/17, July 2018. 
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derives from the dividend discount model, where ‘𝑑’ is used to refer to (nominal) 
dividends.) It can then be shown that  

 
(12)               𝑞̃ = 𝑑/𝑆  
 
where: 𝑞̃ is the deferment rate, 𝑑 is the net rental amount as above, with the 
current time being the beginning of the rental year; and 𝑆 the estimated ‘spot 
price’, i.e., the freehold value of vacant possession estimated as the market value 
of an identical or similar property not encumbered by a leasehold.  
 
A proof of (12) is given in Buckner and Dowd (2021, Appendix B).  
 
To give an example, Sheffield City Council recently reported that the average 
house price in the city is £163,288 and the average private monthly house rental 
is £600.9 The corresponding average annual house rental is £600 times 12 = 
£7,200. We then have to make a judgment about the relationship of net rental to 
gross and let’s suppose that net is 75% of gross (but see also the next subsection 
for more on this breakdown of gross to net). The average net rental would then 
be 75% times £7,200 = £5,400, giving us 𝑞̃ = 5,400/163,288 = 3.3%.  
 
One can then envisage equity release lenders using a similar approach to drill 
down further to obtain 𝑞 calibrations for neighbourhood, property class and 
even individual properties.  
 
Calibrating the Net Rental Yield 
 
We now provide a more precise calibration of the net rental yield. Define the 
maintenance cost 𝑚 as the rate of expenditure (as a percentage of gross rental) 
required to keep the property in perfect condition (i.e. such as to achieve the best 
sales price for a property of that size in the same area), and define the tenant 
maintenance share (𝑠) as the proportion of 𝑚 that the tenant is likely to spend 
on maintenance. 𝑠 will typically vary between 0 and 100%. For a short rental,  𝑠 
will be close to zero, and for a long let we would expect  𝑠 to be close to 100% in 
the early years of tenancy, falling over time. In the final years it might fall to zero, 
even for a standard tenancy, given the lack of incentive to keep in full order for 
the landlord’s benefit.10 For an ERM, it would seem unlikely that the ‘tenant’ at 
end of life, perhaps in the situation where the NNEG had bitten, would have any 
incentive to keep the property in good condition, so we would expect 𝑠 to fall 
toward zero in that case too. 
 
We now use the following calibrations: 
 

 
9 Sheffield Housing Market Bulletin, January-March 2019, Sheffield City Council.  
10 In fact, we can also imagine 𝑠 < 0. So if 𝑠 = 0 reflects no active effort to keep the property in 
condition, 𝑠 < 0 reflects a determined effort by occupiers to strip the property (e.g., of light 
fittings, marble fireplaces, etc.) or trash the property! It happens. 

https://www.sheffield.gov.uk/content/dam/sheffield/docs/housing/Housing%20Market%20Bulletin%20January%20to%20March%202019.pdf
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• Void: we use the standard ‘1 month in 12’ rule of thumb, i.e., 𝑣 =
(1/12) × 𝑦.11  

• Management cost: following Tunaru and Quaye (2019, p. 32), we assume 
management cost 𝑐 = 10% × 𝑦.  

• Maintenance cost: again following Buckner and Dowd (2020, p. 37), we 
assume maintenance costs 𝑚 = 15% × 𝑦.  

 
Thus, the maintenance cost borne by the landlord and to be subtracted from the 
gross rental yield is 𝑚 = 15% × 50% × 𝑦 = 7.5% × 𝑦.  
 
We then have  
 
(13)            𝑛𝑒𝑡 𝑟𝑒𝑛𝑡𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 = 𝑦 × (11/12 − 0.1 − 0.075) = 𝑦 × 0.7417. 
 
Thus, the net is 74.17% of the gross.  
 
Again following Buckner and Dowd (2020, p. 37), we take  
 
(14)           𝑦 = 5.6%. 
 
Therefore 
 
(15)        𝑞̃ = 𝑛𝑒𝑡 𝑟𝑒𝑛𝑡𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 = 74.17% × 5.6% = 4.15% ≈ 4.2%. 
 
So we use 𝑞̃ = 4.2% as our ‘best estimate’ of the deferment rate.12,13 
 
 
4. Volatility 
 
 
The standard approach to volatility estimation takes the volatility to be the 
standard deviation of the return to the underlying, where the latter is often taken 
to be a house price index (HPI) and some adjustment is made for the impact of 
autocorrelation in the HPI. A good example is CP 13/18 (p. 9), which states:  
 

 
11 An alternative is to use empirical void data. Average void period for landlords in private rented 
sector in the United Kingdom (UK) have varied from 2.4 weeks to 2.9 weeks. (Source: 
https://www.statista.com/statistics/421102/rental-properties-void-periods-in-the-uk/. 
Accessed 19 March 2019.) If we take the mid-point, 2.65 weeks, then the average void rate by 
this measure would be 2.65/52 = 5.1%, as compared to the ‘rule of thumb’ void rate of 11/12 = 
8.3%.  
12 If we use the empirical void rate of 5.1%, then net is 77.4%% of gross and we would obtain 
𝑞̃ = 4.3%.  
13 We have implicitly assumed that the deferment rate is constant over the term to maturity, but 
the analysis can easily be tweaked to accommodate a term structure for the projected deferment 
rate.  

https://www.statista.com/statistics/421102/rental-properties-void-periods-in-the-uk/
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2.16 The PRA estimated a value for the property volatility parameter 
from analysis of residential property price index data. Nationwide, 
Halifax and Office for National Statistics index data were analysed 
and several time series models were fitted to the quarterly log-
returns of data sets over a variety of historical time periods. The PRA 
selected a parsimonious model that fitted the data well, and extracted 
from the model the unconditional volatility for various holding 
periods, allowing for autocorrelation. Further adjustments were 
made to allow for concentration risk and basis risk between the 
changes in prices of individual properties and the index. The PRA’s 
central estimate is of a 13% volatility assumption for typical holding 
periods for ERMs, although use of alternative data choices gives a 
range of 13%-16%, and making an allowance for parameter 
uncertainty gives a range of 11%-18%. Estimates for property 
volatility provided to the PRA by firms are generally in the range 
10%-15%. (Our emphasis) 

 
We would suggest that this approach is unsatisfactory because it implicitly 
supposes that there is one single ‘one size fits all’ volatility input to NNEG 
valuation or, more specifically, that each of the put ‘nneglets’ that make up the 
NNEG should have the same numerical volatility input. We suggest that this 
implicit assumption is mistaken, and that each nneglet should in principle have 
a different volatility input.  
 
We need to go back to first principles. We propose a new approach that starts 
with the volatility of the forward return derived from a house price index (HPI) 
and then gradually adds in further risk factors.  
 
Vol Estimation: A First Pass 
 
We begin by defining the volatility 𝜎 of the return on a forward contract as the 
square root of the variance of that return: 
 

(16)       𝜎2 =
1

𝑛
∑ (𝐹𝑅𝑡 − 𝐹𝑅̅̅ ̅̅ )2.𝑛

1  

 
where 𝐹𝑅𝑡 is the forward return over the period to time 𝑡 and 𝐹𝑅̅̅ ̅̅  is the mean 
forward rate.  
 
More specifically, we seek to obtain the variance of the return on a forward with 
maturity 𝑇, 𝐹𝑡,𝑇  say, based on observations of a spot price 𝑆𝑡 and we would 
typically take 𝑆𝑡 to be some HPI. We already know (see (9) above) that  
 

(17)    𝐹𝑡,𝑇 = 𝑆𝑡𝑒(𝑟−𝑞)𝑇 

 
where the variables have their usual interpretations.  



 11 

 
The return on a forward with maturity T is 
 
(18)    𝐹𝑅𝑡,𝑇 = 𝑙𝑛𝐹𝑡,𝑇 − 𝑙𝑛𝐹𝑡−1,𝑇 
  
where variables have their obvious interpretations. Substituting (17) into (18) 
 

(19)    𝐹𝑅𝑡,𝑇 = ln [𝑆𝑡𝑒(𝑟−𝑞)𝑇] − ln [𝑆𝑡−1𝑒(𝑟−𝑞)𝑇] 

           = ln 𝑆𝑡 + (𝑟 − 𝑞)𝑇 − ln 𝑆𝑡−1 − (𝑟 − 𝑞)𝑇 
           = ln 𝑆𝑡 − ln 𝑆𝑡−1 
 
which is the return on the spot house price.  
 
Therefore, the variance of 𝐹𝑅𝑡,𝑇 must be equal to the variance of the spot return, 
regardless of the maturity of the forward.  
 
So what should we take the value of the spot return variance to be?  
 
We would suggest to go with the PRA’s central estimate of 13%.  
 
Volatility Around the Index 
 
The estimated 13% volatility only refers to the volatility of the index, but there 
is also the volatility around the index. This additional volatility would include the 
impact of regional variation around the index, but there are further contributory 
factors as well. These include, e.g., the impact of changes in consumer relative 
demand for different types of property, expansions of nearby roads, the impact 
of new housing estates, yuppification, middle class flight, the opening or closing 
of a good nearby school, and so forth.  
 
The next Figure shows scatterplot of the ‘achievement rates’ of ERMed 
properties, i.e., the amounts that the lender was able to realise after the borrower 
exited, expressed as a percentage of the indexed value, based on the Shared 
Appreciation Mortgage Securities (SAMS) originated by HBOS in the late 1990s:  
 

Figure 2: Indexed vs. Achieved House Prices 
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Source: SAMS 

 
The red dots are the scattershot of the individual achievement rates in the 
sample. The darker blue random-looking line is a simulated house price index.  
 
We immediately see that the achieved values are much more volatile than the 
index. Above all, when seeking to calibrate the volatility, we need to keep in mind 
that it is that dispersion that matters, not the volatility of the index itself.  
  
It would then behove us to revise our earlier index-based volatility estimates to 
take account of this additional source of volatility. We could start with our earlier 
index volatility. Let us label this volatility as 𝜎𝐼𝑁𝐷𝐸𝑋. We now obtain 𝜎𝐴𝑅 , the 
volatility of the achievement rate, as follows: take a rolling standard deviation of 
the achievement rate and divide by root time to get an annualised value. We 
found that the annualised volatility values vary from 7% to 10%. Let’s work with 
the middle value of 8.5%. We then have to assume a plausible correlation 
between the index vol and the achievement rate vol. Assuming zero correlation, 
which is not unreasonable, we obtain the results reported in Table 1: 

 
Table 1: Illustrative Volatility Including Impact of Achievement Rate 

Volatility  
𝝈𝑰𝑵𝑫𝑬𝑿 𝝈𝑨𝑹 𝝈𝑰𝑵𝑫𝑬𝑿 𝒂𝒏𝒅 𝑨𝑹 

13% 8.5% 15.5% 

Note: The term in the rightmost cell is obtained by Pythagoras.  
 

 
Interest Rate Risk as a Further Contributor to Volatility 
 
We have hitherto assumed (as per Black-Scholes/Black ’76) that the interest rate 
is constant, i.e., that there is no interest rate risk. In fact, interest rate risk not 
only exists, but arises from two different sources. Recall the following 
components of the Black model, reproduced here in slightly simplified form:  
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(20)           𝑝𝑡 = 𝑒−𝑟𝑡[𝐾𝑇𝑁(−𝑑2) − 𝐹𝑇𝑁(−𝑑1)] 
 
(21)           𝑑1 = [𝑙𝑛(𝐹𝑇/𝐾𝑇) + 𝜎𝑇

2𝑇/2]/(𝜎𝑡𝑇) 
 

(22)           𝑑2 = 𝑑1 − 𝜎𝑇√𝑇  
 

(23)          𝐹𝑇 = 𝑆 𝑒(𝑟−𝑞)𝑇  
 

where 𝑝𝑡 is the value of the 𝑡 decrement put, 𝐾𝑇 the strike price, 𝐹𝑇 the forward 
price, 𝜎𝑇  the annualised input volatility, 𝑇 the time to maturity in years, 𝑟 the 
interest rate, 𝑆 the price of ‘spot’ possession of the property, and 𝑁(… ) is the 
cumulative normal distribution function. 
 
The interest rate term 𝑟 appears first (see (20)) as a discount term wrapped 
around the terms representing the future value of the put option, which brings 
the future value (i.e., [𝐾𝑇𝑁(−𝑑2) − 𝐹𝑇𝑁(−𝑑1)]) back to present value. Here 𝑟 
plays the role of an outer discount factor.  
 
The parameter 𝑟 then appears again (see 23)) as a projection term or inner 
discount factor taking us from the spot price 𝑆 to the forward price 𝐹𝑇 . 
 
Each appearance gives rise to interest rate risk, but in different ways. 
 
Discount rate risk 
 
The first can be called discount interest rate risk. This risk can be hedged 
relatively easily, the gist of it being to swap floating into fixed.  
 
A more detailed explanation goes as follows. When a trading desk sells an option, 
it places the premium in an account called the ‘hedging account’. This account 
earns interest from the firm’s central funding desk and the interest earned will 
typically be close to the firm’s overall funding rate. To hedge the risk arising from 
changes in this outer discount factor, the desk should make an internal or 
external IR swap into a fixed rate with maturity at the option expiry date.  
 
It can then be shown that this swap guarantees that, with no other change taking 
place in the market, the hedge account will earn the fixed rate 𝑟 in the outer 
discount factor 𝑒−𝑟𝑡. The demonstration goes as follows. Let 
 
(24)             𝑃 = 𝐹𝑉 × 𝑒−𝑟𝑇 
 
where 𝑃 is the option premium paid, 𝑟 here is the long term rate earned on the 
option account, and 𝐹𝑉 is the future value of the option given by the 
undiscounted Black formula.  
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Now suppose the long-term interest rate 𝑟 changes, but there is no change in the 
forward price 𝐹. Such a circumstance would occur where the spot rate 𝑆 changed 
by an amount Δ𝑆 in such a way that 𝐹 remained constant under the formula 
connecting 𝑆 with 𝐹, i.e. 
 
(25)         Δ𝑆 = 𝑆(𝑒−Δ𝑟𝑇 − 1) 
 
where Δ𝑟 is the change in discount rate. In this situation 𝐹 will remain the same 
and hence the future value 𝐹𝑉 of the put option will also remain the same. The 
change Δ𝑃 in the value of the option premium will then be a simple discount 
function: 
 

(26)         𝑃 + Δ𝑃 = 𝐹𝑉[𝑒−(𝑟+Δ𝑟)𝑇 − 𝑒−𝑟𝑇]. 
 
Assuming the amount 𝑃 is currently held in the hedging account, we could 
replicate the change Δ𝑃 if 𝑃 were invested in a long dated zero-coupon bond with 
maturity 𝑇. In practice the same effect can be achieved by investing 𝑃 at the firm’s 
short-term funding rate, but swapping the short-term floating payments into a 
zero-coupon swap. 
 
Projection rate risk 
 
In the previous example we assumed that the forward price remains constant 
while the spot price changes, i.e., a rise in long term interest rates will force the 
spot price lower, while a fall in the interest rate forces the spot price higher. This 
effect might be explained by a market expectation of unchanged future nominal 
rental cashflows, whose discounted present value would fall or rise according to 
the long-term interest rate operating as a discount factor. 
 
The opposite case can also occur, i.e., we could have a situation where the spot 
remains steady, but the forward changes due to the way in which the interest 
rate operates as a projection factor.   
 
Using the standard formula for the forward house price (i.e., (30)), and assuming 
constant 𝑞, the return on the forward is calculated as follows. 
 
(27)          forward return  ≈  𝐻𝑃 + (𝐼𝑅 − 𝑞) × 𝑇  
 
where 𝐻𝑃 = ln((𝑆 + Δ𝑆)/𝑆) and 𝑇 is the maturity of the forward at any point 
in the historical time series for the given combination of interest rate (𝐼𝑅), 
deferment rate (𝑞) and house price index (𝐻𝑃𝐼). 
 
A proof of (27) is provided in Appendix 1.  
 
Three key points follow from (27).  
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Four risk factors 
 
The first is that we now have four risk factors (Index, achievement rate, interest 
rate and deferment rate) impacting the forward price. 
 
Correlations 
 
The second is that we need to consider their correlations. We are now interested 
in particularly (a) the correlation between the house price index and the interest 
rate, and (b) the correlation between the house price index and the deferment 
rate.  
 
Let’s consider each of these in turn.  
 
(a) Correlation between house price index and interest rate  
 
We have already assumed that the correlation between the Index and the 
achievement rate is zero. The table below shows the correlation between the 10 
year interest rate (which we take as a benchmark for the whole term structure) 
and the housing index, for 10 representative countries. 
 

Table 2: Correlation between 10Y Interest Rate and Index 
Country 𝝆𝑰𝑹,𝑰𝑵𝑫𝑬𝑿 

AUS 10Y 0.22 
CAN 10Y -0.05 
GER 10Y 0.11 
ESP 10Y 0.06 
FRA 10Y 0.16 
GB 10Y 0.10 
IRL 10Y -0.03 

SWE 10Y 0.14 
US 10Y 0.03 
JP 10Y 0.27 

Source: OECD (10Y interest rate) and Dallas Fed (House Price indices). Data are quarterly from 
Jan 1980 to June 2017.  

 
The takeaway points from this table are that the correlations between interest 
rates and house price indices are generally low and that a reasonable correlation 
for the UK would be zero.14 
 

 
14 The low correlations reported in Table 2 are a bit of a surprise, considering that a lower 
interest rate immediately transforms into higher affordability and therefore - in the absence of 
new supply – into higher house prices. One reason could be that Table 2 looks at 10yr rates 
whereas the key driver might be short-term rates. Were the correlations between interest rates 
and house prices higher, the resulting ‘combined’ volatilities (of which more below) would be 
higher as well.  
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(b) Correlation between house price index and 𝑞  
 
Equation (27) indicates that the deferment rate 𝑞 is a further source of volatility. 
Take equation (11), which says that the deferment rate is equal to the rental yield 
divided by the house price, then replace the house price by the HP index and add 
a time  𝑡 subscript. We then obtain: 
 
(28)         𝑞𝑡 = 𝑑𝑡/𝐻𝑃𝑡 
 
where 𝑑𝑡 is the aggregate nominal rental. We have no time series data on 
aggregate nominal rentals, but we can estimate their change using rental and 
house price indices. Data from OECD suggest that the deferment rate 𝑞 is not 
constant (the annual volatility of 𝑞 for the UK is of the order of 0.3%) and that 
changes in 𝑞 are negatively correlated with changes in the index. These effects 
are shown in Figure 3: 
 

Figure 3: UK Nominal House and Rental Indices and Implied Deferment 
Rate 

 
Sources: OECD 

 
As one of us commented in early 2019:15 
 

When I worked at the PRA on the paper that became CP 13/18, I had 
assumed that the deferment rate stays roughly constant. 
The rationale is that if rentals are expected to increase, this would 
increase the market value of properties, all other things being equal. 
But all other things aren’t equal: there is strong evidence 
that nominal rentals track price inflation, and also strong evidence 
that interest rates anticipate inflation.16 So an increase in expected 

 
15 Buckner (2019).  
16 Long term interest rates were meant. For example, the 10Y gilt rate rose consistently after 
1946 to anticipate the great inflation of the 1960s and afterwards. 

https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/consultation-paper/2018/cp1318.pdf
https://en.wikipedia.org/wiki/Fisher_equation
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nominal rentals should correlate strongly with an increase in the 
interest rate used to discount the same rentals, and the rental yield, 
hence the deferment rate, should remain roughly constant.17 I 
assumed this, and I imagine the PRA assumed this too. 

 
A possible explanation for the volatile 𝑞̃ rate and the negative correlation with 
house prices might then go as follows. Nominal house prices, which in theory 
should reflect the net present value of all future nominal (net) rental cashflows, 
tend quickly to anticipate – perhaps to over-anticipate – future upward or 
downward changes in rentals. Nominal rentals are sticky however and respond 
slowly.18 Thus the large fall in house prices which occurred in the housing 
recession of the early 1990s was not reflected in rents, which continued to rise 
slowly, and so 𝑞̃ rose in that period. Conversely, the significant rise in house 
prices from the late 1990s to 2007 was notably higher than the rise in rentals, so 
𝑞̃ fell over this later period.  
 
As an aside, this combination of a volatile 𝑞 that is negatively correlated with 
house prices has an interesting policy implication. If house prices go up, the loan-
to-value of an existing equity release mortgage will fall, which will decrease the 
cost of the NNEG. At the same time, the graph above suggests the deferment rate 
will also fall, which will make the NNEG even cheaper, given that the deferment 
rate is the main driver of NNEG cost. Conversely, a fall in house prices will make 
the NNEG more expensive because of the fall itself, and will then make the NNEG 
even more expensive because of the implied rise in the 𝑞̃ rate. The cost of the 
embedded guarantee is thus doubly geared to the state of the housing market. 
The PRA would appear to be still unaware of this double exposure, which has 
implications for how it should design its capital requirement regime for equity 
release. But we digress. 
 
Nor is this negative correlation effect unique to the UK. Table 3 shows evidence 
for a strong and consistent negative correlation between the deferment rate and 
the house price index of our ten countries: 
 

Table 3: Correlation between 𝑞 and Index 
Country 𝝆𝒒,𝑰𝑵𝑫𝑬𝑿 

 
17 Using the Dividend Discount Model, the deferment rate 𝑞 equals the net rental yield 𝑑/𝑆 (see 
(12) above). We show elsewhere (see Buckner and Dowd (2020a, p. 107)) that 𝑞 also equals 𝑟 +
𝜋 + 𝜆 − 𝑔, where 𝜋 is a risk premium and 𝜆 is an illiquidity premium. Using the well known Fisher 
Equation, we can decompose the nominal interest rate 𝑟 into the sum of 𝑟𝑟𝑒𝑎𝑙 + 𝑖𝑛𝑓, where 𝑟𝑟𝑒𝑎𝑙  
is the ‘real’ rate of interest and 𝑖𝑛𝑓 is the expected inflation rate.  However, we can apply a similar 
reasoning to 𝑔 as well, giving us 𝑔 = 𝑔𝑟𝑒𝑎𝑙 + 𝑖𝑛𝑓, where 𝑔𝑟𝑒𝑎𝑙  is the growth rate of ‘real’ or 
inflation-protected dividends. We then obtain 𝑞 = 𝑟𝑟𝑒𝑎𝑙 + 𝑖𝑛𝑓 + 𝜋 + 𝜆 − (𝑔𝑟𝑒𝑎𝑙 + 𝑖𝑛𝑓) = 𝑟𝑟𝑒𝑎𝑙 +
𝜋 + 𝜆 − 𝑔𝑟𝑒𝑎𝑙  from which we see that the effects of expected inflation cancel out.  
18 This effect is well known in the literature, although there is no consensus on the explanation. 
For example, Campbell and Hercowitz (2009) find that “movements in U.S. house price-rent 
ratios cannot be fully explained by movements in subsequent rent growth” For a review of the 
literature, see Gelain and Lansing (2013).  
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AUS -0.90 

CAN -0.95 

GER -0.79 

ESP -0.88 

FRA -0.84 

GB -0.82 

IRL -0.43 

SWE -0.80 

US -0.86 

JP -0.92 

Source: OECD (10Y interest rate) and Dallas Fed (House Price indices) 

 
Volatility term structure  
 
The third important corollary of equation (34) is that it implies that there is a 
volatility term structure. For example, other things being equal, the effect of a 10 
bp change on a contract with 3 months to maturity will be 10 x 3/12 = 2.5bp, 
which is trivial. But the impact of the same bp change on a 30 year forward will 
be 10 x 30 = 300bp,19 which is a whole lot more. This changing sensitivity 
throughout the life of the contract means that the impact on volatility caused by 
changes in the interest rate is not constant, and the same applied to changes in 
the deferment rate. Instead, mapped against time, the  volatility starts high when 
the maturity is far from maturity and falls towards zero as the contract 
approaches expiry. Mapped against maturity, the volatility starts from zero and 
increases as the maturity gets larger. 
 
We now wish to determine the average lifetime volatility of the contract. If 𝑋 is 
the series of maturities and 𝑌 is the series of forward returns, it can then be 
shown that the volatility of the product 𝜎(𝑋𝑌) is the following simple function: 
 

(29)           𝜎(𝑋𝑌) = 𝜎(𝑌) × 𝑇/√3 
 
where 𝜎(𝑋𝑌) is the volatility of a time series of returns of the forward contract, 
and 𝜎(𝑌)  the volatility of the interest rate.  A proof is given in Appendix 2. Then 
the volatility of the returns on the forward contract is directly proportional to T 
(but see Figure 4 a little further below). 
 
Total Forward Volatility 
 
Finally, we might consider the effect of all four risk factors (Index, interest rate,  
𝑞 and achievement rate) in the forward rate (27) to give what we might call the 
total forward volatility. We can do so by estimating a correlation matrix between 
the four risk factors as shown in Table 4: 

 
19 This follows from the forward equation 𝐹 = 𝑆𝑒(𝑟−𝑞̃)𝑡 . Assuming 𝑞̃ is constant, the derivative of 

the right hand side will be 𝑑𝐹/𝑑𝑟 = 𝑡. 𝑒(𝑟−𝑞̃)𝑡, which is proportional to 𝑡. 
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Table 4: Correlation Matrix for the Four Main Risk Factors  

Index IR 𝑞 AR 

Index 1.00 0.00 -0.82 0.00 

IR 0.00 1.00 0.00 0.00 

𝑞 -0.82 0.00 1.00 0.00 

AR 0.00 0.00 0.00 1.00 

 
Table 5 shows the volatilities for the component risk factors:  
 

Table 5: Volatilities of Component Risk Factors  
Component Volatility Value 

𝜎𝐼𝑁𝐷𝐸𝑋 13% 

𝜎𝐴𝑅  8.5% 

𝜎𝐼𝑅 0.58% 

𝜎𝑞 0.17% 

 
We next combine the correlations in Table 4 with the component volatilities in 
Table 5 and then apply (29) to obtain the term structure for the total forward 
volatility shown in Table 6:  
 

Table 6: Term Structure of Total Forward Volatility 
𝑇 Total Forward Volatility 

1 15.66% 

5 16.39% 

10 17.73% 

15 19.45% 

20 21.45% 

25 23.67% 

30 26.05% 

 
If we worked with these results, we would apply a 15.66% volatility to the put 
for decrement 𝑡 = 1, a 16.39% volatility to the put for decrement 5, and so on, 
and a 26.05% volatility to the put for decrement 30.20 
 
Figure 4 shows a plot of the total forward volatility over a horizon of up to 40 
years. 
 

Figure 4: Term Structure of Total Forward Volatility  

 
20 A more comprehensive approach would give a more detailed consideration of the correlation 
between the index and the achievement rate. 
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The blue plot shows total forward vol, which starts at a little over 15% for a 
maturity of 𝑇 = 1 and rises to a little over 31% for 𝑇 = 40. The red line shows 
the contribution to that total forward vol made by the 𝑞 and interest rate risk 
factors. These contributions start (for 𝑇 = 1) at close to zero, but rise linearly 
with 𝑇, reaching over 24% for 𝑇 = 40. Thus, as 𝑇 increases, the 𝑞 and interest 
rate risk factors become increasingly important drivers of total forward 
volatility.  
 
Obtaining a Single Volatility Estimate for Use in All Put Decrements 
 
Having established that, in principle, each put decrement requires its own 
(potentially) different vol estimate, it is still possible to use a single volatility for 
all puts, provided one uses a single volatility calibration that is appropriate to the 
borrower’s age and gender. To obtain such a calibration, one could use the 
expected volatility obtained by weighting each volatility by its exit prob or 
decrement probability. The formula for the expected volatility 𝜎𝑒  is then 
  
(30)           𝜎𝑒 = ∑ [𝑒𝑥𝑖𝑡 𝑝𝑟𝑜𝑏𝑡 × 𝜎𝑡]𝑡 . 
 
Table 7 shows these expected volatilities against borrower age: for males 26.1% 
for age 55, 27.3% for age 70 (and hence our earlier baseline single volatility 
recommendation for males aged 70) and so on. These expected volatilities give 
results that are very close to the results that one would have obtained had one 
used the full volatility term structure. 
 

Table 7: Expected Volatilities for Different Ages 
Borrower Age Expected Volatility 

(Males) 
Expected Volatility 

(Females) 
55 26.1% 27.3% 

60 23.8% 24.9% 

65 21.7% 22.7% 

70 20.0% 20.8% 

75 18.6% 19.2% 

80 17.6% 18.0% 
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85 16.9% 17.1% 

90 16.4% 16.5% 

Notes: Exit probabilities as per Figure 1.  

 
 
5. Illustrative Valuations 
 
 
We now build an ERM and NNEG valuation model based on plausible input 
parameter calibration values. 
 
The baseline parameter inputs are:   
 

• Male borrower 
• Current age of borrower = 70, a typical age for ERMs.21 
• Loan to value ratio = 40%.22 
• Risk-free rate 𝑟 = 0.25%. 
• ERM loan rate 𝑙 = 4%.23 
• Deferment rate 𝑞 = 4.2%. 
• Volatility 𝜎 = 20% for males aged 70. 

 
All rates are in % p.a.  
 
We assume an illustrative house price of £100 which, combined with the 
assumed loan to value ratio of 40%, implies a loan amount = £40.  
 
The death/exit probabilities are derived from projections of future mortality 
rates obtained using the M5 version of the Cairns-Blake-Dowd mortality model 
(see Cairns et alia, 2006, 2009) calibrated on England & Wales male mortality 
data for the period 1971 to 2017 and spanning ages 55 to 89. The data are taken 
from the Life and Longevity Markets Association database. The M5-CBD model 
is particularly suitable for old age projections and its goodness of fit and 
performance evaluation are assessed in Cairns et alia (2011) and Dowd et alia 
(2010a,b). 
 
Our baseline NNEG valuation results are shown in Table 8:  

 
21 Implicitly, we are assuming a single male just turned 70. In the case of a single female, we 
would expect death/exit to occur somewhat later, which would increase the value of the NNEG. 
In the case of a couple, we would expect even later exit, when the longest surviving member of 
the couple exits the house.  
22 A 40% LTV ratio for a 70-year old appears to be approximately in line with current industry 
practice for new ERM loans. A more detailed analysis of the LTV ratio is given in Buckner and 
Dowd (2020b, chapter 4). 
23 The Equity Release Council report that the average loan rate fell to 4.01% during 2020Q4 
(Equity Release Council, 2021). This point made, loan rates are trending downwards and there 
is considerable variation.   
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Table 8: Baseline ERM/NNEG Valuations: Male Aged 70 

Current House Price Loan Amount 𝑳 𝑵𝑵𝑬𝑮  𝑬𝑹𝑴  

£100 £40 £74.76 £35.08 £39.68 

Notes: 𝐿 is the present value of the loan component of the Equity Release Mortgage.  

 
Given the age of the customer, the expected present value 𝐿 of the perfectly 
collateralised loan is £74.76. 𝑁𝑁𝐸𝐺 is valued at £35.08 and so the value of the 
ERM, 𝐸𝑅𝑀, is equal to £74.76 – £35.08 = £39.68.  
 
Sensitivities of Valuations to Input Parameters 
 
Table 9 shows the sensitivities of 𝐿, 𝑁𝑁𝐸𝐺 and 𝐸𝑅𝑀 to changes in key parameter 
inputs. These are expressed in elasticity form, i.e., where the elasticity of the 
relevant output with respect to a change in an input is the % change in the output 
divided by the % change in the input.  
 

Table 9: Sensitivities of Valuations in Elasticity Form: Male Aged 70 
Elasticity wrt 𝑳 𝑵𝑵𝑬𝑮  𝑬𝑹𝑴  

𝑟 -0.04 -0.08 -0.01 

𝑙 0.72 1.30 0.20 

𝑞̃ 0 0.35 -0.43 

𝜎 0 0.23 -0.28 

LTV 1 1.48 0.41 

Notes: As per Table 8. 

 
These results indicate that NNEG valuations are highly sensitive to changes in 
the 𝑙 and LTV input parameter calibrations. It is also interesting to note that the 
ERM valuations are much less so, because of the offsetting impacts on the loan 
value and NNEG valuations.   
 
Table 10 gives the same valuations for age 70 as percentages of the initial loan 
amount, £40:  

 
Table 10: ERM and NNEG Valuations as Percentages of Loan Amount: Male 

Age 70 
Valuation Approach 𝑵𝑵𝑬𝑮  𝑬𝑹𝑴  

Black ’76 (using expected vol) 87.7 99.2 

Notes: Based on baseline case calibrations. 

 
Figures 5 and 6 give plots of NNEG/loan values against borrower age and 
ERM/loan values against borrower age. 
 

Figure 5: NNEG/Loan Ratios Vs Borrower Age 



 23 

 
Notes: As per Table 10. 

 
Figure 6: ERM/Loan Ratios Vs Borrower Age 

 
Notes: As per Table 8.10 

 
One notices that the ratios of 𝑁𝑁𝐸𝐺 to loan amount fall sharply with age. 
However, what is most significant are the low ratios of 𝐸𝑅𝑀 to loan amount, 
which suggest that ERMs generate low (and in some cases, negative) profits to 
lenders, especially loans to younger borrowers.   
 
 
6. Conclusions 
 
 
This paper proposes a new approach to the valuation of NNEGs and to the 
valuation of ERMs that include such guarantees. The proposed approach is in the 
market consistent tradition and is based on a combination of the Black ’76 put 
option model and the M5-CBD mortality model. The paper contributes to the 
existing literature by proposing a new approach to the estimation of the volatility 
inputs to the nneglet put decrements. The proposed approach produces a 
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volatility term structure and indicates that the volatilities inputted to those 
nneglet put decrements depend on the age and gender of the borrower. It 
provides some illustrative valuations. These results have interesting 
ramifications for actuarial practice in and prudential regulation of the UK equity 
release sector.  
 

 
Appendix One: Proof of Approximation (27) 
 
 
The forward rate 𝐹 at any time 𝑡 and for any maturity 𝑇 is as follows: 
 

(A1.1)         𝐹𝑡,𝑇 = 𝑆𝑡𝑒(𝑟(𝑡,𝑇)−𝑞̃(𝑡,𝑇))𝑇 
 
where 𝑆𝑡 is the spot price at time 𝑡, 𝑟(𝑡, 𝑇) is the interest rate of maturity 𝑇 at 
time 𝑡 and 𝑞̃(𝑡, 𝑇) is the deferment rate of maturity 𝑇 at time 𝑡. With the passage 
of time ∆𝑡, the forward rate will change as a result of changes in 𝑆, 𝑟 and 𝑞̃, and 
of course with the passage of time itself. Thus 
 

(A1.2)          𝐹𝑡+∆𝑡,𝑇−∆𝑡 = 𝑆𝑡+∆𝑡𝑒(𝑟(𝑡+∆𝑡,𝑇−∆𝑡)−𝑞̃(𝑡+∆𝑡,𝑇−∆𝑡))(𝑇−∆𝑡) 

 
This expression is fairly complex, but we can make a number of simplifying 
assumptions as follows. First, we can assume that the term structure of both 𝑟 
and 𝑞̃ is continuous. We have assumed throughout a flat term structure 𝑞̃, so it 
follows that 𝑞(𝑡 + ∆𝑡, 𝑇 − ∆𝑡) equals 𝑞̃(𝑡 + ∆𝑡, 𝑇). We cannot assume that the 
term structure of interest rates is flat, because it will usually slope upwards or 
downwards at any time. However, we can reasonably assume that changes in the 
term structure will make no significant contribution to volatility. That is, a 
change over 1 month in the 10 year interest rate will not be significantly different 
from the change in the 9 year 11 month interest rate. Thus 𝑟(𝑡 + ∆𝑡, 𝑇 − ∆𝑡) will 
be approximately equal to 𝑟(𝑡 + ∆𝑡, 𝑇), for small ∆𝑡. Hence 
 

(A1.3)         𝐹𝑡+∆𝑡,𝑇−∆𝑡 ≈ 𝑆𝑡+∆𝑡𝑒(𝑟(𝑡+∆𝑡,𝑇)−𝑞̃(𝑡+∆𝑡,𝑇))(𝑇−∆𝑡)  

 

The outer term (𝑇 − ∆𝑡) can also be eliminated, as it represents a constant carry 
through time. As time passes, if 𝑟 is greater than 𝑞̃, the forward price will 
gradually fall, or if 𝑟 is less than 𝑞̃, the forward price will gradually rise. But 
volatility corresponds to the mean difference from the average, whereas the 
carry term will be close to the average itself. Hence 
 

(A1.4)        𝐹𝑡+∆𝑡,𝑇−∆𝑡 ≈ 𝑆𝑡+∆𝑡𝑒(𝑟(𝑡+∆𝑡,𝑇)−𝑞̃(𝑡+∆𝑡,𝑇))𝑇. 

 
We assume that the determinants of forward volatility are the changes in spot, 
interest rate and deferment rates alone, and that the passage of time is an 
insignificant contribution to volatility. 
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To determine the volatility, we must first determine the forward price return: 
 
(A1.5)       Forward price return = ln (𝐹𝑡+∆𝑡,𝑇−∆𝑡/𝐹𝑡,𝑇). 
 
Substituting from the equation above: 
 
(A1.6)       ln(𝐹𝑡+∆𝑡,𝑇−∆𝑡/𝐹𝑡,𝑇) = 
 

ln[𝑆𝑡+∆𝑡 𝑒(𝑟(𝑡+∆𝑡,𝑇)−𝑞̃(𝑡+∆𝑡,𝑇))𝑇] − 𝑙𝑛[𝑆𝑡𝑒(𝑟(𝑡,𝑇)−𝑞̃(𝑡,𝑇))𝑇] = 

 
               𝑙𝑛[𝑆𝑡+∆𝑡/𝑆𝑡] + [𝑟(𝑡 + ∆𝑡, 𝑇) − 𝑟(𝑡, 𝑇) + 𝑞̃(𝑡, 𝑇) − 𝑞̃(𝑡 + ∆𝑡, 𝑇)] × 𝑇. 
 
Now make the simplifying assumptions that  𝑟(𝑡 + ∆𝑡, 𝑇) − 𝑟(𝑡, 𝑇) = ∆𝑟𝑡 and 
𝑞̃(𝑡 + ∆𝑡, 𝑇) − 𝑞̃(𝑡, 𝑇) = ∆𝑞𝑡. We then obtain: 
 
 (A1.7)     forward return ≈ 𝐻𝑃𝑡 + (𝑟𝑡 −  𝑞̃𝑡) × 𝑇 
 
which was to be proved, where 𝐻𝑃 = ln((𝑆 + Δ𝑆)/𝑆). 
 
 
Appendix Two: Proof of Equation (30) 
 
 
We need to determine the volatility of a time series of prices for a forward 
contract, given that the maturity 𝑇 of the contract is constantly decreasing. 
Assume the following standard result for two independent variables 𝑋 and 𝑌:24  
 
(A2.1)         𝑉𝑎𝑟(𝑋𝑌) = 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌) + 𝑉𝑎𝑟(𝑌)𝐸[𝑋]2 + 𝑉𝑎𝑟(𝑋)𝐸[𝑌]2 
 
Let 𝑋 be the series of maturities, and 𝑌 be the changes in interest rate ∆𝑟𝑡 (or 
deferment rate ∆𝑞𝑡). Assume that the average interest rate or deferment rate 
change is zero, i.e. that 𝐸[𝑌] = 0.  
 

(A2.2)       𝑉𝑎𝑟(𝑋𝑌) = 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌) + 𝑉𝑎𝑟(𝑌)𝐸[𝑋]2 + 𝑉𝑎𝑟(𝑋)𝐸[𝑌]2 
                              = 𝑉𝑎𝑟(𝑌)[𝑉𝑎𝑟(𝑋) + 𝐸[𝑋]2]. 
 
Then we can treat the series of maturities as a uniform distribution from the 
starting maturity 𝑇 down to zero. The variance 𝑉𝑎𝑟(𝑋) and the average 𝐸[𝑋] of 
a uniform distribution over the interval (𝑥, 𝑦) are as follows: 
 
(A2.3)      𝑉𝑎𝑟(𝑋) = (𝑦 − 𝑥)2/12 = 𝑇2/12 
 
(A2.4)      𝐸[𝑋] = 𝑇/2. 

 
24 This result is proven in Goodman (December 1960, 708). 
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Substituting: 
 
(A2.5)      𝑉𝑎𝑟(𝑋𝑌) = 𝑉𝑎𝑟(𝑌)[𝑉𝑎𝑟(𝑋) + 𝐸[𝑋]2] 
                                    = 𝑉𝑎𝑟(𝑌)[𝑇2/12 + 𝑇2/4] 
                                    = 𝑉𝑎𝑟(𝑌) × 𝑇2/3 
 

(A2.6)     𝜎(𝑋𝑌) = √𝑉𝑎𝑟(𝑋𝑌) = 𝜎(𝑌) × 𝑇/√3 

 
which was to be proven. 
  

Bibliography 
 

Black, F., 1976. “The Pricing of Commodity Contracts.” Journal of Financial 
Economics 3, 167-179. 

Black, F., and M. Scholes (1973) “The Pricing of Options and Corporate 
Liabilities.” Journal of Political Economy 81 (3): 637–654.  

Buckner, D. “It Moves.” The Eumaeus Project (14 January 2019).  

Buckner, D., and K. Dowd (2020) The Eumaeus Guide to Equity Release Valuation: 
Restating the Case for a Market Consistent Approach, Second Edition. The 
Eumaeus Project. (a) 

Buckner, D., and K. Dowd (2020) “How Profitable are Equity Release Mortgages?” 
Economics Letters. 197 (2020) 109651. (b) 

Buckner, D., and K. Dowd (2021) “Discounting the Discounted Projection 
Approach.” North American Actuarial Journal DOI: 
10.1080/10920277.2021.1916537  

Cairns, A.J.G., D. Blake and K. Dowd (2006) “A Two-Factor Model for Stochastic 
Mortality with Parameter Uncertainty.” Journal of Risk and Insurance, 73(4): 687-
718; and  

Cairns, A.J.G., D. Blake, K. Dowd, G.D. Coughlan, D. Epstein, A. Ong, and I. Balevich 
(2009) “A Quantitative Comparison of Stochastic Mortality Models Using Data 
from England & Wales and the United States.” North American Actuarial Journal 
Volume 13(1): 1-35. 

Cairns, A.J.G., D. Blake, K. Dowd, G.D. Coughlan and M. Khalaf-Allah (2011) 
“Mortality Density Forecasts: An Analysis of Six Stochastic Mortality Models.” 
Insurance: Mathematics and Economics 48, 355-367. 

Campbell, J.R., and Z. Hercowitz (2009) “Welfare Implications of the Transition 
to High Household Debt.” Journal of Monetary Economics 56, 1-16. 

Dowd, K. (2018) Asleep at the Wheel: The Prudential Regulation Authority and the 
Equity Release Sector. Adam Smith Institute, London. 

http://eumaeus.org/wordp/index.php/2019/01/14/it-moves/
http://eumaeus.org/wordp/


 27 

Dowd, K., A.J.G. Cairns, D. Blake, G.D. Coughlan, D. Epstein and M. Khalaf-Allah 
(2010) “Evaluating the Goodness of Fit of Stochastic Mortality Models.” 
Insurance: Mathematics and Economics 47, 255-265. 

Dowd, K., A.J.G. Cairns, D. Blake, G.D. Coughlan, D. Epstein and M. Khalaf-Allah 
(2010) “Backtesting Stochastic Mortality Models: An Ex-Post Evaluation of 
Multi-Period Ahead Density Forecasts.” North American Actuarial Journal, 2010, 
Vol. 14, No. 4, pp. 281-298. 

Dowd, K., D. Buckner, D. Blake and J. Fry (2019) “The Valuation of No Negative 
Equity Guarantees and Equity Release Mortgages.” Economics Letters 184 (2019) 
108669. 

Equity Release Council (2021) “Q4 and FY 2020 equity release market statistic.” 
London: Equity Release Council.  

Exley, C.J., Sachin J.B. Mehta and Andrew D. Smith (1997) “The Financial Theory 
of Defined Benefit Pension Schemes.” British Actuarial Journal 3(4): 835-966. 

Gelain, P. and K. Lansing (2013) “House Prices, Expectations, and Time-Varying 
Fundamentals.” Federal Reserve Bank of San Francisco Working Paper 2013-03.  

Goodman, L.A. (December 1960). “On the Exact Variance of Products,” Journal of 
the American Statistical Association 55 (292): 708. 

Gordon, M.J. (1959) “Dividends, Earnings, and Stock Prices.” Review of Economics 
and Statistics, 41(2): 99-105. 

Gordon, T. (1999) “The Price of Actuarial Values.” Paper presented to the Staple 
Inn Actuarial Society (16 February). 

Hosty, G.M., S.J. Groves, C.A. Murray and M. Shah (2008) Pricing and Risk Capital 
in the Equity Release Market. British Actuarial Journal, 14, 41-91. 

Jeffery, T., and A.D. Smith (2019) “Equity Release Mortgages: Irish & UK 
Experience.” presentation to the Society of Actuaries in Ireland (28 March). 

Li, J.S.-H., M. R. Hardy and K.S. Tan (2010) “On Pricing and Hedging the No-
Negative-Equity Guarantee in Equity Release Mechanisms.” Journal of Risk and 
Insurance 77, 499-522. 

Malamud, S., E. Trubowitz and M.V.V. Wüthrich (2008) “Market Consistent 
Pricing of Insurance Products.” ASTIN Bulletin 38, 483–526. 

Merton, R.C. (1973) “Theory of Rational Option Pricing.” Bell Journal of 
Economics and Management Science 4(1): 141-183.  

Prudential Regulation Authority (2016) “Solvency II: Matching Adjustment - 
Illiquid Unrated Assets and Equity Release Mortgages.” Prudential Regulation 
Authority Discussion Paper 48/16.  

Prudential Regulation Authority (2017) “Solvency II: Matching Adjustment - 
Illiquid Unrated Assets and Equity Release Mortgages.” Prudential Regulation 
Authority Supervisory Statement 3/17.  



 28 

Prudential Regulation Authority (2018) “Solvency II: Matching Adjustment – 
Equity Release Mortgages.” Prudential Regulation Authority Consultation Paper 
13/18.  
 
Prudential Regulation Authority (2019) “Solvency II: Equity Release Mortgages 
- Part 2.” Consultation Paper 7/19. 
 
Tunaru, R.S. and E. Quaye “UK Equity Release Mortgages: a review of the No 
Negative Equity Guarantee.” Actuarial Research Council and Institute and 
Faculty of Actuaries. 
 
Wüthrich, M.V.V. (2016) Market-Consistent Actuarial Valuation. 3rd edition, EAA 
Series, Springer 2016. ISBN: 978-3-319-46635-4. 
 


