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Abstract

Learning view-invariant representation is a key to improving feature discrim-
ination power for skeleton-based action recognition. Existing approaches cannot
effectively remove the impact of viewpoint due to the implicit view-dependent
representations. In this work, we propose a self-supervised framework called
Focalized Contrastive View-invariant Learning (FoCoViL), which significantly
suppresses the view-specific information on the representation space where the
viewpoints are coarsely aligned. By maximizing mutual information with an ef-
fective contrastive loss between multi-view sample pairs, FoCoViL associates ac-
tions with common view-invariant properties and simultaneously separates the
dissimilar ones. We further propose an adaptive focalization method based on
pairwise similarity to enhance contrastive learning for a clearer cluster boundary
in the learned space. Different from many existing self-supervised representation
learning work that rely heavily on supervised classifiers, FoCoViL performs well
on both unsupervised and supervised classifiers with superior recognition per-
formance. Extensive experiments also show that the proposed contrastive-based
focalization generates a more discriminative latent representation.
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1. Introduction

Self-supervised skeletal human action recognition (HAR) aims at automati-
cally detecting a robust representation to cluster and identify actions from class-
agnostic skeletal data. Compared to supervised models that heavily rely on action
labels [1, 2, 3], recognition without manual labeling is considered more efficient
and more comprehensive to learn representative features with large-scale data. A
few unsupervised attempts [4, 5, 6, 7, 8] have recently achieved classification re-
sults comparable to supervised models, which indicates that label information may
not be necessary for extracting useful representations for discriminating action
dynamics. In this work, we consider the challenging domain of self-supervised
action recognition from multi-view features, where the action sequences are cap-
tured under different viewpoints. The diverse view appearance introduces large
intra-class variations in the feature representation that substantially impacts the
clustering performance. Unlike supervised view-invariant learning that benefits
from action labels, learning without label guidance is more challenging that usu-
ally requires detecting implicit consistency between viewpoints.

Existing skeleton-based HAR works learn view-invariant features from the
skeleton descriptions enriched by multi-view observations [2, 6] or unseen view-
points [9]. A simple yet effective pre-processing scheme is to align the body key
joints with a local coordinate system [10, 11]. However, since this view-invariant
transformation is sensitive to the quality of the posture captured from different
viewpoints, such as different levels of self-occlusions, the transformed multi-
view actions are still mismatched with many inherent view-specific representa-
tions [12]. Later on, deep neural networks are utilized to automatically search
for the optimal viewpoints for every skeleton sequence [2, 13], which requires
strong supervision to guide this additional training. In unsupervised learning, an
adversary view-aware classifier is introduced in [14] to discard view information
from RGB and depth data. Another attempt [6] learns the view-variant and view-
invariant features from spatial and temporal skeletal representations respectively,
while the recognition performance is less satisfactory on the multi-view actions.
So far, removing the viewpoint impact in the self-supervised skeleton recognition
is still an open problem.

In this paper, we propose FoCoViL, the focalized contrastive view-invariant
learning framework, for view-independent and discriminative self-supervised ac-
tion recognition. FoCoViL consists of two complementary components, namely
contrastive view-invariant learning (CoViL) and focalization. Figure 1 shows the
effect of FoCoViL on learning a view-invariant latent space, where the action rep-
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Figure 1: Visualizing the latent space when comparing an action pair of carrying from the same
scene but different viewpoints. Different colors in the t-SNE visualization refer to the attributes
of real classes. The view alignment cannot handle the inherent heterogeneity between viewpoints,
such as different levels of self-occlusions shown in the middle skeletons, yielding a less satisfac-
tory space distribution. With FoCoViL, the actions under the same scene but different viewpoints
(highlighted in circles and triangles) are geometrically closer in the latent space, which achieves
better view invariance.

resentations of the same scene are more closely distributed compared to CoViL.

First, CoViL explores the implicit relationship between viewpoints. With the
facing directions aligned [11], CoViL works as a refinement scheme to group
the multi-view actions by maximizing their mutual information under different
viewpoints, such that the learned representation is robust to view changes. Specif-
ically, under a self-supervised auto-encoder backbone, we propose to maximize
the agreement of the actions under the same scene but different viewpoints (i.e.
positive pairs “+°), which helps extract the common features among them that are
view-invariant. Meanwhile, we propose to enlarge the disagreement of actions un-
der different scenes (i.e. negative pairs “—"), which benefits the clustering with
a sparse latent space. The two goals are jointly achieved by a close form of con-
trastive loss [15] for its superior ability to find and compare the similarity and
dissimilarity in the self-supervised representations. With CoViL, we construct a
latent space that is more robust to view dynamics compared to the one generated
by the low-level viewpoint alignment [5].

Second, we propose to enhance the latent space by wrapping a novel focaliza-
tion method around contrastive learning in CoViL. This is to solve the imbalanced
training data issue inherent in many existing self-supervised systems - the hard
samples that dominate the misclassification are not fully investigated, leading to
an ambiguous sample distribution in the latent space. To mitigate imbalance in



contrastive learning, several works that are highly related to ours mainly focus on
mining hard negatives, such as synthesizing new samples [16, 17] or using class
labels as priors [18]. In contrast, our method considers adaptively “focalizing”
both the hard positives and negatives under the learned representative similarity.
We take advantage of the effective pairwise similarity estimation in CoViL to dy-
namically identify and re-balance the easy and hard multi-view action pairs. This
is done by defining the hard pairs as either sparse positive pairs (same scenes
that are far away) or dense negative pairs (different scenes that are close) in the
projected latent space, and the easy ones the other way round. The proposed fo-
calization reduces the weightings of easy pairs that provided limited information
while focusing on pushing hard negative pairs away and pulling hard positives
closer, thereby enforcing a more distinct decision boundary in the latent space.

Experimental results show that FoCoViL outperforms state-of-the-art self-
supervised models on five benchmark 3D action datasets including Northwestern-
UCLA (N-UCLA) [19], NTU RGB+D 60 [20], NTU RGB+D 120 [21], UWA 3D
Multiview Activity II (UWA3D) [22], and PKU-MMD [23]. Unlike some self-
supervised representation learning approaches [24, 8] rely heavily on supervised
classifiers, FoCoViL performs well with both supervised and unsupervised classi-
fiers. The extensive experiments on representation space evaluation also indicate
that the proposed FoCoViL produces a more robust latent space.

The main contributions are summarized in three folds:

* We propose a self-supervised framework to progressively learn a discrimi-
native skeleton-based action representation that is robust for both supervised
and unsupervised evaluation protocols?.

* We propose contrastive view-invariant learning, which maximizes the mu-
tual information between multi-view action pairs by adapting contrastive
learning, aiming to refine the latent representations with high-level view-
invariant features.

* As anovel attempt of applying focalization to contrastive learning, we have
demonstrated its feasibility of learning a more robust and unbiased repre-
sentation with the action recognition task.

The rest of this paper is organized as follows. Section 2 reviews the related
background research. Section 3 presents the proposed FoCoViL framework for

2The source code is publicly available at: https://drive.google.com/file/d/
1VKRF2S3-LrOiXV4BLS jxI1CUewMnxH_W.
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self-supervised action recognition. The experiments and analysis are conducted in
Section 4 with quantitative recognition and reconstruction results, and qualitative
latent space evaluations. Finally, we conclude this paper in Section 5.

2. Related Work

2.1. Self-supervised Action Representation Learning

Learning of action representation has been proposed for many years in com-
puter vision applications. The learned latent representation usually includes ac-
tion semantics which is feasible for multiple downstream tasks, such as action
classification [25, 26, 27] and motion generation [28, 29, 30]. Among many self-
supervised feature extraction baselines, the auto-encoder is usually adopted to
learn the representation space with its superior ability to denoise the action infor-
mation. Holden et al. [31] first proposed a convolutional auto-encoder to construct
the latent space from the encoder output. By operating the high-level features,
the model is functional in many areas, such as action interpolation and compari-
son. Later on, with a hierarchical RNN auto-encoder in both spatial and temporal
domains, Wang et al. [29] developed a high-quality representation space that is
motivated for precise action modeling.

As a vision-based learning task, the effectiveness of self-supervised represen-
tation is frequently explored in RGB-based action understanding. To learn the
contextual coherence in action representation, Lai and Xie [32] matched pixel-
wise correspondence from the spatial-temporal color information. Han et al. [33]
exploited action representations from multiple modalities of RGB streams and
optical flow. However, these RGB-based action recognition models usually learn
contrastive representation from background or visual consistency [34]. With the
visual information unavailable, the challenge of learning self-supervised skeleton-
based action representation mainly comes from the diverse pose information under
different view observations [6, 24].

In self-supervised skeleton-based action representation learning, existing
works such as [4, 35, 36, 5] mainly focus on preserving the action-dependent
features as much as possible to identify samples [37]. For example, an adversarial
discriminator is used to assist the auto-encoder to rectify the reconstructed action
for a more distinctive representation [36, 4]. Since the encoder is dominant in dis-
closing the action features, Su et al. [5] proposed to strengthen the encoder by ex-
ploiting different auto-encoder structures (P&C), such as fixing the encoded state
or the decoder weights. Apart from an action-level auto-encoder, they also de-
signed an additional feature-level auto-encoder to reduce the dimensionality of the



learned representations, which results in a two-round training process. Because
of the lack of communication within latent space, the derived action representa-
tion of these works is not robust to large intra-class variations. Other prior works
considered learning feature representations by modeling actions with denoised
poses (Denoised-LSTM [35]), different temporal patterns (MS?L [38], MCAE-
MP [39]), different spatial-temporal augmentations (AS-CAL [40], ST-CL [41]),
or within group activities [42]. However, the learned space is still underestimated
with diverse view representations and imbalanced sample distribution, leading to
a less satisfactory clustering.

Recently, several studies also show that pre-training the self-supervised rep-
resentation benefits the supervised [7, 43] or semi-supervised learning [44] in ac-
tion recognition tasks. In this paper, we investigate self-supervised representations
with view invariance to improve action recognition. This is done by an end-to-end
framework with balanced pairwise learning based on the performed viewpoints,
such that the learned representations of the same scene are more clearly grouped
with fewer errors (i.e. higher purity and recognition accuracy).

2.2. View-invariant Human Action Recognition

A robust action recognition model requires the learned representations to be
less sensitive to viewpoints. In RGB, depth, or optical flow videos, it is com-
mon for people to remove the view-dependent backgrounds by learning the view-
specific focuses in different viewpoints [14, 19, 45, 46]. In contrast, a natural
advantage of the 3D skeleton is that the view-invariant features are more eas-
ily extracted with the body joint positions. However, the commonly used view-
independent representations, including the statistics-based histogram of joint ori-
entations [47] or geometry-based pairwise joint distance [12] will discard some
semantic information that is useful for recognizing action patterns.

Another branch of works [11, 41, 48] employed coordinate transformation
(i.e. rotations, translations) to align or synthesize multi-view actions. For exam-
ple, Gao et al. [41] compared the action pairs augmented from arbitrary view-
points by a contrastive loss. Paoletti et al. [48] utilized gradient reversing to fool
a viewpoint regressor that predicts the rotation of the transformed action. How-
ever, with the self-occlusions in different directions, the transformed skeleton is
not accurate enough to imitate the new viewpoint. Moreover, Zhang et al. [2] au-
tomatically learned the view-invariant adaption per action and achieved promis-
ing results compared with pre-defined transformations. It further convinces that
the recognition ability can be dramatically affected by the inconsistency between
viewpoints that cannot be removed manually.
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Recently, Gao et al. [49] exploited fisher contrastive learning to extract view
semantics from different scales of body parts. By assembling multiple spatial fea-
tures, Guan et al. [50] proposed a feature-enhanced approach that is robust to view
variation. Nie et al. [6] proposed SeBiReNet that models the view variant and in-
variant features from the geometric poses and temporal dynamics, respectively,
to better denoise the skeleton data. Instead of specifying the view-invariant fea-
tures, we purify the latent representations through the implicit correlations learned
between multi-view samples, which yields a better recognition performance.

2.3. Contrastive Learning

Contrastive learning [51, 52, 15] is a self-supervised representation learning
method that differentiates between individual instances based on their pairwise
similarity. As a label-agnostic approach, contrastive learning is purely based on
the feature-level correlations of samples, which is very popular in large-scale vi-
sual tasks. Chen et al. [15] augmented the real-world image such as cropping,
rotations, or blurring, as positive instances to extract common properties in con-
trastive learning, where they further used a large minibatch size to increase the
capacity of contrastive learning that achieves superior classification performance.
However, the above methods rely on heavy data accommodation that requires ei-
ther argumentation or multi-modal representations.

There are also several works adopting contrastive learning in skeleton-based
action recognition. Rao et al. [40] learned the self-supervised action representa-
tion with contrastive learning, where they exploited similar augmentation strate-
gies of images [15] onto skeleton sequences. Lin et al. [38] constrained the
contrastive loss with multi-task learning from motion prediction and classifica-
tion. Since the learned embeddings from contrastive loss are hard to discriminate,
effective selection strategies [53, 52, 54] are proposed for positive or negative
samples to enhance the contrastive metric. As a remarkable work, Momentum
Contrast (MoCo) [53] performed contrastive learning by selecting negative sam-
ples from a memory bank that is updated dynamically with an extra momentum
encoder, which is later adopted in many recent work [24, 55, 56, 57, 8] to im-
prove skeleton-based action recognition. For example, Wang et al. [56] proposed
a contrast-reconstruction representation network (CRRL) to contrast between the
spatial postures and motion velocity to enhance the action representation learning.
Li et al. [24] proposed CrosSCLR to enrich the feature receptive field by contrast-
ing augmented skeleton sequences from bone, joint, and motion features. Their
model feasibility was further generalized by Guo et al. [8] (AimCLR) with more
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Figure 2: The proposed Focalized Contrastive View-invariant Learning (FoCoViL) framework. (a)
FoCoViL aims at progressively extracting the view-invariant action representations. The multi-
view actions are initially aligned w.r.t. the facing direction. In the refinement step, the proposed
multi-view contrastive learning discards the implicit view-specific appearance by enlarging the
agreement of the same scene under different viewpoints (“+ pairs), and facilitates clustering with
a sparse space by enlarging different scenes (“— pairs), which is further enhanced by an adaptive
focalization. (b) The motivation of focalization. For each target action, focalization focuses on
adjusting the hard action pairs that dominate the misclassifications. (c) The architecture of the
shared auto-encoder backbone. The clustering is conducted before the encoded representation
passes into the projection net g.

diverse spatial and temporal augmentations. However, their learned representa-
tions were restricted by the augmented patterns and the cross-modality settings
greatly increase the model complexity. Since the natural correlation between dif-
ferent camera viewpoints is still underexplored in self-supervised 3D action un-
derstanding, in this paper, we investigate how the viewpoint affects the learned
representation by contrasting multi-view information without augmenting the to-
tal data size.

3. Methodology

We aim at progressively learning an effective representation space consist-
ing of view-invariant action features for discriminative clustering. To achieve this
goal, we propose FoCoViL, which removes the view influence on the feature-level
representation extracted by an RNN-based auto-encoder backbone, as demon-
strated in Fig. 2. We first conduct a coarse-level transformation to align dif-
ferent viewpoints. Then, in the refinement step, we disentangle the remaining
view-specific features from the latent space by finding the inherent correlations of
the same action scene under different viewpoints. Since the contributions to the



space learning vary from sample to sample with the hard positives (i.e. intra-class
variation) and hard negatives (i.e. inter-class similarity) contributing more, we
further propose a focalized contrastive loss to cope with the imbalanced learning
complexity by adaptively adjusting their training intensity, thereby promoting the
quality of the converged latent space.

Problem Formulation In the training set X with V viewpoints, we repre-
sent the i*" scene of human action X u ¢ X as a sequence of poses, i.e. X * =
{2, 2}y, ..., 2{'s}, under a specific viewpoint u € V. Each pose &}, € R3XN at
frame t contains /N joint locations under 3D skeleton, and 7" is the maximum
timestamp. As a self-supervised classification task, we tend to learn a view-
invariant mapping f, without the guidance of action label.

3.1. View Alignment

The skeletons are misaligned under different viewpoints, which brings diffi-
culty in recognizing actions. Following [5], we transform the views for aligning
the multi-view actions to the same facing direction, resulting in a more compara-
ble representation space for the latter refinement phase.

As 3D joint coordinates are demonstrated with different scopes under differ-
ent camera points, we first translate them into a local coordinate system with the
origin as the root joint }y(root) at the initial frame, thereby removing the de-
pendency of the camera position and the global displacement. We then match the
directions of the translated actions using a rotation matrix R = [y, 71, 75| with:

ro = iy (spine) —i}fo(root)
Ty =171 — 71 - To, and 7y = Y, (Lhip) — 2§ (rhip), (1)
To =719 X Tq,

where T = \ﬁl denotes the unit vector. Here, r points from the root to the spine

2 o(spine), ry is the orthogonal projection of the vector between left 2} (lhip)
and right hip &} (rhip) on ro.
The obtained joint n € N in the pose z, is transformed by:

zf,(n) = R (&}, (n) — 2}y (root)). 2)

Therefore, the action sequence after alignment is represented by X =
{xfy, o}y, ..., w{'p} within the transformed training set X.



3.2. Contrastive View-invariant Learning (CoViL)

We propose a Contrastive View-invariant Learning (CoViL) approach to au-
tomatically refine the view-invariant features by contrasting the multi-view repre-
sentations under the same and different scenes. This is to tackle the problem that
many implicit view-specific appearances, such as the inferred joint positions from
different directions of self-occlusions, cannot be aligned by the coarse transforma-
tion. In a closely related work [6], the view-independent and view-dependent fea-
tures are being processed as pose and temporal dependencies, respectively. How-
ever, the two types of features are not domain-specific and thus are non-trivial
to be explicitly grouped. In contrast, we rely on pairwise action correlations.
By maximizing the mutual information of the compressed representations across
views, CoViL can better suppress the view-specific factors and derive a highly
view-invariant latent space.

With the observation that the same scene should have closer similarity than dif-
ferent scenes, CoViL discards the scene-invariant (i.e. view-variant) information
by associating the same scene together. The objective of CoViL is to maximize the
agreement of the same scene under different viewpoints (i.e. “+4” positive sample
pairs), as well as the disagreement of different scenes (i.e. “—" negative sample
pairs) by contrastive learning. With the same action, compulsively correlating the
“4” pairs will reinforce the co-occurrences that are only related to the underlying
action content. In addition, enlarging the differences between “—” pairs will avoid
an overly compact representation space while constricting the “+” pairs, such that
the dissimilar actions are sparsely distributed to facilitate self-supervised cluster-
ing.

Particularly, we select positive and negative pairs based on a minibatch of
anchor samples that are randomly picked. For each anchor X in the minibatch,
we propose to increase the similarity between X and its corresponding positive
sample X (v # u), which reduces the motion variations caused by viewpoints.
Note that X" and X! are from the same scene but have different viewpoints. We
also propose to maximize the dissimilarity between X' and its negative samples
from other scenes which consist of two batches: {X7' 5:1,#1 under the same
viewpoint u, and { X7 §:1, ;i under the different viewpoint v. The far-distributed
negative pairs will ensure the sparsity of the resulting space.

We integrate our proposed positive and negative pair design via the batch con-
trastive loss based on InfoNCE loss function [15] due to its superior capacity in
modeling the pairwise correlations. The multi-view contrastive loss defined on an
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anchor X is given by:

S(XG, XY)

LC(Xlu> - lOg u u u v)) '’
vezv\u Zg;ﬁz(S(Xz >Xj) +S<Xz 7Xj)>

3)

where the proximity S is the similarity measurement between a pair of samples.
Note that the loss is summed for all the viewpoints in V' except u, and it is not
bounded by only two views despite the proximity .S is counted based on the pair-
wise manner. The proposed multi-view contrastive loss uses viewpoint informa-
tion as the indicator to group positive samples under the general form of con-
trastive loss [15]. Empirically, if more viewpoints are included during training,
the learned representation space is more informative by disentangling multi-view
features. More specifically, S between sample pair X and Y is determined by
their encoded distance r as:

) r(Y)
SXY) = (Ch o M ath e~ P

where 7 is the temperature parameter [15, 51] that controls the scale of the sim-
ilarity. We have evaluated 7 with several choices {0.1,0.5, 1,2}, among which
0.5 performs the best. g is a projection network consisting of two fully-connected
layers to integrate features, and we use the cosine distance 7 as the similarity met-
ric following the general form of contrastive learning [15]. Here, the proposed
multi-view contrastive loss is conducted on the projected feature to facilitate a
more informative latent space for f.(X) that benefits the recognition.

), “4)

3.3. Focalization

We propose to adaptively balance the easy and hard samples via dynamic fo-
calization on the proposed CoViL, thereby increasing model robustness and reduc-
ing misclassifications. This is particularly challenging in unsupervised models, as
the hard samples cannot be explicitly mined due to the lack of a label-guided
distribution.

Here, we focus on rebalancing the representations within the scope of self-
supervised contrastive learning, while the vast majority of other works focus on
solving imbalance in supervised cross-entropy from true sample distributions. In-
stead of recognizing individual instances, in contrastive learning, we balance easy
and hard samples via the pairwise sample similarity inherited from CoViL. As
an effective solution, focal loss [58] aims at detecting and emphasizing the hard

11



instances from the probability outcome. While similar in purpose, our method at-
tempts to solve the imbalanced similarity of sample pairs based on contrastive
learning, from the observation that contrastive learning lacks a mechanism to
maintain balanced training. By entangling and disentangling sample pairs in terms
of their representation similarity, the focalized CoViL (FoCoViL) further enhances
the latent space learning with a clearer decision boundary between clusters (see
Fig. 2(b)). Note that the proposed focalized contrastive learning is not a simple
reweighting scheme but balancing and improving the distributions in representa-
tion space by self-supervised hard sampling with adjustable hardness, which has
more generalizable advantages and consistent performance improvements (see Ta-
ble 8).

In particular, we propose a dynamic-scaled focal loss based on the geometric
distance of the contrastive representations. Inspired by the evidence that the same
scene should have similar feature expressions, we consider a “+” pair as hard
if they are too far distributed. Analogous to positive pairs, we define the hard
negatives if the “—" pair is too close. FoCoViL intuitively pulls the same scene
with very different representations closer while pushing the different scenes with
similar representations apart. Numerically, we monotonously increase the weight
to the “4” pair X and X/ if their cosine similarity r is getting close to -1, and
increase the weight to the “—” pair if 7 is near 1. The dynamic weight w, for
positive pair and w_ for negative pair are defined by:

wy = ol —=r(X7, X)),

S IA+r(XE X))+ (1+r(XE X)), 5)
JF#i

1

w-=l5r5
The modulating factors 1 — (X, Y) and 1+ (X, Y") are added as pair weightings
for the positive and negative samples, respectively, which adaptively differentiate
between the easy and hard pairs based on the pairwise similarity. The sigmoid
activation o (-) with the common form o'(x) = 1= is to incorporate nonlinearity
to contrastive loss, and the scaling term ﬁ is to balance the quantities of positive
and negative pairs.

By decomposing L. in Eq. 3, the proposed focalized multi-view contrastive
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loss Ly, is defined as:

Lye(X}) = =) lws log S(X}!, X7)
veV\u
—w_log Y (S(X!, X))+ S(X! X)) (6)
JFi

Compared with the inliers that stay very close to the cluster centers, the hard
sample pairs usually include outliers that are scattered near the cluster boundaries.
By focusing on the hard pairs, we establish a more robust latent space with fewer
misclassified outliers. Note that the proposed focalized contrastive loss is heuristic
and can be extended to other models adopting contrastive learning.

3.4. The Multi-view Auto-encoder Backbone

To maintain the action representation, we employ an effective sequential auto-
encoder as the backbone network sharing among the multi-view actions (see
Fig. 2(c)). From [59], the encoder usually plays a more important role than the de-
coder to integrate representative features. We thus consider a portable decoder by
feeding the empty frame (zero vector) to every step of the decoder, such that the
model only focuses on the hidden representation delivered from the encoded out-
put. Instead of a two-stage encoder for feature extraction [5], our FoOCoViL makes
full use of a single auto-encoder in an end-to-end fashion that already achieves
promising results.

The structure consists of a three-layer bi-directional encoder f. to derive the
latent representation, a linear projection net g that is specifically designed for con-
trastive learning, and a single-layer uni-directional decoder f, for reconstruction
purposes. Both f. and f,; are under the Gated Recurrent Unit (GRU) architecture
to process frame-wise information. For each action X/, the reconstruction loss
L, is defined as:

1 T
LX) = 7 D || falg(felX1)) = X2, (7
t=1

where 7' is the total number of frames in the action video. Since the sequential
auto-encoder reconstructs 7' frames of action, the loss is counted based on every
frame and then averaged.

13



3.5. Training and Classification

The final objective of the proposed FoCoViL is given by oL, + SL,, where
the o and 3 are the trade-offs between two losses. By optimizing the combination
of L. and L,, the whole network will search for the optimal representation space
for the downstream classification task, where f.(X) is used for evaluation. Note
that we do not cluster on the compressed output g(f.(X)), since it may discard
some information that is necessary for classification [15].

4. Experiments

4.1. Datasets and Experimental Setup

4.1.1. Datasets

To test the robustness of our model, we evaluate five benchmark 3D action
datasets with diverse scales and properties, i.e. N-UCLA [19], NTU RGB+D
60 [20], NTU RGB+D 120 [21], PKU-MMD [23], and UWA3D [22]. The adopted
datasets were all captured using Kinect with diverse self-occlusions under a multi-
view environment. N-UCLA contains 10 types of human daily activities from
three different viewpoints. PKU-MMD, NTU RGB+D 60, and NTU RGB+D 120
are large-scale action datasets with around 20,000, 56,880, and 114,480 clips cov-
ering 51, 60, and 120 types of human activities, respectively, where NTU RGB+D
120 is the largest benchmark for skeletal action recognition. UWA3D is more
challenging due to four distinct action directions captured from the front, left,
right, and top views.

4.1.2. Implementation Details

For pre-processing, the raw skeleton is initially normalized to [—1, 1], and
before feeding in the model, all action clips are interpolated to a fixed length
with 50 frames. Our FoCoViL is trained under the combination of L. and L,,
where we set « = [ = 1 for N-UCLA, NTU RGB+D, and PKU-MMD, and
a = 1,8 = 2 for UWA3D because of its noisy skeletons. 7 is set to 0.5 for the
similarity measurement in Eq. 4. Inside the auto-encoder, 1024 hidden units are
used in the GRU cell for each layer, and the unit sizes in the projection net are
512 and 1024 respectively. The training batch size is 128 for NTU RGB+D and
64 for the other three datasets, and we adopt Adam optimizer with a learning rate
of 0.0001 and a decay rate of 0.95. Following [5] and [38], we conduct cross-
view (CV) evaluations on N-UCLA, NTU RGB+D 60, and UWA3D, and cross-
subject (CS) evaluations on NTU RGB+D 120 and PKU-MMD. Unlike [5] only
tested two views on UWA3D, we test on all evaluation combinations with any two
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Table 1: Performance comparisons (%) on N-UCLA with supervised (Linear) and unsupervised
(1-NN) evaluation protocol.

Method N-UCLA
Linear Classifier

LongT GAN [4] 74.3
Denoised-LSTM [35] 76.8
MS?L [38] 76.8
SeBiReNet [6] 80.3
AS-CAL [40] 75.6
ST-CL [41] 81.2
MCAE-MP [39] 83.6
CRRL [56] 83.8
FoCoViL 84.2
1-Nearest Neighbour (1-NN) Classifier
P&C [5] 84.9
MCAE-MP [39] 79.1
CRRL [56] 86.4
CoViL 86.7
FoCoViL 88.3

viewpoints for training and the rest for testing, which results in 12 experimental
trials in total.

4.1.3. Evaluation Protocols for Classification

For a fair comparison, we adopt both supervised and unsupervised classifiers
to evaluate the encoded representation for the action recognition task. Linear
Classifier: as in [24, 8], a fully-connected layer (together with a softmax acti-
vation) is trained on the top of the fixed encoder as the supervised evaluator. 1-
Nearest Neighbor (1-NN): as adopted in [5], the test label is assigned from its top
nearest neighbour in the training samples in a non-parametric fashion, where the
representation similarity is measured by cosine distance. Unlike the supervised
linear classifier, I-NN is used as an unsupervised evaluator that does not require
extra training to assign the label.

4.2. Recognition Comparisons with the SOTAs

We first compare the proposed FoCoViL with the state-of-the-art (SOTA) un-
supervised approaches based on 3D skeleton, including regression-based repre-
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Table 2: Performance comparisons (%) on NTU RGB+D 60 with supervised (Linear) and unsu-
pervised (1-NN) evaluation protocols.

Method NTU RGB+D 60
Linear Classifier

LongT GAN [4] 48.1
SeBiReNet [6] 79.7
AS-CAL [40] 64.8
ST-CL [41] 69.4
MCAE-MP [39] 74.7
CRRL [56] 73.8
TSL [57] 76.3
CrosSCLR [24] 76.4
3s-CrosSCLR [24] 834
AimCLR [8] 79.7
3s-AimCLR [8] 83.8
3s-SCC [7] 83.1
ISC [55] 85.2
FoCoViL 83.2
1-Nearest Neighbour (1-NN) Classifier
P&C [5] 76.1
CrosSCLR [24] 63.5
3s-CrosSCLR [24] 65.2
AimCLR [8] 70.1
3s-AimCLR [8] 69.3
CRRL [56] 75.2
MCAE-MP [39] 824
CoViL 79.4
FoCoViL 80.2

sentation learning models LongT GAN [4], Denoised-LSTM [35], SeBiReNet [6],
P&C [5], MCAE-MP [39], and SCC [7], and contrastive learning-based models
MS?L [38], AS-CAL [40], ST-CL [41], CRRL [56], TSL [57], ISC [55], CrosS-
CLR [24], and AimCLR [8], where action class labels of all models are not used
during training.

As shown in Table 1, our FoCoViL achieves superior recognition results on
N-UCLA dataset for both evaluation protocols compared to other SOTA mod-
els, including the contrastive-based method CRRL. FoCoViL yields a significant
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Table 3: Performance comparisons (%) on NTU RGB+D 120 with supervised (Linear) and unsu-
pervised (1-NN) evaluation protocols.

Method NTU RGB+D 120
Linear Classifier
AS-CAL [40] 48.6
MCAE-MP [39] 52.8
CRRL [56] 56.2
TSL [57] 59.1
ISC [55] 67.1
CrosSCLR [24] 67.1
3s-CrosSCLR [24] 67.9
AimCLR [8] 63.4
3s-AimCLR [8] 68.2
FoCoViL 62.3
1-Nearest Neighbour (1-NN) Classifier
P&C [5] 39.5
MCAE-MP [39] 42.3
ISC [55] 50.6
CrosSCLR [24] 52.5
FoCoViL 51.0

3.2% accuracy increase over P&C on N-UCLA, which shows that the disparity
of the same scene from different viewpoints can greatly affect the classification
results. Furthermore, we also achieve consistent improvements from CoViL to
FoCoViL,showing that focalization improves contrastive learning with better fea-
ture representation.

For NTU RGB+D 60 in Table 2 and NTU RGB+D 120 in Table 3, the over-
all accuracies are slightly lower than N-UCLA for all methods since the datasets
contain highly similar classes such as drinking water and eating meal, as well as
local-scale movements such as thumb up and thumb down. We first observe that
FoCoViL is more advantageous than non-contrastive learning-based approaches
like SeBiReNet and 3s-SCC. When comparing with MoCo-based approaches, Fo-
CoViL outperforms CRRL and TSL, and performs comparably with CrosSCLR,
AimCLR, and ISC under supervised evaluations. Under the more challenging
unsupervised protocol, FoCoViL outperforms ISC under NTU RGB+D 120, and
outperforms both single- and multi-stream CrosSCLR and AimCLR under NTU
RGB+D 60 with over 10% performance improvement. This shows that CrosSCLR
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Table 4: Comparison of model complexity based on NTU RGB+D 60.

Method CRRL [56] 3s-CrosSCLR [24] 3s-AimCLR [8] FoCoViL
Inference Time - 0.69ms 0.70ms 1.31ms
#params 7.4M 2.51M 2.51M 1.62M

Table 5: Performance comparisons (%) on PKU-MMD with unsupervised (1-NN) evaluation pro-
tocol.

Method Phase 1 Phase 2
P&C [5] 70.4 38.4
CrosSCLR [24] 68.9 21.2
AimCLR [8] 72.0 39.5
FoCoViL 75.2 43.3

and AimCLR heavily rely on the supervised classifier.

As shown in Table 4, we also test the computational resources by compar-
ing the processing time for each action clip and the number of parameters used
for [24, 8] and FoCoViL, where FoCoViL has comparable classification per-
formance but much fewer parameters. In general, FoCoViL is less spatially
complex compared to other contrastive learning-based methods, specifically 3s-
CrosSCLR [24] and 3s-AimCLR [8], since they are multi-stream methods that
fuse three skeleton features (i.e., joint, bone, and motion). In terms of inference
time, FoCoViL takes longer. However, since the action sequence is relatively
short (usually around 1s for each trial), the model complexity will not be heavily
affected by the recurrent times of GRU.

When comparing PKU-MMD in Table 5, FoCoViL also outperforms CrosS-
CLR and AimCLR for both phases 1 and 2, where phase 2 is a noisy version
dataset with more diversities in terms of facing directions and action performance.
Note that the cross-subject evaluations are conducted on PKU-MMD, where three
viewpoints are used for training that validates the feasibility of our method under

Table 6: Performance comparisons (%) on UWA3D under different training partitions.
Training Views  V1&V2 V1&V3 V1&V4 V2&V3 V2&V4 V3&V4
Testing Views Vi v4 V2 v4 V2 V3 V1 V4 VI V3 V1 V2
AS-CAL [40] 25.1 228 213 19.7 224 255 21.6 195 239 21.1 212 19.7 22.0
SeBiReNet [6] 539 61.6 54.1 58.6 51.5 520 715 56.0 723 513 68.9 515 58.6
P&C [5] 599 63.1 57.1 62.7 587 583 63.5 583 643 53.8 663 552 60.1
FoCoViL 583 63.1 595 64.7 591 599 675 61.5 69.8 56.7 67.5 52.8 61.7

Average
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Figure 3: Confusion matrices on N-UCLA.

multiple viewpoints (> 2).

For UWA3D in Table 6, we significantly outperform AS-CAL [40] at all par-
titions of different training and testing viewpoints. Since the UWA3D dataset is
challenging with large variations appearing in different viewpoints, the perfor-
mance may vary in different training combinations. However, on average our
method performs better than SeBiReNet and P&C. This is evidenced by having
most of the best performances achieved using our approach, which shows the gen-
erality of our model across a variety of viewpoints.

We further compare the confusion matrices of P&C and FoCoViL under all
types of actions of N-UCLA. In Fig. 3, we observe that five classes reach 100%
recognition accuracy in the proposed FoCoViL compared to three in P&C. In ad-
dition, FoCoViL discriminates better between the actions like doffing vs. throw
and donning vs. carry. In particular, these two pairs of actions are quite similar in
some viewpoints, thereby hard to be distinguished. By correlating different view-
points, FoCoViL can get a comprehensive understanding of action features from
various angles to provide a more discriminative classification for these ambiguous
classes.

The confusion matrix comparison on NTU RGB+D 60 is given in Fig. 4. To
compare the recognition performance with large numbers of classes, we calculate
the difference by subtracting the confusion matrix of the most recent method Aim-
CLR from FoCoViL. From Fig. 4(c), we observe that most of the diagonal values
are positive values (red), and there are lots of negative values (blue) that appear
in the off-diagonal part, which indicates that compared to FoCoViL, AimCLR is
more likely to have non-zero values that are misclassified as other classes.
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Figure 4: Confusion matrices on NTU RGB+D 60 on all 60 classes. (a) and (b) represent the
confusion matrices of AimCLR and our FoCoViL, respectively, and (c) is the difference confusion
matrix between the two methods, i.e. (b)-(a). In (c), The diagonal value in red and the off-diagonal
element in blue indicate the better classifications from FoCoViL.

4.3. Latent Space Evaluation

4.3.1. Purity & ARI

Following [60], we also test two common metrics, Purity and Adjusted Rand
Index (ARI), to quantitatively evaluate the quality of our learned latent space.
Purity measures to what extent samples in a cluster belong to the true class:

, 1
Purity = m ; mlax Whi (8)

where | X| is the total number of test samples. wy; is the number of samples in the
k" predicted cluster that belongs to the [*" ground-truth class. ARI measures the
correctness of classification concerning the mutual information between clusters:

D ST ¢ B oS I DVA I U
ARI = 1 w w w w | X

E(Zk (Qk) + Zl (2l)> o (Zk ( 2k) Zl (21))/< 2 )
where wy, = >, wi, W=, Wi is the number of samples in the k™ cluster or the
I class, respectively. Both measurements reveal the quality of clustering from
different aspects with the maximum value of 1 if each sample gets its cluster. In
addition to the 1-nearest neighbour, we adopt two common unsupervised clus-
tering methods, Gaussian Mixture Model (GMM) and K-Means, on the spanned
latent space. The number of clusters is set the same as the number of real classes.
The corresponding results are compared with SeBiReNet [6] and P&C [5] pre-
sented in Table 7. It is worth noting that in all the compared datasets, we achieve
the highest scores with significant improvements on both clustering metrics.

®)
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Table 7: Quantitative evaluation of clustering quality. For both Purity and ARI, the higher value
indicates better clustering.

Purity ARI
Dataset Method GMM K-Means GMM K-Means
SeBiReNet [6] 0.513 0.527 0.280 0.299
N-UCLA P&C [5] 0.512 0.592 0.260 0.412
FoCoViL 0.605 0.618 0.412 0.478
SeBiReNet [6] 0.131 0.125 0.071 0.053
NTU RGB+D 60 P&C [5] 0.246 0.249 0.129 0.137
FoCoViL 0.294 0.311 0.170 0.172
P&C [5] 0.418 0.409 0.237 0.237
PKU-MMD FoCoViL 0.483 0.501 0.329 0.350
P&C [5] 0.405 0.445 0.172 0.221
UWA3D FoCoViL 0.469 0.485 0.255 0.272
:l. :&ﬂ\:'.‘ ; » ‘y.i—%’ ”' *' YR XA
3{’. "-ﬁ ¢ c."‘ ‘: t\ azb:::';:-‘ :V‘
& e :,-_’ * R s LAt
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(a) P&C (b) CoViL (¢) FoCoViL

Figure 5: T-SNE comparisons of P&C, our CoViL, and FoCoViL on 10 classes of N-UCLA.

4.3.2. Visualization

We further visualize t-SNE of the learned features in Fig. 5 and 6 to qual-
itatively compare the latent space. The results clearly show that compared to
P&C, CrosSCLR, and AimCLR, FoCoViL generates clusters with less overlap-
ping since it learns a more sparse and discriminative latent space by generally
enlarging the distance between negative samples. Meanwhile, the representation
is more compact within each cluster. This highlights that the system can better
group the actions with common properties by removing the view interference. We
also visualize the effectiveness of focalization by comparing (b) and (c) of the two
figures, where the latent space is improved by having a clearer margin between
clusters.
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(c) CoViL (d) FoCoViL

Figure 6: T-SNE comparisons of CrosSCLR, AimCLR, our CoViL, and FoCoViL on 10 selected
categories of NTU RGB+D 60.
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Table 8: The ablation tests of recognition accuracy and purity (GMM) on the proposed FoCoViL.

Method Accuracy (%) Purity
Reconst. 74.4 0.413
Ali. reconst. 83.8 0.457
CoViL w/o g 84.0 0.531
CoViL w/o “+” 84.4 0.488
CoViL w/o “—~ 85.1 0.533
CoViL 86.7 0.569
FoCoViL 88.3 0.605

4.4. Ablation Study
4.4.1. Network Structure

We also verify the effectiveness of the main components in our network struc-
ture. The ablation results based on the N-UCLA dataset are provided in Table 8.
In general, the designed modules consistently improve the performance from the
reconstruction baseline (i.e. Reconst.). We first observe that the view alignment
(denoted as Ali.) can largely increase the recognition accuracy (Reconst. vs. Ali.
reconst.). Then, by adding back the fine-level multi-view contrastive loss, the
recognition performance improves by 2.9% (Ali. reconst. vs. CoViL), showing
that the discrimination power is increased by refining the view-invariant represen-
tation. There is also a significant improvement in purity score (0.457 vs. 0.569),
proving that CoViL contributes a lot to shaping the clustering space by modeling
the mutual distance between samples. Finally, by adding the focalization, Fo-
CoViL converges to a better latent space with a clearer distribution of clusters,
thus further boosting the purity score from 0.569 to 0.605.

As in Table 8, we observe a large improvement in Purity by comparing Fo-
CoViL (0.457 vs. 0.605) and singly considering view alignment (0.413 vs. 0.457).
The performance gain indicates that FoCoViL contributes more to shaping the rep-
resentation space to boost the clustering compared to view alignment. Although
view alignment is necessary for aligning the facing directions, the resulted space
is still view-dependent with large motion variations because of the view-specific
self-occlusions (see Fig. 1), which explains why it is necessary to learn a view-
invariant space after view alignment. By constraining the mutual distances be-
tween the same or different scenes, FoOCoViL learns a better representation space
with clearer cluster distributions to improve recognition.

In addition to the main structures in FoCoViL, we also evaluate the sub-
structures of the projection net g, CoViL w/o “+” (i.e. only including negative
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Table 9: Recognition accuracy under different structures of g.

#input—#FC1—#FC2 Accuracy (%)

1 Layer 1024—1024 85.1
1024—256—1024 85.7
2 Layers 1024—512—1024 88.3
1024—1024—1024 87.3
1024—2048—1024 87.3

Table 10: Evaluation of training sample size.

Data Proportion 10% 50% 70% 100%
Acc. (%) 773 849 853 883

(3 2

pairs regardless of viewpoints), and CoViL w/o (i.e. only including positive
pairs by supplementing the anchor samples from different views). We first notice
a large performance boost on both metrics by including ¢ when comparing CoViLL
w/o g and CoViL. This extensively reflects the importance of the projection net
to contrastive learning. Then we find that increasing the agreement of “+” pairs
(CoViL w/o “+” vs. CoViL) and the disagreement of “—" pairs (CoViL w/o “—”
vs. CoViL) are both essential to CoViL for a robust clustering ability, as the two
factors complement each other with “+” pairs generating compact clusters by cor-
relating the same scene together, where “—" pairs enable a sparse distribution to
avoid an over dense representation space.

4.4.2. Projection Net Configuration

As a key component of FoCoViL, we also conduct a detailed evaluation of the
projection net g. We test the recognition performance under different combina-
tions of layer and unit in ¢ as given in Table 9. Note that the vector dimension
is 1024 for both the encoder and the decoder output. The results show that using
2 fully-connected layers by first going through a squeeze operation (1024—512)
in the first layer, and following an excitation operation (512—1024) in the second
layer will broadcast a more powerful structure to the projection net.

4.5. The Impact of Training Size

In Table 10, we show how the sample size would affect the model perfor-
mance by selecting 10%, 50%, 70%, and 100% (the entire training split) of data
for training. When training on a small subset (10%) of data, the performance al-
ready reaches 77.3% with most of the actions being recognized correctly. When
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increasing the training proportion, the model observes more sample patterns that
benefit the contrastive learning.

5. Conclusion

We propose FoCoViL for cross-view self-supervised skeleton-based action
recognition in this work. By maximizing the mutual information of the multi-
view actions, FoCoViL better clusters the actions with common properties in
the latent space. This is done by contrasting pairwise similarity of latent rep-
resentations under the same and different scenes to refine the space with high-
level view-invariant features. An adaptive focalization on the contrasted sample
pairs further converges FoCoViL to a more discriminative latent space with fewer
misclassifications. Experiments on five benchmark 3D datasets demonstrate that
our method achieves state-of-the-art recognition performance with a high-quality
view-invariant space for action clustering, which has more generalization benefits.
The performance also demonstrates the compatibility of FoCoViL with different
scales of data size.

Other than multi-view features, contrastive learning with focalization is also
extensible to other modalities to improve the sample representation learned by
contrastive loss, such as contrasting between color, depth, or textual features [52,
61]. Another future direction is that at the focalization stage, it is of interest to
explore the imbalanced similarity of the negative pairs as well to further improve
the classification performance.

In this work, we use an RNN-based auto-encoder to learn motion dynam-
ics. However, the proposed focalized contrastive learning is also feasible to
convolutional-based auto-encoder backbones, such as Residual 3D Convolutions
(R3D) [26] or Pseudo-3D Residual network (P3D) [62] that are usually adopted
in RGB-based action recognition tasks, to detect more visual variations appearing
in the action images.
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