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Stochastic kinetic models (SKMs) are increasingly used to account for the inherent 
stochasticity exhibited by interacting populations of species in areas such as epidemiology, 
population ecology and systems biology. Species numbers are modelled using a continuous-
time stochastic process, and, depending on the application area of interest, this will 
typically take the form of a Markov jump process or an Itô diffusion process. Widespread 
use of these models is typically precluded by their computational complexity. In particular, 
performing exact fully Bayesian inference in either modelling framework is challenging 
due to the intractability of the observed data likelihood, necessitating the use of 
computationally intensive techniques such as particle Markov chain Monte Carlo (particle 
MCMC). It is proposed to increase the computational and statistical efficiency of this 
approach by leveraging the tractability of an inexpensive surrogate derived directly from 
either the jump or diffusion process. The surrogate is used in three ways: in the design 
of a gradient-based parameter proposal, to construct an appropriate bridge and in the 
first stage of a delayed-acceptance step. The resulting approach, which exactly targets the 
posterior of interest, offers substantial gains in efficiency over a standard particle MCMC 
implementation.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

A stochastic kinetic model (SKM) typically refers to a reaction network, an associated rate law and a probabilistic descrip-
tion of the reaction dynamics (see e.g. Wilkinson, 2018). A Markov jump process (MJP) provides the most natural description 
of the time-course behaviour of the species involved in the reaction network. In scenarios where species numbers can be 
reasonably regarded as continuous, it is commonplace to approximate the MJP to give an Itô stochastic differential equa-
tion known as the chemical Langevin equation (CLE). The modelling framework arising from either the MJP or CLE is fairly 
flexible and consequently, has been used ubiquitously in areas such as epidemiology (O’Neill and Roberts, 1999; Lin and 
Ludkovski, 2013; McKinley et al., 2014), population ecology (Boys et al., 2008; Sun et al., 2015) and systems biology (Owen 
et al., 2015a; Georgoulas et al., 2017; Golightly et al., 2019).

In order for the modelling framework to be of practical use, plausible parameter values must be obtained given data at 
discrete times, that may be incomplete (in the sense of information on a subset of species in the reaction network) and 
subject to error. This setting, when combined with either the MJP or CLE modelling framework precludes straightforward 
likelihood-based inference owing to the intractability of the observed data likelihood. Various sampling based solutions to 

* Corresponding author.
E-mail address: andrew.golightly@durham.ac.uk (A. Golightly).
https://doi.org/10.1016/j.csda.2023.107760
0167-9473/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.csda.2023.107760
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2023.107760&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:andrew.golightly@durham.ac.uk
https://doi.org/10.1016/j.csda.2023.107760
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


T.E. Lowe, A. Golightly and C. Sherlock Computational Statistics and Data Analysis 185 (2023) 107760
this problem have been proposed including the use of data augmentation (e.g. Boys et al., 2008) and approximate Bayesian 
computation (ABC, e.g. Owen et al., 2015b; Wu et al., 2014). Since it is straightforward in principle to unbiasedly estimate 
the observed data likelihood with a particle filter, particle Markov chain Monte Carlo (particle MCMC, Andrieu et al., 2009) 
provides another sampling-based solution to the intractable likelihood problem, and has been widely adopted (e.g. McKinley 
et al., 2014; Golightly and Wilkinson, 2015; Koblents and Miguez, 2015). Several modifications to the simplest particle 
MCMC scheme have been found to increase computational efficiency e.g. use of guided proposals inside the bootstrap 
particle filter (Golightly and Sherlock, 2019; Golightly et al., 2019), correlated particles (Dahlin et al., 2015; Deligiannidis 
et al., 2018) and use of a computationally cheap surrogate to prune out parameter proposals that are likely to be rejected 
giving a delayed acceptance scheme (Golightly et al., 2015; Quiroz et al., 2018; Banterle et al., 2019).

Herein, it is recognised that the above acceleration techniques typically leverage the tractability of a common surrogate 
model, and a novel combination and extension of these ideas are proposed to give a unified inferential framework. Specif-
ically, the surrogate is constructed as a linear noise approximation (see e.g. van Kampen, 2001; Komorowski et al., 2009; 
Fearnhead et al., 2014) which can be directly derived from either the MJP or CLE to give a linear Gaussian approximation of 
the transition probability governing the SKM. The surrogate is used in three ways: firstly, in the design of a Metropolis ad-
justed Langevin algorithm (MALA, see e.g. Roberts and Tweedie, 1996); secondly, to construct an appropriate bridge for use 
in the bootstrap particle filter; thirdly, in the first stage of a delayed-acceptance step, which is proven to be compatible with 
the use of correlated particles. The LNA requires the (numerical) solution of an ordinary differential equation (ODE) system 
whose number of components grows quadratically with the number of species. An efficient implementation that avoids 
unnecessary repeat runs of the ODE system is therefore considered. Crucially, the proposed framework exactly targets the 
posterior under either the CLE or MJP rather than under the surrogate model. The performance of the resulting framework 
is compared with existing approaches in three examples involving either the MJP or CLE as the inferential model.

The remainder of this paper is organised as follows. The modelling framework (including the MJP, CLE and LNA) is 
described in Section 2. Section 3 gives the inference task, whilst Section 4 provides details of the proposed acceleration 
techniques. Applications are considered in Section 5 and conclusions drawn in Section 6.

2. Stochastic kinetic models

Consider a chemical reaction network (CRN) with s species (also known as reactants) and r reactions, defined by the 
tuple N = (A, B, X , c) with components as follows. We have that X = (X1, X2, . . . , Xs)

′ is an s-vector of species, and A
and B are r × s matrices whose respective elements {aij} and {bij} are non negative integers known as stoichiometric 
coefficients. Additionally, c = (c1, . . . , cr)

′ is an r-vector of rate constants associated with an ordered reaction list given by

AX c−−−→ BX .

It should then be clear that aij denotes the number of molecules of X j consumed by reaction Ri and bij denotes the 
number of molecules of X j produced by reaction Ri ; the elements of AX are typically termed complexes. The effect of all 
reactions on all species can be encoded succinctly in the s × r stoichiometry matrix S = (B − A)′ so that, for example, the 
ith column of S , denoted S .i , gives the change in the number of each species upon the occurrence of reaction i.

Let X j,t denote the (discrete) number of species X j at time t , and let Xt be the s-vector Xt = (X1,t, X2,t, . . . , Xs,t)
′ . We 

model the process {Xt , t ≥ 0} via a Markov jump process (MJP), so that the state of the system at time t is

Xt = x0 +
∑

i

S .i Ri,t, (1)

where x0 is the initial system state and each Ri,t , i = 1, . . . , r, is a counting process with intensity hi(xt), known in this 
setting as the reaction hazard, which depends explicitly on the current state of the system xt . Following Kurtz (1972) (see 
also Wilkinson (2018))

Ri,t = Yi

⎛⎝ t∫
0

hi(xt′)dt′
⎞⎠ , (2)

where the Yi , i = 1, . . . , r are independent, unit rate Poisson processes. In what follows, the standard assumption of mass-
action kinetics is assumed, so that

hi(xt) = ci

s∏
j=1

(
x j,t

ai j

)
,

with explicit dependence on the rate constant ci > 0 omitted for notational convenience.
Given a value of the initial system state x0 and rate constants c, exact realisations of the MJP can be generated via 

Gillespie’s direct method (Gillespie, 1977). In brief, if the current state of the system is xt , the time to the next reaction is τ ∼
Exp(

∑r
i=1 hi) and will be reaction i with probability proportional to hi , where hi := hi(xt). Although the forward simulation 
2



T.E. Lowe, A. Golightly and C. Sherlock Computational Statistics and Data Analysis 185 (2023) 107760
is straightforward, the reverse problem is not. That is, the problem of inferring the rate constants c given observations on 
Xt at discrete times. The main barrier to inference in this setting arises from the intractability of the transition probability 
p(xt |x0), which can be shown (van Kampen, 2001) to satisfy the chemical master equation (CME):

d

dt
p(xt |x0) =

r∑
i=1

[hi(xt − S .i)p(xt − S .i|x0) − hi(xt)p(xt |x0)] .

Unfortunately, the CME can rarely be solved in practice, with the exactly solvable cases described in McQuarrie (1967). 
Consequently, given data D = (xt0 , . . . , xtn ), analytic evaluation of the observed data likelihood p(D|c) is typically not possible. 
On the other hand, the complete data likelihood (see e.g. Wilkinson, 2018), given by p(x|c) where x = {xt , t0 ≤ t ≤ tn}, can be 
evaluated as

p(x|c) = p(xt0)

{
nr∏

i=1

hνi

(
xsi−1

)}
exp

⎧⎨⎩−
tn∫

t0

r∑
i=1

hi (xt)dt

⎫⎬⎭ .

Here, nr denotes the total number of reaction events; reaction times (assumed to be in increasing order) and types are 
denoted by (si, νi), i = 1, . . . , nr , νi ∈ {1, . . . , r} and we take s0 = t0. Note that the exponent requires integration of the 
combined hazard function, which can be calculated analytically by recognising that the combined hazard function is piece-
wise constant in xt . Although a complete data scenario is likely to be practically infeasible, the tractability of the complete 
data likelihood motivates simulation based approaches to inference based on data augmentation, whereby a sampler is 
constructed to target the joint posterior of c and the latent jump process between observation instants, or uncertainty for 
the latent process, is integrated over via Monte Carlo. These techniques can be computationally prohibitive. Therefore, an 
approximation to the MJP is also considered, for which the computational cost can be controlled via time discretisation.

2.1. Discretised chemical Langevin equation

Consider an infinitesimal time interval, (t, t + dt], over which the reaction hazards will remain constant almost surely. 
Consequently, via (2), the counting process over this interval for the ith reaction, denoted by dRi,t , is Poisson distributed 
with rate hidt . Stacking these quantities in dRt and noting that from (1) dXt = SdRt , it should be clear that

E(dXt) = S h(xt)dt, Var(dXt) = S diag{h(xt)}S ′dt,

where h(xt) = (h1(xt), . . . , hr(xt))
′ . Hence, an Itô Stochastic differential equation (SDE) can be constructed, with an infinites-

imal mean and variance that match those of the MJP. This is given by

dXt = S h(xt)dt + √
S diag{h(xt)}S ′ dWt, (3)

where Wt is as s-vector of standard Brownian motion and 
√

S diag{h(xt)}S ′ is an s × s matrix B such that B B ′ =
S diag{h(xt)}S ′ . Equation (3) is typically referred to as the chemical Langevin equation (CLE). The CLE can rarely be solved 
analytically, and it is common to work with a discretisation such as the Euler-Maruyama discretisation which gives

Xt+�t = xt + S h(xt)�t + √
S diag{h(xt)}S ′�t Z ,

where Z is a standard multivariate Gaussian random variable. However, the transition density pe(xti+1 |xti , c) under the 
Euler-Maruyama scheme is likely to be inaccurate unless �t = ti+1 − ti is ‘small’. Hence, it is commonplace to introduce 
intermediate time points between observation instants allowing the discretisation to operate over a time step chosen by the 
practitioner. To this end, consider an equally spaced partition of [ti , ti+1] as

ti = τi,0 < τi,1 < . . . < τi,m−1 < τi,m = ti+1,

with τi, j+1 − τi, j = �τ = 1/m for j = 0, . . . , m − 1. The value of m is chosen to balance accuracy and computational ef-
ficiency, with a common practice being to perform short pilot runs with increasing values of m, until a threshold value 
is found whereby posterior output for any larger values of m is approximately equal (see e.g. Stramer and Bognar, 2011; 
Golightly et al., 2019). The transition density under this augmented Euler approach is

p(m)
e (xti+1 |xti , c) =

∫
pe(x(ti ,ti+1]|xti , c)dx(ti ,ti+1),

where x(ti ,ti+1) = (xτi,1 , . . . , xτi,m−1 ) consists of grid points strictly between ti and ti+1, and x(ti ,ti+1] = (xτi,1 , . . . , xτi,m ) includes 
xti+1 itself. Finally, pe(x(ti ,ti+1]|xti , c) is a product of one step Euler transition densities over the intermediate time points. 
Then, given data D = (xt0 , . . . , xtn ), the observed data likelihood is
3
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p(m)
e (D|c) = p(xt0)

n−1∏
i=0

p(m)
e (xti+1 |xti , c),

which is typically intractable, owing to the intractability of the constituent terms. On the other hand, as with the MJP, 
the complete data likelihood pe(x|c), where x = (x[t0,t1), x[t1,t2), . . . , x[tn−1,tn]), can be easily evaluated. Nevertheless, infer-
ence schemes based on pe(x|c) can be computationally prohibitive depending on the choice of m. This motivates a further 
approximation to the CLE (and therefore MJP) for which the observed data likelihood is tractable.

2.2. A tractable surrogate

The CLE can be appropriately linearised to give a tractable Gaussian process approximation known as the linear noise 
approximation (LNA, see e.g. Kurtz, 1972; Komorowski et al., 2009; Stathopoulos and Girolami, 2013; Fearnhead et al., 2014).

Let {ηt , t ≥ t0} be the deterministic process satisfying the ODE

dηt

dt
= Sh(ηt), ηt0 = η0, (4)

and consider a residual stochastic process {Rt = Xt − ηt , t ≥ t0} satisfying

dRt = {Sh(xt) − Sh(ηt)}dt + √
S diag{h(xt)}S ′ dWt . (5)

This SDE can be approximated to give a tractable solution R̂t and in turn X̂t = ηt + R̂t . This is obtained by Taylor expanding 
Sh(xt) and S diag{h(xt)}S ′ about ηt . Retaining the first two terms in the expansion of the former and the first term in the 
expansion of the latter gives

dR̂t = Ft R̂t dt + √
S diag{h(ηt)}S ′ dWt , (6)

where Ft is the Jacobian matrix with (i, j)th element given by the partial derivative of the ith component of Sh(ηt) with 
respect to the jth component of ηt .

Given an initial condition R̂t0 ∼ N(r̂0, V̂ 0), we obtain R̂t as a Gaussian random variable. In particular, for the fixed value 
r̂0 = xt0 − ηt0 , it can be shown that the approximating distribution of Xt is

Xt |Xt0 = xt0 ∼ N(ηt + Gtr̂0, Gtψt G ′
t),

where η satisfies (4), the fundamental matrix Gt satisfies

dGt

dt
= Ft Gt, Gt0 = Is, (7)

and ψt satisfies

dψt

dt
= G−1

t S diag{h(ηt)}S ′ (G−1
t

)′
, ψt0 = 0s. (8)

Note that Is denotes the s × s identity matrix and 0s the s × s zero matrix.
An equivalent representation of the LNA can be achieved by writing

(R̂t |R̂t0 = r̂0) ∼ N(mt, Vt), (9)

where

dmt

dt
= Ftmt, mt0 = r̂0, (10)

and the ODE for Vt = Gtψt G ′
t can be found using the product rule to give

dVt

dt
= Vt F ′

t + S diag{h(ηt)}S ′ + Ft Vt, Vt0 = V 0. (11)

The approximating distribution of Xt for this alternative representation is

(Xt |Xt0 = xt0) ∼ N(ηt + mt, Vt).

Note that for the initial conditions ηt0 = xt0 and mt0 = 0s , the ODE satisfied by mt need not be solved since mt = 0s for 
all t ≥ t0. A theoretical treatment of the LNA, and in particular, the conditions under which the LNA can be regarded as an 
adequate approximation to the CLE can be found in Wallace et al. (2012). The accuracy of the LNA is further discussed in 
an inferential setting in Section 4.
4
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2.3. Example: epidemic model

A susceptible–Infected–Removed (SIR, e.g. Keeling and Rohani, 2007) compartment model has two species (susceptibles 
X1 and infectives X2) and two reaction channels (infection of a susceptible and removal of an infective):

R1 : X1 +X2
c1−−→ 2X2

R2 : X2
c2−−→ ∅.

Let Xt = (X1,t, X2,t)
′ denote the system state at time t . The stoichiometry matrix associated with the reaction system is 

given by

S =
( −1 0

1 −1

)
and the associated hazard function obtained under the assumption of mass-action kinetics is

h(xt , c) = (c1x1,t x2,t, c2x2,t)
′.

The CLE for this model is given by

d

(
X1,t

X2,t

)
=

( −c1x1,t x2,t

c1x1,t x2,t − c2x2,t

)
dt +

(
c1x1,t x2,t −c1x1,t x2,t

−c1x1,t x2,t c1x1,t x2,t + c2x2,t

) 1
2

d

(
W1,t

W2,t

)
where W1,t and W2,t are independent standard Brownian motion processes. The LNA for this model is specified by the 
coupled ODE system given by (4), (7) and (11), which requires the Jacobian matrix given by

Ft =
(−c1η2,t −c1η1,t

c1η2,t c1η1,t − c2

)
.

Given initial conditions x0 and values of the rate constants c, simulation (at discrete times) of with the MJP, CLE or LNA 
representation of the above reaction system is straightforward. The focus here is the inverse problem, that is, given (assumed 
noisy) observations on (a subset of components of) Xt , plausible values of the rate constants c are found. In what follows, 
the learning objective is described and the proposed approach is outlined.

3. Bayesian inference

Suppose that the stochastic kinetic model (MJP or discretised CLE) is not observed directly, but observations (on a regular 
grid) yti , i = 0, 1, . . .n are available and assumed conditionally independent (given the latent process), with conditional 
probability distribution obtained via the observation equation,

Yti = P ′ Xti + εti , εti ∼ N (0,�) , i = 0,1, . . . ,n. (12)

Here, Yt is a length-p vector, P is a constant matrix of dimension s × p and εt is a length-p Gaussian random vector. The 
density linking the observed and latent process is denoted by p(yti |xti ). For simplicity it is assumed that � is known.

Let D = (yt0 , . . . , ytn ) and suppose that π(c) is the prior density ascribed to c. Throughout this article, it is assumed 
that interest lies primarily in inference for the rate constants c. Therefore, the marginal parameter posterior density is 
constructed as

π(c|D) ∝ π(c)

∫
p(x|c)p(D|x)dx

∝ π(c)p(D|c), (13)

where p(D|x) = ∏n
i=0 p(yti |xti ) and p(x|c) is the complete data likelihood under either the MJP or the discretised CLE 

(and no distinction between the two is subsequently made). As noted earlier, the intractability of the observed data likeli-
hood p(D|c) complicates the inference task. In what follows a particle MCMC approach for generating draws from (13) is 
described, and the resulting algorithm is used as a starting point for further acceleration techniques.

3.1. Particle MCMC

Given a non-negative estimator of p(D|c) that is unbiased up to a multiplicative constant (independent of the rate 
constants), the particle marginal Metropolis-Hastings (PMMH) scheme of Andrieu et al. (2009) targets a joint density for 
which the desired posterior π(c|D) is a marginal.

Denote the estimator of the observed data likelihood by p̂U (D|c), where U ∼ g(u) is the set of random variables used 
to generate the estimator. The PMMH scheme targets the joint density
5
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π̂ (c, u|D) ∝ π(c)p̂u(D|c)g(u), (14)

for which it is easily shown that π(c|D) is obtained by integrating over the auxiliary variables u:∫
π̂ (c, u|D)du =

∫
π(c)p̂u(D|c)g(u)du

= EU [π(c)p̂U (D|c)]
∝ π(c)p(D|c).

It remains to generate realisations of an unbiased estimator p̂U (D|c). The observed data likelihood can be factorised as

p(D|c) = p(yt0 |c)
n∏

i=0

p(yti+1 |yt0:ti , c), (15)

where yt0:ti = (yt0 , . . . , yti ). This immediately suggests a sequential approach for constructing p̂U (D|c). The bootstrap par-
ticle filter (see e.g. Gordon et al., 1993) consists of a sequence of weighted resampling steps, whereby N state particles are 
propagated forward, appropriately weighted using the complete data likelihood and observation density, and resampled with 
replacement (e.g. systematically as in Deligiannidis et al., 2018) to prune out particle paths with low weight. The reader is 
referred to Pitt et al. (2012); see also Del Moral (2004) for a detailed explanation of the bootstrap particle filter as well as 
a proof of the requisite unbiasedness property; namely that the product (over time) of the average unnormalised particle 
weights gives an unbiased estimator of p(D|c).

Step i of the particle filter is given in Algorithm 1. Note that the terms of the complete data likelihood p(x(k)
(ti ,ti+1]|x(k)

ti
, c)

will differ depending on whether the CLE or the MJP is used as the inferential model. A key ingredient of the algorithm is 
an appropriate construct q(·|xti , yti+1 , c) for generating particle paths between observation instants ti and ti+1. Discussion 
of this construct is deferred to Section 4.2.2.

Algorithm 1 Step i of the Particle Filter.

Input: Rate parameters c, next observation yti+1 , N particles {x(k)
ti

}N
k=1.

1. Propagate forward to time step ti+1 using

x(k)
(ti ,ti+1] ∼ q(·|x(k)

ti
, yti+1 , c),

for k = 1, . . . , N , using an appropriate proposal mechanism q(·|·) (see Section 4.2.3 for details).
2. Compute the weights. For k = 1, . . . , N

w̃(k)
ti+1

=
p(yti+1 |x(k)

ti+1
, c)p(x(k)

(ti ,ti+1]|x(k)
ti

, c)

q(x(k)
(ti ,ti+1]|x(k)

ti
, yti+1 , c)

, w(k)
ti+1

= w̃(k)
ti+1∑N

j=1 w̃( j)
ti+1

.

3. Resample N particles using a systematic resampling step with weights {w(k)
ti+1

}N
k=1.

Output: N particles {x(k)
ti+1

}N
k=1 to be used in step ti+1, an estimate for the current marginal likelihood term p̂u(yti+1 |yt0 :ti , c) = 1

N

∑N
k=1 w̃(k)

ti+1

The PMMH scheme uses a proposal kernel q(c∗|c)g(u∗), which, for the target in (14) leads to an acceptance probability 
of the form

α
(
c∗|c) = min

{
1,

π(c∗)p̂u∗(D|c∗)
π(c)p̂u(D|c) × q(c|c∗)

q(c∗|c)
}

.

Thus, each iteration of PMMH requires running a bootstrap particle filter with N particles to obtain p̂u∗(D|c∗). This can 
be computationally costly, since the number of particles should be scaled in proportion to the number of data points to 
maintain a desired variance of the logarithm of the likelihood estimator (Bérard et al., 2014).

4. Acceleration techniques

In this section, a unified inference framework that simultaneously aims to avoid unnecessary calculations of p̂u∗ (D|c∗), 
reduce the variance of the likelihood estimator for a given N and use a parameter proposal mechanism informed by an 
approximation of the marginal posterior density, is described. To facilitate these techniques, the tractability of a surrogate 
model is leveraged; this is the linear noise approximation (LNA) described in Section 2.2. In what follows, therefore, the 
necessary surrogate preliminaries are described as well as their use for accelerating the particle MCMC scheme given in the 
previous section. An overview of the resulting algorithm, with reference to the techniques discussed in this section, can be 
6
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found in Appendix C. Finally, it is worth emphasising that the role of the surrogate is to improve statistical and/or com-
putational efficiency relative to the most basic particle MCMC scheme; the resulting algorithm exactly targets the posterior 
under the MJP or CLE.

4.1. Surrogate posterior and gradient information

Denote the posterior under the LNA by

πLNA(c|D) ∝ π(c)pLNA(D|c)
where the observed data (surrogate) likelihood pLNA(D|c) can be factorised as

pLNA(D|c) = pLNA(yt0 |c)
n∏

i=0

pLNA(yti+1 |yt0:ti , c). (16)

Constituent terms in (16) are tractable, and can be computed recursively using a forward filter; step i of this approach can 
be found in Algorithm 2. In brief, Bayes Theorem is applied sequentially by combining the Gaussian prior distribution of 
Xti+1 |yt1:ti with the linear Gaussian observation equation (12) to obtain a Gaussian posterior distribution of Xti+1 |yt1:ti+1

which is used to construct the prior at the next observation time. To alleviate potential inconsistencies between the LNA 
and CLE mean, which can be increasingly problematic over long inter-observation intervals, the algorithm of Fearnhead et 
al. (2014) (see also Minas and Rand, 2017, for an alternative approach) is used; this approach re-initialises the LNA mean 
and variance at the mean and variance of the filtering distribution at the start of each inter-observation window.

It is also necessary to compute the log gradient ∇ logπLNA(c|D) (see Section 4.2.1). This requires ∇ log pLNA(D|c) which 
we obtain by differentiating the logarithm of the terms in (16). Explicitly, from the observation model (12),

∇ log pLN A(yti+1 |yt0:ti , c) = ∇ log N(yti+1 ; P ′ηti+1 , P ′Vti+1 P + �).

For ease of notation, set μ(c, t) = P ′ηt+1 and �(c, t) = P ′Vt+1 P + �, where ηt+1 and Vt+1 are both implicitly dependent 
on the rate parameters c. Then,

∂ log N(y;μ(c, t),�(c, t))

∂ci
= 1

2
Tr

{
(γ γ T − �−1(c, t))

∂�(c, t)

∂ci

}
+ γ T ∂μ(c, t)

∂ci
(17)

where γ = �−1(c, t){y −μ(c, t)}. Evaluating (17) requires the partial derivatives ∂μ(c, t)/∂ci and ∂�(c, t)/∂ci which can be 
viewed as the first order sensitivities of the ODE system governing μ(c, t) and �(c, t). Although these are not in general 
available analytically, expressions for dμ(c, t)/dt and d�(c, t)/dt can be used to find expressions for the time derivatives of 
the first order sensitivities by augmenting the system of ODEs giving the LNA solution. Let ξ be the ns-vector of all elements 
of μ(c, t) and all lower triangular elements of �(c, t), and note that ns = s + s(s + 1)/2. The first order sensitivity of the jth 
element of ξ with respect to the ith rate constant ci is given by

S(i)
j = ∂ξ j

∂ci
, j = 1, . . . ,ns, i = 1, . . . , r.

Due to the symmetry of second derivatives, the time derivatives of these sensitivities can be written as

d

dt
S(i)

j =
ns∑

l=1

S(i)
l

∂

∂ξl

dξ j

dt
+ ∂

∂ci

dξ j

dt
, j = 1, . . . ,ns, i = 1, . . . , r. (18)

For further insight into first-order sensitivity equations, see Calderhead and Girolami (2011). Given an initial condition of 
S(i)

j = 0 at time t0, these time derivatives can then be integrated forward numerically along with the rest of the component 
ODEs giving the LNA solution. Conveniently, calculation of ∇ log pLNA(yti+1 |yt0:ti , c) can be performed as part of the forward 
filter; see Algorithm 2.

Finally, note that the augmentation of the LNA ODE system does come with an additional computational cost. With the 
addition of the sensitivity ODEs, the augmented ODE system has (r + 1) (s + s(s + 1)/2) ODEs in total to be solved, which 
can be computationally prohibitive for reaction systems with many species and/or reactions. This computational cost can be 
alleviated by making a further approximation and basing the gradient information solely on the deterministic part of the 
LNA. This is equivalent to ignoring the dependence of �(c, t) on c. The partial derivative in (17) becomes

∂ log N(y;μ(c, t),�(c, t))

∂ci
= γ T ∂μ(c, t)

∂ci
, (19)

thereby reducing the number of ODE components to (r + 1)s + s(s + 1)/2.
7
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Algorithm 2 Step i of the LNA Forward Filter.
Input: ati and Bti , the initial conditions of (4) and (11); pLNA(yt0 :ti |c) and ∇ log pLNA(yt0 :ti |c), the current marginal likelihood and log gradient thereof; 
yti+1 , the next observation.

1. Prior at ti+1. Initialise the LNA with ηti = ati , mti = 0 and Vti = Bti . Integrate (4), (11) and (18) forward to ti+1 to obtain ηti+1 , Vti+1 , ∂μ(c, t)/∂c and 
∂�(c, t)/∂c. Thus

(Xti+1 |yt1 :ti ) ∼ N(ηti+1 , Vti+1 ).

2. One step forecast. Using the observation equation, we have that

(Yti+1 |yt1 :ti ) ∼ N(P ′ηti+1 , P ′Vti+1 P + �).

Hence compute

pLNA(yt0 :ti+1 |c) = pLNA(yt0 :ti |c)pLNA(yti+1 |yt0 :ti , c)

and

∇ log pLNA(yt0 :ti+1 |c) = ∇ log pLNA(yt0 :ti |c) + ∇ log pLNA(yti+1 |yt0 :ti , c).

3. Posterior at ti+1. Combining the distributions of Xti+1 and Yti+1 (given yt0 :ti ) and then conditioning on yti+1 gives (Xti+1 |yt0 :ti+1 ) ∼ N(ati+1 , Bti+1 )

where

ati+1 = ηti+1 + Vti+1 P (P ′Vti+1 P + �)−1(yti+1 − P ′ηti+1 )

Bti+1 = Vti+1 − Vti+1 P (P ′Vti+1 P + �)−1 P ′Vti+1 .

Output: pLNA(yt0 :ti+1 |c), ∇ log pLNA(yt0 :ti+1 |c), ati+1 and Bti+1 .

4.2. Delayed-acceptance

Consider now the particle MCMC scheme of Section 3.1 targeting the π̂ (c, u|D) in (14) for which π(c|D) is a marginal. 
Ideally, iterations that run the particle filter to compute p̂u∗(D|c∗) when c∗ is likely to be rejected should be avoided. 
This motivates the use of a screening step, whereby the particle filter is only run for proposals accepted under the surrogate 
posterior. This is known as delayed-acceptance (DA); a brief exposition is provided here and the reader is referred to relevant 
work (Christen and Fox, 2005; Golightly et al., 2015; Banterle et al., 2019) for further details.

For a given iteration with current state (c, u), Stage One of the DA scheme proposes c∗ ∼ q(·|c), computes pLNA(D|c∗)
and the screening acceptance probability

α1
(
c∗|c) = min

{
1,

π(c∗)pLNA(D|c∗)
π(c)pLNA(D|c) × q(c|c∗)

q(c∗|c)
}

. (20)

If this screening step is successful, Stage Two of the DA scheme is to propose u∗ ∼ g(·), construct the estimate p̂u∗ (D|c∗)
and the Stage Two acceptance probability

α2|1
{
(c∗, u∗)|(c, u)

} = min

{
1,

p̂u∗(D|c∗)
p̂u(D|c) × pLNA(D|c)

pLNA(D|c∗)

}
. (21)

Thus the overall acceptance probability for the scheme is

α
{
(c∗, u∗)|(c, u)

} = α1
(
c∗|c)α2|1

{
(c∗, u∗)|(c, u)

}
, (22)

and standard arguments show that the resulting DA scheme defines a Markov chain that is reversible with respect to the 
target in (14). Extensions of the two-stage approach that are robust to potentially poor choices of the surrogate can be 
found in Banterle et al. (2019).

Three modifications of the standard DA scheme (henceforth DA-PMMH) are now considered, with the aim of improving 
overall efficiency. These are achieved through a combination of a gradient-based Stage One proposal and by reducing the 
variance of the Stage Two acceptance probability for a given number of particles N , for which two methods are suggested, 
that may be implemented separately or together.

4.2.1. Stage One proposal
A common choice of proposal mechanism in MCMC schemes is the random walk Metropolis (RWM) proposal, in which

c∗ = c + λZ , Z ∼ N(0,�T )
8
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for some tuning matrix �T . For example it is common to take �T = V̂ar(c|D) estimated from a pilot run, with λ tuned to 
meet a desired acceptance rate. Further comments on tuning are given in Section 4.4.

It is desirable to find a proposal that uses local information about the posterior to sample from areas of higher posterior 
density. The Metropolis adjusted Langevin algorithm (MALA) (Roberts and Stramer, 2002) incorporates the gradient of the 
log posterior density ∇ logπ(c|D) in the proposal mechanism. As with RWM, a preconditioning matrix (see e.g. Marnissi et 
al., 2020) is included to give a proposal of the form

c∗ = c + λ2

2
�T ∇ log (π(c|D)) + λZ , Z ∼ N(0,�T ).

Unfortunately ∇ logπ(c|D) is typically intractable. Estimates of this gradient can be computed via modification of the 
particle filter (Poyiadjis et al., 2011; Nemeth et al., 2016). However, and as discussed in Nemeth et al. (2016), the asymptotic 
properties of the resulting algorithm depend crucially on the accuracy of the estimate of ∇ logπ(c|D) as the number of 
parameters increases. This approach is therefore eschewed in favour of replacing the idealised gradient with the analytically 
tractable gradient of the log posterior under the surrogate model ∇ logπLNA(c|D), calculated using either (17) (henceforth 
full MALA) or (19) (henceforth simplified MALA or sMALA). This is obtained through recursive application of Algorithm 2.

4.2.2. Stage Two variance reduction via correlated particles
In this section, the recently proposed correlated PMMH (CPMMH) method (Dahlin et al., 2015; Deligiannidis et al., 2018) 

is adapted to the delayed acceptance setting (DA-CPMMH). The idea is to induce strong and positive correlation between 
successive values of the likelihood estimates, as used in the Stage Two acceptance probability. Use of correlation within 
PMMH schemes in a delayed acceptance framework has been studied before by Quiroz et al. (2018), who utilised the block 
pseudo-marginal approach of Tran et al. (2016) to induce correlation between the likelihood estimates. By contrast, we 
correlate the auxiliary random variables u used to construct the estimator p̂u(D|c), by replacing the proposal u∗ ∼ g(u∗)
with u∗ ∼ K (u∗|u) where the kernel K (·|·) satisfies the detailed balance equation

g(u)K (u∗|u) = g(u∗)K (u|u∗). (23)

Without loss of generality, take g(u) = N (u; 0 , Id) where d denotes the number of components of u, and K (u∗|u) to be the 
density associated with a Crank-Nicolson proposal. That is

K (u∗|u) = N(u∗; ρu ,
(

1 − ρ2
)

Id), (24)

where ρ is a tuning parameter between 0 and 1 that determines the correlation between u∗ and u. Setting ρ = 0 gives the 
standard DA-PMMH scheme, as in this case K (u∗|u) = g(u∗). However, in practice ρ is generally taken to be close to 1, so as 
to induce strong positive correlation between successive estimates from the particle filter. It is expected that the resulting 
reduction in the variance of the Stage Two acceptance probability results in far fewer particles required for DA-CPMMH 
than for DA-PMMH, significantly reducing the relative computational cost. The use of correlation here is likely to be of most 
benefit in low dimensional models, since it is likely that N can be scaled at rate n1/2 for univariate models and n2/3 for 
bivariate models (Deligiannidis et al., 2018), as opposed to at rate n for the standard PMMH scheme (Bérard et al., 2014).

Appendix A shows that a delayed acceptance scheme with proposal kernel q(c∗|c)K (u∗|u) and acceptance probability 
given by (22) satisfies detailed balance with respect to the target density (14).

4.2.3. Stage Two variance reduction via bridge constructs
Algorithm 1 requires the use of a proposal mechanism that can generate paths between observations for the particles, 

conditional on the current state of the particle, the next observation and the rate constants. These paths are often referred 
to as bridges, and the mechanisms for generating them are known as bridge constructs. Gordon et al. (1993) originally 
proposed generating particles via forward simulation from the model from one time point to the next, without taking into 
consideration the observation at the end time point. This method is termed the myopic approach. However, as explored 
in Del Moral et al. (2015) and Golightly et al. (2015) (see also Golightly et al. (2019)), when the observation variance is 
small relative to the intrinsic stochasticity exhibited by the latent process, this implementation can lead to a highly variable 
estimator of the marginal likelihood. In this case, as the precision of an observation increases, its compatibility with most of 
the paths reduces, leading to low weights, and the efficiency of bootstrap particle filter-driven (C)PMMH scheme decreases 
substantially. By conditioning on the next observation, bridge constructs play an important role in reducing the variance of 
p̂U (D|c) relative to this myopic approach.

Without loss of generality, consider a time interval (0, T ] for which we require a bridge construct with density 
q(x(0,T ]|x0, yT , c). Consider first the MJP as the inferential model and suppose that we have simulated as far as time t . 
A suitable bridge construct can be found by noting the conditioned hazard (CH) associated with reaction Ri is

hi(xt |yT ) = hi(xt)
p(yT |Xt = x′)

,

p(yT |Xt = xt)

9
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where x′ = xt + S .i . The transition density p(yT |xt) will typically be intractable and we follow Golightly and Sherlock (2019)
by replacing it with the transition density under the surrogate model

pLNA(yT |Xt = xt) = N(yT ; P ′[ηT |0 + G T |t(xt − ηt|0)] , P ′V T |t P + �).

Here, the notation ηt′ |t , Gt′ |t and Vt′|t is used to denote the solution of the ODE system in (4), (7) and (11) at time t′ , 
integrated over (t, t′] with initial conditions zt = xt , Gt = Is and Vt = 0s . A single integration of the ODE system over [0, T ]
gives ηt|0, Gt|0 and Vt|0 for t ∈ [0, T ]. Then, obtain G T |t and V T |t via the identities

G T |t = G T |0G−1
t|0 , V T |t = V T |0 − G T |t Vt|0G ′

T |t, (25)

which are derived in Golightly and Sherlock (2019). Use of (25) avoids reintegration of the ODE system at each jump event. 
By ignoring the explicit dependence of hi(xt |yT ) on t , sampling the resulting bridge proposal q(x(0,T ]|x0, yT , c) can be 
achieved by executing Gillespie’s direct method with hi(xt) replaced by hi(xt |yT ). Evaluating q(x(0,T ]|x0, yT , c) is straight-
forward via the complete data likelihood of x(0,T ] , again with hi(xt) replaced by the conditioned hazard function.

Consider now the discretised CLE as the inferential model. In this case, x(0,T ] denotes the process over equally spaced 
intermediate times τ1, . . . , τm = T with time step �τ , given an initial value x0 = xτ0 . Herein, the residual bridge construct 
of Whitaker et al. (2017b) is adopted. In brief, we partition Xt as Xt = ζt + Rt where

dζt = f (ζt)dt, ζ0 = x0,

dRt = {Sh(Xt) − f (ζt)}dt + √
S diag{h(Xt)}S ′dWt, R0 = 0,

for some function f (·). Although the conditional distribution Rτk+1 |rτk , yT will necessarily be intractable (even under dis-
cretisation), a tractable linear Gaussian approximation can be constructed (Whitaker et al., 2017b). Full details are given 
in Appendix B. Finally, two choices of the function f (·) are considered. The first is f (·) = Sh(·) with ζt = ηt giving the 
simple residual bridge (RB). The second choice has ζt = ηt + ρ̂t , where ρ̂t = E[R̂t |r0, yT ] is a surrogate approximation of the 
conditional expected residual at time t . Using the LNA, ρ̂t is computed as

ρ̂t = Gt|0r0 + Vt|0(G ′
t|0)−1G T |0 P (P ′V T |0 P + �)−1(yT − P ′ηT |0 − P ′G T |0r0).

The derivation of this expectation is given in Appendix B. The resulting bridge construct is referred to as the residual bridge 
with extra subtraction (RB−).

4.3. Computational considerations

Use of the surrogate LNA model in a delayed-acceptance step, the MALA parameter proposal and to construct bridge 
proposals inside the particle filter each require the solution of an ODE system. However, there is some overlap in the ODE 
components that must be solved to perform each technique, and as such, if implemented correctly, further computational 
savings can be made when using several of these techniques at once.

Computing the observed data likelihood under the LNA for use in a delayed-acceptance step requires the solution of 
(4) and (11), restarted at the posterior mean and variance given by the forward filter at each observation time. Computing 
the gradient information to use full MALA requires the solution of (4) and (11), as well as the first order sensitivities 
∂μ(c, t)/∂ci and ∂�(c, t)/∂ci for i = 1, . . . , r; see (18). The gradient information using simplified MALA does not require the 
solution of ∂�(c, t)/∂ci . The simple residual bridge, RB, requires only the solution of (4). The residual bridge with additional 
subtraction, RB− , and conditioned hazard, CH, require the solution of (4), (7) and (11).

Except for RB, all of these techniques require the solution of (4) and (11). Thus, it is desirable to solve these ODEs once 
per (C)PMMH iteration and use the output in several different techniques. Running the forward filter to obtain the surrogate 
likelihood used in delayed acceptance also solves several of the ODE components used in determining the gradient of the 
log posterior for MALA. Care must be taken when implementing the bridge constructs, which, for an arbitrary observation 
interval [ti, ti+1] and time t ∈ (ti, ti+1], require the LNA variance Vt|ti initialised at 0s , whereas the forward filter restarts 
this variance at the filtering mean Bi (see Algorithm 2). This “disconnect” is alleviated via the second identity in (25) which 
can be written as

Vt|ti = Vt − Gt Vt G ′
t

where Vt and Gt are obtained from the forward filter. The resulting bridge constructs in this setting are denoted by RBiter, 
RB−

iter and CHiter. The accuracy of the bridges over [ti, ti+1] can be improved by re-integrating the ODE system given by 
(4) and (11) for each particle x(k)

ti
. That is, ηti is set at x(k)

ti
and Vti = 0s . The resulting bridge constructs are denoted by 

RBpart, RB−
part and CHpart. Although use of the latter compared to the “once per iteration” approach is likely to result in an 

estimator of observed data likelihood with lower variance and in turn, better mixing of the (C)PMMH scheme, it comes 
with an additional computational cost. Given s species and N particles, “once per particle” bridges require the solution 
10
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Table 1
Order of complexity in terms of ODE components required to be solved for dif-
ferent bridge construct implementations, and the additional computational cost 
required to enact delayed acceptance, simplified or full MALA. Note that N , s
and r denote the number of particles, species and parameters respectively.

(C)PMMH da(C)PMMH Simplified MALA Full MALA

RBiter O (s) +O (s2) +O (sr) +O (s2r)
RB−

iter O (s2) − +O (sr) +O (s2r)
RBpart O (sN) +O (s2) +O (sr) +O (s2r)
RB−

part O (s2 N) +O (s2) +O (sr) +O (s2r)

of an additional sN ODE components. Table 1 shows the relative computational complexity (in terms of the number of 
ODE components that must be solved) for different acceleration techniques. Note that CHiter and CHpart have the same 
computational complexities as RB−

iter and RB−
part.

4.4. Tuning

Schemes employing CPMMH require specification of a correlation parameter ρ , and irrespective of the acceleration tech-
nique employed, all schemes require specification of several other tuning parameters. These include a number of particles 
N , a preconditioning matrix �T and scaling parameter λ, with the latter two tuning parameters used in the RWM or MALA 
proposal mechanism. As the rate constants c must be strictly positive, their natural logarithms are used when generating 
proposed values, by applying RWM and MALA to log c. Hence, all schemes take �T = V̂ar(log c|D) estimated from a short 
pilot run, and, using several short pilot runs, find a value of ρ that gives an effective sample size (ESS) value for the auxil-
iary variable chain consistent with the minimum (over parameter chains) ESS value (mESS). If several permissible values of 
ρ are found, the value that gives the pilot run with the largest mESS (over parameter chains) is chosen.

Practical advice for choosing the number of particles N for PMMH can be found in Doucet et al. (2015) and Sherlock et 
al. (2015); see also Schmon et al. (2021) for parameter dimension guidelines. For CPMMH, the guidance in Deligiannidis et 
al. (2018) is used by choosing N so that the variance of the logarithm of the ratio p̂u∗ (D|c)/p̂u(D|c) is around 1 with c set 
at some central posterior value. For RWM, the guidance in Schmon et al. (2021) is used by setting λ to give an empirical 
acceptance rate of around 20%, depending on the number of parameters to be inferred. When using MALA, the practical 
advice of Nemeth et al. (2016) is applied and by aiming for an acceptance rate of around 40% − 50%. Guidance on tuning 
delayed acceptance (RWM) schemes can be found in Sherlock et al. (2021). For DA-CPMMH schemes with either a RWM or 
MALA proposal, the number of particles is chosen by following the procedure above, and then conditional on this choice, the 
scaling is tuned to optimise mESS. Finally, with this scaling, the number of particles is chosen to optimise overall efficiency 
(in terms of minimum effective sample size per second).

5. Applications

In what follows, all algorithms are coded in R and were run on a desktop computer with an Intel quad-core CPU. For all 
experiments, the performance of competing algorithms is compared using minimum (over each parameter chain) effective 
sample size per second (mESS/s), computed using the R coda package (Plummer et al., 2006) and wall clock computing 
time. The latter is based on main monitoring runs of the MCMC scheme considered and it is noted that the CPU cost 
of tuning was small relative to the cost of the main run and comparable across competing schemes. Marginal posterior 
densities are estimated using the output of the best mixing scheme. When using the discretised chemical Langevin equation 
as the inferential model (second and third application), �τ was fixed at 0.1, which gave a reasonable balance between 
accuracy and computational efficiency. Further details regarding the form of the model employed in each application can 
be found in Section 2.3 and Appendix D. Computer code to implement all methods can be downloaded from https://
github .com /tl1995 /daCPMMH _MALA.

5.1. Epidemic model

Consider the well studied Eyam plague data set (see e.g. Raggett, 1982) consisting of 8 observations on susceptible and 
infective individuals during the outbreak of plague in the village of Eyam, England, taken over a four month period from 
June 18th 1666. These data are presented here in Table 2.

For this application, the Markov jump process representation of species dynamics was taken as the inferential model. 
The challenging scenario of exact observation of all model components (albeit at discrete times) was assumed, for which the 
particle filter in Algorithm 1 assigns a non zero weight to the particle x(k)

(ti ,ti+1] if and only if x(k)
ti+1

is equal to the observation 
yti+1 . That is, simulated trajectories must “hit” the observation or else receive zero weight. In this exact observation setting, 
no resampling is required and the particle filter coincides with a series of independent importance samplers (over each 
observation interval). Hence, the ODE solution required to implement the conditioned hazard approach of Section 4.2.3
need not be re-initialised for each particle and therefore CHiter and CHpart coincide.
11
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Table 2
Eyam plague data.

Time (months)

0 0.5 1 1.5 2 2.5 3 4

Susceptibles 254 235 201 153 121 110 97 83
Infectives 7 14 22 29 20 8 8 0

Table 3
Epidemic model. Number of particles N , acceptance rates α1, α2|1 and α, CPU time (in seconds), mini-
mum ESS, minimum ESS per second, and relative (to the worst performing scheme) minimum ESS per 
second. All results are based on 104 iterations of each scheme.

Scheme N α1 α2|1 α CPU (s) mESS mESS/s Rel.

PMMH / RWM (Myopic) 5000 – – 0.16 68177 863 0.013 1.0
PMMH / RWM 100 – – 0.19 25752 644 0.025 2.0

CPMMH / RWM 75 – – 0.25 15796 609 0.039 3.0
CPMMH / MALA 75 – – 0.41 16040 1360 0.085 6.7
CPMMH / sMALA 75 – – 0.42 15799 891 0.056 4.4

daCPMMH / RWM 75 0.28 0.49 0.13 4746 340 0.071 5.6
daCPMMH / MALA 75 0.15 0.45 0.07 2840 386 0.136 10.7

Fig. 1. Epidemic model. Joint posterior density and the first 100 iterations of CPMMH-RWM (left) and CPMMH-MALA (right).

The independent prior specification of Ho et al. (2018) was used, with a N(0, 102) distribution assigned to the logarithm 
of each rate constant. The bridge-based CPMMH (ρ = 0.99) was run with and without MALA, with and without delayed 
acceptance. For bench-marking, the standard PMMH (based on forward simulation, denoted “Myopic”) and bridge-based 
PMMH were also run. The main monitoring runs consisted of 104 iterations and this output is summarised in Table 3. Use 
of the conditioned hazard and correlating reaction times / types between successive runs of the particle filter gives a modest 
improvement in overall efficiency (by a factor of 3) compared to the most basic PMMH scheme. For this particular target 
posterior (see Fig. 1) MALA is clearly more effective than RWM and is more than twice as efficient (in terms of minimum 
ESS per second) compared to RWM. Combining CPMMH, delayed acceptance and MALA gives the best performing scheme. 
The increased performance due to delayed acceptance is unsurprising, given the accuracy of the surrogate (as evidenced by 
the Stage-Two acceptance probability) and its computational efficiency (with a relative cost of calculating the observed data 
likelihood under the surrogate versus an estimate from the particle filter scaling of around 1:100).

Finally, Fig. 2 and Table 3 suggest that although simplified MALA (sMALA, using equation (19)) gives gradients of the 
log posterior that are generally comparable to full MALA (using equation (17)), the reduction in CPU time is negligible, and 
not sufficient to overcome the reduction in mixing efficiency. This is unsurprising given that CPU time is dominated by the 
particle filter, as noted above.

5.2. Aphid model

Aphids, also known as greenflies, are small, sap-sucking insects that feed on plants, often on the underside of leaves. 
Cotton aphids (Aphis gossypii) are a species of aphid that are hosted on several plants, including cotton. When aphids initially 
12
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Fig. 2. Epidemic model. Full versus simplified gradient of the log posterior density with respect to c1 (left) and c2 (right) computed for 1000 draws from 
the joint posterior over c.

infest a plant, they tend to reproduce far faster than they die. However, as well as damaging the plant directly, they also 
secrete honeydew over the plant leaf, and whilst this can damage the plant further, it also forms a cover over the leaf which 
prevents the aphids from moving or sucking more sap, and so causes starvation (Prajeshnu, 1998). The more aphids that 
have been on a leaf, the more honeydew there is and so the faster the aphids die, until the rate of death overtakes the 
rate of reproduction. Matis et al. (2006) describe a model for the population growth of aphids with two species, the current 
population X1, and the cumulative population X2. It should be noted that although X1 and X2 are different ‘species’ in 
terms of the reaction network, they are tracking the same population of aphids, but in different ways. The reaction list is

R1 : X1
c1−−→ 2X1 +X2

R2 : X1 +X2
c2−−→ X2

The CLE was taken as the inferential model, details of which can be found in Appendix D.1. Using parameter values in-
spired by the real data example in Whitaker et al. (2017a), synthetic data were generated at 8 integer times using Gillespie’s 
direct method with c = (1.75, 0.001)′ and X1,0 = X2,0 = 5. The data for {X2,t} were then discarded to obtain a challenging 
partial observation scenario, and the resulting data set was corrupted with Gaussian error. Following Whitaker et al. (2017a), 
the variance was taken as proportional to the current number of aphids in the system, which was found to give a better 
predictive fit in real data applications. Hence,

Yt = P ′ Xt + εt, εt ∼ N
(

0,σ 2 P ′ Xt

)
, t = 0, . . . ,7 (26)

where P ′ = (1, 0).
The data are shown in Fig. 3, alongside the underlying latent X1,t process that produced the data. It is clear that the 

behaviour of the latent process between observations is nonlinear. This precludes the use of bridge constructs that push the 
particles towards the observations in a linear fashion, such as the modified diffusion bridge of Durham and Gallant (2002). 
A computationally inexpensive option is to use the myopic approach discussed in Section 4.2.3. However, as previously 
mentioned, when the observation variance is small relative to the intrinsic stochasticity exhibited by the latent process, this 
implementation can lead to a highly variable estimator of the marginal likelihood, thus necessitating a far larger number of 
particles. This in turn can negate any computational benefit arising from the simplified form of the simulator and associated 
weight (compared to when using a bridge construct).

The performance of PMMH and CPMMH was therefore compared using either myopic simulation or the simple residual 
bridge. An independent prior specification was adopted, with N(0, 102) distributions assigned to log c1 and log c2. The 
observation variance σ and initial conditions X1,0 and X2,0 were treated as fixed and known. Using ρ ≈ 1 in this application 
led to long term dependence between parameter draws, which reduced the effective sample size of the schemes. Therefore, 
ρ was reduced to 0.75 for this application, which was found to be optimal in terms of mESS of the resulting scheme. To 
implement the residual bridge construct, σ 2 P ′ Xt was replaced by σ 2 P ′ηt where ηt is the solution to (4) at observation 
time t . It is emphasised that this is necessary to obtain a tractable bridge and does not introduce any further approximation 
in terms of the posterior output.

Fig. 4 and Table 4 summarise the output of each scheme. It was found that using delayed acceptance and/or MALA 
gave no significant improvement in overall efficiency relative to the best performing schemes in Table 4. Relatively few 
particles are needed for the particle filter when using residual bridge constructs, and there are few observations in the 
dataset, consequently the computational gains provided by using a delayed acceptance step do not overcome the loss in 
statistical efficiency. Similarly, the partial observation regime limits the gradient information gained by MALA, meaning the 
13



T.E. Lowe, A. Golightly and C. Sherlock Computational Statistics and Data Analysis 185 (2023) 107760
Fig. 3. Observations from the aphid data set, with the latent process (solid line) overlaid. The dashed lines are the mean, 2.5% and 97.5% quantiles of 1000 
bridges generated using the ground truth for c1 and c2.

Fig. 4. Aphid model. Marginal posterior plots for the two parameters. The ground truth for each parameter is indicated by a circle on the corresponding 
plot.

additional cost of computing the gradient outweighs the statistical gains. Results for these schemes are therefore omitted. 
Table 4 shows that the simple residual bridge-based schemes outperform the myopic schemes in terms of overall efficiency 
(by around a factor of 3). The behaviour of the simple residual bridge can be seen in Fig. 3, and adequately captures the 
dynamics of the latent process. Indeed, no improvement in overall efficiency when using the residual bridge with additional 
subtraction was found (results omitted). Finally, note a small improvement in overall efficiency by solving the ODE system 
used by the residual bridge, once per iteration as opposed to once per particle.
14
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Table 4
Aphid model. Number of particles N , acceptance rate α, CPU time (in seconds), min-
imum ESS, minimum ESS per second, and relative (to the worst performing scheme) 
minimum ESS per second. All results are based on 105 iterations of each scheme.

Scheme N α CPU (s) mESS mESS/s Rel.

PMMH / RWM / Myopic 100 0.10 15320 4172 0.272 1.0
CPMMH / RWM / Myopic 35 0.09 4452 2482 0.558 2.1

PMMH / RWM / RBpart 5 0.19 6527 4857 0.744 2.7
PMMH / RWM / RBiter 5 0.17 5030 4226 0.840 3.1

CPMMH / RWM / RBpart 2 0.19 2593 3563 1.374 5.1
CPMMH / RWM / RBiter 2 0.18 2493 3737 1.499 5.5

Fig. 5. Lotka-Volterra model. Full versus simplified gradient of the log posterior density with respect to c1 (left), c2 (centre) and c3 (right) computed for 
1000 draws from the joint posterior over c.

5.3. Lotka-Volterra

The Lotka-Volterra system consists of two species, prey (X1) and predator (X2), and three reactions: R1 denotes the 
reproduction of a member of the prey species, R2 denotes the death of a member of prey and the reproduction of a 
predator, and R3 denotes the death of a predator. The resulting reaction list is

R1 : X1
c1−−→ 2X1

R2 : X1 +X2
c2−−→ 2X2

R3 : X2
c3−−→ ∅

The system is typically used to benchmark competing inference algorithms; see e.g. Boys et al. (2008), Koblents and Miguez 
(2015) when using the MJP representation or Fuchs (2013), Ryder et al. (2021), Graham and Storkey (2017), Golightly et 
al. (2019) when using the CLE. Here, we adopt the latter as the inferential model (see Appendix D.2 for details of the CLE 
derivation).

A single realisation of the jump process at 51 integer times was generated via Gillespie’s direct method with rate con-
stants as in Boys et al. (2008), that is c = (0.5, 0.0025, 0.3)′ and an initial condition of X0 = (100, 100)′ . The data for both 
species were corrupted with independent, additive Gaussian error and standard deviation σ = 1. The corresponding obser-
vation equation (12) becomes

Yt = Xt + εt, εt ∼ N
(

0,diag(σ 2,σ 2)
)

, t = 0, . . . ,50.

An independent prior specification for c was assumed, with N(0, 102) distributions assigned to the logarithm of each rate 
constant. CPMMH was run with 4 different bridge implementations: RBiter, RBpart, RB−

iter, and RB−
part, along with the presence 

or absence of two techniques: simplified MALA and delayed acceptance. Since the residual bridge with extra subtraction 
(RB−) typically outperformed the simple residual bridge (RB) up to a factor of 2 in terms of overall efficiency (depending 
on the acceleration technique employed), results are reported for RB− only. Similarly, little difference between the gradients 
employed by simplified MALA versus full MALA (see Fig. 5) was found; results for the former are reported.

All schemes were implemented for 105 iterations, including PMMH (with RB−
iter which performed best of all bridge 

implementations) for benchmarking. Fig. 6 and Table 5 summarise findings. The former gives marginal parameter posterior 
densities from the output of the best performing inference scheme (with consistent results obtained from other schemes 
but not shown) from which we see consistency with the ground truth values. From Table 5, the most basic CPMMH scheme 
(without MALA or delayed acceptance) gives an improvement in overall efficiency over PMMH of around a factor of 3. It 
is also clear that while the per iteration implementation of RB− results in a small reduction in minimum effective sample 
size compared to the per particle implementation, the computational saving is worthwhile. Replacing the RWM parameter 
15
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Fig. 6. Lotka-Volterra model. Marginal posterior plots for the three parameters. The ground truth for each parameter is indicated by a circle on the corre-
sponding plot.

Table 5
Lotka-Volterra model. Number of particles N , acceptance rates α1, α2|1 and α, CPU time (in seconds), 
minimum ESS, minimum ESS per second, and relative (to the worst performing scheme) minimum ESS 
per second. All results are based on 105 iterations of each scheme.

Scheme N α1 α2|1 α CPU (s) mESS mESS/s Rel.

PMMH / RWM / RB−
iter 2 – – 0.13 25735 2809 0.109 1.0

CPMMH / RWM / RB−
iter 2 – – 0.21 25372 7705 0.304 2.8

CPMMH / RWM / RB−
part 2 – – 0.25 31568 8445 0.280 2.6

CPMMH / sMALA / RB−
iter 2 – – 0.44 28898 24709 0.855 7.8

CPMMH / sMALA / RB−
part 2 – – 0.44 39643 25545 0.644 5.9

daCPMMH / RWM / RB−
iter 2 0.22 0.85 0.19 10877 6415 0.590 5.4

daCPMMH / sMALA / RB−
iter 2 0.46 0.84 0.39 18339 19944 1.088 10.0

proposal with MALA gives a relative increase in overall efficiency by a factor of 3. It is evident that the combination of 
delayed acceptance and MALA gives the best performing scheme, with an order of magnitude increase in mESS/s against 
the benchmark.

6. Discussion

This work considered the problem of Bayesian inference for the parameters governing two commonly used representa-
tions of a stochastic kinetic model (SKM), namely the Markov jump process (MJP) and (time-discretised) chemical Langevin 
equation (CLE) representations. Although the MJP is the most natural description for the dynamics of a collection of species 
whose discrete-valued states vary continuously in time, it is often eschewed in favour of the CLE which models species 
dynamics according to a nonlinear multivariate Itô diffusion process. Inference under either approach is made challenging 
by the intractability of the observed data likelihood, whose computation requires integrating over reaction times and types 
(in the case of the MJP) or intermediate states (in the case of the CLE) between observation instants (although for the CLE, 
the number of intermediate states is controlled by the practitioner, lending to its appeal). Consequently, the usual method 
of choice is particle Markov chain Monte Carlo (particle MCMC) whereby a bootstrap particle filter is used to give realisa-
tions of an unbiased estimator of the intractable likelihood. For systems where this approach is likely to be computationally 
prohibitive, an inexpensive surrogate can be used as the inferential model. Work in this direction has included, inter alia, 
Gaussian process emulation (see e.g. Rasmussen, 2003; Fielding et al., 2011) and direct approximation of the SKM using the 
linear noise approximation (LNA, see e.g. Komorowski et al., 2009; Stathopoulos and Girolami, 2013; Fearnhead et al., 2014).

Recent work that has attempted to leverage the tractability of the LNA to accelerate inference under the SKM (rather 
than the surrogate) includes the use of delayed acceptance (Golightly et al., 2015) and bridge constructs (Whitaker et 
al., 2017b; Golightly and Sherlock, 2019). The contribution here is a novel combination of these techniques, to which a 
gradient-based parameter proposal via the Metropolis adjusted Langevin algorithm (MALA) and the use of correlated particle 
filters are added. The result is a unified inference framework that targets the posterior under either the MJP or CLE. Two 
implementations of the surrogate-based bridge construct were considered; one in which the ODE system governing the LNA 
is re-solved per particle (with initial conditions informed by the current state particle), and one in which the ODE system is 
solved once per iteration. For the two applications that allowed this comparison, it was found that a small increase in overall 
efficiency was possible by solving the ODE system once per iteration. Not surprisingly, the likely difference depends on the 
number of particles employed by the particle filter and on the type of bridge being implemented; for example, the residual 
bridge requires the integration of order s components versus order s2 when using the extra subtraction. Nevertheless, 
use of a bridge construct (irrespective of the aforementioned implementation options) is crucial in obtaining significant 
improvements in overall efficiency compared to standard (C)PMMH implementations based on forward simulation.
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In addition to the use of LNA-based bridge constructs, the use of the gradient of the log posterior under the LNA to obtain 
a MALA proposal, and the use of the LNA likelihood in a delayed acceptance scheme were investigated. The results suggest 
that these approaches are likely to be most effective in scenarios where the overall computational cost is dominated by 
the particle filter; that is, when obtaining the LNA-based gradient and likelihood is relatively inexpensive. It is well known 
(see e.g. Roberts and Rosenthal, 1998) that MALA performs increasingly well in terms of statistical efficiency compared to 
random walk Metropolis (RWM) as the dimension of the target increases; nevertheless, we were able to demonstrate an 
order of magnitude increase in overall efficiency for a 3-dimensional target. It is anticipated that greater improvements in 
relative mixing efficiency are possible as the number of rate constants r increases, but note that this must be tempered by 
the increased computational cost associated with solving the associated ODE system, which scales linearly in r. Study of the 
conditions under which greater improvements in efficiency can be made merits further attention.

In scenarios when only a few (e.g. N < 10) particles are required, use of a simplified gradient requiring fewer ODE 
components to be integrated was investigated. The success of this approach depends on the extent to which the dependence 
of the LNA variance on the parameters can be ignored and merits further consideration. Use of the surrogate gradient inside 
a Hamiltonian Monte Carlo (HMC, Duane et al., 1987) scheme is also of interest to us. HMC was successfully applied in 
the SKM setting by Stathopoulos and Girolami (2013), albeit in a sacrificial observation setting, and with the LNA as the 
inferential model. It is expected that in the setting considered here, HMC would not perform well when using the simplified 
surrogate gradient, as ignoring the dependence of the variance on the parameters means that potential energy will not be 
conserved even if the step size used in the numerical integrator is very small, leading to lower overall acceptance rates. 
Nevertheless, further work is required to assess the potential benefits of using HMC with the full surrogate gradient, for 
observation scenarios such as those considered here.
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Appendix A. Validity of delayed acceptance CPMMH

It is shown that a delayed acceptance Metropolis-Hastings scheme with proposal kernel q(c∗|c)K (u∗|u) and the accep-
tance probability given in (22) satisfies detailed balance with respect to the target density π(c)p̂u(D|c)g(u). Moves that are 
rejected satisfy detailed balance trivially, as the new state of the chain is equal to the previous state. When the chain does 
move, we have that

π(c)p̂u(D|c)g(u)q(c∗|c)K (u∗|u)α1
(
c∗|c)α2|1

{
(c∗, u∗)|(c, u)

}
= π(c)pLNA(D|c)q(c∗|c)α1

(
c∗|c) × p̂u(D|c)g(u)K (u∗|u)

pLNA(D|c) α2|1
{
(c∗, u∗)|(c, u)

}
.

Now,

π(c)pLNA(D|c)q(c∗|c)α1
(
c∗|c) = min

{
π(c)pLNA(D|c)q(c∗|c),π(c∗)pLNA(D|c∗)q(c|c∗)

}
which is clearly symmetric in (c, u) and (c∗, u∗). Similarly,

p̂u(D|c)g(u)K (u∗|u)

pLNA(D|c) α2|1
{
(c∗, u∗)|(c, u)

}
= min

{
p̂u(D|c)g(u)K (u∗|u)

pLNA(D|c) ,
p̂u∗(D|c∗)g(u∗)K (u|u∗)

pLNA(D|c∗)

}
since g(u)K (u∗|u) = g(u∗)K (u|u∗) from (23), and we again have symmetry in (c, u) and (c∗, u∗). Hence, detailed balance is 
satisfied and the daCPMMH schemes targets π(c)p̂u(D|c)g(u) for which π(c|D) is a marginal density.

Appendix B. Residual bridge details

Without loss of generality, consider a time interval [0, T ] partitioned as

0 = τ0 < τ1 < . . . < τm−1 < τm = T , (B.1)

with τi+1 − τi = �τ = T /m. Suppose that x0 and yT are observed at times 0 and T , and we seek a density q(x(0,T ]|x0, yT , c)
corresponding to either the residual bridge (RB) or residual bridge with additional subtraction (RB−).

For the residual bridge, we partition Xt as Xt = ηt + Rt where ηt satisfies

dηt = Sh(ηt).

dt
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By partitioning Xt as above, (12) can be written as

Y T − P ′ηT = P ′RT + εT , εT ∼ N(0,�).

Then, the modified diffusion bridge can be used to approximate the joint distribution of Rτk+1 and Y T − P ′ηT conditional 
on the residual process at the previous time point rτk to obtain((

Rτk+1

Y T − P ′ηT

)∣∣∣∣ rτk

)
∼ N

{(
rτk + (αk − δ

η
k )�τ

P ′{ηT + rτk + (αk − δ
η
k )�k}

)
,

(
βk�τ βk P�τ

P ′βk�τ P ′βk P�k + �

)}
.

Here, αk = Sh(xτk ), βk = S diag{h(xτk )}S ′ , �k = T − τk , and δη
k is an approximation of dη/dt give by

δ
η
k = ητk+1 − ητk

�τ
.

Conditioning on yT − P ′ηT gives(
Rτk+1 |rτk , yT

) ∼ N(μRB,�RB),

where

μRB = rτk + (αk − δ
η
k )�τ + βk P�τ(P ′βk P�k + �)−1[yT − P ′{ηT + rτk + (αk − δ

η
k )�k}], (B.2)

and

�RB = βk�τ − βk P�τ(P ′βk P�k + �)−1 P ′βk�τ. (B.3)

The partition of Xt then yields(
Xτk+1 |xτk , yT

) ∼ N(ητk+1 + μRB,�RB).

If ηt doesn’t adequately capture the dynamics of the target process, a second residual bridge can be obtained by instead 
partitioning Xt as Xt = ηt + ρ̂t + R−

t , where ρ̂t = E(R̂t |r0, yT ) is an approximation of the conditional expected value of the 
residual process, and R−

t is the residual stochastic process that now remains after this further decomposition. We obtain R̂t

using the LNA; see Section 2.2. Thus, the joint distribution of R̂t and Y T − P ′ηT (conditional on r̂0) is((
R̂t

Y T − P ′ηT

)∣∣∣∣ r̂0

)
∼ N

{(
Gtr̂0

P ′G T r̂0

)
,

(
Vt Vt(G ′

t)
−1G ′

T P
P ′G T G−1

t Vt P ′V T P + �

)}
.

Conditioning on yT − P ′ηT gives

ρ̂t = E[R̂t |r0, yT ] = Gtr̂0 + Vt(G ′
t)

−1G T P (P ′V T P + �)−1(yT − P ′ηT − P ′G T r̂0).

The modified diffusion bridge for the residual process (after subtracting both the drift and our conditional expected residual 
term) is then constructed by finding the approximate joint distribution of R−

τk+1
and Y T − P ′(ηT + ρ̂T ) conditional on r−

τk
. 

This step follows as above and so it is omitted for brevity. Conditioning on yT − P ′(ηT + ρ̂T ) gives(
R−

τk+1
|r−

τk
, yT

)
∼ N(μRB− ,�RB−),

where �RB− = �RB, and

μRB− = rτk + (αk − δ
η
k − δ

ρ
k )�τ + βk P�τ(P ′βk P�k + �)−1[yT − P ′{ηT + ρ̂T + r−

τk
+ (αk − δ

η
k − δ

ρ
k )�k}]. (B.4)

Here,

δ
ρ
k = ρ̂τk+1 − ρ̂τk

�τ
.

Finally, use the partition of Xt to give(
Xτk+1 |xτk , yT

) ∼ N(ητk+1 + ρ̂τk+1 + μRB− ,�RB−).

Appendix C. Accelerated PMMH: general algorithm

Here, an overview (see Algorithm 3) of the pseudo-marginal Metropolis-Hastings algorithm augmented by the accelera-
tion techniques described in Section 4 is presented. In the applications considered in Section 5, a fixed and known initial 
condition xt0 is assumed; Algorithm 1 is therefore initialised with equally weighted particles x(k)

t0
= xt0 for all k, and Algo-

rithm 2 is initialised with at0 = xt0 and Bt0 = 0. For unknown xt0 , the parameter vector c can be augmented to include the 
components of xt0 , and the initialisation choices follow as above.
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Algorithm 3 Accelerated PMMH.
Input: parameter proposal tuning parameters �T and λ, correlation parameter ρ , number of particles N and the number of iterations niters.

1. For iteration j = 0:
(a) Set c(0) in the support of π(c) and initialise the auxiliary variable u(0) ∼ N(0, Id).
(b) Compute pLNA(D|c(0)) and ∇ log pLNA(D|c(0)) via recursive application of Algorithm 2. Hence compute ∇ logπLNA(c(0)|D).
(c) Compute p̂u(0) (D|c(0)) via recursive application of Algorithm 1.

2. For iteration i = 1, . . . , niters:

(a) Draw Z ∼ N(0, �T ) and set c∗ = c( j−1) + λ2

2 �T ∇ log
(
πLNA(c( j−1)|D)

) + λZ .
(b) Stage One:

(i) Compute pLNA(D|c∗) and ∇ log pLNA(D|c∗) via recursive application of Algorithm 2. Hence compute ∇ logπLNA(c∗|D).
(ii) With probability α1(c∗|c) as given by (20), go to 2(c), otherwise set c( j) = c( j−1) , u( j) = u( j−1) , pLNA(D|c( j)) = pLNA(D|c( j−1)), 

∇ logπLNA(c( j)|D) = ∇ logπLNA(c( j−1)|D), p̂u( j) (D|c( j)) = p̂u( j−1) (D|c( j−1)), increment j and return to step 2(a).
(c) Stage Two:

(i) Draw ω ∼ N(0, Id). Put u∗ = ρu( j−1) + √
1 − ρ2ω.

(ii) Compute p̂u∗ (D|c∗) via recursive application of Algorithm 1.
(iii) With probability α2|1{(c∗, u∗)|(c( j−1), u( j−1))} as given by (21), put c( j) = c∗ , u( j) = u∗ , pLNA(D|c( j)) = pLNA(D|c∗), ∇ logπLNA(c( j)|D) =

∇ logπLNA(c∗|D), p̂u( j) (D|c( j)) = p̂u∗ (D|c∗). Otherwise set c( j) = c( j−1) , u( j) = u( j−1) , pLNA(D|c( j)) = pLNA(D|c( j−1)), ∇ logπLNA(c( j)|D) =
∇ logπLNA(c( j−1)|D), p̂u( j) (D|c( j)) = p̂u( j−1) (D|c( j−1)). Increment j and return to step 2(a).

Output: c(1), . . . , c(niters) .

Appendix D. Applications: further modelling details

D.1. Aphid growth model

Let Xt = (X1,t, X2,t)
′ denote the state of the system at time t . The stoichiometry matrix associated with the reaction 

system is

S =
(

1 −1
1 0

)
and the associated hazard function is

h(xt , c) = (c1x1,t, c2x1,t x2,t)
′.

The CLE for this model is

d

(
X1,t

X2,t

)
=

(
c1x1,t − c2x1,t x2,t

c1x1,t

)
dt +

(
c1x1,t + c2x1,t x2,t c1x1,t

c1x1,t c1x1,t

)1/2

d

(
W1,t

W2,t

)
.

Similarly, the LNA for this model is specified by the coupled ODE system

dηt

dt
= (c1η1,t − c2η1,tη2,t, c1η1,t)

′,

dGt

dt
=

(
c1 − c2η2,t −c2η1,t

c1 0

)
Gt

dVt

dt
= Vt

(
c1 − c2η2,t c1
−c2η1,t 0

)
+

(
c1η1,t + c2η1,tη2,t c1η1,t

c1η1,t c1η1,t

)
+

(
c1 − c2ηC,t −c2ηN,t

c1 0

)
Vt .

D.2. Lotka-Volterra model

Let Xt = (X1,t, X2,t)
′ denote the system state at time t . The stoichiometry matrix associated with the reaction system is 

given by

S =
(

1 −1 0
0 1 −1

)
and the associated hazard function is

h(xt , c) = (c1x1,t, c2x1,t x2,t, c3x2,t)
′.

The CLE for this model is given by

d

(
X1,t

X

)
=

(
c1x1,t − c2x1,t x2,t

c x x − c x

)
dt +

(
c1x1,t + c2x1,t x2,t −c2x1,t x2,t

−c x x c x x + c x

) 1
2

d

(
W1,t

W

)

2,t 2 1,t 2,t 3 2,t 2 1,t 2,t 2 1,t 2,t 3 2,t 2,t
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where W1,t and W2,t are independent standard Brownian motion processes. The LNA for this model is specified by the 
coupled ODE system

dηt

dt
= (c1η1,t − c2η1,tη2,t, c2η1,tη2,t − c3η2,t)

′,

dGt

dt
=

(
c1 − c2η2,t −c2η1,t

c2η2,t c2η1,t − c3

)
Gt

dVt

dt
= Vt

(
c1 − c2η2,t c2η2,t

−c2η1,t c2η1,t − c3

)
+

(
c1η1,t + c2η1,tη2,t −c2η1,tη2,t

−c2η1,tη2,t c2η1,tη2,t + c3η2,t

)
+

(
c1 − c2η2,t −c2η1,t

c2η2,t c2η1,t − c3

)
Vt .
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