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The magnetic properties of non-oriented electrical steels are characterized using an 

analytical simulation method accounting for the microstructures in ferromagnetic materials. 

Complementary experimental data for thin sheet laminations, obtained using a standard 

single strip tester (SST), are employed with the hysteresis mechanism investigated in terms 

of the measurement system and Weiss Mean Field effects. It is shown that the magnetic 

hysteresis loops of NOESs of 3 % SiFe can be generated with remarkable accuracy for a 

broad range of magnetization frequencies and peak flux densities. The simulation method 

is also suitable for performing an energy loss analysis with calculated energy losses, when 

compared to corresponding measured data, showing a strikingly accurate match with, in 

most cases, an error of less than 1%.  

 

1. Introduction 

Electrical steels are the most suitable ferromagnetic material 

for the manufacture of the magnetic cores of various 

electromagnetic devices. They can be divided into two 

categories based on their microscopic grain structures: non-

oriented electrical steel (NOES) and grain-oriented electrical 

steel (GOES). The magnetic properties of NOES are roughly the 

same in any magnetization direction in the plane of the material 

because of the arbitrarily oriented grain directions [1]. NOES 

laminates are widely used in industry, from large motors and 

generators that require good isotropic magnetic properties to EI 

laminates for small transformers. Due to the accelerating 

electrification of the world and increasing emphasis on electrical 

motor performance, NOESs will play a vital role in future energy 

systems, especially in relation to electric vehicles to achieve zero 

carbon emission. Therefore, the accurate analysis and numerical 

modelling of the magnetic behavior of NOESs is crucial for 

studying the magnetization processes and performance of 

ferromagnetic materials within the magnetization range of 

practical interest.   

The magnetization processes of ferromagnetic materials can be 

accurately analyzed using the hysteresis phenomenon [2,3]. The 

physical origin of hysteresis has been of interest to scientists for 

over a century since the term hysteresis was coined around 1900 

by Sir James Alfred Ewing [4]. The attribution of magnetic 

hysteresis to eddy currents was proposed because the counter 

field, which is opposite to the magnetic induction, is generated 

by the eddy currents when a steel laminate is magnetized [5]. 

The most widespread assumption of attribution of hysteresis is 

the pinning site effect, which impedes domain wall movement 

and causes the magnetization to be asynchronous to the magnetic 

field [6-8]. An assertion cited from [9] suggests that lattice 

defects and the eddy current effect result in the pinning effect, 

which dominates the irreversible domain wall displacement 

associated with hysteresis loops. The causation of magnetic 

hysteresis was also described in [10] using a friction force due to 

the pinning effect of Bloch walls. Positive feedback theory 

contributing to the origin of hysteresis is presented in [11]; this 

quantum mechanism of hysteresis was established based on the 

Weiss Mean Field (WMF) due to the coupling effect of atomic 

dipoles [12]. Because the pinning site effects or dry-friction 

force always exert negative feedback effects, the theories in [6-

10] and [11] are contradictory. To date, which of the above 

theories is correct has yet to be definitively answered.  

The Jiles-Atherton (J-A) model [13] was proposed based on 

the assumption of overcoming the impedance pinning of domain 

wall motion. It can be used to simulate the hysteresis loop 

independently for homogenous materials because the 

anhysteretic magnetization equation is derived for isotropic 

materials [14]. Two differential equations are used to represent 

irreversible and reversible differential susceptibilities, their 

combination resulting in the total differential susceptibility [14]. 

However, this model is not suitable for inhomogeneous 

anisotropic structures. Ramesh [15] and Szewczyk [16] extended 

the J-A model to include anisotropic magnetic materials by 

introducing anisotropic energy to the anhysteretic magnetization 
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equation. The extension makes it possible to trace the magnetic 

hysteresis of anisotropic materials. 

Mathematical models utilizing operators, such as the Preisach 

[17] and vector Preisach models [18], or the Stop and Play 

models [19], are not linked to the physics of magnetic materials. 

The Preisach model represents magnetic hysteresis with 

reasonable accuracy for tracing hysteresis loops, which has led 

to it being widely used for the analysis of magnetization. [20] 

proposes a hybrid model of dynamic magnetic hysteresis, which 

combines the dynamic J-A and Preisach models based on 

backpropagation neural networks. 

The authors recently presented a new hysteresis simulation 

method [21] developed according to the assumption that the 

hysteresis field is the coupling effect of magnetization at the 

reversal turning point, which is the WMF at the magnetic flux 

density tips, which are the transition points from magnetization 

to demagnetization. The WMF executes a counterforce (negative 

feedback) to the magnetic field when it manages to reverse the 

direction of magnetic flux density. The simulation method 

derived was based on the microscopic variations in the 

ferromagnetic materials subjected to an external magnetic field. 

The simulation method was used to simulate the hysteresis loops 

and evaluate the energy loss. 

This paper presents a new analytical simulation method in the 

form of a single equation to describe the magnetic behaviour of 

NOESs. Its main advantage is that the parameters involved 

represent the microstructure of the magnetic materials, i.e., the 

domain patterns, which enable the simulation of the hysteresis 

loops with high accuracy. The method can be used to 

characterize the magnetization processes and enable an energy 

loss prediction of NOESs with remarkable accuracy. 

 

2. Measurement system and hysteresis mechanism 

A standard single strip tester (SST) was used to magnetize 

Epstein size laminations of NOES samples based on the BS EN 

10280:2001 + A1:2007 [22, 23]. Epstein size laminations (30 

mm × 305 mm) of NO 3% SiFe with a thickness of d=0.5 mm 

and resistivity ρ=0.3 µΩ-m were used in this work. Fig. 1 

illustrates the computer-controlled measuring system used to 

monitor the measuring processes. The magnetization processes 

were controlled and monitored using reliable software. The 

computer system is linked to the SST through a data acquisition 

Card (DAC). The excitation current was supplied by a power 

amplifier to the primary winding, and a 1 Ω shunt resistor (Rsh) 

used to measure the voltage drop. An inductor linked to the SST 

was used to compensate the air flux. The energy losses and 

hysteresis loops for the samples were measured at peak flux 

densities ranging from 1.0 T to 1.4 T, and magnetizing 

frequencies ranging from 50 Hz to 800 Hz. 

During the measurement, the magnetic field 𝐻(𝑡)  is 

generated by the input electrical current 𝑖(𝑡)  of the primary 

winding. Meanwhile, the waveform of the secondary induced 

voltage for sinusoidal excitation is maintained as sinusoidal as 

possible, achieved using a PID feedback controller [24]. Then, 

the magnetic flux densities 𝐵(𝑡)  are derived according to 

Faraday’s law and Lenz’s law.  

The control loop of the measurement system and field 

separation is illustrated in Fig. 2. The error between the set point 

and measured magnetic flux density is calculated by the PID 

controller, with the input current regulated by controlling the 

power amplifier. The sinusoidal waveform of magnetic flux 

density is obtained by maintaining a sinusoidal waveform of the 

secondary induced voltage. The instantaneous waveforms of the 

magnetic field and magnetic flux density were obtained for a 

typical NOES at a magnetizing frequency of 50 Hz and peak flux 

density of 1.4 T; the results are shown in Fig. 3. from which it is 

evident that the magnetic flux density lags the magnetic field due 

to the hysteresis effects.  

    

Fig. 1. Schematic diagram of SST measurement system. 

    

 

Fig. 2. Control loop and field separation theory 

As shown in Fig. 3, the magnetization processes cycle 

between magnetization and demagnetization. Magnetization 

occurs in the first and third quadrants of the magnetic flux 

density, with demagnetization taking place in the second and 

fourth quadrants. The time rate of change of magnetization is 

aligned with the magnetization direction (dB/dt > 0), while the 

time rate of change of the demagnetization process is opposite to 

the magnetization direction (dB/dt < 0). So, the output of the PID 

controller is positive and negative for magnetization and 



  

demagnetization, respectively. The WMF [12] of the 

magnetization coupling effects of individual atomic dipoles is 

always oriented in the direction of the magnetization. 

Accordingly, the WMF is positive in the first and second 

quadrants and negative in the third and fourth quadrants.  

 

Fig. 3. Instantaneous waveforms of the magnetic field and magnetic 

flux density at magnetizing frequency of 50 Hz and peak flux density 

of 1.4 T 

The hysteresis field is contributed by the WMF effect 

described in [11], and the eddy current field generated by the 

magnetic flux is always opposite to the magnetization direction 

based on Faraday’s law and Lenz’s law. As illustrated in Fig. 2, 

the vector combined field, comprised of the magnetic field, 

hysteresis field and eddy current field, is the magnetization field 

driving the magnetization processes.  

The time rate of change of the magnetic field is aligned with 

that of magnetic flux density. So, the WMF and the output of the 

PID controller are oriented in the same direction in the first and 

third quadrants of the magnetic flux density and the opposite 

direction in the second and fourth quadrants. Then, the WMF 

provides a positive or negative feedback effect during 

magnetization and demagnetization, respectively. The feedback 

effects are summarized, according to analysis of the WMF and 

PID controller output at different quadrants in the magnetic flux 

density sine waveform for one cycle, in TAB. 1. 

 

Magnetic 

Flux 

Density 

   First 

quadrant 

Second 

quadrant 

Third 

quadrant 

Fourth 

quadrant 

PID 

output 
   + - - + 

Weiss 

field 
   + + -  - 

Feedback   

effect 
 Positive Negative     Positive     Negative 

TAB. 1. Feedback effects based on WMF and PID controller output. 

The energy linked to the WMF effect can be described using 

the Zeeman energy between the WMF and magnetic flux density. 

The energy generated by the WMF in the first and third 

quadrants of the magnetic flux density enhances the 

magnetization processes; the energy linked to the WMF in the 

second and fourth quadrants has the opposite effect. The WMF 

feedback effects can be observed in the waveform of the 

magnetic field shown in Fig. 3, the slope of the magnetic field at 

the start of the second and fourth quadrants is far larger due to 

the energy needed to compensate for the WMF negative 

feedback effects during demagnetization.  

In the first and third quadrants, the WMF provides energy to 

the system to boost the magnetization processes. In contrast, the 

WMF feeds off the energy from the system to constrain the 

demagnetization processes. The energy consumed during 

demagnetization equals the energy produced by WMF during 

magnetization. So, the WMF positive and negative feedback 

effects offset each other except at the magnetization tips (dB/dt 

= 0). The WMF reaches a maximum value at the tips when the 

WMF feedback effect transitions from positive to negative, and 

this maximum value contributes only to the hysteresis losses if 

considering the counteraction between the WMF positive and 

negative feedback effects.  

According to Weiss theory [12], the WMF, 𝐻𝑤 , can be 

expressed in terms of the following equation: 

𝐻𝑤 = 𝛼𝑀, (1) 

where 𝛼 is the mean field constant and M is the instantaneous 

magnetization. Then, the WMF feedback energy based on 

Zeeman energy against the magnetic induction B, 𝑊𝑤 , can be 

expressed as:  

𝑊𝑤 = 𝛼 ∬ 𝑀𝐵𝑑𝑀𝑑𝐵. (2) 

So, at the saturation tips, all the atomic dipoles in the samples are 

aligned with the magnetic field direction. All these alignments 

exert a strong coupling effect on the magnetic field, while this 

interaction of individual atomic dipoles results in the WMF. 

Therefore, this study assumed that a magnetic force generated 

from the coupling effect of the magnetization at the reversal 

turning point needed to be overcome to continue the reversal 

demagnetization process. This field is named as hysteresis field 

𝐻ℎ, which is the WMF at the magnetization tips, then,  

𝐻ℎ  =  𝐻𝑤𝑝 = 𝛼𝑀𝑝. 
            

(3) 

Where 𝑀𝑝 is the magnetization at any order reversal point, and 

𝐻𝑤𝑝 is the WMF created by 𝑀𝑝. According to the definition of 

coercivity, 𝐻𝑐  is the magnetic field required to demagnetize the 

material. This means the magnetic field at coercivities needs to 

counteract the WMF at tips so that the magnetic flux density can 

be reduced to zero. Then,  𝐻ℎ is equal to the coercivity 𝐻𝑐 , for 

magnetic flux density 𝐵 to be zero. Because the direction of the 

hysteresis field 𝐻ℎ is opposite to the reversed magnetic field H, 

the hysteresis field at a positive tip is expressed as: 

𝐻ℎ  =  𝐻𝑐 , (4) 

and the hysteresis field at a negative tip as: 



  

𝐻ℎ  =  −𝐻𝑐 . (5) 

Then, the astonishing conclusion can be reached that the WMF 

feedback effects at magnetization tips are the physical origin of 

the magnetic hysteresis effect.  

When the processes change directions from magnetization to 

demagnetization at the reversal turning point, the excitation 

source must contribute more energy to compensate for the 

coupling effect of the magnetization at the tips.  

3. A simulation method of magnetic hysteresis 

The theme of this paper is the simulation of the magnetization 

processes of ferromagnetic materials. A simulation method [21] 

was derived according to the domain patterns in ferromagnetic 

materials and the excitation field coupling effect. The simulation 

method is derived based on the assumption that the hysteresis 

field 𝐻𝒉  is generated at the reversal turning point when the 

magnetic field strength H and the magnetic flux density B change 

their directions. Conventionally, the magnetic field 𝐻(𝑡) is 

produced by the excitation source. In [21], it is assumed that the 

excitation field ℎ(𝑡)  is the vector summation of the magnetic 

field 𝐻(𝑡) and the hysteresis field 𝐻𝒉, such that: 

ℎ(𝑡) = 𝐻(𝑡) + 𝐻𝒉 . (6) 

Then, the excitation field for an ascending curve is obtained as 

follows:  

ℎ(𝑡) = 𝐻(𝑡) − 𝐻𝒄, (7) 

and the excitation field for descending curve is calculated using 

the following equation,  

ℎ(𝑡) = 𝐻(𝑡) + 𝐻𝒄. (8) 

Therefore, the excitation field can be easily calculated using 

experimental data. The curves of 𝐵 − ℎ  are single curves of 

bijective function without hysteresis effect. It is far easier to 

explore a single curve than to study a hysteresis loop, which is 

represented by the one-to-two function with nonlinearity.  

GOESs show the best magnetic properties along with the 

rolling direction because of the grains’ orientation, so the 

properties are dominated by the anisotropic components. NOESs 

demonstrate identical magnetic properties as per the magnetizing 

directions because the grains in NOES are randomly oriented 

other than in just the rolling direction. So, the properties of 

NOESs are decided by the isotropic components. Nonetheless, 

there are anisotropic and isotropic structures in both GOESs and 

NOESs [25-28]. Both anisotropic and isotropic structures 

determine the magnetic properties in GOES and NOES sheets, 

so the simulation method of GOES developed in [21] can also be 

applied to NOES in the same way.  

The magnetization processes of the anisotropic structure can 

be described using the hyperbolic tangent function (9) [21],  

𝑀𝒂  =  𝑀𝒔𝒂𝑡𝑎𝑛ℎ (
𝜇0𝑚𝑎ℎ

𝑘𝑇
) =  𝑀𝒔𝒂𝑡𝑎𝑛ℎ(𝑎ℎ),                      (9) 

which was derived based on the variation of the anisotropic 

domain pattern under an excitation field.  

 In (9) 𝑚𝑎  is the typical unit magnetic moment in the 

anisotropic domain, and 

𝑎 =  
𝜇0𝑚𝑎

𝑘𝑇
, (10) 

is a coefficient related to the unit moment of the anisotropic 

magnetic domain and the temperature 𝑇.  𝜇0  is the vacuum 

permeability, and k is the Boltzmann constant [12]. 𝑀𝒔𝒂 is the 

magnetization saturation of the anisotropic component when all 

the magnetic dipoles in the anisotropic domain are aligned with 

the excitation field [21].  

The isotropic domain moment is randomly oriented in terms 

of the excitation field. Some moments may coincide with the 

crystallographic direction; however, most domains have 

irregular shapes and show a disoriented structure. Driven by the 

excitation field, the magnetization of the isotropic domain 

pattern can be expressed as the well-known Langevin function 

(11), which represents the homogeneous structure in the 

magnetic material [21]:   

𝑀𝒊  =  𝑀𝒔𝒊 (𝑐𝑜𝑡ℎ(𝑏ℎ) −
1

𝑏ℎ
 ) =  𝑀𝒔𝒊𝐿(𝑏ℎ),  (11) 

where,  

𝑏 =  
𝜇0𝑚𝑖

𝑘𝑇
, (12) 

is coefficient related to the unit moment of the isotropic magnetic 

domain, and the temperature T. 𝑚𝑖 is the typical unit magnetic 

moment in the isotropic domain, while 𝑀𝒔𝒊 is the magnetization 

saturation of the isotropic components when all the magnetic 

dipoles in the isotropic domain are aligned with the excitation 

field [21].  

The third component of the simulation method is the coupling 

effect of the excitation field, which provides a proportion of the 

magnetic induction B. When the excitation field is excited, the 

field will generate a part of the magnetic induction and can be 

expressed as:  

𝑀ℎ  =  𝛼ℎ(𝑡), (13) 

where 𝛼 is a coefficient linked to the material microstructure and 

magnetization conditions. The process of magnetic flux density 

B versus excitation field h can then be expressed via the 

following single equation:  

𝐵 =  𝑀𝑎  +  𝑀𝑖  + 𝑀ℎ,                                                (14) 

or instead, using the equations (9), (11), and (13), as:  

𝐵 =  𝑀𝒔𝒂𝑡𝑎𝑛ℎ(𝑎ℎ) +  𝑀𝒔𝒊𝐿(𝑏ℎ)  + 𝛼ℎ                    (15) 

The magnetization processes of GOESs can be analyzed using 

the single equation (15), which has proved to deliver an excellent 

performance [21]. The domain patterns in GOESs and NOESs 

are identical, although the domain size, grain size and grain 

orientation in both are different. Therefore, equation (15) is also 



  

suitable for describing the magnetization processes of NOESs. 

Nevertheless, the proportion of anisotropic and isotropic domain 

structures in GOESs and NOESs varies significantly due to 

different production procedures, so their magnetic properties 

show striking divergence. The simulation method is applied to 

simulate magnetic hysteresis loops and calculate the energy 

losses of NOESs under controlled sinusoidal excitation.  

   The simulation method is excellent for generating the 

sigmoid shape curve. Nonetheless, the measured magnetic 

hysteresis loops sometimes show irregular and distorted S-

shaped curves. To expand (15) to simulate the distorted and 

irregular curves, the third component is omitted because the 

coupling effect of the excitation field is far smaller than the other 

two components in the ferromagnetic material. The hyperbolic 

tangent and Langevin functions can be replaced by exponential 

functions, and the magnetic induction expressed via the 

simplified expression [21]:  

 𝑩 =  𝑀𝒔𝒂𝑒𝑥𝑝(𝑎ℎ) + 𝑀𝒔𝒊𝑒𝑥𝑝(𝑏ℎ).                                       (16) 

Therefore, when a single curve is deformed and irregularly 

shaped, the curve can be separated into several sections with one-

to-one functions. Equation (16) can be applied to simulate the 

segment curves. So, equations (15) and (16) are used to simulate 

the single curves converted from measured hysteresis loops 

avoiding the need to simulate the hysteresis loops directly.  

Conventionally, the magnetic loss is evaluated by calculating 

the area of the magnetic hysteresis loop. So, the energy loss per 

cycle in a shin sheet under sinusoidal excitation can be expressed 

as [29]: 

𝑊𝑡 = ∫ 𝐵𝑑𝐻, 
 

(17) 

 Replacing H with h and considering there are two single 

curves, the energy loss can be calculated via the following 

expression: 

      𝑊𝑡 = 2∫ 𝐵𝑑ℎ 

            = 2∫ (𝑀𝑠𝑎𝑡𝑎𝑛ℎ(𝑎ℎ) +  𝑀𝑠𝑖𝐿(𝑏ℎ) + 𝛼ℎ)𝑑ℎ.         (18) 

The main advantage of this methodology is that the parameters 

are related to the microstructure of the magnetic material so that 

it can also be used to interpret the magnetization processes and 

analyze energy losses. Meanwhile, the magnetic hysteresis loop 

can be simulated with high accuracy. The main goal is to prove 

that the simulation method is a generalised simulation method of 

magnetization processes for ferromagnetic materials. The 

analytical simulation method in the form of a single equation is 

used to describe the magnetic properties and dynamic behavior 

of NOESs by tracking the hysteresis loops and calculating the 

energy losses.  

4. Simulation Results 

The key achievement of the simulations is that the 

methodology provides a new theory of magnetic hysteresis in the 

magnetization processes of ferromagnetic materials. This theory 

based on the WMF at the tips justifies the method to cancel out 

the hysteresis effect (coercive field) from the measured 𝐵 − 𝐻 

hysteresis loops to obtain a 𝐵 − ℎ single curve, which is a curve 

passing through the origin representing a one-to-one injective 

function. Then, the simulation of the complicated hysteresis loop 

can be achieved by tracking the single curve, and the single curve 

can be used to generate the relevant hysteresis loop. The 

cancellation of the hysteresis effect is performed using equations 

(6) and (7).  

 
Fig. 4. Hysteresis loop of NOES Measured at 50 Hz and Bpk = 1.4 T.  

Following the same data processing procedure as in [21], the 

first step is to consider the controlled sinusoidal magnetic 

induction of NOESs at a magnetization frequency of 50 Hz and 

a peak flux density (Bpk) of 1.4 T. The same method is used to 

process the measurements of other frequencies and peak flux 

densities. As shown in Fig. 4, the measured hysteresis loop 

includes two s-shape curves, a descending and an ascending one. 

The descending curve is measured from 𝐵𝑠 to −𝐵𝑠. The single 

curves are separated by coercivities. On the descending curve, 

the curve segment from 𝐵𝑠 to −𝐻𝑐  is a demagnetizing section, 

and the segment from −𝐻𝑐  to −𝐵𝑠  represents a magnetizing 

section. The counterpart of the ascending curve is measured from 

−𝐵𝑠  to 𝐵𝑠  segments from −𝐵𝑠  to 𝐻𝑐  and 𝐻𝑐  to 𝐵𝑠  represent 

demagnetizing and magnetizing curve sections, respectively. 

The descending and ascending curves constitute a cycle of 

magnetization.  

Equations (7) and (8) are used to offset the hysteresis effect to 

obtain two single curves without hysteresis. The single curves of 

𝐵 versus ℎ acquired and shown in Fig. 5. After the procedure of 

cancelling out the hysteresis effect, the descending curve moves 

to the right a horizontal distance 𝐻𝑐 , and the ascending curve 

shifts to the left at the same distance. The two single curves 

intersect at the origin. For both descending and ascending curves, 

the magnetic flux density and excitation field are synchronized. 

Because of the parallel displacement of the descending and 



  

ascending curves to the origin, the two curves are disconnected 

at the peak flux density tips. 

 
Fig. 5. Single curves of NOES obtained from the hysteresis loop in Fig. 1 

by shifting the descending curve to the right at a horizontal distance 𝐻𝑐 and 

ascending curve to the left at the same distance.  

  It is evident that both single curves in Fig. 5 are smooth s-

shaped curves, and the relationship between 𝐵 and ℎ is a one-to-

one function. The injective function of the single curves 

facilitates the simulation using the single equation (15). In this 

study, the single curves are investigated first rather than 

simulating the hysteresis loops directly. The similarity of the two 

single curves reveals that the magnetic properties of NOES are 

dominated mainly by isotropic structures leading to similar 

magnetism regarding the magnetization directions. The gap 

between the peak flux density tips of two single curves 

represents the extent of the hysteresis field, which is linked to 

the magnetization frequencies, peak flux densities, and material 

microstructures.  

 
Fig. 6. Two identical single curves of NOES obtained from the curves in 

Fig. 5 by rotating the ascending curve 180o about the origin.  

The magnetization process under a sinusoidal excitation is a 

cyclic process from magnetization to demagnetization and then 

magnetization again, and so on. So, the ascending and 

descending curves are symmetric with respect to the origin.  The 

next step is to manipulate the single curves. The ascending single 

curve is rotated through 180o about the origin. As shown in Fig. 

6, the ascending and descending curves are identical after the 

rotation. Therefore, the descending curve is chosen to study the 

magnetic properties instead of tracing the hysteresis loop directly.  

The s-shape descending curve of 𝐵 versus ℎ can be simulated 

using equation (15). During magnetization and demagnetization, 

the anisotropic and isotropic domain patterns act in opposite 

ways correspondingly. So, the magnetization and 

demagnetization curve sections need to be processed separately 

to calculate the relevant parameters in equation (15). The 

measurement data is processed using MATLAB curve fitting 

tools to conduct a regression analysis [30] using (15); the 

optimized solver parameters of 50 Hz and 1.4 T can be found in 

TAB. 2. The simulated single curve created and shown in Fig. 7, 

and it is identical to the measured descending curve. It is 

observed that the magnetization is dominated by isotropic 

structures during the magnetization process, and it is determined 

by anisotropic components during the demagnetization process. 

 
Fig. 7. Comparison of simulated and derived single curves for NOES at 

50 Hz and Bpk = 1.4 T.  

 
Fig. 8. Comparison of simulated and measured hysteresis loops for NOES 

at 50 Hz and Bpk = 1.4 T.  

The simulation method describes the magnetization processes 

based on the reaction of the microstructures to the external 

excitation field. Nonetheless, the measured hysteresis loop is 

described as a function of 𝐵 versus 𝐻. The simulated hysteresis 

loop is achieved by manipulating the simulated single curve to 

fit the measured hysteresis loop. The simulated and measured 

hysteresis loops are shown in Fig. 8, and it is evident that the 



  

simulation method performs very well at tracing the magnetic 

hysteresis loop.  

 

Fig. 9. Single Curves of NOES obtained from the hysteresis loops 

measured at 50 Hz and Bpk from 1.0 to 1.4 T.  

 
Fig. 10. Single Curves of NOES obtained from the hysteresis loops 

measured at 100 Hz and Bpk from 1.0 to 1.4 T.  

Fig. 11. Single Curves of NOES obtained from the hysteresis loops measured 

at 200 Hz and Bpk from 1.0 to 1.4 T.  

The simulation of NOES for a variety of magnetization 

frequencies and peak flux densities was undertaken using the 

same method described for the frequency of 50 Hz and peak flux 

density of 1.4 T. The single curves of 𝐵  versus ℎ are derived 

from the measured hysteresis loops for magnetization 

frequencies from 50 Hz to 800 Hz and peak flux densities from 

1.0 T to 1.4 T. The obtained single curves are shown in Figs. 9 

to 13, respectively. On these curves, the sections of  ℎ < 0 

represent magnetization, and the sections of  ℎ > 0  represent 

demagnetization. The parameters of these two curve sections 

need to be calculated separately due to the different 

magnetization mechanisms. 
 

 
 

Fig. 12. Single Curves of NOES obtained from the hysteresis loops 

measured at 400 Hz and Bpk from 1.0 to 1.4 T.  

 
 

Fig. 13. Single Curves of NOES obtained from the hysteresis loops 

measured at 800 Hz and Bpk from 1.0 to 1.4 T.  

 

One interesting finding from the single curves shown in Fig. 9 

to 11 is that these single curves have similar shapes, and all pass 

the origin. These single curves are the standard s-shape curves 

that can be simulated using (15). The optimized parameters of 

(15) magnetized at 50 Hz, and 1.0 T to 1.4 T are listed in TAB. 

2. The single curves at 50 Hz and 1.0 T to 1.4 T are simulated by 

using (15) adopting these parameters. The hysteresis loops at 50 

Hz and 1.0 T to 1.4 T are shown in Figs. 15.  The parameters 

shown in TAB. 2 are obtained using regression analysis; 

however, the isotropic and anisotropic components in 

ferromagnetic materials are impossible to measure using current 

measurement technology. Accordingly, the parameters may 

contain unknowable errors, but it is still possible to distinguish 

that it is mainly determined by isotropic components during 

magnetization as the Msi is greater the Msa, and it is mainly 

determined by anisotropic components during demagnetization 

because the Msa is greater than the Msi. 

 



  

 
Excitation 

Curve 

section 

 𝑀𝑠𝑎        

(T) 

𝑀𝑠𝑖 

(T) 

a b α 

50 Hz  

1.0 T 

Mag. 0.011 0.425 10.95 2.774 0.393 

Demag. 0.468 0.580 1.361 0.961 0.030 

50 Hz  

1.1 T 

Mag. 0.068 1.087 1.090 1.602 0.137 

Demag. 0.663 0.375 0.583 4.333 0.019 

50 Hz  

1.2 T 

Mag. 0.444 0.331 0.922 2.077 0.200 

Demag. 0.726 0.428 0.549 4.051 0.013 

50 Hz  

1.3 T 

Mag. 0.196 1.345 0.456 1.612 0.008 

Demag. 0.768 0.506 0.512 3.691 0.008 

50 Hz  

1.4 T 

Mag. 0.503 0.973 0.722 1.384 0.011 

Demag. 0.846 0.508 0.508 3.658 0.008 

TAB. 2. Parameters of equation (15) for creating the magnetizing and 

demagnetizing curve sections for NOES magnetized at 50 Hz and Bpk from 

1.0 T to 1.4 T.  

 

Excitation Curve 

section 

 𝑀𝑠𝑎        

(T) 

𝑀𝑠𝑖 

(T) 

a b α 

50 Hz  

1.4 T 

Mag. 0.503 0.973 0.722 1.384 0.011 

Demag. 0.846 0.508 0.508 3.658 0.008 

100 Hz  

1.4 T 

Mag. 0.840 1.104 0.722 0.451 0.000 

Demag. 0.626 0.875 0.885 1.097 0.000 

200 Hz  

1.4 T 

Mag. 1.323 0.360 0.402 0.678 0.000 

Demag. 0.904 0.564 0.510 0.957 0.000 

TAB. 3. Parameters of equation (15) for creating the magnetizing and 

demagnetizing curve sections for NOES magnetized at frequencies from 50 

Hz to 200 Hz and Bpk = 1.4 T.  

 

Curve section 
𝑀𝑠𝑎      

(T) 

𝑀𝑠𝑖        

(T) 
a b α 

Magnetizing      

Section 1 0.249 -0.242 0.330 -0.352  

Section 2 0.148 0 0.464 9.766  

Section 3 1.642      0   -0.120 7.133  

Section 4 1.567 -0.176 -0.093 -0.859  

Demagnetizing      

Section 1 -0.800 1.4 -9.01 0.239 -0.028 

Section 2 3.408 0.694 -2.406 0.694 -0.110 

Section 3 14.91 -24.57 0.352 0.739 0.961 

TAB. 4. Parameters associated with equation (15) for magnetizing 

sections and (16) for demagnetizing sections used to obtain the contiguous 

magnetizing and demagnetizing curve sections of Fig. 14 for NOES 

magnetized at 800 Hz and 1.4 T.  

TAB. 3 shows the optimized parameters of (15) magnetized at 

frequencies from 50 Hz to 200 Hz and peak flux density of 1.4 

T. The relevant single curves are simulated using (15) adopting 

these parameters, and the corresponding hysteresis loops are 

plotted using the same method shown in Figs. 8. Physically, the 

sum of Msa and Msi should be around the peak flux density 

because the third component of (15) is very small. So, the 

parameters of magnetization at 50 Hz and 1.0 T loose their 

physical meaning. Theoretically, the proportionality of Msa and 

Msi is mainly determined by the materials and the magnetization 

directions and is less linked to the magnetization frequencies and 

peak flux densities. The dependency of the magnetic losses 

regarding the magnetization frequencies and peak flux densities 

will be explored in future work. 

 
 

Fig. 14. Simulated contiguous curve sections, 4 in total for magnetizing 

section using (16), 3 in total for demagnetizing section using (15), 

superimposed on the corresponding measured single curve for NOES at 800 

Hz and Bpk = 1.4 T. 

 

 

Fig. 15. Comparison between simulated and measured hysteresis loops for 

NOES at 50 Hz and Bpk from 1.0 T to 1.4 T.  

 
 

Fig. 16. Comparison between simulated and measured hysteresis loops for 

NOES at 100 Hz and Bpk from 1.0 T to 1.4 T.  

As shown in Fig. 12 and 13, the single curves at 400 Hz and 

800 Hz reveal curl at magnetization section tips, which reveals 

the asynchronous phenomena introduced by high frequencies. 

When the excitation fields reach maximum values and start to 

reverse their directions, the flux densities are still increasing. It 

gives a sense that the flux densities go ahead of the excitation 



  

field. These asynchronous phenomena caused by high 

frequencies make the calculation of parameters rather intricate, 

so the simulation of the single curves must be performed by 

fitting the piecewise curves using (15) or (16). The parameters 

used in (15) or (16) must be calculated for each segment 

separately; the more segments used, the higher the accuracy of 

the simulation. The calculation of the segmented parameters is 

conducted separately for the magnetization and demagnetization 

sections.  

 
 

Fig. 17. Comparison between simulated and measured hysteresis loops for 

NOES at 200 Hz and Bpk from 1.0 T to 1.4 T.  

 
 

Fig. 18. Comparison between simulated and measured hysteresis loops for 

NOES at 400 Hz and Bpk from 1.0 T to 1.4 T.  

For the cases of 800 Hz and 1.4 T, the simulation of the B – h 

curve is conducted in a piecewise fashion. The magnetizing 

section is separated into four segments and simulated using (16), 

whereas the demagnetizing section is divided into three segments 

and simulated using (15). The parameters calculated are listed in 

TAB. 4. The parameters obtained using the MATLAB fitting tool 

in the piecewise method cannot represent the authentic physical 

meaning of the magnetization processes. The simulated single 

curve is shown in Figs. 14. It is evident from the figure that 

equations (15) and (16) can reproduce the single curve with 

remarkable similarity. Then, the hysteresis loops of the test 

sample can be created using the simulation method for the range 

of magnetization. 

 

 

Fig. 19. Comparison between simulated and measured hysteresis loops for 

NOES at 800 Hz and Bpk from 1.0 T to 1.4 T.  

 

Fig. 20. Comparison between calculated and measured energy losses for 

NOESs magnetized at frequencies ranging from 50 to 800 Hz and Bpk from 

1.0 to 1.4 T.  

 
Fig. 21. Errors for NOESs between calculated and measured energy losses 

at frequencies ranging from 50 to 800 Hz and Bpk from 1.0 to 1.4 T.  

The measured and calculated hysteresis loops at magnetization 

frequencies of 50 Hz to 800 Hz and peak flux densities of 1.0 T 

to 1.4 T are illustrated in Fig. 15 to 19, respectively. The results 

indicate that the calculated loops are consistent with the 

measured hysteresis loops in the range of measurement 

frequency and magnetic flux density. Evidently, the simulation 

method according to the domain theory can reproduce the 

magnetic hysteresis loops of NOESs with remarkable accuracy. 

This simulation method is also convenient for evaluating the 

energy loss using equation (18), which is used to calculate the 



  

Zeeman energy between the excitation field and magnetic flux 

density.  

Fig. 20 compares the calculated and measured energy losses at 

the magnetization frequencies from 50 Hz to 800 Hz and the 

peak flux densities from 1.0 T to 1.4 T. Fig. 21 demonstrates the 

errors between the calculated and measured energy losses. It is 

observed that the maximum difference with the measurement 

data is less than 1% in close agreement. 
 

5. Conclusions and Future Work 

In this study, a simulation method having a sound physical 

underpinning is used to reproduce the magnetic hysteresis loops 

of NOESs with isotropic characteristics. This single equation 

simulation has already been verified for GOESs with strong 

anisotropic characteristics [21]. Accordingly, the simulation 

method is applicable to both homogeneous and inhomogeneous 

materials. Meanwhile, the energy loss per cycle can be 

calculated by simply integrating the single equation over the 

range of the excitation field. The energy losses are calculated for 

NOESs over a wide range of magnetization frequencies and flux 

densities. The results obtained show that this method performs 

very well for tracing the major and minor loops of NOESs. It is 

also the first-time energy loss has been calculated using a single 

equation with such a high level of accuracy.  

The results of this study demonstrate the reliability of the 

simulation methodology in predicting the magnetic hysteresis 

behavior of NOESs for a range of magnetization. Despite the 

single equation being currently the simplest simulation method 

of magnetic hysteresis, it has a sound physical underpinning and 

fills a technology gap for interpreting the magnetization 

processes of ferromagnetic materials. Compared to previous 

simulation methods, the one described here is simple to 

implement and needs far fewer calculations.  

In addition to showing a critical step forward in interpreting 

the magnetization process related to soft magnetic materials 

under sinusoidal excitation, the proposed simulation method is 

also capable of investigating magnetic behavior under non-

sinusoidal excitation widely applied in renewable energy 

systems, which is currently under investigation. The insights 

might be of interest to the physicists and engineers that 

endeavour to improve the performance of magnetic components 

in power electronics. 
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