
Spherical Winding and Helicity

Daining Xiao∗, Christopher B Prior, Anthony R Yeates

Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK.

E-mail: daining.xiao@durham.ac.uk

Abstract. In ideal magnetohydrodynamics, magnetic helicity is a conserved

dynamical quantity and a topological invariant closely related to Gauss linking

numbers. However, for open magnetic fields with non-zero boundary components, the

latter geometrical interpretation is complicated by the fact that helicity varies with

non-unique choices of a field’s vector potential or gauge. Evaluated in a particular

gauge called the winding gauge, open-field helicity in Cartesian slab domains has

been shown to be the average flux-weighted pairwise winding numbers of field lines,

a measure constructed solely from field configurations that manifest its topological

origin. In this paper, we derive the spherical analogue of the winding gauge and

the corresponding winding interpretation of helicity, in which we formally define the

concept of spherical winding of curves. Using a series of examples, we demonstrate

novel properties of spherical winding and the validity of spherical winding helicity. We

further argue for the canonical status of the winding gauge choice among all vector

potentials for magnetic helicity by exhibiting equivalences between local coordinate

changes and gauge transformations.

1. Introduction

Given a magnetic field B in a simply-connected volume V , the fact that it is divergence-

free (∇ · B = 0) implies that there exists, at least locally, some vector potential

A such that B = ∇ × A. Integrating their dot product over V leads to a

quantity called magnetic helicity, H(B) =
∫
V
A · B dV , which is conserved in ideal

magnetohydrodynamics [42] and in nonideal evolutions to a good approximation [3].

A finer-grained invariant, the field line helicity
∫
γ
A · ds, is obtained by integrating A

along integral curves γ of B, and is of increasing theoretical interest [28, 36, 38, 43, 44].

Similar invariants in hydrodynamics are the kinetic helicity Hk(u) =
∫
V
u · ω dV of

an incompressible, ideal fluid with velocity u and vorticity ω = ∇ × u [25, 29], and

the kinetic streamline helicity
∫
γ
u · ds [11] for integral curves γ of ω. More generally,

magnetic helicity is a special case of the Chern–Simons action [14],
∫
V
A ∧ dA written

in the 3-dimensional Euclidean metric, where A =
∑3

i=1Ai dx
i is the potential 1-form.

The non-uniqueness of the vector potential or gauge A given a magnetic field B

poses issues in understanding magnetic helicity H(B). Under a gauge transformation

A 7→ A +∇ζ, B is unchanged while H(B) acquires an extra boundary term, except
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in the closed-field case when normal boundary components vanish. Otherwise, for open

fields with non-trivial components across boundaries, H(B) can take arbitrary values

[4, 5, 18, 33].

In order to render open-field helicity H(B) meaningful, it is crucial to obtain a

canonical definition that depends only on the magnetic field B, especially for the open-

field case when helicity is gauge-dependent. This has been achieved either by fixing a

(gauge) choice of A (e.g., [20, 34, 46]), or by defining gauge-invariant quantities related

to H(B). For the latter, the most common alternative is the relative helicity proposed

by Berger and Field [5] computed from the given field B and some reference field Br

sharing the same boundary components. In [34, 35], it is shown that choosing Br is

equivalent to fixing A, which suggests the inevitability that some gauge choice must be

made, analogous to the necessary choice of reference frames in classical physics.

In Cartesian domains, Prior & Yeates [34, 35] proposed a gauge choice called the

winding gauge AW using which open-field helicity is equivalent to the average flux-

weighted pairwise winding of (open) field lines. This choice makes the topology of

magnetic fields solely responsible for helicity. It was inspired by the works of Moffatt

[29] and Arnold [1] who demonstrated that the closed-field helicity is the average pairwise

linking, or Gauss linking, of field lines – an invariant from the field configuration.

Pioneering work on the winding interpretation of open-field helicity was done for fields

rooted in a single planar boundary [2, 17]. Both point to the prospect of a geometrical

(re-)definition of magnetic helicity based on curve winding.

In many applications, the domain of interest is inherently spherical, which inval-

idates the Cartesian winding interpretation of the open-field helicity aforementioned.

Nevertheless, spherical open-field helicity remains well-defined and invariant given that

the net normal flux is zero across boundaries – the condition required for the (global) ex-

istence of a vector potential [12]. An important example is data-driven modelling of the

solar atmosphere, where magnetic fields are open and the build-up of magnetic helicity

is proposed as a cause of solar flares and coronal mass ejections [31]. It would there-

fore be desirable to have an analogous, intrinsic interpretation for spherical open-field

helicity that is based only on field configurations.

This task is known to be non-trivial because, unlike planes, spheres are closed

surfaces and have non-zero intrinsic curvature (e.g., [6, 10, 16]), which leads to the

current lack of a canonical definition for pairwise winding of open spherical curves.

Figure 1 illustrates key differences between the spherical and the existing Cartesian

measures. Figure 1(a) shows a curve (in blue) helically winding around a radial line

(in red). When the angular radius of the helix increases, it becomes less clear whether

the two curves remain entangled. Indeed, one might argue that the line is outside the

region enclosed by the faintest helix. Such ambiguity would not be present in Cartesian

domains. Furthermore, as Figure 1(b) shows, there exists a deformation of a pair of

spherical curves such that they can shed winding without crossing, even if they are

initially not entangled, known as the Dirac belt-trick [8, 40].

Despite these issues, we will nevertheless show in this paper that one can generalise
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Figure 1: Topological intricacies of spherical curve entanglement that are not present in

Cartesian domains. In (a), a radial line (in red) appears to transition from being wound

by the helical curves (in blue) of increasing angular radii (with increasing transparency)

to being disentangled. In (b) we see an isotopic “belt-trick” type deformation that

appears to entangle two initially parallel curves without moving their endpoints.

the winding-based interpretation of open-field helicity to spherical domains by: (a)

fixing a specific vector potential – the (redefined) winding gauge AW – suggested by

the orthogonal, toroidal-poloidal decomposition [6, 26]; and (b) proposing a definition

of spherical winding of any pair of curves. This yields the desired geometrical form of

open-field helicity in both Cartesian and spherical geometries, namely,

HW (B) ≡
∫
V

AW ·B dV =

∫
S

∫
S
LB(x,x

′) d2x′ d2x , (1)

where the double integral is taken over pairs of magnetic field lines x and x′ crossing the

surface S (a plane or a sphere). The integrand LB(x,x
′) measures the flux-weighted

pairwise winding number, or mutual rotation, of the field lines – a geometrical quantity

defined from the field itself without requiring a vector potential. While the Cartesian

expression of LB(x,x
′) is well known, little is known about its spherical counterpart.

Here, we will present a rigorous derivation in spherical domains using local coordinate

systems.

Note that the newly defined pairwise winding number of (open) spherical curves

does not in general remain constant under isotopic changes, e.g., the belt-trick

deformation, but when averaged over all field lines and weighted by magnetic flux, it

yields an invariant which is precisely the open-field helicityHW (B) evaluated in winding

gauge AW . We will also argue that using a different choice of vector potential or gauge

is equivalent to measuring field line winding from different local frames of reference (cf.
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[34] for the Cartesian case). The winding gauge AW corresponds to the most “natural”

frame, reflecting the link between (spherical) winding and helicity.

The layout of this paper is as follows. In Sec. 2, we fix notations and review the

concept of magnetic helicity H(B). In Sec. 3, we introduce the toroidal–poloidal

decomposition from which we define the winding gauge AW and winding helicity

HW (B). In Sec. 4, we re-derive key results for Cartesian winding and helicity using

a new formalism, preparing readers for the spherical case. Sec. 5 is central to this

paper where we define spherical winding of curves and generalise the winding-based,

intrinsic interpretation to spherical open-field helicity. In Sec. 6, we demonstrate novel

properties of spherical winding using a helix-line pair and a belt-trick pair. We also

include a sample calculation of winding helicity using bipolar magnetic regions. Finally,

in Sec. 7, we exhibit equivalence between gauge transformations and local coordinate

changes in the context of winding and helicity, providing further arguments for the

canonical status of the winding gauge.

2. Preliminaries and notations

Let B(x) be a smooth, square-integrable (assumed for all functions henceforth) vector

field in R3 that satisfies ∇ ·B = 0 everywhere and decays sufficiently fast at infinity.

We shall call B the magnetic field and define its curl as J ≡ ∇ × B. The integral

curves x(s) of the magnetic field B are called (magnetic) field lines, defined by

dx

ds
= B(x(s)) . (2)

By the Poincaré Lemma, there exists a vector field A(x) such that B = ∇×A globally,

known as the (magnetic) vector potential. Note that A is not uniquely defined, as for

any scalar function χ known as a gauge (field), we have ∇ × (A+∇χ) = B. The

process of changing the vector potential given the field, namely, A 7→ A+∇χ, is called

a gauge transformation. A gauge choice means that A or χ takes a particular form.

For a simply-connected, orientable domain V ⊂ R3, the (magnetic) helicity of the

magnetic field B is commonly defined as, see e.g., [26],

H(B) =

∫
V

A ·B dV . (3)

As H(B) involves the vector potential A that is non-unique, under the gauge

transformation A 7→ A+∇χ, it acquires a boundary term if ∂V ̸= ∅, since

H(B) 7→ H(B) +

∫
V

∇χ ·B dV = H(B) +

∫
V

∇· (χB) dV = H(B) +

∮
∂V

χB · n̂ dS ,

(4)

where n̂ is the outward unit normal to ∂V and we used the divergence theorem.

If the normal field component Bn ≡ n̂ ·B = 0 identically on ∂V , then the boundary

term vanishes. In this case, H(B) is invariant for all gauges, i.e., gauge invariant, and
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such fields are called closed (with respect to V , same below). Otherwise, fields with

Bn ̸= 0 are called open and H(B) in general varies with the gauge choice.

In this paper, we will focus on two particular geometries of domains V , namely

(i) a Cartesian slab V = Sz × (z1, z2), with z2 > z1, Sz = R2 as parallel planes labelled

by z ∈ (z1, z2), and

(ii) a spherical shell V = Sr × (r1, r2), with r2 > r1 > 0, Sr as concentric spheres

labelled by radius r ∈ (r1, r2).

Although our main interest is in the spherical case (ii), the Cartesian domain – in which

winding and helicity is already well understood – will be important to frame our new

formalism. The fact that both domains can be regarded as codimension-one foliations is

fundamental to our derivation. For brevity, we write S for the leaves Sz or Sr and n̂ for

the unit normal on each leaf transversal to the foliation, so n̂ = êz and êr respectively.

3. Toroidal–poloidal decomposition and the winding gauge AW

In this section, we first review the toroidal-poloidal (or Chandrasekhar–Kendall)

decomposition of magnetic fields, e.g., [6, 13, 26]. We then identify a “simplest” choice

of vector potential AW , which shall be called the winding gauge. This is motivated

by Prior and Yeates [34] who proved the equivalence between Cartesian winding and

helicity in finite, tubular domains. Similar interpretations in our domains of interest

will be proved subsequently.

3.1. Toroidal-poloidal decomposition

In Cartesian slabs and spherical shells – seen as the foliation of nested surfaces S as in

Sec. 2 – any magnetic field B(x) can be uniquely decomposed as

B(x) = BT (x) +BP (x) , (5)

where the toroidal component BT (x) and poloidal component BP (x) take the form

BT ≡ ∇× [n̂T (x)], BP ≡ ∇×∇× [n̂P (x)] , (6)

such that the functions T (x) and P (x), called the toroidal and poloidal flux functions

respectively, are defined as solutions to surface Poisson equations on each leaf S:

∇2
SP = −Bn , ∇2

ST = −Jn. (7)

Note that ∇2
S is the surface Laplacian or Laplace–Beltrami operator. In the case when

S = Sr, the existence of solutions should be consistent with the divergence theorem,

which yields the following compatibility conditions:

⟨Bn⟩S = ⟨Jn⟩S = 0 where ⟨·⟩S ≡
∫

· dS . (8)
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Also, to ensure the uniqueness of solutions, we shall impose in both cases the conditions

⟨P ⟩S = ⟨T ⟩S = 0 . (9)

Eq. (5-9) are collectively known as the toroidal–poloidal decomposition. We present a

brief justification of its validity using the Hodge Decomposition Theorem in Appendix

A, as a similar proof could not be found in the existing literature.

Using the Green’s functions G(x;x′) for the surface Laplacian ∇2
S when S = Sz

and S = Sr (in the generalised sense) [15, 21, 22], Eq. (7) that define flux functions T

and P can be explicitly solved as follows:

P (x) = −
∫
S
Bn(x

′) G(x;x′) d2x′ , (10)

T (x) = −
∫
S
Jn(x

′) G(x;x′) d2x′ , (11)

where the relevant Green’s functions G(x;x′) are given by

G(x;x′) =

{
1
2π

ln |x− x′| if S = Sz ,
1
4π

ln (1− x · x′/r2) if S = Sr .
(12)

Note that the Green’s function G(x;x′) encodes the intrinsic metric of the foliating

surfaces: |x−x′|measures the Euclidean distance for x,x′ ∈ Sz and x·x′/r2 corresponds

to the (cosine of the normalised) spherical distance for x,x′ ∈ Sr.

3.2. The winding gauge AW and winding helicity HW (B)

From B = ∇×A and the toroidal–poloidal decomposition Eq. (5-6), we can identify

the general solution of the vector potential A as, see e.g., Moffatt & Dormy [26],

A = n̂T +∇× (n̂P ) +∇ζ , (13)

where ζ is some scalar function of integration. (Or more precisely as Eq. (A.11) in

Appendix A.) In this paper, we shall focus on the “simplest” vector potential AW with

∇ζ = 0 identically, namely,

AW = n̂T +∇× (n̂P ) . (14)

Note that it is related to Eq. (13) via a gauge transformation A 7→ A+∇χ such that

∇χ = −∇ζ, e.g., χ = −ζ, but such a choice is not unique.

We shall call AW the winding gauge, as we will show that open-field helicity in

this gauge is equivalent to the average flux-weighted pairwise winding of field lines.

This name is motivated by Prior & Yeates [34] in which they first proved that such

an interpretation holds for open-field helicity in Cartesian tubular domains with finite

horizontal extents.
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One can check that AW satisfies the property of vanishing surface divergence:

∇S ·AW ≡ ∇ ·AW − n̂ · ∂A
W

∂n
= 0 , (15)

for either n̂ = êz or êr. This holds also for the original definition of AW in [34]. In

addition, one can show that the winding gaugeAW enjoys a special variational property:

it minimises the surface integral
∫
S |n̂×A|2 d2S over all vector potentials, analogous to

the minimal gauge for finite domains proposed by Yeates & Page [46].

Magnetic helicity defined using the winding gauge AW , whether the field is open

or closed, will be called winding helicity, denoted HW (B), as

HW (B) =

∫
V

AW ·B dV . (16)

In Appendix B, we show that in the Cartesian case Eq. (16) may be written as

HW (B) =

∫ z2

z1

∫
Sz

∫
Sz

H(B;x,x′) d2x′ d2x dz , (17)

while in the spherical case,

HW (B) =

∫ r2

r1

∫
Sr

∫
Sr

H(B;x,x′) d2x′ d2x dr . (18)

In both cases the winding helicity density H(B;x,x′) has the same form

H(B;x,x′) = B(x′) ·BS(x)×∇SG(x,x
′) +B(x) ·BS(x

′)×∇′
SG(x,x

′) , (19)

where BS = B− n̂(n̂ ·B) is the surface field component, ∇S = ∇− n̂ ·∇ is the surface

gradient operator, and G(x,x′) is the relevant Green’s function (12). For the Cartesian

case, Eq. (19) is exactly the (flux-weighted) Gauss linking integral [27]. The definitions

of spherical winding in Sec. 5 will show how this expression is related to the linking

integral in spherical domains.

4. Geometrical interpretation for Cartesian winding helicity HW (B)

For the case of finite Cartesian tubular domains, Prior and Yeates [34] showed that

Cartesian winding helicity HW (B) is equivalent to the average flux-weighted pairwise

winding of field lines, and thus interpreting helicity from a purely geometrical ground.

In this section, we will re-derive their result in Cartesian slab domains with infinite

horizontal extent, i.e., V = Sz × (z1, z2), from a new perspective which shall be called

the “winding formalism” that will later be generalised to spherical domains in Sec. 5.

Let B to be an (open) magnetic field in V that in general Bn ̸= 0 on Sz1 and Sz2 .
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4.1. Cartesian winding coordinates

The concept of winding originated from complex analysis, see e.g., [41] and as a relative

quantity, winding is measured as the angular changes seen from some reference point

along some reference direction. This description coincides with that of moving polar

coordinate systems, prompting the following definitions of Cartesian winding coordinates

in which a curve measures winding with respect to another.

For any z0 ∈ (z1, z2), let A = x(z0) and B = x′(z0) be distinct points on plane

Sz0 where x(z) and x′(z) are z-parameterised curves. We define Cartesian winding

coordinates for this pair of curves by the right-handed, orthonormal basis vectors

{êξ, êχ, êz} at x and {ê′
ξ, ê

′
χ, ê

′
z} at x′, where êz and ê′

z coincide with the local unit

normal to Sz0 and

êξ ≡
x′ − x

|x′ − x|
, êχ ≡

êz × êξ

|êz × êξ|
, ê′

ξ ≡
x− x′

|x− x′|
, ê′

χ ≡
ê′
z × ê′

ξ

|ê′
z × ê′

ξ|
. (20)

This may be called the Cartesian winding basis. The radial coordinates ξ = ξ′ = |x−x′|
corresponds to the Euclidean distance between x and x′, and the angular coordinates

χ and χ′ measures winding as curves entangle.

Note that ê′
ξ = −êξ and ê′

χ = −êχ, so they were not separately treated in previous

works, e.g., [34]. Nevertheless, we find it necessary to distinguish them, to prepare

readers for the generalisation to spheres on which vectors must be locally defined and

such a simple relationship no longer holds.

Figure 2: The Cartesian winding basis {êξ, êχ, êz} compared to the standard Cartesian

basis {êx, êy, êz} at A = x(z0), and similarly at B = x′(z0), where x(z) and x′(z) are

z-parameterised curves that are projected on plane Sz0 . As we traverse along curves,

the rotation of the separation vector (dashed) ξ = x′ − x generates winding.

Using the winding basis, the Cartesian Green’s function (12) for the surface

Laplacian may be written as G(x,x′) = 1
2π

ln ξ = 1
2π

ln ξ′ with surface gradients

∇SG(x,x
′) = êξ/2πξ, ∇′

SG(x,x
′) = ê′

ξ/2πξ
′ . (21)
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Cartesian winding helicity density H(B;x,x′) in Eq. (19) then becomes:

H(B;x,x′) = − 1

4πξ
[Bz(x

′)Bχ(x) +Bz(x)Bχ(x
′)] . (22)

This strongly suggests that winding helicity HW (B) originates from “relative turning

effects”, or mutual winding, of magnetic fields. We will next show how to interpret

H(B;x,x′) in terms of winding numbers of field lines using winding coordinates.

4.2. Cartesian winding angles

Let x,x′ : [0, 1] → R2 be smooth curves such that x(t) ̸= x′(t) for all t. To measure

winding of x(t) from x′(t), let {ê′
ξ, ê

′
χ, ê

′
z} be the x′-centred Cartesian winding basis as

in Eq. (20) and let v̂′(t) = v̂′ on x′(t) be an arbitrary but constant unit vector that

serves as a reference direction.

We (implicitly) define the (instantaneous) winding angle of x(t) against x′(t) along

v̂′, denoted ωv̂′(x;x′), as follows:

cosωv̂′(x;x′) = v̂′ · ê′
ξ = v′ξ , (23)

where we decomposed v̂′ in the x′-centred winding basis as

v̂′ = v′ξê
′
ξ + v′χê

′
χ . (24)

To eliminate multivaluedness, we further require ωv̂′(x;x′) to be continuous, measured

in the right-handed sense seen from the current North (“positively”), and such that

ωv̂′(x;x′) = 0 when ê′
ξ = v̂′. An explicit formula for ωv̂′(x;x′) modulo 2π is given by

ωv̂′(x;x′) =

{
arccos v′ξ, v′χ ≥ 0,

2π − arccos v′ξ, v′χ < 0 .
(25)

Combining with the fact that |v̂′|2 = 1, we have

sinωv̂′(x;x′) = v′χ . (26)

4.3. Cartesian winding rates

The exact value of the winding angle ωv̂′(x;x′) depends on both the (instantaneous)

reference point x′ and direction v̂′. To obtain a winding measure that only depends on

the former, consider differentiating Eq. (23) with respect to t while fixing x′(t),

− sinωv̂′
dωv̂′

dt

∣∣∣∣
x′

=
d(v̂′ · ê′

ξ)

dt

∣∣∣∣
x′

= v̂′ ·
dê′

ξ

dt

∣∣∣∣
x′
, (27)

using v̂′ is constant in the second equality. One can check by computation that

dê′
ξ

dt

∣∣∣∣
x′

=
dχ

dt
ê′
χ , (28)
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where dχ/dt is given by the decomposition of dx/dt in the x′-centred winding basis:

dx

dt

∣∣∣∣
x′

=
dξ

dt
ê′
ξ + ξ

dχ

dt
ê′
χ . (29)

Substituting Eq. (24, 26, 28) into Eq. (27) gives

dωv̂′

dt

∣∣∣∣
x′

= −dχ

dt
, (30)

which can be expressed explicitly in terms of both curves as

dωv̂′

dt

∣∣∣∣
x′

= −1

ξ

(
dx

dt
· ê′

χ

)
= −dx

dt
· ê′

z ×
x− x′

|x− x′|2
. (31)

Note that the rate of change of winding angle ωv̂′(x;x′), i.e., dωv̂′/dt , is now

independent of the reference direction v̂′. This implies that it is a more intrinsic measure

of winding. With subscript dropped, we shall call dω/dt the (instantaneous) winding

rate of x(t) against x′(t).

One could similarly have defined the winding angle ωv̂(x
′;x) of x′ against x along

(fixed) v̂ on x and obtained the direction-independent rate dω′/dt ≡ dωv̂/dt as

dω′

dt

∣∣∣∣
x

= −dχ′

dt
= −dx′

dt
· êz ×

x′ − x

|x′ − x|2
, (32)

with dχ′/dt similarly defined in x-centred winding basis as in Eq. (29).

Note that both the Green’s function G(x,x′) and the winding helicity density

H(B;x,x′) are symmetric about x and x′, but neither Eq. (31) nor (32) are. To restore

this symmetry, we further define their arithmetic average as the pairwise winding rate

of curves x and x′, namely, 1
2
(dω/dt + dω′/dt).

4.4. Cartesian pairwise winding number

The integral of the winding rate (with respect to t) gives the cumulative change of

winding angles, which is called the winding number. The individual winding number

L(x;x′) of curves x against x′ is defined by

L(x;x′) ≡ 1

2π

∫ 1

0

dω

dt
dt = − 1

2π

∫ 1

0

dχ

dt
dt . (33)

The factor (2π)−1 is conventional so that L(x;x′) is an integer when both curves are

closed [7]. Also, we define the pairwise winding number of curves x and x′ as

L(x,x′) ≡ 1

2
[L(x;x′) + L(x′;x)] = − 1

4π

∫ 1

0

(
dχ

dt
+

dχ′

dt

)
dt , (34)

and it is symmetric about x and x′. By definition, all three measures are independent

of the choice of the reference direction (provided it is fixed) on either curve.
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4.5. Cartesian winding helicity HW (B) as flux-weighted winding

To interpret Cartesian winding helicity HW (B) in (22) using the pairwise winding

number L(x,x′) in (34), consider an open magnetic field B in V = Sz × (z1, z2) whose

field lines are z-monotonic curves and are thus z-parameterised without loss of generality.

Let x,x′ : [z1, z2] → V be a pair of such curves, then the defining equation for field line

x(z) can be written in the x-centred winding basis as

dξ

dz
êξ + ξ

dχ

dz
êχ + êz = Bξêξ +Bχêχ +Bzêz , (35)

so that
dχ

dz
=

1

ξ

Bχ(x)

Bz(x)
,

dχ′

dz
=

1

ξ′
Bχ(x

′)

Bz(x′)
, (36)

with an analogous expression for dχ′/dz . Substituting into Eq. (34), we have

L(x,x′) =

∫ z2

z1

− 1

4πξ

Bz(x
′)Bχ(x) +Bz(x)Bχ(x

′)

Bz(x)Bz(x
′)

dz =

∫ z2

z1

H(B;x,x′)

Bz(x)Bz(x
′)
dz , (37)

where ξ = ξ′ and Eq. (22) is used. From this we see that redefining the winding number

to include the magnetic flux weighting,

LB(x,x
′) ≡ − 1

4π

∫ z2

z1

(
dχ

dz
+

dχ′

dz

)
Bz(x)Bz(x

′) dz , (38)

will give a density for winding helicity, so that

HW (B) =

∫
S

∫
S
LB(x,x

′) d2x′ d2x . (39)

This is the geometrical formula for Cartesian winding helicityHW (B) that was originally

derived in Prior and Yeates [34] by explicit computation. Here, the double surface

integral is taken over all possible pairs of field lines rooted at the base plane S = Sz1 .

Eq. (39) links winding helicity to a quantity defined purely from the B itself without

using a vector potential. It also gives HW (B) a computational advantage, recently

exploited in the wavelet analysis by Prior et al. [32].

Such a geometrical interpretation for HW (B) generalises the case of gauge-

invariant, closed-field helicity as the average flux-weighted pairwise field line linking

[1, 29]. Indeed, one could use results proven in [7] to show that HW (B) reduces to its

closed-field counterpart for closed field lines. This suggests that Eq. (38-39) should be

considered as a more intrinsic (re-)definition for magnetic helicity in Cartesian domains.

For the general case when magnetic field lines are not z-monotonic, Berger and

Prior [7] defined the pairwise winding number as the sum of pairwise winding numbers

evaluated in z-monotonic subsections. They also showed that L(x,x′) is a topological

invariant under isotopy which extends to the winding helicity HW (B).
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5. Geometrical interpretation for spherical winding helicity HW (B)

In this section, we extend the Cartesian winding formalism to spherical geometry,

proving the equivalence between winding helicity HW (B) and spherical pairwise

winding. The latter will be constructed and be of interest as a mathematical result.

Throughout, we take V = Sr×(r1, r2) to be a spherical shell and B to be an (open)

magnetic field that in general Bn ̸= 0 on Sr1 and Sr2 . Recall that on each leaf Sr, the

(generalised) spherical Green’s function G(x,x′) for the surface Laplacian is given by

G(x,x′) = 1
4π

ln
(
1− x · x′/r2

)
= 1

4π
ln(1− cos ξ) , (40)

where spherical distance ξ(x,x′) ∈ [0, π] between x,x′ ∈ Sr is defined by

ξ(x,x′) = arccos
(
x · x′/r2

)
. (41)

On spheres, vectors must be defined locally in tangent spaces and vectors at different

points cannot be compared directly. In contrast, it is common to treat vectors in

Euclidean spaces as globally defined, as tangent spaces can be canonically identified.

In this work, this distinction is emphasised by the use of different notations: Gothic

letters, e.g., v,w, will be used for the local, surface vectors on spheres while the usual

Italic letters, e.g., v,w, will be used for the global, Cartesian vectors in R3.

5.1. Spherical winding coordinates

Let x,x′ : (r1, r2) → V be r-parameterised curves such that A = x(r0) and B = x′(r0)

are distinct, non-antipodal points on the sphere Sr0 for all r0 ∈ (r1, r2). We define two

sets of (local) spherical winding coordinates : one set gives the position of x in spherical

polar coordinates (r, ξ, χ) with x′ as the North pole (we will call these “x′-Northed”),

while the other gives the position of x′ in corresponding “x-Northed” coordinates

(r′, ξ′, χ′) where x is the North pole. The corresponding right-handed, orthonormal

basis vectors are {êr, êξ, êχ} at x and {ê′
r, ê

′
ξ, ê

′
χ} at x′. Here êr = x and ê′

r = x′ are

the local unit normals to Sr0 , while

êξ ≡
− cos ξx+ x′

r0 sin ξ
, êχ ≡ êr × êξ

|êr × êξ|
, ê′ξ ≡

− cos ξx′ + x

r0 sin ξ
, ê′χ ≡

ê′
r × ê′ξ

|ê′
r × ê′ξ|

. (42)

These are illustrated in Figure 3 and may together be called the spherical winding basis.

While Appendix C.2 provides detailed derivations of Eq. (42), the polar coordinates

ξ = ξ′ represent the intrinsic, spherical distance (41) between x and x′ along the great

circle, whereas the azimuthal coordinates χ and χ′ are used to measure spherical winding.

The corresponding North pole in each basis assumes the role of the “origin”.

Using the spherical winding basis, we can compute the surface gradients of the

spherical Green’s function (40) as

∇SG(x,x
′) =

sin ξ êξ
4πr0(1− cos ξ)

, ∇′
SG(x,x

′) =
sin ξ′ ê′ξ

4πr0(1− cos ξ′)
. (43)
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Figure 3: The x′-Northed spherical winding basis {êr, êξ, êχ} compared to the standard

spherical polar basis {êr, êθ, êϕ} at A = x(r0) (and that similarly for B), where x(r)

and x′(r) are r-parameterised curves projected on sphere Sr0 . The rotation of the great

circle AOB (dashed) as seen from either curve generates spherical winding.

Spherical winding helicity density H(B;x,x′) in Eq. (19) then becomes

H(B;x,x′) = − sin ξ

4πr0(1− cos ξ)
[Br(x

′)Bχ(x) +Br(x)Bχ(x
′)] . (44)

The almost identical form of this result to the Cartesian one (22) suggests the existence

of a similar interpretation based on winding of curves, which will be presented next.

Nevertheless, the two expressions differ by the factor (up to constant scaling)

Γ(ξ) =
sin ξ

1− cos ξ
. (45)

As discussed in Sec. 1, the lack of a canonical definition of pairwise winding of

(open) spherical curves is the main obstacle for this generalisation. Before we propose

the definition of spherical winding quantities analogous to those in Sec. 4, we first

discuss the geometrical nature of the factor Γ(ξ).

5.2. Stereographic projection and Cartesian reduction

The factor Γ(ξ) originated from the use of the stereographic map σ when deriving the

(generalised) spherical Green’s function (12), as shown in [22]. The map σ is a bijection

from the unit sphere S2 to the extended complex plane C∞ ≡ C ∪ {∞} while being
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(a) (b)

Figure 4: Dilating effect of the stereographic map σ : S2 → C∞ projecting from the

antipodal point of x′(r0) on the white curve x′(r), with matched colouring on both

domains. Panel (a) depicts the x′-Northed winding coordinates (ξ, χ) and the plane

polar coordinates (R,Θ), showing part of the projected, Northern hemisphere. Panel

(b) includes the projection for the Southern hemisphere where projected area elements

are more diffused.

conformal or angle-preserving. For x′-Northed winding coordinates (ξ, χ), the map σ

projecting from the South (antipodal point of x′) can be explicitly given by

(R,Θ) = σ(ξ, χ) =

(
sin ξ

1 + cos ξ
, χ

)
= (1/Γ, χ). (46)

where (R,Θ) are the plane polar coordinates on C∞. In particular, σ(x′) = 0 is the

origin on C∞. Figure 4 illustrates its effect using colour schemes where it shows that

regions further away from x′ are “stretched” more.

From this perspective, spherical winding helicity (44) behaves precisely like the

Cartesian version (22), if the magnetic field is scaled according to

B∗(xC) ≡ B(xS)/
√
R(xS) , (47)

where xC (or xS) corresponds to the coordinates on the foliated planes (or spheres).

This gives a practical method to compute spherical winding helicity using a Cartesian

setting, which we shall call “Cartesian reduction”.

However, if the Cartesian formula for helicity (22) is used naively for magnetic

structures in spherical domains, the error can be significant. Consider the Laurent

expansion of Γ(ξ) about ξ = 0, i.e., when curvature effects are small, we have

sin ξ

4πr0(1− cos ξ)
=

1

4πr0

(
2

ξ
− ξ

6
− ξ3

360
+O(ξ5)

)
. (48)
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The leading term recovers the Cartesian result (22) (by recognising r0ξ as the Euclidean

distance between x and x′), as the sphere is locally flat. As the angular separation ξ

increases, the percentage error directly from (48) is approximately 2% for ξ = 30◦, 10%

for ξ = 60◦ and 20% for ξ = 90◦. While this is a very crude estimate, it shows curvature

effect cannot be ignored for fields that exhibit global behaviour on spheres.

5.3. Spherical winding angles

Let x,x′ : [0, 1] → S2 be smooth curves such that x(t) ̸= ±x′(t) for all t. To define

spherical winding of x(t) from x′(t), let {ê′
r, ê

′
ξ, ê

′
χ} be the x-Northed spherical winding

basis (42) at x′(t). Also, let v̂
′
(t) be a unit surface vector on x′(t) that is covariantly

constant, i.e., parallel transported from an arbitrary, initial choice v̂
′
0. Hence, v̂

′
(t)

serves as the local reference direction on x′(t). (A review is included in Appendix C.3.)

As before, we first (implicitly) define the (instantaneous) spherical winding angle

of x(t) against x′(t) relative to v̂
′
(t), denoted ωv̂′(x;x′):

cosωv̂′(x;x′) = v̂
′ · ê′ξ = v′ξ , (49)

where the last equality follows from the x-Northed decomposition of v̂
′
,

v̂
′
= v′ξê

′
ξ + v′χê

′
χ . (50)

We again require ωv̂′(x;x′) to be continuous, measured positively, and such that

ωv̂′(x;x′) = 0 when ê′ξ = v̂
′
. This allows us to obtain the expression of ωv̂′(x;x′)

modulo 2π, which is identical to the Cartesian version (25).

Combining with |v̂′|2 = v′2ξ + v′2χ = 1, we have

sinωv̂′(x;x′) = v′χ . (51)

5.4. Spherical winding rates

We see in the Cartesian setting that it is possible to obtain a winding measure that only

depends on the (instantaneous) reference point x′(t) but not the reference direction

v̂
′
(t). We similarly consider differentiating Eq. (49) with respect to t while fixing x′(t),

− sinωv̂′
dωv̂′

dt

∣∣∣∣
x′

=
d(v̂

′ · ê′ξ)
dt

∣∣∣∣∣
x′,v̂′

+
d(v̂

′ · ê′ξ)
dt

∣∣∣∣∣
x′ ,̂e′ξ

= v̂
′ ·

dê′ξ
dt

∣∣∣∣∣
x′

+
dv′ξ
dt

∣∣∣∣
x′
. (52)

We notice that it is the second term on the right that distinguishes spherical winding

from the Cartesian result (26). Spheres have non-zero curvature so that the reference

direction v̂
′
(t) undergoes non-trivial parallel transport to stay covariantly constant on

x′(t). This term can be computed from the parallel transport equation (C.16):

ê′ξ ·
dv̂

′

dt

∣∣∣∣
x′

=

(
−

dv′ξ
dt

∣∣∣∣
x′

)
− sin ξ′ cos ξ′

dχ′

dt

(
−

v′χ
sin ξ

)
= 0 , (53)



16

where we identify fθ ↔ −v′ξ, f
ϕ ↔ −v′χ/ sin ξ

′. The minus signs indicate that ê′ξ is

defined in the direction of decreasing ξ′, opposite to that in Appendix C.3. Also, dχ′/dt

is defined by the projections of dx′/dt in the x′-centred winding basis at x′,

dx′

dt
=

dξ′

dt
ê′ξ + sin ξ′

dχ′

dt
ê′χ . (54)

Hence, we have
dv′ξ
dt

∣∣∣∣
x′

= − cos ξ′
dχ′

dt
v′χ . (55)

To conclude, this measures the winding contribution from the changing (though

covariantly constant) reference direction v̂
′
(t) on x′(t) due to the curvature of the sphere.

For the other term in (52), we use the Cartesian expression (42) of ê′ξ while fixing

x′(t), so that (using ξ ≡ ξ′ and treating vectors as Cartesian)

dê′ξ
dt

∣∣∣∣∣
x′

=
1

sin2 ξ

[
(x′ − cos ξx)

dξ

dt
+ sin ξ

dx

dt

]
. (56)

One can check that x′ · dê′ξ
/
dt = 0 and ê′ξ · dê

′
ξ

/
dt = 0, so dê′ξ

/
dt lies in the local

tangent plane of x′ and aligns entirely with ê′χ. Then its magnitude can be computed

from ∣∣∣∣∣dê
′
ξ

dt

∣∣∣∣∣
2

=
1

sin2 ξ

[∣∣∣∣dxdt
∣∣∣∣2 − (dξ

dt

)2
]
=

(
dχ

dt

)2

=⇒

∣∣∣∣∣dê
′
ξ

dt

∣∣∣∣∣ =
∣∣∣∣dχdt

∣∣∣∣ , (57)

where dχ/dt is defined by the decomposition of dx/dt in the x-centred (or x′-Northed)

winding basis {êr, êξ, êχ}
dx

dt
=

dξ

dt
êξ + sin ξ

dχ

dt
êχ . (58)

Choosing the sign that matches the Cartesian counterpart Eq. (28), which can be

checked by computation, the first term on the right of Eq. (52) evaluates to

v̂
′ ·

dê′ξ
dt

∣∣∣∣∣
x′

= v′χ
dχ

dt
. (59)

This measures the winding contribution of as the curve x′(t) entangles about x(t), as

in the Cartesian case (30). Substituting both terms into Eq. (52):

dωv̂′

dt
= −

(
cos ξ

dχ′

dt
+

dχ

dt

)
. (60)

The spherical winding rate of x against x′, dω/dt ≡ dωv̂′/dt , is therefore manifestly

independent of the reference direction v̂
′
(provided it is covariantly constant on x′(t)).

An explicit expression in terms of Cartesian position vectors of both curves is

−dω

dt
=

cos ξ

sin ξ

dx′

dt
· ê′χ +

1

sin ξ

dx

dt
· êχ (61)

=
cos ξ

sin ξ

dx′

dt
· x′ × − cos ξx′ + x

sin ξ
+

1

sin ξ

dx

dt
· x× − cos ξx+ x′

sin ξ
. (62)
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Seen from x(t), the spherical winding angle ωv̂(x
′;x) of x′(t) along covariantly constant

v̂(t) on x(t) and winding rate dω′/dt ≡ dωv̂/dt of x
′(t) can be similarly defined.

However, one can check that swapping x ↔ x′ in dω/dt does not yield dω′/dt . This

asymmetry between individual rates can be overcome by defining the spherical pairwise

winding rate as the average of the two individual measures, namely, 1
2
(dω/dt+ dω′/dt).

This restores the symmetry present in the (generalised) spherical Green’s function

G(x,x′) and spherical winding helicity density H(B;x,x′).

5.5. Spherical pairwise winding number

Integrating the winding rate with respect to t gives the cumulative change of winding

angle, which we shall call the spherical winding number. The individual spherical winding

number L(x;x′) of curves x(t) against x′(t) is defined by

L(x;x′) ≡ 1

2π

∫ 1

0

dω

dt
dt = − 1

2π

∫ 1

0

(
cos ξ

dχ′

dt
+

dχ

dt

)
dt , (63)

The spherical pairwise winding number L(x,x′) of curves x(t) and x′(t) is given by

L(x,x′) ≡ 1

2
[L(x;x′) + L(x′;x)] = − 1

4π

∫ 1

0

(1 + cos ξ)

(
dχ

dt
+

dχ′

dt

)
dt . (64)

By definition, L(x,x′) is symmetric about both curves and independent of the choice

of reference directions on either curve. Also, the factor (1 + cos ξ) resolves the isolated

case when x and x′ are antipodal, i.e., when cos ξ = −1, for which we initially excluded.

Hence, the spherical pairwise winding number L(x,x′) generalises the Cartesian

version (34), providing an intrinsic measure of winding for any pair of spherical curves.

Similar results are not found, at least not in our explicit form, in the existing literature,

so Eq. (64) should be of general mathematical merit.

5.6. Spherical winding helicity HW (B) as flux-weighted winding

Having derived the spherical measure of pairwise winding, the geometrical interpretation

of open-field helicity can now be extended from the Cartesian to the spherical geometry.

Consider an open magnetic field B in a spherical shell V = Sr× (r1, r2) whose field

lines are r-monotonic and without loss of generality r-parameterised. For a pair of such

field lines x,x′ : (r1, r2) → V , the defining equation for x(r) can be written in the local

or x-centred spherical winding basis as

r
dξ

dr
êξ + r sin ξ

dχ

dr
êχ + êr = Bξêξ +Bχêχ +Brêr , (65)

and similarly for x′. It then follows that

dχ

dr
=

1

r sin ξ

Bχ(x)

Br(x)
,

dχ′

dr
=

1

r sin ξ

Bχ(x
′)

Br(x′)
. (66)
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Substituting into the spherical pairwise winding number L(x,x′), we have

L(x,x′) = − 1

4π

∫ r2

r1

1 + cos ξ

r sin ξ

(
Bχ(x)

Br(x)
+
Bχ(x

′)

Br(x′)

)
dr =

∫ r2

r1

H(B;x,x′)

Br(x)Br(x′)
dr , (67)

where (1 + cos ξ)/ sin ξ = sin ξ/(1 − cos ξ) = Γ(ξ) is exactly the factor discussed in

Sec. 5.2. This then allows us to express helicity (density) in spherical domains as

flux-weighted winding numbers defined by

LB(x,x
′) ≡ − 1

4π

∫ r2

r1

(1 + cos ξ)

(
dχ

dr
+

dχ′

dr

)
Br(x)Br(x

′) dr , (68)

so that the geometrical form for spherical winding helicity HW (B) can be written as

HW (B) =

∫
S

∫
S
LB(x,x

′) d2x′ d2x , (69)

where the double surface integral sums over contributions from all pairs of field lines

rooted on the base sphere S = Sr1 . This is a significant generalisation of the Cartesian

formalism in Sec. 4, since spherical surfaces have non-zero intrinsic curvature.

This again suggests that the average, flux-weighted winding of field lines should be

adopted as a more intrinsic definition of open-field helicity. In general, field lines are

not globally r-monotonic, but they can be split into r-monotonic subsections in which

pairwise winding numbers can be individually defined and their sum yields the total

pairwise winding of spherical curves, as explained by Berger and Prior [7].

6. Examples

In this section, we illustrate novel properties of the newly constructed spherical winding

measures, compared with the Cartesian case. We will use the examples of a helix-line

pair and a belt-trick pair (responding to the issues discussed in the Introduction), as

well as a toy model of interacting magnetic active regions on the solar surface.

We work in the spherical shell V = Sr × (r1 = 1, r2 = 3), with some fixed, spherical

polar coordinates (r, θ, ϕ) with polar angle θ ∈ [0, π] and azimuthal angle ϕ ∈ [0, 2π).

The choices of the radial extent and reference coordinates are merely for the convenience

of description, as we have shown in Sec. 5 that spherical winding and helicity are intrinsic

to field configurations and not coordinate-specific.

Meanwhile, we calculate not only the symmetric, pairwise winding number L(x,x′)

for spherical curves x(t) and x′(t) as in Eq. (67) but also the individual winding numbers

L(x;x′) and L(x′;x) as in Eq. (63). Both provide insight into how winding is acquired

during curve entanglement.

6.1. Spherical winding of a helix-line pair

Consider a pair of (r-monotonic) curves shown in Figure 1(a) where xL(r) (in red) is

a radial line (r, θL, ϕL), and xH(r) (in blue) is a spherical helix centred at (r, θH , ϕH)
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starting from ϕH = π with angular radius rh ∈ (0, π) (radians) and angular velocity

ω > 0 (radians per unit parameter, right-handed seen from the North). This is the

simplest, non-trivial configuration which shall be called a helix-line pair.

6.1.1. Asymmetry of individual winding We first examine the test case when the line

xL and the (centre of) helix xH are both fixed at the North, i.e., (θL, ϕL) = (θH , ϕH) =

(0, 0), with rh = π/3 and ω = 2π (i.e., the darkest blue helix). In Figure 5(a), we plot

the individual spherical winding number L(xH ;xL) of helix relative to the line (in blue),

L(xL;xH) of line relative to helix (in red), and their average, pairwise winding number

L(xH ,xL) (in black), all against the radial parameter r as we trace both curves.

(a) (b)

Figure 5: Spherical winding numbers of a helix-line pair fixed at North with ω =

2π. Panel (a) plots the individual and pairwise winding numbers against the radial

parameter r for the case rh = π/3. Panel (b) plots the final individual and pairwise

winding numbers against the angular radius rh of the helix.

All three winding quantities are positive and increase linearly, as the helix xH

rotates right-handedly at a uniform speed. In particular, L(xH ;xL) measures the (full

or partial) number of turns completed by xH in the reference frame.

However, due to the asymmetry in the individual winding number Eq. (63) which

arises from the intrinsic curvature of spheres, L(xL;xH) is not equal to L(xH ;xL). In

fact, as pointed out by Campbell and Berger [10], L(xL;xH) can be computed directly

by the Gauss–Bonnet theorem,

L(xL;xH) =
L(xH ;xL)

2π

∮
xH

κg dl = L(xH ;xL)
cos rh
sin rh

· sin rh = L(xH ;xL) cos rh , (70)

where κg = cos rh/ sin rh is the geodesic curvature of the helix xH with angular radius rh
(as projections on the unit sphere). This agrees with our theory, but we have generalised

this computation to any pair of spherical curves, not just the simple example.
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6.1.2. Inside or outside? We return to the first example mentioned in the Introduction,

as shown in Figure 1(a), which is a helix-line pair fixed at North while the angular radius

rh of the helix increases from 0 to π. In Figure 5(b), we plotted the final (evaluated at

r = r2) spherical winding numbers, both individual and pairwise.

We observe that the final individual winding number L(xH ;xL) (in blue),

representing the accumulated winding of the helix xH seen from the line xL, is

independent on rh. This corresponds exactly to the total number of (full) rotations

of xH in reference coordinates.

However, the pairwise winding number L(xL,xH) (in black) does have an rh-

dependence. As we parallel transport the reference direction on xH , the individual

winding L(xL;xH) (in red) of xL seen from xH varies significantly. Indeed, its sinusoidal

variation against rh is explained by Eq. (70) as

L(xL;xH) = 4 cos rh at r = r2 . (71)

The fact that L(xL;xH) changes sign as rh varies can also be understood by the changes

in the sign of winding seen from the North and the transition for the line to reside

“inside” to “outside” of the helix, both indicating the chiral nature of helicity. These

observations are summarised in the table below:

L(xL;xH) rh apparent relation of

xL against xH

sign of winding

seen from North

positive < π/2 inside positive

0 = π/2 – 0

negative > π/2 outside negative

6.1.3. Pairwise or individual? Recall from Sec. 5.5 that we defined the pairwise

spherical winding number as the average of individual measures to restore the symmetry

about both curves. Next, we will demonstrate another advantage of the pairwise measure

using a different helix-line pair, shown in Figure 6(a). Here the helix xH is again fixed

at the North, i.e., (θH , ϕH) = (0, 0), with rh = π/4 and ω = 2π. The radial line xL

is moved continuously along (half-)circles ϕ = 0 and ϕ = π such that its polar angle

θL = θ when ϕL = 0 and θL = 2π − θ when ϕL = π.

We observe that in Figure 6(b) there are discontinuities separating regions of

constant winding. Discontinuities at θL = 45◦, 315◦ that are present in all three are

topologically significant. Their occurrences indicate the transitions of the line from being

“inside” to “outside” of the helix which are changes in the topology of the configuration.

However, the jumps in the individual winding numbers (in red and blue) at

θL = 135◦ and 225◦ are fictitious. They are recorded when the line crosses the “mirror”

helix (as shown in Figure 5(a)), i.e., the antipodal image of the actual helix, where
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(a) (b)

Figure 6: A helix-line pair where the line xL (in red) is moved along meridional circles

while the helix xH (in dark blue) of radius rh = π/4 is fixed at North, as shown in

Panel (a). A “mirror” helix (in pale blue) of radius r̃h = π − rh is shown. Panel (b)

plots the final individual and pairwise spherical winding numbers. Note that only the

pairwise quantity correctly detects true topological changes in the configuration, while

individual measures contain additional coordinate artefacts.

individual measures are ill-defined. Fundamentally, this is associated with the well-

known failure of a single coordinate system covering the entire sphere.

The pairwise winding number (in black), as the average of individual quantities,

remains continuous at θL = 135◦ and 225◦, since both curves “sense” this jump in an

equal and opposite way. This also can be explained from the vanishing values of the

factors Γ(ξ) in Eq. (44) and (1 + cos ξ) in Eq. (64) when ξ = π. Namely, no winding is

recorded at antipodal points. This further demonstrates the superiority of the pairwise

winding number over individual ones.

6.2. Spherical winding of a “belt-trick’ pair

The helix-line example highlighted some topological properties of spherical winding

due to the non-zero curvature, as opposed to its Cartesian counterpart. Another

difference between both geometries is the existence of the Dirac belt-trick or plate-trick,

as mentioned in the Introduction in Figure 1(b) and shown again in Figure 7.

In this continuous deformation, the blue curve xB that is initially not entangled (a)

to the radial line xL (in red) is taken behind the sphere (b)-(e) until back to a position

where it winds around xL almost once. Figure 8 plots the changes in the spherical

winding numbers as this occurs for the parametrisation shown in Figure 7.

We observe that in Figure 8(a) there is a continuous increase of the pairwise winding

number L from approximately 0 to 1 during the isotopic, Dirac belt-trick. While in the

Cartesian case, the (pairwise) winding number is a topological invariant under isotopy
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[7]. This illustrates the inherent impossibility to define a spherical winding measure

that depends only on the footpoints of curves on bounding surfaces.

(a) i = 1 (b) i = 20 (c) i = 25 (d) i = 30 (e) i = 40 (f) i = 50

Figure 7: Selected snapshots (as labelled in the parameterisation series i = 1, 2, · · · , 50)
of the curve xB (blue) performing the Dirac belt-trick against the radial line xL (red).

(a) (b)

Figure 8: Spherical winding numbers for a belt-trick pair with the curve xB and line

xL, calculated for the parameterisation shown in Figure 7. Panel (a) plots the final

pairwise measure L(xB,xL) against snapshot label i. Panel (b) shows winding numbers,

individual and pairwise, against the radial parameter r for the selected snapshots.

6.3. Spherical winding helicity of two bipolar magnetic regions in a dipole field

In the preceding examples, we considered spherical winding of curves not necessarily

as integral curves of any field. When curves do originate from a divergence-free field,

e.g., magnetic field B, then spherical winding helicity HW (B) – a flux-weighted average

of all pairwise winding according to Eq. (69) – is known to be a topological invariant

under ideal evolution if field line end-points on Sr1 and Sr2 remain fixed [46].

Here, we perform helicity calculations on a simple model of two bipolar magnetic

regions (BMR’s) that describe magnetic active regions on the solar surface. Our

configuration consists of two localised BMR’s centred on the equator, embedded within

a (current-free) global dipole field aligned with the polar axis.
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The two BMR’s have the mathematical form used by [24, 45], with in particular

a negative twist parameter giving them negative “self” helicity, in addition to any

mutual helicity they have with each other or with the overlying dipole field. They are

structurally identical but their strengths, denoted B1 and B2, are varied. For example,

when B1 = B2 two BMR’s are the exactly same, and when B1 = −B2 the two BMR’s

are identical in shape but with reverse polarity. The latter case is shown in Figure 9(a)

with field lines (in white) and surface magnetic strengths (in greyscale).

(a) (b)

Figure 9: (a). Field lines (in white) and surface magnetic strengths (in greyscale) for a

magnetic field composed of two localised BMR’s with B2 = −B1 on the equator and a

weak global dipole field that aligns with the polar axis. (b). Spherical winding helicity

HW (B) (solid) against the (equatorial) angular separation ξ of the centres of BMR’s,

with theoretical predictions (72) (dotted) for far-field decays.

For an independent verification of our formalism, we used a spherical

implementation of the numerical method of Yeates and Page [46] which calculates

the “minimal helicity” of a discretised spherical magnetic field, namely imposing

∇S ·AW = 0 on Sr1 and Sr2 . As mentioned in Sec. 3.2, the corresponding helicity is

equivalent to spherical winding helicity HW (B). The solid lines in Figure 9(b) show this

calculated HW (B) for three different cases against the (equatorial) angular separation

ξ of the centres of BMR’s.

The main theoretical prediction from our spherical winding formalism is the

asymptotics shown by dotted lines in Figure 9(b). These were computed by scaling

and translating the function(
sin ξ

1− cos ξ

)2

= [Γ(ξ)]2 =
1

[R(ξ)]2
, (72)

to fit far-field values, where R(ξ) is the distance between BMR’s in the projected plane

from Eq. (46). The different asymptotic contributions in each case arise both from the
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differing values of B2 and also from the differing winding of the BMR field lines with

respect to the overlying dipole (cf. [43]).

The reason for including two factors of 1/R(ξ) is as follows. Using the reduction

equation (47) to “flatten” a spherical field to an equivalent Cartesian field contributes

1/R. The other 1/R arises from the decay of the usual Cartesian winding helicity

between two localised magnetic sources. This illustrates how the curvature can have

a “localising” effect: the “mutual” winding helicity between two regions falls off more

strongly with distance than would be the case in a Cartesian model.

7. Gauge transformations with respect to the winding gauge AW

In this section, we investigate how open-field helicity H(B) in the winding gauge AW ,

i.e., open-field winding helicity HW (B), is geometrically related to that in other gauges.

We focus on the spherical case which includes the Cartesian case as a local version.

It is worth recalling that winding is a relative, or observer-dependent, quantity that

needs to be measured from some reference point and direction. This manifests, as in

Sec. 5.4, in the definition of the spherical winding angle ωv̂′(x;x′) of a curve x(t) seen

from another curve x′(t) measured against a local, reference direction v̂
′
(t). For the

winding interpretation to be bestowed on helicity HW (B), we defined v̂
′
(t) such that

it is covariantly constant on the (moving) frame of reference x′(t), i.e., an initial choice

v̂
′
0 fixes all subsequent values by parallel transport.

However, one might argue for the degree of freedom of arbitrarily assigning v̂
′
(t)

on x′(t) at every point provided the resulting winding is smooth. This is equivalent to

replacing the covariantly constant v̂
′
(t) with another unit surface vector ŵ

′
(t) given by

ŵ
′
(t) = v̂

′
(t) + v̂

′
Ψ(t) , (73)

where v̂
′
Ψ(t) is not necessarily covariantly constant on x′(t). We can write the modified

spherical winding rate of x(t) seen from x′(t) along ŵ
′
(t) as

dωŵ′

dt
=

dω

dt
+

dψ

dt
, (74)

where dψ/dt is defined as the extra winding generated by v̂
′
Ψ(t). In contrast, dω/dt is

direction-independent. This further leads to a change in Eq. (64) for spherical pairwise

winding number L(x,x′):

L(x,x′) =
1

4π

∫ 1

0

(
dω

dt
+

dω′

dt

)
dt+

1

4π

∫ 1

0

(
dψ

dt
+

dψ′

dt

)
dt , (75)

where dψ′/dt similarly represents the additional winding of x′(t) as seen from x(t)

due to a choice of a constant reference direction ŵ(t) on x(t) that is not covariantly

constant. We denote the second integral on the right by ∆L(x,x′; ŵ, ŵ
′
), which allows

us to write the general expression for the spherical open-field helicity H(B) (in any
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gauge) respect to HW (B)

H(B) = HW (B) +

∫
Sr

∫
Sr

∆L(x,x′; ŵ, ŵ
′
)Br(x)Br(x

′) d2x′ d2x . (76)

The (spherical) winding angles ω are reminiscent of the phase angles of

wavefunctions in quantum physics. This degree of freedom corresponds to rotations

in the winding-measure directions, which is a particular form of local coordinate

changes. Mathematically, smooth choices of reference directions everywhere in the

domain are described by connections on a principal U(1)-fibre bundle used in the

quantum formulation of electromagnetism. This is precisely associated with gauge

transformations. Interested readers are referred to e.g., Naber [30] for an introduction.

Here we present an explicit proof of the equivalence of gauge transformations with

local coordinate changes in the context of spherical open-field helicity. Consider an

arbitrary gauge transformation AW 7→ AW + ∇χ with respect to the winding gauge

AW , this results in a change in winding helicity HW (B) =
∫
V
AW ·B dV of

HW (B) 7→ H(B) = HW (B) +

(∫
Sr2

χBr dS −
∫
Sr1

χBr dS

)
. (77)

If we choose, for example,

χ =

(
r − r1
r2 − r1

)(∫
Sr

∫
Sr
∆L(x,x′; ŵ, ŵ

′
)Br(x)Br(x

′) d2x′ d2x∫
Sr2

Br dS

)
, (78)

then substituting into Eq. (77),

H(B)−HW (B) =

∫
Sr

∫
Sr

∆L(x,x′; ŵ, ŵ
′
)Br(x)Br(x

′) d2x′ d2x . (79)

Comparing with Eq. (76), we conclude that the helicity change from the gauge

transformation is induced by the changes in local coordinate changes of the type (73).

The choice of χ is however not unique, e.g., any function χ̃ = χ + ∆χ satisfying

∆χ(r1) = 0 and
∫
Sr2

Br∆χ dS = 0 is also valid.

Conversely, for a given gauge choice χ for the transformation A 7→ A + ∇χ, we

can recover the helicity change in Eq. (77) by performing local coordinate changes. For

example, this can be achieved by

dψ

dt
=

−4π∫ r2
r1
(
∫
Sr
Br dS)2 dr

(∫
Sr2

χBr dS −
∫
Sr1

χBr dS

)
,

dψ′

dt
= 0 , (80)

for every pair of field lines x and x′. By symmetry, this corresponds to an extra rotation

of constant rate in the local reference direction everywhere in the domain as in Eq. (75-

76). Hence, we explicitly proved a correspondence principle between gauges and local

(internal) rotations.
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Back to the winding gauge AW , we see that it corresponds to the only case (up

to integration) for which ∆L = 0, i.e., no extra winding is generated from rotations of

reference directions on each field line. This is the winding solely determined by the field.

Formally, this is equivalent to the trivial case when the identity element of U(1), i.e.,

no rotation, is chosen everywhere in the domain (i.e., a trivial section on the U(1)-fibre

bundle). Both facts can be used to argue that the winding gauge AW is a canonical

choice for open-field helicity in spherical domains, as well as in Cartesian domains.

8. Summary and discussion

In this paper, by proposing a new definition for spherical pairwise winding of curves,

we successfully extended the winding-based, geometrical interpretation for open-field

magnetic helicity from Cartesian to spherical shell domains. We have proven that, in

both geometries, the magnetic helicity in a certain gauge is equal to the average flux-

weighted pairwise winding of all magnetic field lines. This generalises the fact that

closed-field helicity can be understood as Gauss linking numbers. Since this particular

helicity is intrinsically defined from the magnetic field itself, it sidesteps the issue of

gauge dependence and defines a physically and mathematically meaningful quantity.

It is interesting to note that this winding gauge AW is a particular case of the

gauge that arises naturally from the toroidal-poloidal decomposition of B in spherical

(or Cartesian slab) geometry. Because the corresponding helicity has the interpretation

as a mutual linking between the toroidal and poloidal fields, such a gauge has previously

been suggested as appropriate for calculating open field helicity in spherical shells [6]. As

discussed in [6], this helicity may also be interpreted as the relative helicity with respect

to a potential reference field. Our work provides yet further physical justification for

this choice, by providing an alternative interpretation in terms of winding numbers.

We have effectively elevated the winding gauge AW to a canonical status among

all vector potentials via an argument using local frame choices for “winding observers”

following field lines. Frame-dependent quantities are ubiquitous in classical physics. For

example, the relativistic energy E of a moving point mass depends on the observer’s

frame choice, namely, E2 = (m0c
2)2 + (pc)2, where m0 and p are the rest-mass and

3-momentum and c is the speed of light in vacuum. Among all inertial frames, the rest

frame of the moving particle (with p = 0) measures rest energy E0 = m0c
2, which has

an intrinsic meaning. This in turn grants the rest frame a privileged status.

The role of the winding gauge AW for open-field helicity is similar to that of

the rest frame of a moving mass. When evaluated in AW (at least in Cartesian and

spherical geometries), each field line measures flux-weighted winding contributions from

surrounding field lines in its (covariantly constant) “rest frame” and open-field helicity

is nothing but the integrated average of all such contributions.

Gauge transformations with respect to AW correspond precisely to local changes

in the winding-measuring reference, i.e., observers on each field line now measure

“fictitious” winding from other field lines in a “moving frame”, analogous to the concept
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of “motional energy” in the above example. This degree of freedom in the winding-

measuring reference directions is formally a local U(1)-symmetry, recovering links to the

quantum formulation of electromagnetism from where macroscopic helicity originates.

Future investigations can be directed into the following aspects. Firstly, one can

generalise the winding formalism of open-field helicity by defining meaningful winding

quantities for more complicated domains. Examples include toroidal surfaces and

perturbations to planes and spheres. Secondly, in the numerical modelling of the global

evolution of magnetic fields on the solar surface, winding helicity can be calculated using

the proper spherical formula. Thirdly, one can extend the wavelet analysis of spatial

scales of magnetic structures using the Cartesian winding helicity [32] to the spherical

geometry in search of cross-scale interactions of different magnetically active regions.
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Appendix A. Derivation of the toroidal–poloidal decomposition

Here we justify the claim that any (suitably smooth) magnetic field in a Cartesian slab or spherical shell

may be decomposed as in Eq. (5). We will show that this is a consequence of the Hodge Decomposition

Theorem for vector fields; a version that suffices our needs can be stated as follows [19, 37, 39]:

Theorem 1 (Hodge Decomposition Theorem)Any finite, square-integrable vector field f(x) on a

C2 surface S ⊂ R3 (assumed henceforth) may be uniquely decomposed as a normal component fn = τ n̂

and a tangential component fS which is a sum of divergence-free, lamellar and harmonic components:

f = fn + fS = τ n̂+ (n̂×∇Sϕ+∇Sψ +ΩS). (A.1)

Here n̂ is the outward unit normal to S. Relevant fields may be determined from

τ = n̂ · f , (A.2)

fS = f − τ n̂ , (A.3)

∇2
Sϕ = n̂ · (∇× f) , (A.4)

∇2
Sψ = ∇S · fS , (A.5)

ΩS = fS − n̂×∇Sϕ−∇Sψ . (A.6)

For simply-connected surfaces, e.g., planes or spheres, one must have ΩS ≡ 0 [37]. For reference, we

define relevant surface differential operators for any vector field g and scalar field h on S as follows:

∇Sh = ∇h− n̂(n̂ ·∇h) , (A.7)

∇S · g = ∇ · g − n̂ · ∂g
∂n

, (A.8)

∇S × g = ∇× g − n̂× ∂g

∂n
, (A.9)

∇2
Sh = ∇S ·∇Sh . (A.10)

For our needs, let V = St × (t1, t2) be a foliation of St continuously parameterised by t ∈ (t1, t2) as

parallel planes (with n̂ = êz) or concentric spheres (with n̂ = êr). Also, let B(x) be a magnetic field in

V and suppose there exists some choice of vector potential or gauge field A(x) such that ∇×A = B.

Applying Theorem 1 to A for each St gives existence of the unique decomposition

A = τ n̂+ n̂×∇Sϕ+∇Sψ , (A.11)

where, according to (A.2-A.6),

τ = n̂ ·A , ∇2
Sϕ = n̂ ·B = Bn , ∇2

Sψ = ∇S ·AS . (A.12)

Taking the curl of Eq. (A.11), and simplifying the equations using that n̂ = êz or êr gives

B = ∇×
[
n̂

(
τ − ∂ψ

∂n

)]
−∇×∇× (n̂ϕ). (A.13)

Taking T ≡ τ − ∂ψ
∂n and P ≡ −ϕ gives the toroidal-poloidal form (5).

To verify Eq. (7), note that (A.12) already gives ∇2
SP = −Bn. For n̂ = êz or êr, taking n̂ · ∇× (A.13)

leads to ∇2
ST = −Jn = −n̂ · (∇ × B). Furthermore, adding functions of t to either T or P will not

affect B in our choices of foliating surfaces, so we are free to arrange that

⟨P ⟩S ≡
∫
St

P d2x = 0 , and ⟨T ⟩S ≡
∫
St

T d2x = 0 , ∀t ∈ (t1, t2) . (A.14)

The fact that explicit solutions to P and T can be written as Eq. (10-11) confirms (retrospectively) the

existence of such vector potentials in our domains of interest.
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Appendix B. Derivations of coordinate-free expressions of HW (B)

Appendix B.1. Cartesian winding helicity HW (B), Eq. (17)

For Cartesian slab domains V = Sz × (z1, z2), substituting flux functions P from Eq. (10) and T from

Eq. (11) into the defining equation (14) for AW gives

AW (x) =
−1

2π

∫
Sz

[
Bz(x

′)

(
−êx

∂ ln ξ

∂y
+ êy

∂ ln ξ

∂x

)
+ êz

(
∂By(x

′)

∂x′
− ∂Bx(x

′)

∂y′

)
ln ξ

]
d2x′ , (B.1)

where explicit Cartesian coordinates are used and ξ = |x− x′|. Using integration by parts, we claim∫
Sz

(
∂By(x

′)

∂x′
− ∂Bx(x

′)

∂y′

)
ln ξ d2x′ =

∫
Sz

(
By(x

′)
∂ ln ξ

∂x′
−Bx(x

′)
∂ ln ξ

∂y′

)
d2x′ . (B.2)

To justify this, note that, for any scalar function f(x), the following integrals over the open disk B(x, ϵ)
converge to zero, as ϵ→ 0:

0 ≤

∣∣∣∣∣
∫
B(x,ϵ)

f(x′)ln |x− x′|d2x′
∣∣∣∣∣ ≤ sup

B(x,ϵ)

|f |
∣∣∣∣∫ ϵ

0

ln ξ · 2πξ dξ
∣∣∣∣→ 0 , (B.3)

0 ≤

∣∣∣∣∣
∫
B(x,ϵ)

f(x′)

|x− x′|
d2x

′
∣∣∣∣∣ ≤ sup

B(x,ϵ)

|f |
∣∣∣∣∫ ϵ

0

1

ξ
· 2πξ dξ

∣∣∣∣→ 0 , (B.4)

where supB(x,ϵ) |f | is bounded, so the singularity x = x′ does not contribute. From Stokes’ theorem in

two dimensions, we have

êz ·
∫
Sz\B(x,ϵ)

∇′ × [B(x′) ln ξ] d2x′ = êz ·
∮
Cϵ

n̂2 ×B(x′) ln ξ dx′ , (B.5)

where ∇′× is with respect to x′ and Cϵ is an infinitesimal loop around the singularity x′ = x with

normal n̂2. We also used the assumption that B decays sufficiently fast at infinity. Note that the right

hand side vanishes since
∮
n̂2 dl

′ = 0 in the limit ϵ→ 0.

Thus, by expanding ∇′ × (B(x′) ln ξ) and taking inner products with B(x), we have

AW (x) ·B(x) =

∫
Sz

(
B(x′) ·BS(x)×∇SG+B(x) ·BS(x

′)×∇′
SG
)
d2x′ . (B.6)

Integrating over V yields the desired result, i.e., Eq. (17) in Sec. 3.

Appendix B.2. Spherical winding helicity HW (B) Eq. (18)

For spherical shell domains V = Sr × (r1, r2), substituting the spherical flux functions P from Eq. (10)

and T from Eq. (11) into the defining equation (14) for AW gives

AW (x) =

∫
Sr

[
Br(x

′)

r

(
êθ
sin θ

∂G

∂ϕ
− êϕ

∂G

∂θ

)
+

êrG

r sin θ′

(
∂

∂θ′
(Bϕ(x

′) sin θ′)− ∂Bθ(x
′)

∂ϕ′

)]
d2x′ , (B.7)

written in some reference spherical polar coordinates (r, θ, ϕ) with polar angle θ ∈ [0, π] and azimuthal

angle ϕ ∈ [0, 2π). Note that, êr, êθ, êϕ are the orthonormal basis vectors at x. Note that they are

different from the coordinate basis vectors (∂r, ∂θ, ∂ϕ) which are not normalised. Using integration by

parts, we claim that the radial component can be evaluated as∫
Sr

G

r′ sin θ′

(
∂

∂θ′
(Bϕ(x

′) sin θ′)− ∂Bθ(x
′)

∂ϕ′

)
d2x′ =

∫
Sr

(
−Bϕ(x

′)

r′
∂G

∂θ′
+
Bθ(x

′)

r′ sin θ′
∂G

∂ϕ′

)
d2x′ . (B.8)

To justify this step, note that the problem lies in the singularity x = x′. For the term involving ∂/∂θ′ ,

it suffices to consider ϕ′ = ϕ and G = G(θ, θ′) = ln cos(θ − θ′)/4π. We can divide the θ′-range into
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S1 ∪ B(θ, ϵ) ∪ S2 where S1 = [0, θ − ϵ) and S2 = (θ − ϵ, π]. In S1 ∪ S2, there is no singularity and

integration by parts can be used,∫
S1∪S2

G

r′ sin θ′
∂

∂θ′
(Bϕ(x

′) sin θ′) r2 sin θ′ dθ′ =

∫
S1∪S2

−Bϕ(x
′)

r′
∂G

∂θ′
r2 sin θ′ dθ′ , (B.9)

where the boundary term vanishes due to the continuity of Bϕ(x
′) and the fact that G(θ, θ − ϵ) =

G(θ, θ + ϵ). When θ′ ∈ B(θ, ϵ), define t = θ′ − θ < ϵ≪ 1, we have G(θ, θ′) = ln
(
t2/4

)
+O(t2) and∫ θ+

θ−

(
G

r sin θ′
∂

∂θ′
(Bϕ(x

′) sin θ′)

)
r2 sin θ′ dθ′ =

∫ ϵ

−ϵ

[
ln
(
t2/4

)
+O(t2)

] ∂
∂t

(Bϕ(x
′) sin θ′)r dt→ 0 ,

(B.10)

where θ± = θ ± ϵ, since ∂(B′
ϕ sin θ

′)/∂t is assumed smooth and
∫ ϵ
−ϵ ln

(
t2/4

)
dt → 0 as ϵ → 0. The

integral involving ∂/∂ϕ′ can be evaluated similarly. Hence,

AW (x) =

∫
Sr

[
Br(x

′)

r

(
êθ
sin θ

∂G

∂ϕ
− êϕ

∂G

∂θ

)
+ êr

(
−Bϕ(x

′)

r′
∂G

∂θ′
+
Bθ(x

′)

r′ sin θ′
∂G

∂ϕ′

)]
d2x′ , (B.11)

and taking inner product with B(x) gives

AW (x) ·B(x) =

∫
Sr

[
Br(x

′)

r

(
Bθ(x)

sin θ

∂G

∂ϕ
−Bϕ(x)

∂G

∂θ

)
+
Br(x)

r

(
Bθ(x

′)

sin θ′
∂G

∂ϕ′
−Bϕ(x

′)
∂G

∂θ′

)]
d2x′ .

(B.12)

Using that ∇S = 1
r∂θêθ +

1
r sin θ∂ϕêϕ and similarly for ∇′

S , we have

AW (x) ·B(x) =

∫
Sr

(
B(x′) ·BS(x)×∇SG+B(x) ·BS(x

′)×∇′
SG
)
d2x′ . (B.13)

Integrating over V yields the desired result, i.e., Eq. (18) in Sec. 3.

Appendix C. A Summary of geometrical facts of 2-spheres

This appendix focuses on the unit 2-sphere S2 = {x ∈ R3 : |x| = 1} (embedded in the Euclidean space

R3). Italic letters, e.g., x,y, · · · , are used to denote Cartesian vectors, while gothic letters, e.g., x,y, · · · ,
are used for surface vectors on S2 which will be defined below. The main references for this appendix

are Lee [23] and Brannan et al. [9].

Appendix C.1. Tangent spaces and vectors

Suppose a point p ∈ S2 has position vector xp which is also the local (outwards) normal vector on S2,

then there is a unique, 2-dimensional tangent space Tp normal to xp, i.e.,

Tp = {x ∈ R3 : (x− xp) · xp = 0} (C.1)

which is isomorphic to R2. Surface vectors at xp on S2 can only be defined in Tp as tangent vectors;

namely, a Cartesian vector v ∈ R3 is regarded as a surface vector vp ∈ S2 at p, if and only if v ·xp = 0.

It is therefore crucial to distinguish whether the vector is defined in R3 or on S2.

A smooth (surface) vector field v on S2 is a smooth assignment of surface vectors everywhere on S2.

For example, a magnetic field B consists of a normal component Br = (B · xp)xp, and an in-plane

component BS = B −Br. Only the latter is a vector field on Sr since BS · xp = 0, by definition.

Appendix C.2. Great circles, geodesic distances and separation vectors

Suppose A,B are distinct points on S2 with position vectors xA and xB , respectively. They are called

antipodal if xA = −xB . When they are not, there exists a unique great circle γAB : [0, 1] → S2 through

A and B, which can be defined as the intersection of the plane OAB with S2.
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Any arc of a great circle on S2 is a geodesic, or length-extremising curve, between the endpoints and

vice versa with respect to the (induced) metric on S2. It is the spherical analogue of a straight line

on Cartesian planes. Using great circles, we define the spherical distance or geodesic distance between

points A, B, denoted ξ(xA,xB), as the Euclidean length of the shorter arc
⌢

AB of the great circle

through them, given by

ξ(xA,xB) = arccos(xA · xB) ∈ (0, π] . (C.2)

Note that the case of antipodal points, i.e., when ξ = π, is included in Eq. (C.2) as it can be obtained

from any great circle through both points. We define ξ(x,x) = 0 for all x ∈ S2. Indeed, one can prove

that the geodesic distance provides a metric on S2.

Surface vectors on S2 arise as tangent vectors to curves. Given that A,B are non-antipodal with γAB
being the great circle through them, it is natural to define the mutually-pointing, unit tangent vector

êξ,A (or êξ,B) to γAB at A (or B), namely,

êξ,A =
dγAB
dt

∣∣∣∣
A

, êξ,B =
dγAB
dt

∣∣∣∣
B

, (C.3)

where t is used to parameterise γAB and both vectors are defined up to an undetermined choice of signs

such that they point along the shorter arc. Both êξ,A and êξ,B are called (geodesic) separation vectors.

To obtain a parameterised equation for γAB with position vector rAB , note that it is the intersection

of S2 and the plane OAB, i.e., for scalars λ, µ,

rAB = λxA + µxB , |rAB |2 = 1 = λ2 + µ2 + 2λµ cos ξ , (C.4)

using |xA|2 = |xB |2 = 1 and xA · xB = cos ξ. Solving for λ in terms of µ gives

λ = −µ cos ξ ±
√
1− µ2 sin2 ξ . (C.5)

Define parameter t ∈ [0, 2π) such that µ = sin t/ sin ξ, then λ = − sin t cot ξ ± cos t, and

rAB(t) = cos t xA + sin t (− cot ξ xA + csc ξ xB) , (C.6)

choosing the positive sign such that rAB(t = 0) = xA. Note that the arclength
⌢

AB computed in the

direction of increasing t is automatically the shorter of the two, since

rAB(t) = rB ⇐⇒

{
sin t csc ξ = 1 ,

cos t− sin t cot ξ = 0 ,
⇐⇒ t = ξ ∈ (0, π) . (C.7)

Therefore, the tangent vector of rAB at xA is given by

êξ,A =
drAB
dt

∣∣∣∣
t=0

=
− cos ξ xA + xB

sin ξ
, (C.8)

which can be easily checked that it is of unit length using xA · xB = cos ξ. Similarly,

êξ,B =
drBA
dt

∣∣∣∣
t=0

=
− cos ξ xB + xA

sin ξ
, (C.9)

reversing the rôles of xA and xB . The unit (tangent) vectors in the local azimuthal direction êχ,A and

êχ,B , can be defined using right-handedness and orthonormality, i.e.,

êχ,A =
êr,A × êξ,A
|êr,A × êξ,A|

, êχ,B =
êr,B × êξ,B
|êr,B × êξ,B |

. (C.10)
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Appendix C.3. Parallel transport and covariant derivatives

As surface vectors are locally defined on spheres, they cannot be directly compared like Euclidean ones

so differentiation is ill-defined. Let (r, θ, ϕ) be a spherical polar coordinate system with polar angle

θ ∈ [0, π] and azimuthal angle ϕ ∈ [0, 2π]. The coordinate basis vectors eθ, eϕ can be defined as

eθ = r(cos θ cosϕ êx + cos θ sinϕ êy − sin θ êz), eϕ = r sin θ (− sinϕ êx + cosϕ êy) , (C.11)

in terms of Euclidean basis vectors êx, êy, êz, and the orthonormal basis vectors are given as

eθ = rêθ, eϕ = r sin θ êϕ . (C.12)

Consider a parameterised curve C : x(t) = (r, θ(t), ϕ(t)) on the sphere of radius r and a surface vector

field f = fθeθ + fϕeϕ. The directional or covariant derivative of f along C is given as

df

dt

∣∣∣∣
C

=
dfθ

dt

∣∣∣∣
C

eθ + fθ
deθ
dt

∣∣∣∣
C

+
dfϕ

dt

∣∣∣∣
C

eϕ + fϕ
deϕ
dt

∣∣∣∣
C

. (C.13)

Using Eq. (C.11), we have, by explicit computations,

∂eθ
∂θ

= −rêr,
∂eθ
∂ϕ

= cot θ eϕ;
∂eϕ
∂θ

= cot θ eθ,
∂eϕ
∂ϕ

= − sin θ(cos θ eθ + sin θ êr) , (C.14)

where êr is the unit radial vector. Writing θ̇ = dθ/dt and fθ,θ = ∂fθ
/
∂θ etc., we have

df

dt

∣∣∣∣
C

=

(
dfθ

dt

∣∣∣∣
C

− fϕ sin θ cos θ ϕ̇

)
eθ +

[
dfϕ

dt

∣∣∣∣
C

+ cot θ(fθϕ̇+ fϕθ̇)

]
eϕ . (C.15)

A vector field f is called parallel transported along the curve x if

df

dt

∣∣∣∣
C

= 0 . (C.16)

This is known as the parallel transport equation, which can be used to determine the field parallel

transported on the curve x given an initial value. Such a field is also called covariantly constant on x.


