
J
H
E
P
0
1
(
2
0
2
3
)
0
7
1

Published for SISSA by Springer

Received: November 19, 2022
Revised: December 21, 2022

Accepted: December 22, 2022
Published: January 16, 2023

Fermionic spectral walls in kink collisions

J.G.F. Campos,a A. Mohammadi,b J.M. Queiruga,c,d A. Wereszczynskie
and W.J. Zakrzewskif
aDepartamento de Física, Universidade Federal da Paraíba,
João Pessoa, PB, 58051-970, Brazil

bDepartamento de Física, Universidade Federal de Pernambuco,
Av. Prof. Moraes Rego, 1235, Recife, PE, 50670-901, Brazil

cDepartment of Applied Mathematics, University of Salamanca,
Casas del Parque 2, 37008, Salamanca, Spain

dInstitute of Fundamental Physics and Mathematics, University of Salamanca,
Plaza de la Merced 1, 37008, Salamanca, Spain

eInstitute of Physics, Jagiellonian University,
Lojasiewicza 11, Kraków, Poland

fDepartment of Mathematical Sciences, University of Durham,
Durham DH1 3LE, United Kingdom
E-mail: joaogfc@gmail.com, azadeh.mohammadi@ufpe.br,
xose.queiruga@usal.es, andrzej.wereszczynski@uj.edu.pl,
w.j.zakrzewski@durham.ac.uk

Abstract: We show that a spectral wall, i.e., an obstacle in the dynamics of a bosonic
soliton, which arises due to the transition of a normal mode into the continuum spectrum,
exists after coupling the original bosonic model to fermions. This spectral wall can be
experienced if the boson or fermion field is in an excited state. Furthermore, while passing
through a spectral wall, an incoming kink-fermion bound state can be separated into purely
bosonic kink, which continues to move to spatial infinity and a fermionic cloud that spreads
in the region before the wall.

Keywords: Field Theories in Lower Dimensions, Nonperturbative Effects, Solitons
Monopoles and Instantons

ArXiv ePrint: 2211.07754

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2023)071

mailto:joaogfc@gmail.com
mailto:azadeh.mohammadi@ufpe.br
mailto:xose.queiruga@usal.es
mailto:andrzej.wereszczynski@uj.edu.pl
mailto:w.j.zakrzewski@durham.ac.uk
https://arxiv.org/abs/2211.07754
https://doi.org/10.1007/JHEP01(2023)071


J
H
E
P
0
1
(
2
0
2
3
)
0
7
1

Contents

1 Introduction 1

2 Supersymmetric BPS-impurity model 2

3 Spectral structure 6

4 Spectral wall in the presence of fermions 8
4.1 Bosonic spectral wall 8
4.2 Spectral wall with fermions 9

5 Conclusions 15

1 Introduction

The role of internal modes in multi-kink collisions has been widely studied. Now, after more
than 40 years of investigations, we have a reasonably good understanding of the impact of
normal and quasi-normal modes on soliton dynamics, especially in the case of bosonic field
theories in (1+1) dimensions.

First of all, such modes may trigger, via the resonant energy transfer mechanism [1],
a chaotic (or even fractal) structure in the final state formation in multi-kink collisions.
The most prominent example of such behavior is the kink-antikink scattering in φ4 theory,
where the normal mode of a single kink, called the shape mode, can temporarily store some
part of the energy, allowing or not, for the solitons to reappear in the final state [1, 2].
This has been confirmed only very recently by constructing a collective coordinates model
based on two moduli involving the distance between the kinks and the amplitude of the
mode [3]. Furthermore, the resonant energy transfer can also be switched on by the effective
modes existing only in multi-kink configurations, such as delocalized modes in antikink-kink
collisions in φ6 theory [4, 5] or by quasi-normal modes [6] or even by sphalerons [7]. In fact,
similar chaotic structures have been observed in many other models, see e.g., [8–18].

A different phenomenon intimately related to normal modes is the spectral wall [19].
It involves a formation of an arbitrary long-living stationary state due to the transition
of a normal mode into the continuum spectrum. In particular, if we scatter a kink with
initial velocity v and initially excited mode η of amplitude A on another soliton or a non-
dynamical background field (impurity), and assume that this mode hits the mass threshold
at asw, which can be related to the distance between the antikink and the other kink or
impurity, then this process can proceed through three scenarios: (i) if A > Acr the kink is
back-scattered before reaching the point asw at which the mode enters the continuum; (ii) if
A < Acr then the kink can pass through the point asw at which the distortion of its motion
becomes increasingly weaker as the amplitude decreases; (iii) and finally, for A = Acr, the
kink may form a stationary state with its position frozen at asw. Hence, a spectral wall
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acts as an obstacle in the kinetic motion of a kink. This can be a long-range obstacle as
modes may enter the continuum even at a considerable distance before the kink meets other
soliton or impurity. Furthermore, this is a very selective obstacle that is experienced only if
the pertinent mode is sufficiently excited. Excitation of another mode η′ does not have any
impact on passing the spectral wall by the mode η.

Undoubtedly, spectral walls govern low-velocity dynamics of kinks in various solitonic
processes, see e.g., antikink-kink collision in the φ6 model [22]. In the BPS processes, where
a collision occurs via passing through a sequence of energetically equivalent solutions, the
position of the spectral wall is uniquely determined by the transition of the given mode to
the continuum. Also, it is not affected by details of the initial configuration [19, 20]. In
non-BPS collisions, a modification arises from a static force between the colliding solitons
or soliton-impurity, which changes the position of the stationary solution [21]. So, the BPS
(thin) spectral wall becomes a non-BPS (thick) spectral wall. The main difference is that
its position athicksw does depend on the initial condition, i.e., on the initial velocity of the
colliding solitons. However, the selective nature remains unchanged.

A natural extension of kink models in (1+1) dimensions is to couple them to fermions.
Due to the rather high complexity of such systems, the back reaction of the fermions on the
kinks has usually been neglected. Thus in [23–26] the transfer of fermions in kink-antikink
(or in general, brane collisions) or in kink-impurity was studied, but without back reaction.
However, it has only been very recently realized that the back reaction may have a very
nontrivial effect on static [28–30] as well as on dynamical properties of kinks [31, 32]. In
particular, in [31], it was shown that the fermion field generates a force, either attractive
or repulsive, depending on how one distributes the fermion field on the kink and antikink.
Thus, resonance windows in the kink-antikink collisions in the supersymmetric φ4 model
could be highly affected by the presence of the fermion. What is even more exciting is
the fact that the fermion energy could also play a role in the resonant energy exchange
mechanism, generating resonance windows for a theory that in a purely bosonic sector is
integrable like in the sine-Gordon model [32].

In the present work, we investigate the fate of thin spectral walls in a boson-fermion
system in which the back reaction of the fermion on the kink is fully taken into account. For
this, we have chosen the most straightforward nontrivial theory, i.e., a supersymmetric BPS-
impurity model. In this case, in a purely bosonic version, there is a one-parameter family
of energetically equivalent BPS antikink-impurity static solutions representing the soliton
at any distance from the impurity. Nonetheless, the spectrum of the linear modes varies
as the antikink approaches the impurity. In particular, a normal mode can hit the mass
threshold at a certain soliton-impurity distance allowing for the existence of a spectral wall.

2 Supersymmetric BPS-impurity model

In this section, we introduce the supersymmetric extension of the BPS-impurity model. We
begin with the following superfield Lagrangian

LΦ =
∫
d2θ

(1
4D

αΦDαΦ +W (Φ)
)
, (2.1)

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
1

with

Φ = φ+ θ̄ψ + 1
2 θ̄θF, (2.2)

Dα = ∂

∂θ̄α
− i (γµθ)α ∂µ, (2.3)

Dα ≡ D̄α = Dβ

(
γ0
)
βα
, (2.4)

and θ̄ = θγ0, for a minimal N = 1 SUSY in 1 + 1 dimensions. Performing the integration,
the Lagrangian takes the following form (see, for example, [33])

LΦ = 1
2
(
(∂µφ)2 + ψ̄i/∂ψ + F 2

)
+
√

2W ′(φ)F −
√

2
2 W ′′(φ)ψ̄ψ, (2.5)

where we have rescaled W →
√

2W and used the normalization 1
2
∫
d2θ θ̄θ = 1 for the

Grassmann integral.
The Lagrangian (2.1) is invariant under the following N = 1 SUSY transformations:

δφ = ξ̄ψ, (2.6)
δψα = −i(γµξ)α∂µφ+ ξαF, (2.7)
δF = −iξ̄γµ∂µψ, (2.8)

where ξ = (ξ1, ξ2) is a constant Grassmann spinor. The above symmetry leads to the
following conserved Noether supercurrent:

Jµα = (γνγµψ)α(∂νφ) + i
√

2W (φ)(γµψ)α. (2.9)

The interaction of the field φ with the non-dynamical background field (impurity) σ is taken
in a particular form

Lσ =
√

2σW ′(φ) (F − φx)−
√

2
2 ψ̄ψW ′′(φ)σ, (2.10)

which is prescribed by means of a SUSY argument [34]. The interacting part of the
Lagrangian (2.10) changes into a total derivative under the SUSY transformation provided
that ξ2 = 0

δLσ|ξ2=0 = ξ1∂t
(
−i
√

2σW ′(φ)ψ2
)
, (2.11)

where we have used the following representation γ0 = σ2, γ
1 = iσ3 for the Dirac gamma

matrices. This implies that only one supercurrent, Jµ1 , is conserved, which receives an extra
contribution from the supercurrent in (2.11). Consequently, although the impurity explicitly
breaks half of the N = 1 supersymmetry, the other half is preserved, and one BPS sector,
with a corresponding Bogomolny equation, survives.
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As usual, the field equation for F is purely algebraic and can be eliminated. For the
full model L = LΦ + Lσ we have

∂L
∂F

= 0⇒ F = −
√

2W ′(φ)(1 + σ). (2.12)

By inserting this value into the Lagrangian we get

Lon-shell = 1
2
(
(∂µφ)2 + ψ̄i/∂ψ

)
− (1 + σ)2W ′(φ)2 −

√
2

2 ψ̄ψW ′′(φ)(1 + σ)−
√

2σW ′(φ)φx.
(2.13)

From now on, we take the semi-classical approach, in which the fermion up and down
components are c-numbers. It is easy to understand that a collection of a very large number
of bosons present coherently in more or less the same quantum state can be described by a
classical field theory. However, this is not the case for the fermions. It is possible to prove
that it also works for the fermion fields, although for a different reason and a completely
distinct physical interpretation. A detailed demonstration of this assertion can be found
in [35], chapter 9.

The field equations can then be expressed as

φtt = φxx − 2W ′(φ)W ′′(φ)(1 + σ)2 +
√

2σxW ′(φ)−
√

2
2 ψ̄ψW ′′′(φ)(1 + σ), (2.14)

for the boson field and
i/∂ψ −

√
2W ′′(φ)(1 + σ)ψ = 0, (2.15)

for the fermion one. The last term in (2.14) determines the back-reaction of the fermion on
the boson field. The fermions in the supersymmetric model considered here are Majorana.
However, taking the semi-classical approach, the back-reaction term for Majorana fermions
vanishes. For this reason, we shall not restrict ourselves to this case. We take Dirac fermions
instead in our analysis.

Next, we assume that the fermion field is initially normalized to unity∫ ∞
−∞

ψ†(x, 0)ψ(x, 0)dx = 1. (2.16)

Due to the unitarity of the evolution of the Dirac field, the initial normalization is preserved
for all times t.

Our model possesses a static BPS sector for which solutions obey the field equa-
tions (2.14), (2.15). Specifically, they become:

φsx +
√

2W ′(φs)(1 + σ) = 0, (2.17)

ψs0 = N√
2

(
φs

x
1+σ
0

)
. (2.18)

The first equation can be easily obtained using the SUSY transformations and clearly
coincides with the Bogomolny equation of the purely bosonic version of the model. The
second equation defines the fermionic zero mode. The existence of the bosonic Bogomolny
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equation gives rise to a one-parameter family of static, energetically equivalent BPS solutions.
It should be emphasized that for an arbitrary coupling of the background field to the boson-
fermion system, the bosonic Bogomolny equation does not exist.

Note that solutions of the BPS sector are solutions of the full theory with or without
the back-reaction term. Thus, the fermion zero mode does not back-react on the kinks.
The multiplicative constant N should be chosen to obey the normalization condition. It
is well known that there is no back-reaction of the fermionic zero mode on the kinks for
the models with energy reflection symmetry [27, 28]. This is also the case for the Yukawa
fermion-kink interaction we are dealing with here. This is consistent with the result we
have found in (2.18) as if there is no back-reaction. Our result represents a fermionic zero
mode attached to the BPS kink.

Now, let us specify our model. We choose the potential of the φ4 theory

W ′(φ) = mβ

[
1− (φ/β)2
√

2

]
, (2.19)

where we have included all the relevant parameters. Next, we perform a rescaling of
the fields and coordinates, consisting of φ → βφ and xµ → m−1xµ. To maintain the
normalization condition (2.16), the fermionic field is also modified as ψ → m1/2ψ. After
these manipulations, the bosonic equation of motion becomes

φtt = φxx + 2φ(1− φ2)(1 + σ)2 + σx(1− φ2) + 1
β2 ψ̄ψ(1 + σ), (2.20)

where the parameter β controls the strength of the back reaction. The fermionic equation,
as well as the normalization condition, remain unchanged.

Next, we choose the background field in the form

σ(x) = α sech2(x), (2.21)

which describes an exponentially localized impurity located at the origin. Here α is a real
number. In this case, the BPS solutions take the form:

φs(x; c) = − tanh (x+ c+ α(tanh(x) + 1)) . (2.22)

They describe a φ4 antikink located at some distance from the impurity. The soliton becomes
distorted as it approaches the origin; otherwise, its shape coincides with the usual tanh
function. Since all these solutions possess the same energy, there is no static force between
the antikink and the impurity. Similar behavior also occurs for the fermionic zero mode.

In our numerical analysis, we can choose an alternative parameterization of the BPS
antikink solutions. Namely, φs(x;X), where X is the position of its center, which is defined
by the point where the scalar field vanishes, that is, φs(x;X) = 0. For the current model,
the definition above defines a unique X. Figure 1 shows the evolution of the above antikink
in X space with parameter α = 3.0. Kinks far from the impurity are indistinguishable from
the usual tanh(x) solution. Near the impurity, we observe a steeper passage through φ = 0.
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Figure 1. Evolution of the antikink in X space. We set α = 3.0.

3 Spectral structure

Although the BPS solutions are energetically degenerate, the spectral structure, which is the
structure of linear perturbations, changes as we alter the value of c (or X). Thus, already
a linear perturbation of the BPS sector can exhibit fascinating and nontrivial dynamics.
Importantly, due to the absence of static force, we can clearly see the role played by the
normal modes.

For simplicity, we will look next at the linear stability equations in the absence of the
back-reaction term. To do this, let us consider perturbations of the form

φ = φs + eiωtη(x). (3.1)

Taking (2.14) into account, we note that η(x) satisfies, at the linear level, the following
equation: (

−∂2
x + V−

)
η(x) = ω2η(x), (3.2)

where
V± = U2 ± dU

dx
, (3.3)

with
U =

√
2W ′′(φs) (1 + σ) . (3.4)

We computed the kink’s spectrum as a function of the parameter X. This is shown in
figure 2. For large |X|, the excited state frequency ω coincides with the frequency of the
shape mode in the absence of impurity, as expected. However, it increases near X = 0.
If α is large enough, ω reaches the threshold value, the junction between the bound and
continuum spectrum. This happens at two critical points, symmetric around X = 0. For
α = 3.0, we find the critical values to be Xsw = ±1.718. The points at which a mode hits
the mass threshold will be further linked to the appearance of spectral walls.
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Figure 2. Kink’s bosonic and fermionic spectrum as a function of X.

In order to obtain the fermionic modes, we consider the following ansatz:

ψ(t, x) = e−iεrtψ(x). (3.5)

As a result, the fermionic modes satisfy

i∂xψ
r
2 + iUψr2 = εrψ

r
1, (3.6)

i∂xψ
r
1 − iUψr1 = εrψ

r
2. (3.7)

Then the second-order decoupled equations for up and down components take the form:(
−∂2

x + V−
)
ψr1 = ε2rψ

r
1, (3.8)(

−∂2
x + V+

)
ψr2 = ε2rψ

r
2. (3.9)

Let us note that the equations (3.2) and (3.8) are the same. This comes from SUSY,
guaranteeing the same spectra for the boson and fermion fields.

In the language of SUSY quantum mechanics, the potentials V± in (3.8) and (3.9)
are supersymmetric partners. For ε0 = 0, their solutions correspond to the fermionic
zero mode and coincide with the solutions (2.18). Using standard results, it is trivial to
show that, except for the zero mode (where ψr2 is trivial), both equations have identical
spectra. Therefore, for a given (α,X), if (3.2) has n normalizable modes, then (3.8) has n
normalizable modes and (3.9) has (n− 1) plus a trivial one. Consequently, the number of
fermionic and bosonic modes is the same.

Obviously, in a complete analysis, one should also consider the coupled linear perturba-
tion problem. Depending on the value of the back-reaction parameter, this would lead to
some modifications in the linear spectrum. Fortunately, for our purposes, it is enough to
stay in the decoupled regime.
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Let us also underline that the fermionic mode has to have a uniquely defined amplitude
due to the normalization condition. Contrary to the bosonic shape mode, its amplitude is
not a free parameter of the initial data.

4 Spectral wall in the presence of fermions

4.1 Bosonic spectral wall

Before studying how the fermion field affects the spectral wall phenomenon, let us briefly
describe the spectral wall phenomenon in the bosonic sector with ψ = 0 [19]. To do this,
we integrate the equation of motion, which is given by

φtt = φxx + 2(φ− φ3)(1 + σ)2 + σx(1− φ2). (4.1)

For the initial condition we take

φ(x, t) = − tanh [γ(x+X0 − vt)] +A cos(
√

3t) tanh [γ(x+X0 − vt)] sech [γ(x+X0 − vt)] ,
(4.2)

which describes an antikink far from the impurity with the excited shape mode. The
parameter A describes the amplitude of the wobbling. If the shape mode is not excited,
the evolution goes along the sequence of the energetically equivalent BPS configurations.
This can be very accurately described by a geodesic motion arising from a collective model
based on the BPS solutions with the modulus c [36].

Next, we assume that the shape mode is excited, carrying some part of the energy.
As the antikink approaches the impurity, the frequency of the mode rises, and finally,
at X = Xsw, it equals the mass threshold. At this point, the normal mode becomes a
non-normalizable threshold mode. This has a profound effect on the soliton dynamics.

To see this, we consider the antikink whose initial position is X = 10.0, which is far
enough so that the impurity does not deform the antikink. Let us take the initial velocity
of the antikink as v = 0.01. The equations can be integrated in a box in the interval
−100.0 < x < 100.0 with anti-periodic boundary conditions, divided by step size ∆x = 0.05.
The space derivatives are computed using a five-point stencil approximation. The resulting
set of equations has been integrated using a fifth-order Runge-Kutta method with adaptive
step size and error control. The energy conservation has been measured throughout the
evolution, and the maximum error is of order 10−5.

The path taken by the antikink is shown in figure 3 for several values of A. The
behavior strongly depends on the amplitude of the mode. For small amplitudes, A < Acr,
the antikink passes through the point where the normal mode disappears x = Xsw. The
distortion of the geodesic motion becomes smaller as the amplitude decreases. For large
amplitudes, A > Acr, the antikink is back-scattered before x = Xsw. The reflection occurs
earlier for larger values of the amplitude. Finally, for the critical amplitude Acr ' 0.0207,
the antikink forms a quasi-stationary state located precisely at x = Xsw. This is the position
of the spectral wall. This value is independent of the initial velocity.
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Figure 3. Antikink’s position as a function of time for several values of the shape mode amplitude.

4.2 Spectral wall with fermions

Next, we consider the full supersymmetric model. A natural generalization of the collision
in the purely bosonic sector is to choose for the initial configuration an excited antikink,
carrying the shape mode, bound with an unexcited fermion field. This configuration is then
boosted towards impurity. Thus, our initial configuration at t = 0 is the same as (4.2) and

ψ(x, t = 0) = NΛ
(

1/ cosh2[γ(x+X0)]
0

)
, (4.3)

where
Λ =

(
cosh(χ/2) − sinh(χ/2)
− sinh(χ/2) cosh(χ/2)

)
, (4.4)

with χ = tanh−1(v) and N chosen to fulfill the normalization condition. The matrix Λ is
the boost operator. The fermion contribution is just a boosted zero mode, and therefore
ψ̄ψ|t=0 = i[ψ∗2(x, t)ψ1(x, t)− ψ∗1(x, t)ψ2(x, t)]|t=0 = 0. In other words, for this initial state,
there is no back-reaction of the fermionic field in the bosonic equation of motion. As it was
shown in [31], this implies that ψ̄ψ term vanishes for any t > 0. Therefore, there is no back
reaction during the whole evolution. Thus, the dynamics of the kink is exactly as in the
purely bosonic version of the model, and the spectral wall remains intact. Furthermore, the
fermion at the zero mode stays bound to the antikink at any time t > 0.

To allow for a non-zero back reaction, we need to consider an initial condition that
goes beyond the fermionic zero mode. Here, an obvious choice is the first excited fermion
state. The initial condition in our simulations now takes the form

φ(x, t) = − tanh [γ(x+X0 − vt)] , (4.5)
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Figure 4. Antikink’s position as a function of time for several values of the back-reaction coupling
constant β.

and

ψ(x, t = 0) = NΛ
(√

3 tanh [γ(x+X0)] sech [γ(x+X0)]
i sech [γ(x+X0)]

)
. (4.6)

The amplitude N is again fixed by the normalization of the fermion field. The scalar field
corresponds to an unexcited antikink, while the fermion field corresponds to the solution
for the fermion’s first excited state. Importantly, the fermion field is entirely in the excited
state. The parameters are again v = 0.01 and X0 = 10.0. Moreover, the employed numerical
methods are the same as before, and we obtain a maximum error in the total energy of the
order of 10−4. To confirm our numerical results, we also varied the box size.

The results of our simulations are shown in figure 4. Interestingly, we also find a spectral
wall located exactly in the correct position. Now, this is triggered by the fermion excited
state. In the no-back reaction spectral problem approximation, this state hits the mass
threshold precisely at the same X = Xsw. The fact that we see the wall at this position
confirms the correctness of this approximation for the spectral problem. We remark that,
due to the fixed normalization of the initial fermion field, the only parameter that can be
varied is the strength of the back-reaction β. This is a rather fundamental difference to
the bosonic sector where the amplitude of the mode is an adjustable initial parameter. In
our simulations, we took β ∈ [44, 46]. We find that the quasi-stationary solution is formed
when this coupling takes the following critical value βcr ' 44.8.

Due to the coupling between bosonic and fermionic sectors, it could be that the fermion
field excites the bosonic field, and the spectral wall comes from this bosonic excitation.
To verify that, we subtracted the kink solution from the scalar field and projected the
result into the bosonic shape mode. We found that the amplitude of the projection is much
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Figure 5. Several snapshots of the scalar field φ and fermion number density ρ as the antikink
approaches the spectral wall. The antikink is reflected by the wall for β = 44.0.

smaller than the necessary amplitude to create a bosonic spectral wall. Hence, it is indeed
the fermion mode responsible for the appearance of the spectral wall.

To better understand the behavior of the antikink as it approaches the spectral wall,
we show snapshots of its evolution in figures 5 and 6. They show the evolution right below
the critical value of the parameter and right above it, respectively. In figure 5, we consider
β = 44.0. In this case, the antikink is reflected by the wall, marked in black. The left
panels show the antikink approaching the wall. In such a case, the fermion number density
ρ = ψ†ψ is localized and has two peaks, as expected for the first excited state. One can see
that closer to the wall (and the impurity), ρ gets slightly deformed. Then, in the middle
panels, we see that the antikink gets temporarily trapped at the wall. Meanwhile, the
fermion is still bound to the kink, becoming more delocalized at the closest point to the wall.
As it stays attached to the antikink, both reflect from the wall, as shown in the right panels.
The kink localized part of the fermion field recovers the same shape after the interaction,
although with a smaller amplitude due to radiative losses. This means that a part of the
fermionic field transits into continuum states.

A more surprising scenario occurs for β = 46.0, which is above the critical value,
implying that the kink crosses the wall. Corresponding snapshots are shown in figure 6.
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Figure 6. Several snapshots of the scalar field φ and fermion number density ρ as the antikink
approaches the spectral wall. The antikink crosses the wall for β = 46.0.

In the left panels, the antikink approaches the wall, and we observe the same behavior as
before. In the middle panels, we see that the antikink is temporarily trapped at the wall
but then crosses it. A somewhat different behavior reveals the fermionic field, which cannot
pass through the spectral wall. Indeed, the excited fermionic mode does not exist beyond
this point. Therefore the fermion separates from its bosonic partner. Once it happens, the
energy stored in the excited fermionic bound mode is no longer stable. Such a fermionic state
becomes delocalized and quickly decays into radiation which moves in the direction opposite
to the free antikink. The reason is that the created fermionic radiation possesses low energy
with a small wave number to overcome the potential barrier arising from the impurity. As
the motion continues, we see in the right panels that the antikink continues moving to the
right, while the fermion is not observed in the same range. The evolution of ρ can explain
the actual fermion behavior in spacetime during the process. The fermion number density
is shown in figure 7. The solid blue line shows the trajectory of the antikink center. One
can observe that as the antikink moves past the wall, the fermion unbinds from the kink
and gets reflected. This implies that the fermion strongly feels the presence of the wall.

We can draw a fascinating picture of the spectral wall phenomenon with fermions. On
one hand, the fermion is not allowed to move through it. This is because of the fact that
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Figure 7. Evolution of the fermion number density in spacetime as the antikink crosses the spectral
wall. The fermion is reflected by the wall and decouples from the kink. The positive energy fermion
is in the first excited state. β = 46.0.

initially, it is entirely in the excited state, which ceases to exist after x > Xsw. Therefore,
irrespectively of the strength of the back reaction, such a fermion is never allowed to cross the
spectral wall and is always backscattered. On the other hand, the bosonic field, i.e., antikink,
is now blind to the wall as the relevant mode is basically unexcited (or excited dynamically
during the collision in a tiny amount). Hence, the antikink tends to pass the wall. However,
it is the boson-fermion coupling terms that may prevent the antikink from passing the
spectral wall. Indeed, if the back-reaction is strong, the fermion field pulls back the antikink.
If the back reaction is weak, it cannot do so, and the antikink continues its trajectory. In
conclusion, the spectral wall behaves as a filter for excited fermion-kink bound states.

The same scenario repeats when the fermion is initially in the first excited state but
with negative energy. The antikink can pass the spectral wall while the fermionic field is
stopped and finally spreads via radiation, see figure 8.

Finally, we considered the initial state where both boson and fermion fields carry some
excitations. Specifically in the boson-fermion bound state, initially, the bosonic field is the
antikink with the shape mode excited, while the fermionic part consists of the first excited
state. Once again, we underline that only the amplitude of the bosonic mode is subject to
change. The normalization condition fixes the strength of the fermionic mode. Now, the
spectral wall can occur by combining a fermion excitation and shape mode excitation. The
impact of the fermionic mode is visible in a change of the value of the critical amplitude of
the shape mode at which we observe the formation of the quasi-stationary state. It is, as
expected, all the time located at x = Xsw, that is the point at which both modes enter the
continuum spectrum. Now, the critical amplitude is a function of the coupling β. This is
illustrated in figure 9. The interpretation is again in full accordance with the usual purely
bosonic spectral wall phenomenon.
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Figure 8. Evolution of the fermion number density in spacetime as the antikink crosses the spectral
wall. The fermion is reflected by the wall and decouples from the kink. The negative energy fermion
is in the first excited state. β = 46.0.
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Figure 9. Critical amplitude of the shape mode as a function of the back-reaction coupling
constant β.

For theories with a weaker back-reaction, β > βcr, there is a critical value of the shape
mode amplitude A = Acr(β) for which the quasi-stationary state is formed. For A < Acr(β),
the kink passes the spectral wall, while for A > Acr(β), the kink-fermion incoming state is
backscattered. We remark that for all values of β, the value of the critical amplitude is
smaller than the value of the critical amplitude for the decoupled case, Acr(β) < Acr(∞).
The interpretation is straightforward. The excited fermion contributes to the formation
of the stationary state (or in general to the spectral wall phenomenon) together with the
bosonic shape mode.

– 14 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
1

5 Conclusions

In the present work, we have established the existence of spectral walls in a supersymmetric
model. Their main properties, like the independence of the position of a spectral wall for
all initial conditions or their selective nature, remain basically unchanged. However, due to
a richer field content, some novel effects additionally emerge.

Firstly, a kink-fermion bound state can experience a spectral wall even though only the
fermionic field is excited. Interestingly, when a fermion bound mode enters the continuum,
the fermion feels a spectral wall as it happens for the bosonic case with wobbling kinks.
This way, the fermion bound mode plays the same role as the “shape mode” for the kink.
In the supersymmetric model, the excited fermion state ceases to exist precisely at the same
point as the bosonic normal mode. Here, we once again underline an important difference
in the nature of the bosonic and fermionic bound modes. While the bosonic mode, like e.g.,
the shape mode, can be excited with an arbitrary amplitude, the amplitude of the fermionic
mode is uniquely determined by the normalization condition imposed on the fermion field.
Thus, in a given theory, that is for a given value of the back reaction coupling constant β,
only one scenario may occur. Namely, for the critical value of the coupling, β = βcr, the
antikink forms a long-living quasi-stationary state whose position x = Xsw is governed by
the point where the fermionic mode hits the mass threshold. For weaker coupling, β > βcr,
the antikink can pass through the spectral wall, while for stronger coupling, β < βcr, it is
backscattered before x = Xsw.

In the case when initially also the bosonic shape mode of the antikink is excited, the
inclusion of fermionic bound mode modifies the value of the critical amplitude of the shape
mode Acr at which the stationary state is formed. This value depends on the coupling β.

Secondly, what is more captivating, a spectral wall may act not only as a barrier
separating more excited from less excited kink-fermion bound states but also may separate
the bosonic from fermionic fields leading to a disintegration of the bound state. Strictly
speaking, we observed that the initially excited fermionic mode is always reflected at the
spectral wall, while the bosonic antikink may or may not pass through it. The strength of
the back reaction determines the actual behavior at the spectral wall. If the back reaction
is not too strong, the initially bounded kink-fermion state is destroyed, and the bosonic and
fermionic degrees of freedom evolve in different directions. Otherwise, if the back-reaction
is sufficiently strong, the fermion stays bound to the bosonic field and pulls it back with
itself. As a result, the whole kink-fermion bound state is backscattered by the spectral wall.

The observed ability to disintegrate a bound state seems to be a rather generic property
of spectral walls, which should occur in other theories, e.g., two-scalar field models, provided
there is a bound state with a finite, or preferably small, binding energy. It would be
interesting to present an explicit example of such a process. This could be investigated
using results of [37] in theories for which stable and meta-stable multikink states have been
constructed.

It is possible that this effect may also have an impact on the semi-classical quantization
of solitons with small binding energies. Indeed, such quantum corrections are based mainly
on zero, and massive bound, or vibrational modes [38–40]. Whether a (quantum) spectral
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wall may lead to the instability of weakly bound solitons requires independent studies. Here
the framework developed in [41] can be very useful; see also [42] for its recent application
to spectral walls.

Acknowledgments

J.G.F.C. and A.M. acknowledge financial support from the National Council for Scientific
and Technological Development — CNPq, Grant nos. 150166/2022-2 and 309368/2020-0,
respectively. A.M. is also supported by the Brazilian agency CAPES and Universidade
Federal de Pernambuco Edital Qualis A.J.M.Q. is supported by the Spanish Ministry of
Science and Innovation (Project No. PID2020-113406GB-I00). A.W. was supported by
the Polish National Science Centre (Grant No. NCN 2019/35/B/ST2/00059). Part of
the simulations performed in the current work was done in the Brazilian supercomputer
SDumont from the Laboratório Nacional de Computação Científica.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] D.K. Campbell, J.F. Schonfeld and C.A. Wingate, Resonance Structure in Kink-Antikink
Interactions in φ4 Theory, Physica D 9 (1983) 1.

[2] T. Sugiyama, Kink-antikink collisions in the two-dimensional φ4 model, Prog. Theor. Phys. 61
(1979) 1550 [INSPIRE].

[3] N.S. Manton, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Collective Coordinate
Model of Kink-Antikink Collisions in φ4 Theory, Phys. Rev. Lett. 127 (2021) 071601
[arXiv:2106.05153] [INSPIRE].

[4] P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the φ6

model, Phys. Rev. Lett. 107 (2011) 091602 [arXiv:1101.5951] [INSPIRE].

[5] C. Adam et al., Multikink scattering in the φ6 model revisited, Phys. Rev. D 106 (2022)
125003 [arXiv:2209.08849] [INSPIRE].

[6] P. Dorey and T. Romańczukiewicz, Resonant kink-antikink scattering through quasinormal
modes, Phys. Lett. B 779 (2018) 117 [arXiv:1712.10235] [INSPIRE].

[7] C. Adam, D. Ciurla, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Sphalerons and
resonance phenomenon in kink-antikink collisions, Phys. Rev. D 104 (2021) 105022
[arXiv:2109.01834] [INSPIRE].

[8] D.K. Campbell, M. Peyrard and P. Sodano, Kink-Antikink Interactions in the Double
Sine-Gordon Equation, Physica D 19 (1986) 165.

[9] A. Alonso-Izquierdo, Kink dynamics in a system of two coupled scalar fields in two space-time
dimensions, Physica D 365 (2018) 12 [arXiv:1711.08784] [INSPIRE].

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0167-2789(83)90289-0
https://doi.org/10.1143/PTP.61.1550
https://doi.org/10.1143/PTP.61.1550
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C61%2C1550%22
https://doi.org/10.1103/PhysRevLett.127.071601
https://arxiv.org/abs/2106.05153
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.05153
https://doi.org/10.1103/PhysRevLett.107.091602
https://arxiv.org/abs/1101.5951
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.5951
https://doi.org/10.1103/PhysRevD.106.125003
https://doi.org/10.1103/PhysRevD.106.125003
https://arxiv.org/abs/2209.08849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2209.08849
https://doi.org/10.1016/j.physletb.2018.02.003
https://arxiv.org/abs/1712.10235
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB779%2C117%22
https://doi.org/10.1103/PhysRevD.104.105022
https://arxiv.org/abs/2109.01834
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD104%2C105022%22
https://doi.org/10.1016/0167-2789(86)90019-9
https://doi.org/10.1016/j.physd.2017.10.006
https://arxiv.org/abs/1711.08784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.08784


J
H
E
P
0
1
(
2
0
2
3
)
0
7
1

[10] A. Alonso-Izquierdo, Reflection, transmutation, annihilation and resonance in two-component
kink collisions, Phys. Rev. D 97 (2018) 045016 [arXiv:1711.10034] [INSPIRE].

[11] A. Alonso-Izquierdo, Asymmetric kink scattering in a two-component scalar field theory model,
Commun. Nonlinear Sci. Numer. Simul. 75 (2019) 200.

[12] A. Alonso-Izquierdo, Kink dynamics in the MSTB model, Phys. Scripta 94 (2019) 085302
[arXiv:1804.05605] [INSPIRE].

[13] I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis and A. Saxena,
Kink-Antikink Collisions and Multi-Bounce Resonance Windows in Higher-Order Field
Theories, Commun. Nonlinear Sci. Numer. Simul. 97 (2021) 105748 [arXiv:2005.00154]
[INSPIRE].

[14] F. Martin-Vergara, F. Rus and F.R. Villatoro, Fractal structure of the soliton scattering for the
graphene super- lattice equation, Chaos Solitons Fractals 151 (2021) 111281.

[15] P. Dorey, A. Gorina, I. Perapechka, T. Romańczukiewicz and Y. Shnir, Resonance structures
in kink-antikink collisions in a deformed sine-Gordon model, JHEP 09 (2021) 145
[arXiv:2106.09560] [INSPIRE].

[16] G.A. Tsolias, R.J. Decker, A. Demirkaya, T.J. Alexander and P.G. Kevrekidis, Kink-antikink
interaction forces and bound states in a φ4 model with quadratic and quartic dispersion,
J. Phys. A 54 (2021) 225701 [arXiv:2012.15060] [INSPIRE].

[17] A. Moradi Marjaneh, F.C. Simas and D. Bazeia, Collisions of kinks in deformed φ4 and φ6

models, Chaos Solitons Fractals 164 (2022) 112723.

[18] M. Mohammadi and E. Momeni, Scattering of kinks in the Bφ4 model, Chaos Solitons and
Fractals: the interdisciplinary journal of Nonlinear Science and Nonequilibrium and Complex
Phenomena 165 (2022) 112834 [arXiv:2207.00655] [INSPIRE].

[19] C. Adam, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Spectral Walls in Soliton
Collisions, Phys. Rev. Lett. 122 (2019) 241601 [arXiv:1903.12100] [INSPIRE].

[20] C. Adam, K. Oles, T. Romanczukiewicz, A. Wereszczynski and W.J. Zakrzewski, Spectral
walls in multifield kink dynamics, JHEP 08 (2021) 147 [arXiv:2105.14771] [INSPIRE].

[21] C. Adam, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Kink-antikink collisions in a
weakly interacting φ4 model, Phys. Rev. E 102 (2020) 062214 [arXiv:1912.09371] [INSPIRE].

[22] C. Adam, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Spectral walls in antikink-kink
scattering in the φ6 model, Phys. Rev. D 106 (2022) 105027 [arXiv:2209.11479] [INSPIRE].

[23] G. Gibbons, K.-i. Maeda and Y.-i. Takamizu, Fermions on colliding branes, Phys. Lett. B 647
(2007) 1 [hep-th/0610286] [INSPIRE].

[24] P.M. Saffin and A. Tranberg, Particle transfer in braneworld collisions, JHEP 08 (2007) 072
[arXiv:0705.3606] [INSPIRE].

[25] J.G.F. Campos and A. Mohammadi, Fermion transfer in the φ4 model with a half-BPS
preserving impurity, Phys. Rev. D 102 (2020) 045003 [arXiv:2004.08413] [INSPIRE].

[26] Y.-Z. Chu and T. Vachaspati, Fermions on one or fewer kinks, Phys. Rev. D 77 (2008) 025006
[arXiv:0709.3668] [INSPIRE].

[27] R. Jackiw and S.Y. Pi, Chiral gauge theory for graphene, Phys. Rev. Lett. 98 (2007) 266402
[cond-mat/0701760] [INSPIRE].

– 17 –

https://doi.org/10.1103/PhysRevD.97.045016
https://arxiv.org/abs/1711.10034
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD97%2C045016%22
https://doi.org/10.1016/j.cnsns.2019.04.001
https://doi.org/10.1088/1402-4896/ab1184
https://arxiv.org/abs/1804.05605
https://inspirehep.net/search?p=find+J%20%22Phys.Scripta%2C94%2C085302%22
https://doi.org/10.1016/j.cNS-NS.2021.105748
https://arxiv.org/abs/2005.00154
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.00154
https://doi.org/10.1016/j.chaos.2021.111281
https://doi.org/10.1007/JHEP09(2021)145
https://arxiv.org/abs/2106.09560
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2109%2C145%22%20and%20year%3D2021
https://doi.org/10.1088/1751-8121/abf611
https://arxiv.org/abs/2012.15060
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA54%2C225701%22
https://doi.org/10.1016/j.chaos.2022.112723
https://doi.org/10.1016/j.chaos.2022.112834
https://doi.org/10.1016/j.chaos.2022.112834
https://doi.org/10.1016/j.chaos.2022.112834
https://arxiv.org/abs/2207.00655
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2207.00655
https://doi.org/10.1103/PhysRevLett.122.241601
https://arxiv.org/abs/1903.12100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.12100
https://doi.org/10.1007/JHEP08(2021)147
https://arxiv.org/abs/2105.14771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.14771
https://doi.org/10.1103/PhysRevE.102.062214
https://arxiv.org/abs/1912.09371
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09371
https://doi.org/10.1103/PhysRevD.106.105027
https://arxiv.org/abs/2209.11479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2209.11479
https://doi.org/10.1016/j.physletb.2007.01.042
https://doi.org/10.1016/j.physletb.2007.01.042
https://arxiv.org/abs/hep-th/0610286
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610286
https://doi.org/10.1088/1126-6708/2007/08/072
https://arxiv.org/abs/0705.3606
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.3606
https://doi.org/10.1103/PhysRevD.102.045003
https://arxiv.org/abs/2004.08413
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.08413
https://doi.org/10.1103/PhysRevD.77.025006
https://arxiv.org/abs/0709.3668
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.3668
https://doi.org/10.1103/PhysRevLett.98.266402
https://arxiv.org/abs/cond-mat/0701760
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C98%2C266402%22


J
H
E
P
0
1
(
2
0
2
3
)
0
7
1

[28] A. Amado and A. Mohammadi, Coupled fermion-kink system in Jackiw-Rebbi model, Eur.
Phys. J. C 77 (2017) 465 [arXiv:1406.1459] [INSPIRE].

[29] I. Perapechka and Y. Shnir, Kinks bounded by fermions, Phys. Rev. D 101 (2020) 021701
[arXiv:1910.09866] [INSPIRE].

[30] V. Klimashonok, I. Perapechka and Y. Shnir, Fermions on kinks revisited, Phys. Rev. D 100
(2019) 105003 [arXiv:1909.12736] [INSPIRE].

[31] J.G.F. Campos and A. Mohammadi, Kink-antikink collision in the supersymmetric φ4 model,
JHEP 08 (2022) 180 [arXiv:2205.06869] [INSPIRE].

[32] D. Bazeia, J.G.F. Campos and A. Mohammadi, Resonance mediated by fermions in
kink-antikink collisions, JHEP 12 (2022) 085 [arXiv:2208.13261] [INSPIRE].

[33] K. Shizuya, Superfield formulation of central charge anomalies in two-dimensional
supersymmetric theories with solitons, Phys. Rev. D 69 (2004) 065021 [hep-th/0310198]
[INSPIRE].

[34] C. Adam, J.M. Queiruga and A. Wereszczynski, BPS soliton-impurity models and
supersymmetry, JHEP 07 (2019) 164 [arXiv:1901.04501] [INSPIRE].

[35] R. Rajaraman, Solitons and instantons, North-Holland (1982).

[36] N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press (2004)
[doi:10.1017/CBO9780511617034].

[37] C. Halcrow and E. Babaev, Stable kink-kink and metastable kink-antikink solutions,
arXiv:2211.02413 [INSPIRE].

[38] C.J. Halcrow, Vibrational quantisation of the B = 7 Skyrmion, Nucl. Phys. B 904 (2016) 106
[arXiv:1511.00682] [INSPIRE].

[39] C.J. Halcrow, C. King and N.S. Manton, A dynamical α-cluster model of 16O, Phys. Rev. C
95 (2017) 031303 [arXiv:1608.05048] [INSPIRE].

[40] S.B. Gudnason and C. Halcrow, B = 5 Skyrmion as a two-cluster system, Phys. Rev. D 97
(2018) 125004 [arXiv:1802.04011] [INSPIRE].

[41] J. Evslin, Manifestly Finite Derivation of the Quantum Kink Mass, JHEP 11 (2019) 161
[arXiv:1908.06710] [INSPIRE].

[42] J. Evslin, C. Halcrow, T. Romanczukiewicz and A. Wereszczynski, Spectral walls at one loop,
Phys. Rev. D 105 (2022) 125002 [arXiv:2202.08249] [INSPIRE].

– 18 –

https://doi.org/10.1140/epjc/s10052-017-5044-x
https://doi.org/10.1140/epjc/s10052-017-5044-x
https://arxiv.org/abs/1406.1459
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC77%2C465%22
https://doi.org/10.1103/PhysRevD.101.021701
https://arxiv.org/abs/1910.09866
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.09866
https://doi.org/10.1103/PhysRevD.100.105003
https://doi.org/10.1103/PhysRevD.100.105003
https://arxiv.org/abs/1909.12736
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.12736
https://doi.org/10.1007/JHEP08(2022)180
https://arxiv.org/abs/2205.06869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.06869
https://doi.org/10.1007/JHEP12(2022)085
https://arxiv.org/abs/2208.13261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2208.13261
https://doi.org/10.1103/PhysRevD.69.065021
https://arxiv.org/abs/hep-th/0310198
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0310198
https://doi.org/10.1007/JHEP07(2019)164
https://arxiv.org/abs/1901.04501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04501
https://doi.org/10.1017/CBO9780511617034
https://arxiv.org/abs/2211.02413
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2211.02413
https://doi.org/10.1016/j.nuclphysb.2016.01.011
https://arxiv.org/abs/1511.00682
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB904%2C106%22
https://doi.org/10.1103/PhysRevC.95.031303
https://doi.org/10.1103/PhysRevC.95.031303
https://arxiv.org/abs/1608.05048
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CC95%2C031303%22
https://doi.org/10.1103/PhysRevD.97.125004
https://doi.org/10.1103/PhysRevD.97.125004
https://arxiv.org/abs/1802.04011
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD97%2C125004%22
https://doi.org/10.1007/JHEP11(2019)161
https://arxiv.org/abs/1908.06710
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1911%2C161%22%20and%20year%3D2019
https://doi.org/10.1103/PhysRevD.105.125002
https://arxiv.org/abs/2202.08249
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD105%2C125002%22

	Introduction
	Supersymmetric BPS-impurity model
	Spectral structure
	Spectral wall in the presence of fermions
	Bosonic spectral wall
	Spectral wall with fermions

	Conclusions

