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Abstract. Motivated by bacterial chemotaxis and multi-species ecological in-

teractions in heterogeneous environments, we study a general one-dimensional
reaction-cross-diffusion system in the presence of spatial heterogeneity in both

transport and reaction terms. Under a suitable asymptotic assumption that

the transport is slow over the domain, while gradients in the reaction hetero-
geneity are not too sharp, we study the stability of a heterogeneous steady state

approximated by the system in the absence of transport. Using a WKB ansatz,

we find that this steady state can undergo a Turing-type instability in subsets
of the domain, leading to the formation of localized patterns. The boundaries

of the pattern-forming regions are given asymptotically by ‘local’ Turing con-
ditions corresponding to a spatially homogeneous analysis parameterized by
the spatial variable. We developed a general open-source code which is freely
available, and show numerical examples of this localized pattern formation in
a Schnakenberg cross-diffusion system, a Keller-Segel chemotaxis model, and

the Shigesada-Kawasaki-Teramoto model with heterogeneous parameters. We

numerically show that the patterns may undergo secondary instabilities lead-
ing to spatiotemporal movement of spikes, though these remain approximately

within the asymptotically predicted localized regions. This theory can elegantly
differentiate between spatial structure due to background heterogeneity, from
spatial patterns emergent from Turing-type instabilities.
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Dedication. We would like to dedicate this paper to the memory of Professor
Masayasu (Mayan) Mimura, one of the pioneers of mathematical biology. Not only
was Mayan an exceptional mathematician, he would also enthusiastically encourage
others and was particularly kind and generous to early career researchers. He always
brought a smile to every face.

1. Introduction. A major extension to Turing’s Chemical Theory of Morphogen-
esis [40] is the incorporation of transport beyond Fickian diffusion such as models
of chemotaxis [13, 11, 10] and general cross-diffusion [28, 6, 25, 35, 8, 33]. While
the basic ideas of linear stability analysis employed by Turing to predict pattern
formation in reaction-diffusion systems extends readily to such systems [29, 19], the
inclusion of spatial heterogeneity leads to difficulties in predicting pattern formation
using linear analysis. Yet even Turing himself was well-aware that few biological
systems actually form spontaneous spatially-structured patterns from purely homo-
geneous ones. Rather, most organisms evolve from some complex spatial state to
another spatially patterned state during different stages of development. Such ‘hi-
erarchical’ pattern formation arises from interacting systems on different temporal
and spatial scales is likely commonplace in embryonic development [26, 20], with
some authors suggesting that such mechanisms can be modelled via cross-diffusion
systems [34]. In evolutionary and ecological settings, where cross-diffusion-type
interactions are especially well-motivated [30], spatial heterogeneity is extremely
important, accounting for innate landscape and demographic variation [5]. In such
settings it is especially important to be able to determine if an observed variation
in population density is due to environmental heterogeneity, or due to species in-
teractions. In this paper, we develop a theory to predict and understand pattern
formation in spatially-heterogeneous cross-diffusion systems, under the assumption
of a scale separation between the heterogeneity and the pattern wavelength. Within
this asymptotic regime, our theory can distinguish between spatial structure due to
background heterogeneity and spatial patterns due to Turing-type instabilities.

Spatial heterogeneities in reaction-diffusion systems have been (numerically) shown
to change local instability conditions for pattern formation [3, 31], modulate the
size and wavelength of patterns [32], and localize (or pin) spike patterns in space
[12, 44, 45], which can be studied analytically for certain systems in a semi-strong
interaction regime. The presence of even simple spatial heterogeneity in reaction-
diffusion systems can induce spatiotemporal effects, such as changing the stability of
patterned states and leading to the movement of spike solutions [21, 14]. In regimes
of highly localized spike solutions [12, 44, 45], or highly localized heterogeneities [7],
some specific models are analytically tractable. There are some studies on bifurca-
tion structures in spatially-heterogeneous cross-diffusion systems [22, 4] for specific
models. Nevertheless, there are few tools for understanding spatially-heterogeneous
reaction-(cross)-diffusion systems with the same level of generality, and giving the
same level of insight, as Turing’s original use of linear stability analysis.

The typical Turing-type linear stability analysis proceeds by first linearizing the
model about a spatially homogeneous steady state, and then exploiting eigenvalues
of the spatial operators (the Laplacian in the context of general cross-diffusion).
Using an eigenfunction (of the Laplacian) and exponential in time ansatz, one can
reduce the study of instabilities to the computation of eigenvalues of a given matrix.
These eigenvalues then indicate linear (in)stability of a particular eigenfunction, and
hence one can develop an idea of what spatial perturbations might grow, and hence
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form spatially patterned states. In the limit of a sufficiently large domain, one
can use the approximation of a continuous spatial spectrum to derive conditions
involving only the parameters of the model which are necessary for such pattern-
forming instabilities, and which become sufficient on large enough domains [29].
Such conditions are a valuable result from the linear analysis, as they often give
biologically-interpretable insight into general classes of models, such as the cele-
brated short-range activation/long-range inhibition theory of pattern formation in
two-species reaction-diffusion systems [27].

This analysis, however, requires the existence of a spatially homogeneous equi-
librium, and the spectral analysis of a scalar operator (the Laplacian). In general
spatially-heterogeneous systems, such assumptions are violated. In addition to the
difficulties inherent in computing steady states of these spatially-heterogeneous sys-
tems, linearization about such a state typically leads to linear systems involving spa-
tial operators coupling multiple species. Theory for such non-scalar Sturm-Liouville
problems does exist (see Section 3.1 of [43] for discussion and references), but it is
typically not useful for analytical computations as one has to determine the spec-
trum via numerical approximations anyway. If a spatially-heterogeneous steady
state can be found, one can use Galerkin expansions to compute instability condi-
tions by truncating an infinite-matrix system (arising from coupled modes which
are ‘diagonalized’ in the homogeneous setting) [16, 42]. However, this analysis is
quite involved for a given system, and does not often lead to general biological in-
sights such as those gained by deriving necessary conditions for pattern formation
in the homogeneous setting. From a modelling perspective there is also a difficulty
in differentiating between spatial structure arising from nonlinear interactions and
instability, and spatial structure due to the underlying heterogeneity. As mentioned,
determining precisely what causes an observed spatial variation in a population or
a developing organism is extremely valuable for mechanistic understanding, and
eventually for influencing or controlling the system such as in conservation ecology
or tissue engineering.

Recently, in the context of spatial heterogeneity in the kinetics of one-dimensional
reaction-diffusion systems, we proposed a theory of linear stability addressing the
above challenges [17]. We assumed a separation of scales allowing us to write the
model in a limit of asymptotically small transport relative to kinetic interactions.
Such a limit in the spatially homogeneous case can be related to assuming a suf-
ficiently large domain so that the spatial spectrum of the Laplacian can be well-
approximated as a continuous variable. In this regime, we used a WKB ansatz to
study the stability of a heterogeneous steady state, finding that the usual Turing in-
stability conditions could be satisfied locally as if they were simply parameterized by
the spatial variable. Such a localization of these conditions was shown to precisely
correspond to where full numerical simulations found patterned states deviating
from a heterogeneous steady state. Another key insight was that this steady state
could be well-approximated by zeros of the reaction kinetics, and hence became
analytically amenable in a wide class of systems.

In this paper, we generalize our approach to study two-species reaction-cross-
diffusion systems which may include nonlinearity and heterogeneity in all transport
and reaction terms. We formulate our model and linearize about a steady state in
Section 2. We compute general conditions for pattern formation in the spatially
homogeneous version of the model in Section 2.1, and state corresponding condi-
tions in the spatially heterogeneous case in Section 2.2. In Section 3 we solve the
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heterogeneous linear problem, and discuss the problem of mode selection from this
solution. Using this idea, in Section 4 we derive the conditions for pattern formation
in the heterogeneous case. We give a variety of numerical examples in Section 5,
illustrating the utility of our theory even in cases where emergent patterns become
spatiotemporally complex. Finally we discuss a range of open mathematical prob-
lems and possible applications in Section 6.

2. Model Formulation & Conditions for Pattern Formation. As we are
motivated by finding simple conditions for pattern formation, we will focus on an
asymptotic regime where transport is assumed small. In [17], we related this asymp-
totic scale, given by ε, to diffusion coefficients, length and time scales of relevance in
developmental settings, but note that such an asymptotic regime is always needed
to deduce algebraic conditions for Turing conditions which are independent of the
spectrum of the spatial operator; see Chapter 2 of [29] for further discussion of this
‘large domain’ approximation.

We consider the nonlinear heterogeneous cross-diffusion system,

∂u

∂t
= ε2

∂

∂x

(
D11(u, v, x)

∂u

∂x
+D12(u, v, x)

∂v

∂x

)
+ f(u, v, x), (1)

∂v

∂t
= ε2

∂

∂x

(
D21(u, v, x)

∂u

∂x
+D22(u, v, x)

∂v

∂x

)
+ g(u, v, x), (2)

where we have nondimensionalized the model to be in x ∈ [0, 1], and assume suffi-
cient regularity on the six nonlinear functions Dij , f, g. We also henceforth assume
0 < ε � 1, noting that in terms of a physical diffusion scale, D, a lengthscale L
and timescale T , we have from model non-dimensionalization that

ε2 =
DT

L2
, (3)

which continuously decreases as the scale of diffusion decreases for instance.
More compactly we write this system as

∂u

∂t
= ε2

∂

∂x

(
D(u, x)

∂u

∂x

)
+ f(u, x), (4)

with

u =

(
u
v

)
, D(u, x) =

(
D11(u, v, x) D12(u, v, x)
D21(u, v, x) D22(u, v, x)

)
, f(u, x) =

(
f(u, v, x)
g(u, v, x)

)
. (5)

We assume for all u ∈ R2 (or in a suitably chosen subset) and x ∈ [0, 1] that
D(u, x) is positive-definite (that is, all of its eigenvalues remain positive definite).
This implies that no-flux and Neumann boundary conditions are equivalent, so for
concreteness we write

∂u

∂x
(t, 0) =

∂u

∂x
(t, 1) =

∂v

∂x
(t, 0) =

∂v

∂x
(t, 1) = 0, for all t ≥ 0. (6)

We let û∗ = (us, vs)
T be a steady state of our system, so that it satisfies

0 = ε2
∂

∂x

(
D(û∗, x)

∂û∗

∂x

)
+ f(û∗, x), (7)
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as well as the Neumann boundary conditions (6). In general finding such a steady
state analytically is extremely hard, but we can approximate it in the limit of small
ε. If ε = 0, we have that a heterogeneous steady state would satisfy

f(u∗, x) = 0, (8)

which coincides exactly with a homogeneous steady state in the case that u∗ does
not depend on x. If we assume that such a function u∗ has sufficiently well-behaved
derivatives, that is |∂u∗/∂x| = o(1/ε), and satisfies the boundary conditions (6),
then it is an asymptotic approximation to a solution of Eq. (7), that is u∗ =

û∗ +O(ε2). In the following we will not distinguish between û∗ satisfying Eq. (7),
and u∗ satisfying Eq. (8), as we will only expand to order ε.

We now consider linear stability of a steady state satisfying (7), introducing
another small parameter |δ| � 1 which will be asymptotically smaller than ε. We
expand our solutions as u = u∗(x) + δw(t, x) and substitute this into (4) to find

δ
∂w

∂t
= ε2

∂

∂x

(
D(u∗ + δw, x)

(
∂u∗

∂x
+ δ

∂w

∂x

))
+ f(u∗, x) + δJ(u∗, x)w +O(δ2),

(9)
where we have expanded the kinetics f in a Taylor series about δ, and hence J is
the Jacobian matrix evaluated at the approximate steady state. Writing u∗

x as the
derivative of u∗ with respect to x, we expand the transport term to find

∂

∂x

(
D(u∗ + δw, x)

(
u∗
x + δ

∂w

∂x

))
=

∂

∂x
(D(u∗, x)u∗

x) + δ

(
D(u∗, x)

∂2w

∂x2
+ M

∂w

∂x
+ Nw

)
+O(δ2),

(10)

where

M =

(
∂D11

∂x + ∂D11

∂u u∗x + ∂D12

∂u v∗x
∂D12

∂x + ∂D11

∂v u∗x + ∂D12

∂v v∗x
∂D21

∂x + ∂D21

∂u u∗x + ∂D22

∂u v∗x
∂D22

∂x + ∂D21

∂v u∗x + ∂D22

∂v v∗x

)
, (11)

and

N =

(
∂D11

∂u u∗xx + ∂D12

∂u v∗xx + ∂2D11

∂u∂x u
∗
x + ∂2D12

∂u∂x v
∗
x

∂D11

∂v u∗xx + ∂D12

∂v v∗xx + ∂2D11

∂v∂x u
∗
x + ∂2D12

∂v∂x v
∗
x

∂D21

∂u u∗xx + ∂D22

∂u v∗xx + ∂2D21

∂u∂x u
∗
x + ∂2D22

∂u∂x v
∗
x

∂D21

∂v u∗xx + ∂D22

∂v v∗xx + ∂2D21

∂v∂x u
∗
x + ∂2D22

∂v∂x v
∗
x

)
,

(12)
and we have suppressed the dependence of Dij = Dij(u

∗, v∗, x). Throughout this
paper, we will assume that D, D−1, J have smooth and bounded coefficients, in
particular with smooth and bounded derivatives with respect to x, and also with
respect to u and v. Thus such properties will be inherited by M and N . We also
remark that, as u∗ does not depend on ε, all of these matrices are independent of
ε.

Discarding the ord(1) terms1 by using (7), and neglecting terms of O(δ2), we
obtain the linear system,

∂w

∂t
= ε2

(
D(x)

∂2w

∂x2
+ M(x)

∂w

∂x
+ N(x)w

)
+ J(x)w, (13)

where we have omitted the explicit dependence on u∗ and its derivatives. From now
on we will drop dependence on the steady state u∗ and view these four matrices
D,J ,M and N as simply depending on x. While this system appears much more
complicated than that studied in [17], in fact we will show that the impact of M will

1We use the notation ord(εk) as shorthand for “asymptotically of order k in ε.”
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be confined to the structure of the unstable modes, and that both M and N will
not have an influence on the conditions for instability and hence pattern formation.
While the diffusion tensor D is more general, not being confined to a diagonal
matrix, its positive-definiteness will be sufficient to carry out a procedure and derive
results analogous to that in [17], which generalize conditions for pattern-forming
instabilities to occur. Before discussing these in detail, we first review the spatially
homogeneous results on such instabilities from a slightly different perspective.

2.1. Spatially Homogeneous Instability Criteria. If we assume that D and
f do not depend on x, then (4) admits a constant steady state u∗. Hence, the
linearized system (13) without spatial dependencies can be written as

∂w

∂t
= ε2D

∂2w

∂x2
+ Jw, (14)

where the matrices D and J(u∗) are constant. We consider the usual expansion
into eigenmodes of the Laplacian, w ∝ eλt cos(kx), where k takes discrete values
to satisfy the boundary conditions, and hence we require k/π to be an integer for
Neumann conditions. We then have that λ is an eigenvalue of J − (εk)2D.

The usual way to derive instability conditions is to use the polynomial dispersion
relation given by,

λ2 − tr(J − (εk)2D)λ+ det(J − (εk)2D) = 0, (15)

and then require <(λ) < 0 for k = 0, and <(λ) > 0 for some k > 0. The first of
these entails that

tr(J) < 0, det(J) > 0, (16)

for stability of u∗ in the absence of diffusion. We also have that, since D is positive
definite it has tr(D) > 0 and hence by linearity of the trace we have tr(J−(εk)2D) =
tr(J) − (εk)2tr(D) < tr(J) < 0. For an instability for k > 0 we then must have a
positive growth rate which entails, for λ real,

2λ = tr(J − (εk)2D) +
√

[tr(J − (εk)2D)]2 − 4 det(J − (εk)2D)) > 0. (17)

If λ is not real, then the above implies that <(λ) < 0, and hence we only consider
real growth rates, unless explicitly stated otherwise. The usual approach is to then
maximize this growth rate as a function of k, and require k > 0. Instead, we will
consider conditions in terms of permitted values of k to begin with, as this will
generalize to the heterogeneous case as in [17].

For the marginal stability curve given by λ = 0, we see that the only remaining
term of (15) implies that (εk)2 is an eigenvalue of B0 = D−1J . Solving for the
eigenvalues of this matrix, we then have that

2(εk)2 = tr(B0)±
√

[tr(B0)]2 − 4 det(B0) > 0, (18)

are the two places where the graph of <(λ(k2)) given by (15) crosses the k2-axis.
For there to be a positive and real range of k2, we need

tr(B0) +
√

[tr(B0)]2 − 4 det(B0) > 0. (19)

We first consider <(λ) as this is always defined, real and continuous as k2 varies.
In particular for k2 sufficiently large we have that the expression for λ in Eq. (17)
gives <(λ) < 0. Thus if, in addition to Eq. (19), we have

tr(B0)−
√

[tr(B0)]2 − 4 det(B0) < 0, (20)
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then the graph of <(λ(k2)) crosses the k2 ≥ 0 axis once only, with <(λ) < 0 for
large k2 and <(λ) defined, real and continuous: this is sufficient to imply <(λ) > 0
as k2 → 0. In turn, this contradicts the requirement of stability at k = 0. Hence, for
an instability range of k2, where <(λ) > 0, which does not contradict the stability
requirement at k = 0, we require

tr(B0)−
√

[tr(B0)]2 − 4 det(B0) > 0. (21)

Noting that det(J) > 0 =⇒ det(B0) > 0 as D−1 is positive-definite, this then
demands the conditions

tr(B0) > 0 and [tr(B0)]2 − 4 det(B0) > 0. (22)

Conditions (16) and (22) are precisely the usual necessary conditions for Turing
instability, which become sufficient in the limit of ε→ 0. We summarize these as:

Proposition 1. Let 0 < ε � 1 and assume J and D are constant matrices for
all x ∈ [0, 1]. If we assume stability to homogeneous perturbations, i.e. the inequal-
ities (16) are satisfied then, subject to a wave selection constraint, there exists a
non-homogeneous perturbation w satisfying Eq. (13) and homogeneous Neumann
conditions at x ∈ {0, 1} that grows exponentially in time in the interval x ∈ [0, 1] if
the inequalities (22) are satisfied.

These are precisely the usual Turing instability conditions for the case of cross-
diffusion (that is, when positive definite D can be a full matrix). See [33] for general
examples of such homogeneous cross-diffusion systems, with identical instability
criteria given there by equations (3.15)-(3.16). Furthermore note that the wave
selection constraint requires that the domain (or diffusion scale) is of a suitable
size to fit a half-integer number of modes onto the domain, as required to satisfy
the Neumann boundary conditions. This can always be achieved by continuously
reducing the diffusion scale, D (or equivalently ε), for example, and is detailed for
example in Murray’s text [29].

2.2. Spatially Heterogeneous Instability Criteria. In the heterogeneous case,
we require stability to homogeneous perturbations across the whole domain to pre-
vent such a mode destabilizing the system. In particular, we have the following
analogous heterogeneous result:

Theorem 2.1. Let 0 < ε� 1 and assume that [tr(B0(x))]2−4 det(B0(x)) has only
simple zeros for all x ∈ [0, 1], where B0(x) = D−1(x)J(x). We assume stability to
local homogeneous perturbations, i.e.

tr(J(x)) < 0, det(J(x)) > 0, for all x ∈ [0, 1]. (23)

Then, subject to a wave selection constraint, which can always be satisfied for a
sufficiently small diffusion scale, there exists a non-homogeneous, bounded and non-
trivial perturbation solution w satisfying Eq. (13) and homogeneous Neumann con-
ditions at x ∈ {0, 1} that grows exponentially in time only within the interval x ∈ T0
if

tr(B0(x)) > 0, [tr(B0(x))]2 − 4 det(B0(x)) > 0, for all x ∈ T0, (24)

where T0 is the largest subset of [0, 1] for which the conditions (24) hold.

While this statement is essentially identical to Instability Criterion 2.2 in [17], we
remark that here D is a full matrix and it may depend on x explicitly or via u∗(x).
We then have that Theorem 2.1 provides a local variant for the inhomogeneous
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mode instability condition of Proposition 1, albeit restricted in a sense to the set
x ∈ T0.

3. Asymptotic Solutions of the Linearized System. We proceed to develop
leading ε-order WKB solutions of Eq. (13) that will be used to deduce Theorem 2.1.
In Section 3.1 we first determine the leading order general WKB solution in the
regime where ε� 1 and consider how to satisfy the homogeneous Neumann bound-
ary conditions in Section 3.2, which leads to the wave selection constraint. We then
use the structure of this solution to determine the instability criteria and ultimately
a deduction of Theorem 2.1 in Section 4.

3.1. WKB Asymptotics. We will now find an approximate solution to Eq. (13)
for small ε. As this system is linear, we can consider a solution which is separable
in space and time of the form w = eλtq(x). Writing q′ as the derivative of q with
respect to x, we find the problem for q:

0 = ε2 (D(x)q′′ + M(x)q′ + N(x)q) + (J(x)− λI)q. (25)

We now expand q using a WKB ansatz [9, 2] in the limit of small ε as

q = exp

(
iφ(x)

ε

)
p(x), p(x) = p0(x) + εp1(x) +O(ε2). (26)

Dropping the x dependence for notational simplicity, we compute derivatives as

q′ = exp

(
iφ

ε

)(
p′ +

iφ′

ε
p

)
= exp

[
iφ

ε

]
iφ′

ε
p0 +O(1), (27)

and

q′′ = exp

(
iφ

ε

)(
−φ
′2

ε2
p +

1

ε
(2iφ′p′ + iφ′′p) + p′′

)
= exp

(
iφ

ε

)(
−φ
′2

ε2
p0 +

1

ε

(
−φ′2p1 + 2iφ′p′0 + iφ′′p0

))
+O(1).

(28)

We then have that the O(1) approximation of Eq. (25) is

0 = −φ′2Dp0 + (J − λI)p0 = D[−φ′2I + Bλ]p0, (29)

where

Bλ := D−1(J − λI)

and I is the identity matrix. From this we see that φ′2 is an eigenvalue of Bλ, of
which there are two (or one degenerate eigenvalue of algebraic multiplicity two),
and we use µ±λ = φ′2± to label the eigenvalues, which may conceivably be equal.

Hence we can solve Eq. (29) by setting p0(x) = Q±0 (x)p±∗ where Q±0 is a scalar
function and p±∗ is the unit eigenvector associated with the eigenvalue µ±λ . Hence
we can compute φ as the solution of

φ′2± = µ±λ (x) =⇒ φ± = C±φ +

∫ x

a±

√
µ±λ (x̄)dx̄, (30)

where µ±λ (x) denote the two eigenvalues of Bλ, with C±φ and a± constants that are

to be determined. In order to compute Q±0 , however, we must go to the next order
in ε.
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The order O(ε) equation is given by

0 =D(−φ′2±p1 + 2iφ′±p
′
0 + iφ′′±p0) + iφ′±Mp0 + (J − λI)p1

=D[(−φ′2±I + Bλ)p1 + 2iφ′±p
′
0 + iφ′′±p0 + iφ′±D

−1Mp0],
(31)

which implies that

−[−φ′2±I + Bλ]p1 = i[2φ′±Q
±′
0 + φ′′±Q

±
0 + φ′±Q

±
0 D

−1M ]p±∗ + 2iφ′±Q
±
0 (p±∗ )′. (32)

The matrix premultiplying p1 has a zero eigenvalue by Eq. (29), and hence by the
Fredholm Alternative Theorem we can compute a solvability condition to find Q±0
and p±∗ . Let (s±∗ )T be the left eigenvector with zero eigenvalue and unit magnitude
of [(−φ′2±I + Bλ)]. We multiply Eq. (32) on the left by (s±∗ )T to find the scalar
equation

(2φ′±Q
±′
0 + φ′′±Q

±
0 )(s±∗ )Tp±∗ + φ′±Q

±
0 (s±∗ )TD−1Mp±∗ + 2φ′±Q

±
0 (s±∗ )T (p±∗ )′= 0.

(33)
Solving this for Q±0 we find

Q±′0
Q±0

= −
φ′′±
2φ′±

− (s±∗ )TD−1Mp±∗ + 2(s±∗ )T (p±∗ )′

2(s±∗ )Tp±∗
, (34)

which implies

Q±0 (x) =
C±Q√
φ′±

exp

(
−
∫ x

b±

(s±∗ )TD−1Mp±∗ + 2(s±∗ )T (p±∗ )′

2(s±∗ )Tp±∗
dx̄

)
, (35)

where C±Q are constants (possibly complex) and b± are real constants. Without loss

of generality, we set b± = a± below by redefining C±Q .
Finally, by recasting the constants Cφ and CQ appropriately, we can write our

leading-order solution for w in the trigonometric form

w± =
eλt

(µ±λ (x))
1
4

exp

(
−
∫ x

a±

s±∗ (x̄)TD−1(x̄)M(x̄)p±∗ (x̄) + 2s±∗ (x̄)Tp±∗ (x̄)′

2s±∗ (x̄)Tp±∗ (x̄)
dx̄

)

×

[
C±0 cos

(
1

ε

∫ x

a±

√
µ±λ (x̄)dx̄

)
+ S±0 sin

(
1

ε

∫ x

a±

√
µ±λ (x̄)dx̄

)]
p±∗ (x),

(36)
where C±0 , S

±
0 are real constants. The constants a± are not independent degrees of

freedom as shifts in these constants can be accommodated by changes in C±0 , S
±
0

but it will be convenient to keep the above form for w±. Furthermore, for fixed
λ, the solution w± given by Eq. (36) gives two modes which satisfy Eq. (13) at
leading order in ε, corresponding to the two eigenvalues of Bλ given by µ+

λ and µ−λ .
We remark that this solution is nearly identical to the leading-order WKB solution
in [17], except for two notable differences. Firstly, there is an additional term
involving the matrix M here, though this will not influence the conditions we find
to ensure we have an instability, i.e. a mode with <(λ) > 0, given in Theorem 2.1.
Secondly, the matrix D is no longer diagonal, though it is still positive-definite.
One technical point concerns the impact of M and especially D on the structure of
w± near singularities, as will be discussed below and which is ultimately different
from the analysis presented in [17].
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3.2. Admissible Growth Rates. The special case of D = diag(1, d),M = N =
0 has previously been considered in [17], with a proof of the analogue of Theorem
2.1 that is generalised to cross-diffusion below, together with a highlighting of where
the differences are. As in [17], our starting point is Eq. (36) and when such WKB
solutions are associated with an instability that drives the system away from its
steady state. That is, we look for WKB modes given by Eq. (36) which approximate
a solution of Eq. (13) with <(λ) > 0.

Our first consideration, directly analogous to [17], is whether the WKB solution
is defined for all x ∈ [0, 1]. If so, leading order Neumann boundary conditions at
{0, 1} entail ∫ 1

0

√
µ±λ (x̄)dx̄ =

1

2
nπε, (37)

where, without loss of generality, n is a positive integer and a± = S±0 = 0, yielding
a WKB cosine solution. Further given a suitable choice of a sufficiently small ε, the
constraint given by Eq. (37) can be ensured simply by imposing∫ 1

0

√
µ±λ (x̄)dx̄ ∈ R+, (38)

where R+ denotes the positive reals and thus the square root in the integrand
is the positive square root. The distinction between the two cases, in particular
where the more general case Eq. (38) holds, but Eq. (37) does not, is equiva-
lent to the wave selection constraint in the standard Turing instability, which is
a well-understood constraint that is additional to the canonical Turing instability
conditions of Eqs. (16), (22) [29].

However, a non-trivial WKB solution (36) need not be defined everywhere on
the domain x ∈ [0, 1]. More generally, the steady state may be destabilized by
WKB solutions that are only non-zero on one or more intervals of the form (a, b)
with 0 ≤ a < b ≤ 1. As will be investigated below, this will occur due to terms
contributing to w± in Eq. (36) becoming unbounded on approaching an interior
point, say x = a. We therefore introduce ‘internal’ boundary conditions at such
points which allow us to match a non-zero WKB mode on an interval (a, b), which
we match to a zero solution outside of this interval. Thus, as demonstrated below,
an internal homogeneous Dirichlet boundary condition w±(a) = 0 with a± = a in
Eq. (36) is then necessary and sufficient for a well-defined solution local to x = a.
We may accommodate both cases – homogeneous Neumann or internal Dirichlet
boundary conditions – by requiring∫ b

a

√
µ±λ (x̄)dx̄ ∈ R+ (39)

for a positive square root and 0 ≤ a < b ≤ 1, so that the homogeneous boundary
condition at x = a, b, whether it be Neumann or Dirichlet , can be satisfied. In
particular, this requires (i) an appropriate choice of the cosine or sine solution,
according to whether respectively a Neumann or Dirichlet condition is required at
x = a = a± for the WKB solution of Eq. (36) and (ii) Eq. (39), which allows
the enforcement of the boundary condition at x = b for suitably small ε, with the
constraint of ε constituting the wave selection constraint.

Thus for a given non-trivial interval (a, b), Eq. (39) constitutes the fundamental
condition for an unstable WKB mode to destabilize the steady sate, assuming there
is stability to homogeneous perturbations. Consequently, our aim below is to use
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Eq. (39) to deduce Theorem 2.1, including a characterization of the location of the
instability regions, that is the intervals of the form (a, b) in the above discussion,
whose union constitutes the set T0 in the statement of Theorem 2.1.

4. Derivation of Theorem 2.1. Extensive elements of the reasoning below are
straightforward generalizations of [17], once expressions that involve the components
of D are rewritten in terms of tr(D) and det(D) which are both positive since D
is positive definite. However, a new technical result (given in Proposition 7) is now
required to handle a degenerate case arising at singular points, which can be very
quickly dismissed for the simpler systems of [17] in contrast to the more general
system considered here. In turn this alters the details of some of the derivations
(given in Propositions 6, 8 and 10). We also present the propositions in a different
order to [17], with some alternative approaches, in a pedagogic attempt to simplify
the derivation to aid understanding.

4.1. Relating the Constraint to Conditions on D, J and λ. As in [17], we
first define permissible growth rates and eigenvalues which satisfy (39).

Definition 4.1. A permissible pair (λ, µ±λ (x)) is a tuple such that the value of λ

entails µ±λ (x) satisfies constraint (39) for all x in some non-empty interval (a, b) ⊆
(0, 1).

We will denote λ as permissible, or µ±λ (x) as permissible, if (λ, µ±λ (x)) is permissible,
as defined above.

Proposition 2. µ±λ (x) is permissible if and only if µ±λ (x) is real and non-negative
for all x ∈ (a, b), though not identically zero.

Proof. If µ±λ (x) is real, non-negative and not identically zero for x ∈ (a, b) then it

is immediately clear that it is permissible. Conversely, let µ±λ (x) be permissible.
Given the square root in condition (39) is the positive one, and working in the
complex plane such that any argument, denoted θ below, is in the range θ ∈ [0, 2π)
then the square root of z = r exp(iθ), r ≥ 0, is given by

√
reiθ/2. Hence, any

imaginary contribution to
√
µ±λ (x), in condition (39) is non-negative as θ/2 ∈ [0, π)

and cannot be cancelled from elsewhere in the integration domain. Thus, given

Eq. (39),
√
µ±λ (x) must be real for all x ∈ (a, b). Hence, µ±λ (x) is real and non-

negative for all x ∈ (a, b), while µ±λ (x) cannot be identically zero as the integral in
Eq. (39) is not zero.

Proposition 3. Assume λ is permissible for x ∈ (a, b). If λ has a non-zero imag-
inary part, =(λ) 6= 0, then <(λ) < 0 for x ∈ (a, b). Equivalently, if <(λ) ≥ 0 then
=(λ) = 0 for x ∈ (a, b).

Proof. From the definition of µ±λ (x), we have

det[−µ±λ (x)D + Jλ(x)] = det[−µ±λ (x)D + J − λI] = 0, (40)

and so, dropping the explicit x-dependence

2λ = tr(−µ±λD + J)±
√

[tr(−µ±λD + J)]2 − 4 det[−µ±λ (x)D + J ], (41)

with the spatial dependence of µ±λ (x) such that the growth rate, λ, does not have a
dependence on x. We have tr(J) < 0 for all x by Eq. (23) and, given λ is permissible
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for x ∈ (a, b), so that µ±λ (x) is permissible on this region, tr(−µ±λ (x)D) < 0 for
x ∈ (a, b). Thus, if a permissible λ is complex, it must have a negative real part.

Proposition 4. Given (λ, µ±λ (x)) is permissible for x ∈ (a, b) and <(λ) ≥ 0, then
det(Bλ) > 0, where Bλ = D−1(J − λI) = D−1Jλ.

Proof. We have that λ is real by Proposition 3 and is thus non-negative, with

det(Bλ) = det(D−1) det(Jλ) = det(D−1)
(
λ2 − λtr(J) + det(J)

)
> 0

for all x ∈ (a, b), where the final inequality arises from the positive definiteness of
D, and Eq. (23).

Proposition 5. Given <(λ) ≥ 0, the pair (λ, µ±λ (x)) is permissible on x ∈ (a, b) if
and only if

tr(Bλ) > 0, [tr(Bλ)]2 − 4 det(Bλ) ≥ 0, (42)

for x ∈ (a, b).

Proof. We immediately have

µ±λ (x) =
1

2

[
tr(Bλ)±

√
[tr(Bλ)]2 − 4 det(Bλ)

]
(43)

since µ±λ are defined to be the eigenvalues of Bλ. Given conditions (42), we can

see by Equation (43) that µ±λ (x) > 0 for all x ∈ (a, b), and, hence, condition (39) is
satisfied, giving permissibility.

Next we consider the converse by assuming (λ, µ±λ (x)) is permissible for x ∈
(a, b). Then <(λ) ≥ 0 implies λ is real by Proposition 3. From permissibility and
Proposition 2 we also have that µ±λ (x) is real, non-negative and not identically zero

for x ∈ (a, b). As µ±λ (x) and λ are real this enforces

[tr(Bλ)]2 − 4 det(Bλ) ≥ 0,

for x ∈ (a, b). Also det(Bλ) > 0 on this region by Proposition 4 and hence for both
the positive and negative square root in Equation (43), the fact that µ±λ (x) cannot
be negative enforces tr(Bλ) ≥ 0 for x ∈ (a, b). The possibility that tr(Bλ) = 0 is
excluded as then µ±λ (x) is not real, since det(Bλ) > 0.

Note that the conditions in Proposition 5 translate the constraint (39) from the
WKB solutions, w± of Eq. (36), to properties of Bλ and thus properties of J , D
and λ. Furthermore the conditions in Proposition 5 do not depend on the positive
or negative branch of µ±λ , implying that both eigenvalues are permissible given that
one of them is.

4.2. Prospective Blow-up and Regularization of WKB Solutions. A priori,
there is scope for the WKB solutions, w± of Eq. (36), to become unbounded, either
within the region of permissibility (a, b), or at its edges, {a, b} due to a zero of the
denominator of 2sT∗±p∗± within the integrand of the exponent or at the edges due

to denominator (µ±λ )1/4.

However, Propositions 4, 5 show that given (λ, µ±λ (x)) is permissible and <(λ) ≥
0 on x ∈ (a, b) the eigenvalues µ±λ , as given by

µ±λ (x) =
1

2

[
tr(Bλ)±

√
[tr(Bλ)]2 − 4 det(Bλ)

]
(44)
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are bounded away from zero on x ∈ (a, b). Thus the denominator (µ±λ )1/4 is bounded
away from zero on (a, b) and thus cannot generate blow up in the WKB solutions
on approaching either of the points {a, b}.

However, there is still scope for the denominator of 2sT∗±p∗± within the inte-
grand of the exponent to generate blow-up. Thus we first determine conditions on
Bλ for such a blow up to occur and proceed to demonstrate that it can be regular-
ized, i.e. bounded, on use of an internal homogeneous Dirichlet boundary condition
where the WKB solution would otherwise blow up. The resulting non-trivial WKB
solution will match a trivial zero solution exterior to the region of permissibility (if
the prospective blow up location is not on the edge of the domain [0, 1].) Below for
notational convenience and brevity we drop the ± labels on (s±∗ )T ,p±∗ .

Proposition 6. Given (λ, µ±λ (x)) is permissible and <(λ) ≥ 0 for x ∈ (a, b), then

[tr(Bλ)]2 − 4 det(Bλ) > 0

for x ∈ (a, b) if and only if sT∗ p∗ 6= 0 for all x ∈ (a, b), where s∗ and p∗ are the left
and right unit eigenvectors of [−µ±λ I + Bλ].

Proof. We will demonstrate both implications via contraposition. We first assume
that sT∗ p∗ = 0 at some point x∗ ∈ (a, b). By elaborating possibilities on a case by
case basis for a general 2 × 2 matrix with zero determinant, we note that the left
and right eigenvectors of the zero eigenvalue can only be perpendicular if the matrix
is proportional to one of the following:(

0 0
0 0

)
,

(
1 1
−1 −1

)
,

(
1 −1
1 −1

)
.

In all three cases, we have that the trace is zero. Therefore,

tr(−µ±λ I + Bλ) = −2µ±λ + tr(Bλ) = 0.

However, by Eq. (43), this implies that [tr(Bλ)]2−4 det(Bλ) = 0, contradicting the
assumption that this quantity remains positive.

For the converse, we start from [tr(Bλ)]2−4 det(Bλ) = 0 at some point x∗ ∈ (a, b)
(noting that if this term were negative, then, by Proposition 5, λ would not be
permissible and we would have an immediate contradiction). By using Equation
(43) again we see that tr(−µ±λ I + Bλ) = 0, while det(−µ±λ I + Bλ) = 0 as µ±λ are
the eigenvalues of Bλ. Any real 2× 2 matrix with zero determinant and trace can
be written in one of the following forms:(

c1 c2

− c
2
1

c2
−c1

)
,

(
0 0
c2 0

)
,

(
0 c2
0 0

)
,

(
0 0
0 0

)
, (45)

for real c1 6= 0 and real c2 6= 0. The first of these has one left and one right
eigenvector, given by sT∗ = (c1, c2) and pT∗ = (−c2, c1) to within normalization
and which satisfy sT∗ p∗ = 0. For the second matrix case, we have pT∗ = (0, 1)
and sT∗ = (1, 0) which are also orthogonal, and similarly for the third case with
pT∗ = (1, 0) and sT∗ = (0, 1).

The final case is not possible given the constraints on the system. Specifically,
we have that J − λI = DBλ = µ±λD, where we note that the constraint that µ±λ
being permissible implies that µ±λ is real and non-negative by Proposition 2, and we

have the restriction <(λ) ≥ 0. Hence taking the trace of J = λI + µ±λD we have

tr(J) = 2λ+ µ±λ tr(D) ≥ 0,
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where we have used the fact that D is positive definite. The above inequality
contradicts the requirement of stability to homogeneous perturbations, Eq. (23).

We proceed to consider whether there is a singularity when

sT∗ p∗ = 0 = [tr(Bλ)]2 − 4 det(Bλ)

subject to weak constraints on the nature of the zero, which are given via the
definition of an Admissible Neighborhood immediately below.

Definition 4.2. Admissible Neighborhood. Let (λ, µ±λ (x)) be permissible for
x ∈ (a, b) and <(λ) ≥ 0, with a simple zero of

[tr(Bλ)]2 − 4 det(Bλ) = 0

at a point X∗ ∈ {a, b}. We can then write

[tr(Bλ)]2 − 4 det(Bλ) = A2|x−X∗|(1 + o(1)), x ∈ N
where A > 0 without loss, given the admissible neighborhood N is defined as follows.
If X∗ = a then

[tr(Bλ)]2 − 4 det(Bλ) > 0

to the right of X∗ and N is the closure of the intersection of a sufficiently small,
non-empty neighborhood of X∗ with the set x ≥ X∗ = a. In particular the neighbor-
hood is sufficiently small to ensure no other zero of [tr(Bλ)]2 − 4 det(Bλ) is within
N/{X∗}. If X∗ = b, thenN is an analogously defined closure of a half-neighborhood
contained within [a, b].

In particular we need to consider how the solution behaves sufficiently close to
a simple zero. To proceed we first need to determine the behavior of −µ±λ I + Bλ

sufficiently close to a simple zero, as summarized by the following proposition.

Proposition 7. Let (λ, µ±λ (x)) be permissible and <(λ) ≥ 0 for x ∈ (a, b). Suppose
that a point X∗ ∈ {a, b} is a simple zero of [tr(Bλ)]2 − 4 det(Bλ), with associated
admissible neighborhood N , as in Definition 4.2. Then for x in N excluding the
singularity point, that is x ∈ N/{X∗}, we have

−µ±λ I + Bλ =

 c1(x) c2(x)
c1(x)

c2(x)
(−c1(x) +K(x)) −c1(x) +K(x)

 , (46)

where
K(x) = tr(−µ±λ I + Bλ) = ∓A|x−X∗|1/2(1 + o(1)), A > 0,

with the ∓ inherited from the ± of µ±λ and c2(x) is non-zero for x ∈ N , with
restrictions on N as required.

Proof. We first of all note that from Eq. (44) and Definition 4.2 that

K(x) := tr(−µ±λ I + Bλ) = ∓A|x−X∗|1/2(1 + o(1)), (47)

where A > 0. Noting that

det(−µ±λ I + Bλ) = 0, x ∈ N
then, with the zero determinant constraint α(x)(K(x)− α(x)) = β(x)γ(x), we can
write, without loss of generality, that

−µ±λ I + Bλ =

(
α(x) β(x)
γ(x) K(x)− α(x)

)
. (48)
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Firstly, if β(X∗) 6= 0 then restricting N as necessary, we have β(x) 6= 0 for x ∈ N .
In this case we can write

−µ±λ I + Bλ =

 c1(x) c2(x)
c1(x)

c2(x)
(−c1(x) +K(x)) −c1(x) +K(x)

 , (49)

where c2(x) is non-zero for x ∈ N . Hence the proposition holds if β(X∗) 6= 0.
We now consider the degeneracy with β(X∗) = 0, which implies α(X∗) = 0 on

noting that K(X∗) = 0. From Eq. (48) and Eq. (44), together with the smoothness
of Bλ allowing its expansion about x = x∗, we have

α(x) = −µ±λ + (Bλ)11(x)

=
1

2
((Bλ)11(X∗)− (Bλ)22(X∗))∓

1

2
A|x−X∗|1/2(1 + o(1)) +O(|x−X∗|)

and α(X∗) = 0 implies (Bλ)11(X∗) = (Bλ)22(X∗). Hence, noting that any O(|x −
X∗|) terms can be absorbed into the |x−X∗|1/2o(1) terms, we have

K(x)− α(x) = ∓1

2
A|x−X∗|1/2(1 + o(1)),

and thus

β(x)γ(x) = α(x)(K(x)− α(x)) =
1

4
A2|x−X∗|(1 + o(1)).

Hence for x ∈ N/{X∗}, restricting N as necessary to ensure the validity of the
above local expansions, we have β(x) 6= 0. Hence for x ∈ N/{X∗}, Eq. (46) applies,
demonstrating the proposition for β(X∗) = 0.

The following propositions proceed to consider how

exp

(∫
s∗(x̄)TD−1(x̄)M(x̄)p∗(x̄) + 2s∗(x̄)Tp′∗(x̄)

2s∗(x̄) · p∗(x̄)
dx̄

)
behaves for appropriate integration limits sufficiently close to the simple zero X∗,
before returning to considering the WKB solution of Eq. (36).

Proposition 8. Let (λ, µ±λ (x)) be permissible and <(λ) ≥ 0 for x ∈ (a, b). Suppose
that a point X∗ ∈ {a, b} is a simple zero of [tr(Bλ)]2 − 4 det(Bλ), with associated
admissible neighborhood N , as in Definition 4.2. Then, if X∗ = a, and with x ∈
N , x > X∗ = a, we have

exp

(∫ x

X∗+η

s∗(x̄)TD−1(x̄)M(x̄)p∗(x̄) + 2s∗(x̄)Tp′∗(x̄)

2s∗(x̄) · p∗(x̄)
dx̄

)
= ord

(
1

η1/4

)
, (50)

as η → 0+. If instead X∗ = b with x ∈ N , i.e. x < X∗ = b, we have (noting the
sign difference in the exponent)

exp

(
−
∫ X∗−η

x

s∗(x̄)TD−1(x̄)M(x̄)p∗(x̄) + 2s∗(x̄)Tp′∗(x̄)

2s∗(x̄) · p∗(x̄)
dx̄

)
= ord

(
1

η1/4

)
,

(51)
as η → 0+.
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Proof. By Proposition 7 we have

−µ±λ I+Bλ

=

(
c1(x) c2(x)

c1(x)
c2(x)

(
−c1(x)∓A|x−X∗|1/2(1 + o(1))

)
−c1(x)∓A|x−X∗|1/2(1 + o(1))

)
,

(52)
for x ∈ N/{X∗}, where c2(x) 6= 0.

Noting overall sign choices are without loss of generality due to the parity of the
integrands in Eqs. (50), (51), we have that the unit right zero eigenvector of the
matrix (52) can be written as

p∗ =
1

N1

(
−c2
c1

)
, N1 = (c21 + c22)1/2 ≥ |c2(x)| > 0,

where N1 is a normalization factor. Similarly the left unit eigenvector of matrix
(52) is

sT∗ =
1

N2

(
1

c2

(
c1 ±A|x−X∗|1/2(1 + o(1)

)
, 1

)
,

where N2 ≥ 1 is a normalization factor.
Further, from the first row of Eq. (52), we have

c1(x) = (Bλ)11 −
1

2
tr(Bλ)(X∗)∓

A

2
|x−X∗|1/2(1 + o(1)), c2(x) = (Bλ)12,

where (Bλ)11, (Bλ)12 are components of Bλ and thus smooth under differentiation
with respect to x. Thus c′2(x) is bounded on x ∈ N/{X∗}, while

c′1(x) = ∓A
4
σX∗ |x−X∗|−1/2(1 + o(1)), σX∗ :=

{
1 X∗ = a
−1 X∗ = b

.

To determine a leading order approximation for p′∗, the derivative of p∗, note
that c′1(x) will have a large derivative in N , giving

p′∗ =
1

N1

(
0

∓A4 σX∗ |x−X∗|−1/2
)

(1 + o(1)),

as all other derivatives are ord(1), except for the derivative of c1 in the denomi-
nator, that is N1. As this is in the denominator however, it will suppress, rather
than elevate the asymptotic order of the resulting term. Further note that s∗(x̄),
p∗(x̄) are normalized by construction and thus have components that are O(1) on
approaching the singular point. Similarly, from our assumptions that D, D−1 and
J have smooth and bounded coefficients we also have M(x̄) has bounded coeffi-
cients, that is the coefficients are O(1) on approaching the simple zero, X∗. Hence
we have

s∗(x̄)TD−1(x̄)M(x̄)p∗(x̄) ∼ O(1)

and thus

s∗(x̄)TD−1(x̄)M(x̄)p∗(x̄) + 2s∗(x̄)Tp′∗(x̄)

2s∗(x̄) · p∗(x̄)
=

s∗(x̄)Tp′∗(x̄)

s∗(x̄) · p∗(x̄)
(1 + o(1))

=
1

4
σX∗

1

|x−X∗|
(1 + o(1))

for x ∈ N/{X∗} since the dominant contribution in the numerator of the latter
relation is from the singularity term scaling with |x − X∗|−1/2 within p′∗, noting
that this vector is not normalized.
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Hence, fixing η > 0 sufficiently small, with X∗ = a, x ≥ X∗ + η, x ∈ N/{X∗}
we have that the left-hand side of Eq. (50) reduces to

exp

(∫ x

X∗+η

1

4(x̄−X∗)
(1 + o(1))dx̄

)
∼ ord

(
1

η1/4

)
, (53)

providing the required result on subsequently considering η → 0+. Analogously, for
sufficiently small, fixed, η > 0 with X∗ = b, x ≤ X∗ − η, x ∈ N/{X∗} we have the
left-hand side of Eq. (51) reduces to

exp

(∫ X∗−η

x

1

4(X∗ − x̄)
(1 + o(1))dx̄

)
∼ ord

(
1

η1/4

)
, (54)

giving the required result on now taking η → 0+.

We can use the results of the above proposition to demonstrate that the behavior
of the WKB solution is singular as [tr(Bλ)]2−4 det(Bλ) approaches zero from above,
but that the singularity can be regularized with an appropriate Dirichlet boundary
condition. Firstly, note the WKB solutions are only defined up to a multiplicative
scaling so that on a region (a, b) with 0 ≤ a < b ≤ 1, we need to assign an overall
scale, which we impose at the center of the domain X∗∗ = (a+ b)/2 by setting

Q±0 (X∗∗) = ord(1).

Thus for η > 0 sufficiently small we are interested in the behavior of Q0, normalized
by its value at X∗∗ as this will dictate the behavior of w±, as we now characterize
in the following proposition.

Proposition 9. Let (λ, µ±λ (x)) be permissible and <(λ) ≥ 0 for x ∈ (a, b). Suppose
that a point X∗ ∈ {a, b} is a simple zero of [tr(Bλ)]2 − 4 det(Bλ), with associated
admissible neighborhood N , as in Definition 4.2. Defining X∗∗ := (a+b)/2, σX∗ = 1
if X∗ = a and σX∗ = −1 if X∗ = b we have

Q±0 (X∗ + σX∗η)

Q±0 (X∗∗)
∼ ord

(
1

η1/4

)
on x ∈ N/{X∗} as η → 0+, so that from Eq. (36)

w±(X∗ + σX∗η) = ord(η3/4)

on x ∈ N/{X∗} as η → 0+, providing homogeneous Dirichlet conditions are imposed
at x = X∗.

Proof. Let X∗∗ = (a + b)/2, fix Q±0 (X∗∗) = ord(1) for the overall scaling of the
WKB solution and, for convenience, define

I(x̄) :=
s∗(x̄)TD−1(x̄)M(x̄)p∗(x̄) + 2s∗(x̄)Tp′∗(x̄)

2s∗(x̄) · p∗(x̄)
.

Then, noting Eq. (35), if X∗ = a we have

Q±0 (X∗ + η)

Q±0 (X∗∗)
=

(
µ±λ (X∗∗)

µ±λ (X∗ + η)

)1/4

exp

(∫ X∗∗

X∗+η

I(x̄)dx̄

)
∼ ord

(
1

η1/4

)
. (55)

The final observation arises from using a few previous results in combination.
Firstly, we have that µ±λ is bounded away from zero by Proposition 5 and we recall
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that µ±λ is an eigenvalue of Bλ, given by Eq. (44). Then Proposition 8, which also
applies when X∗ = b, gives the final result:

Q±0 (X∗ − η)

Q±0 (X∗∗)
=

(
µ±λ (X∗∗)

µ±λ (X∗ − η)

)1/4

exp

(
−
∫ X∗−η

X∗∗

I(x̄)dx̄

)
∼ ord

(
1

η1/4

)
.

(56)
To match Dirichlet boundary conditions at x = X∗ we have that at the point
x = X∗ + σX∗η that (using the arbitrary constants S±0 and C±0 ) double angle
formulae can be used to rewrite the trigonometric contribution to w± within the
expression of Eq. (36) in the form

Ŝ±0 sin

(
1

ε

∫ x=X∗+η

X∗

√
µ±λ (x̄)dx̄

)
= ord

(η
ε

)
= ord (η) , X∗ = a

Ŝ±0 sin

(
1

ε

∫ X∗

x=X∗−η

√
µ±λ (x̄)dx̄

)
= ord

(η
ε

)
= ord (η) , X∗ = b

(57)

as η → 0+, noting as above that µ±λ is bounded away from zero, and where Ŝ±0 is a
real constant. In particular the analogous cosine contribution is set to zero by the

imposition of the Dirichlet condition at x = X∗ and Ŝ±0 6= 0 to avoid the trivial
solution. Eqs. (55),(56), and (57) then give

w±(X∗ + σX∗η) = ord(η3/4).

An immediate corollary of Proposition 9 is that if a = 0 or b = 1 (but not
both), then we need to apply both a homogeneous Dirichlet condition to maintain
boundedness, as above, and homogeneous Neumann conditions to satisfy the zero
flux boundary conditions at the edge of the domain. Only the trivial solution is
then possible, so we have a = 0 and b = 1 are excluded from this class of solutions.

We further note that dealing with the case X∗ = b in addition to X∗ = a adds to
the detail of the calculations required to deduce the above results, though not the
concepts. One could alternatively deduce the result for X∗ = b with the approach
to the singular point from below, from the result with X∗ = a with the approach
to the singular point from above as follows. In particular with

x→ 1− x, J(x)→ J(1− x), D(x)→D(1− x),

and noting M(x),N(x) remain smooth and bounded under this mapping, a singu-
larity approached from below at X∗ = b will be mapped to a singularity approached
from above at X∗ = 1 − b, but the scale of the singularity will be invariant. The
latter will have w± scale with η1/4, where x = 1− b+ η, and hence the singularity
approached from below at X∗ = b of the original problem will also scale with η1/4.
Thus, one may alternatively only track the calculations for X∗ = a above and then
infer the result for X∗ = b using this reasoning.

In addition, the following Proposition also demonstrates that if these conditions
hold for real λ∗ > 0, then they hold for all non-negative λ < λ∗.

Proposition 10. Assume the homogeneous stability constraints of Eq. (23) are
given. Then, if λ∗ > 0 is permissible for x ∈ (a, b), all λ ∈ [0, λ∗] are permissible
for x ∈ (a, b).
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Proof. Recall that Bλ = D−1(J − λI) and hence

tr(Bλ) = tr(D−1J)− λtr(D−1), det(Bλ) = det(D−1)(λ2 − λ(trJ) + det(J)).

Thus, for λ∗ > 0 permissible with λ∗ > λ ≥ 0 we have

tr(Bλ) = tr(Bλ∗) + (λ∗ − λ)tr(D−1) > tr(Bλ∗) > 0,

noting λ∗ is permissible and so tr(Bλ∗) > 0 and tr(D−1) > 0 by positive definiteness
of D. Hence the first condition of Eq. (42) is satisfied for Bλ.

We also need to demonstrate the second condition of Eq. (42) to demonstrate
permissibility by Proposition 5. Hence we define

P (λ) := tr(Bλ))2 − 4det(Bλ) = ζ2λ
2 + ζ1λ+ ζ0,

where

ζ2 = (tr(D−1))2 − 4det(D−1), ζ1 = 4det(D−1)tr(J)− 2tr(D−1J)tr(D−1),

and ζ0 = (tr(D−1J))2 − 4det(D−1J).

With η1, η2 the eigenvalues of D−1, which are real and positive by positive defi-
niteness of D, but conceivably repeated, note that

ζ2 = (η1 − η2)2 ≥ 0.

Furthermore, let

λ1 =
tr(D−1J)

tr(D−1)
,

so that tr(Bλ1
) = 0. Thus λ2 ≥ λ1 implies tr(Bλ2

) ≤ 0, which in turn implies that
λ2 is not permissible by Proposition 5. Hence λ∗ permissible gives λ∗ < λ1. Also,
as λ∗ > 0, we then have λ2∗ < λ21 and hence

P (λ∗) =P (λ1)+(tr(D−1λ∗ − tr(D−1J))2 + 4det(D−1)(λ21 − λ2∗)
−4det(D−1)tr(J)(λ1 − λ∗) > P (λ1),

using the homogeneous conditions of Eq. (23) and the positive definiteness of D.
Thus, if ζ2 > 0, then λ∗ is on the decreasing branch of the quadratic P (λ), as is
any smaller value of λ since P (ξ) → ∞ as ξ → −∞. Alternatively, if ζ2 = 0, we
have the degenerate linear case for P (λ) with a negative gradient. Either way, for
0 ≤ λ < λ∗ we have

P (λ) > P (λ∗) ≥ 0

and the second condition Eq. (42) is satisfied for Bλ and we have permissibility by
Proposition 5.

4.3. Localized WKB Solutions. We restrict ourselves to non-negative growth
rates, λ, so that <(λ) > 0, while recalling that λ does not vary across the domain and
must be such that µ±λ satisfies the constraint (39) and thus be permissible. Hence,
by Proposition 3 we further have that λ is real. Given the equivalent conditions of
permissibility of Eq.(42) from Proposition 5, Proposition 9 shows the behavior of
the WKB leading order solutions near singular points, while Proposition 6 shows
how to locate singular points for a given non-negative permissible growth rate, λ,
from D,J . These propositions, and thus the form of the resulting solutions, require
that

[tr(Bλ)]2 − 4 det(Bλ) (58)

only has simple zeros, if any.
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In general we have considered open intervals (a, b) ⊆ (0, 1) where WKB leading
order solutions for such λ exist, though in general the set on which they exist can
be a union of such domains, and all of the above propositions apply. Thus we use
the definition:

Definition 4.3. For λ > 0 we define Tλ to be the closure of the maximal open set
where λ is permissible.

In particular Tλ need not be simply connected. At its edges we also have either
homogeneous Neumann conditions from the boundary conditions at x ∈ {0, 1} or
homogeneous Dirichlet conditions from Proposition 9 for internal edges, assuming
these correspond to simple zeros of Eq. (58), noting a bounded non-trivial WKB
leading order solution of the form of Eq. (36) is required for the solution to rep-
resent an unstable mode. Note that no singularities emerge from the denominator
[µ±λ ]1/4, as discussed at the start of Section 4.2. In addition, a final wave selection
condition must be imposed, such as Eq. (39) across one of the intervals constituting
Tλ to ensure the homogeneous edge conditions at the edges of this interval can be
satisfied (for a suitable choice of sufficiently small ε and thus the diffusion scale).
The WKB solution on all other intervals constituting Tλ can then be set to the
trivial zero solution. In addition, outside Tλ the lack of permissibility for λ entails
non-trivial WKB leading order solutions cannot satisfy the waveform selection con-
straints required to fulfil the homogeneous conditions at the edges, Tλ, leaving only
the trivial WKB solution for the leading order solution in the complement of Tλ.

Strictly, such solutions are only outer solutions and an inner solution would be
required to generate a smooth leading order composite solution. However, the outer
solutions are sufficient for our purposes.

Our results thus far, for the simple case that Tλ is simply connected, may be
represented by the following theorem for instability, directly analogous to that of
[17], but now applicable to the more general cross-diffusion systems of Eq. (4)-(6),
linearizing to Eq. (13).

Theorem 4.4 (λ-Dependent Heterogeneous Case). Let <(λ) > 0, 0 < ε� 1, and
assume that

[tr(Bλ(x))]2 − 4 det(Bλ(x))

has no more than two simple zeros for x ∈ [0, 1], and is positive between these two
zeros. We assume stability to perturbations in the absence of diffusion, i.e.,

tr(J(x)) < 0, det(J(x)) > 0, for all x ∈ [0, 1], (59)

is given. Then there exists non-homogeneous, non-trivial, bounded perturbations
w satisfying Eq. (13) to leading order in ε, which grow as eλt in the interval x ∈
(a(λ), b(λ)) if

tr(Bλ(x)) > 0, [tr(Bλ(x))]2 − 4 det(Bλ(x)) > 0, for all x ∈ (a(λ), b(λ)), (60)

and ε satisfies the wave-selection constraint(
n± +

K

2

)
πε =

∫ b(λ)

a(λ)

√
µ±λ (x̄)dx̄ (61)

for any natural number n± > 0, such that

a(λ) = max(0,min({x : [tr(Bλ(x))]2 − 4 det(Bλ(x)) = 0})),

b(λ) = min(1,max({x : [tr(Bλ(x))]2 − 4 det(Bλ(x)) = 0})),
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and K = 0 if either a(λ) = 0 and b(λ) = 1, or if 0 < a(λ) < b(λ) < 1; otherwise
K = 1.

Proof. We have Tλ = (a(λ), b(λ)). Also µ±λ is real and permissible on Tλ by Proposi-

tions 2, 5 while Eq. (44) and conditions (60) also give µ±λ is positive on Tλ. Further,
by Proposition 3, we have no loss of generality in specializing to strictly real λ.
Finally, by Proposition 9, we have that the WKB solutions can be bounded at any
interior edges of Tλ by homogeneous Dirichlet conditions at the interior edges of Tλ,
and the boundary conditions require homogeneous Neumann conditions.

The permissibility of µ±λ on Tλ allows non-trivial leading-order WKB solutions
on Tλ. Conversely, noting the definition of permissibility, its absence on the comple-
ment of Tλ implies that the wave selection constraint cannot be satisfied and thus
there is only the trivial WKB solution on the complement of Tλ. Thus we have the
following solutions, classified by the possible forms of Tλ, given

[tr(Bλ(x))]2 − 4 det(Bλ(x))

has no more than two simple zeros for x ∈ [0, 1]:

• no singular points, so Tλ = [0, 1] and the solution is

w±(x, t) = eλt exp

(
−
∫ x

0

s±∗ (x̄)TD−1(x̄)M(x̄)p±∗ (x̄) + 2s±∗ (x̄)T (p±∗ )′(x̄)

2s±∗ (x̄)Tp±∗ (x̄)
dx̄

)
× C±0

[µ±λ (x)]1/4
cos

(
1

ε

∫ x

0

√
µ±λ (x̄)dx̄

)
p∗(x),

with ∫ 1

0

√
µ±λ (x̄)dx̄ = n±πε; (62a)

• one singular point x∗(λ) > 0, so without loss of generality, (x∗, 1) = Tλ, with
solution

w±(x, t) = eλt exp

(∫ 1

x

s±∗ (x̄)TD−1(x̄)M(x̄)p±∗ (x̄) + 2s±∗ (x̄)T (p±∗ )′(x̄)

2s±∗ (x̄)Tp±∗ (x̄)
dx̄

)
× S±0

[µ±λ (x)]1/4
sin

(
1

ε

∫ x

x∗

√
µ±λ (x̄)dx̄

)
p∗±(x),

with ∫ 1

x∗

√
µ±λ (x̄)dx̄ =

(
n± +

1

2

)
πε, (62b)

for x ∈ Tλ, and zero otherwise;
• two singular points x∗(λ), x∗∗(λ) ∈ (0, 1) delimiting the Tλ set, i.e. Tλ =

(x∗, x∗∗), with solution

w±(x, t) = eλt exp

(∫ x∗∗(λ)

x∗(λ)

s±∗ (x̄)TD−1(x̄)M(x̄)p±∗ (x̄) + 2s±∗ (x̄)T (p±∗ )′(x̄)

2s±∗ (x̄)Tp±∗ (x̄)
dx̄

)

× S±0
[µ±λ (x)]1/4

sin

(
1

ε

∫ x∗∗

x

√
µ±λ (x̄)dx̄

)
p∗±,

with ∫ x∗∗(λ)

x∗(λ)

√
µ±λ (x̄)dx̄ = n±πε, (62c)

for x ∈ Tλ, and zero otherwise.
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We note that requiring ε to satisfy the wave selection constraint ensures that the
boundary conditions are satisfied, and hence the above expressions constructively
give the non-trivial and bounded solutions required for the proof.

The generalization of Theorem 4.4 to more than two singular points and non-
simply connected Tλ is directly analogous, except for the wave selection criteria.
One has two degrees of freedom, λ and ε, so it should be feasible to simultaneously
satisfy two wave selection constraints from distinct simply connected intervals Tλ.
However, the ability to satisfy higher numbers of constraints simultaneously is un-
clear, potentially limiting the number of distinct simply connected regions where a
single WKB solution has support (though of course the full solution to Eq. (13) will
involve a superposition of different modes on different regions Tλ). One final im-
portant result is the monotonicity of Tλ with respect to λ, which follows in exactly
the same way as presented in [17], which we repeat here for completeness:

Proposition 11. If Tλ2
6= ∅ and 0 ≤ λ1 ≤ λ2 then Tλ2

⊆ Tλ1
. If Tλ1

6= [0, 1], and
0 ≤λ1 < λ2, then we have the stricter inclusion Tλ2

⊂ Tλ1
.

Proof. The first part of this result, for 0 ≤ λ1 ≤ λ2, follows from Proposition 10.
Hence we need to show that if λ1 < λ2, then Tλ2

is a strict subset of Tλ1
if Tλ1

6=
[0, 1]. We note that the internal edges of Tλ are zeros with respect to x of

(trBλ(x))2 − 4 det(Bλ(x)).

Also, differentiating with respect to λ for λ ≥ 0 gives

∂

∂λ

[
(trBλ(x))2 − 4 det(Bλ(x))

]
= −2tr(Bλ)tr(D−1) + 4tr(Jλ) det(D−1) < 0,

(63)
which follows by determining the sign of each term (all traces and determinants are
positive except for tr(Jλ) < tr(J) < 0). As (trBλ(x))2 − 4 det(Bλ(x)) > 0 for x in
the interior of Tλ, reducing λ2 increases the value of

tr(Bλ2(x))2 − 4 det(Bλ2(x)) (64)

at any given point x. Hence if an open simply connected region within Tλ2
is given

by a(λ2) < x < b(λ2), we have that if 0 ≤ λ1 < λ2 and a(λ2) > 0, so that
the edge point is in the interior of the domain and thus a zero of Eq. (64), then
a(λ1) < a(λ2). Similarly, once more given the above ordering of λ1, λ2, if b(λ2) < 1
then b(λ1) > b(λ2), so the strict inclusion Tλ2

⊂ Tλ1
for Tλ1

6= [0, 1] follows.

4.4. Theorem 2.1: We are now in a position to prove Theorem 2.1:

Proof. By Proposition 3, we can specialize to non-negative growth rates, λ that are
real. We consider T0, which by the conditions, Eq. (23), (24) given in the theorem
is non-empty, and by the inclusion result, Proposition 11, contains Tλ for any non-
negative λ. Continuity ensures that there exists sufficiently small λ > 0 such that
Tλ is non-empty and the simple zeros of T0 continuously map to simple zeros of Tλ
as λ is continuously shifted away from zero.

If we further have the limitation that

[tr(Bλ(x))]2 − 4 det(Bλ(x))

has no more than two simple zeros for x ∈ [0, 1] with Tλ simply connected for any
such λ then Theorem 4.4 gives leading order (in ε) WKB solutions, w± of Eq. (62),
that satisfy the requirements of Theorem 2.1. In particular, they are non-trivial,
inhomogeneous, bounded and will drive an instability on Tλ ⊆ T0 providing the
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wave selection criterion, as given by Eq. (61), can be satisfied. In particular, noting
Eq. (3) and Eq. (61), continuously reducing the diffusion scale D to be sufficiently
small and thus continuously reducing ε, will locate a value of D for which the wave
selection criterion can be satisfied.

For the more general case where

[tr(Bλ(x))]2 − 4 det(Bλ(x))

can have more than two simple zeros for x ∈ [0, 1] and/or Tλ is not necessarily sim-
ply connected, we can similarly construct leading order WKB solutions of the form
of w± in Eq. (62), with a wave selection constraint of the form of Eq. (61) for each
simply connected region making up Tλ. One, of many possible, wave selection crite-
ria for this solution then is the constraint of satisfying the wave selection criterion
on one, and only one, of the simply connected regions making up Tλ. As this is, once
more, a single simply connected region it can be achieved by continuously reducing
the diffusion scale ε to be sufficiently small, as above. An associated leading order
WKB solution can be constructed by taking it to be trivial on the other simply
connected regions constituting Tλ and of the form of w± in Eq. (62) for the sim-
ply connected region where the wave selection criterion is satisfied. This provides
leading order WKB solutions with the appropriate properties of being non-trivial,
inhomogeneous and bounded, as required to demonstrate the theorem.

Note that the conditions of Theorem 2.1, with the homogeneous stability condi-
tion of Eq. (23) for x ∈ [0, 1] and the inhomogeneous condition of Eq. (24) on at
least a subset of x ∈ [0, 1], directly generalize both the homogeneous conditions of
Proposition 1 and the reaction-diffusion system without cross-diffusion studied in
[17]. Thus Turing instability conditions generalize to inhomogeneous cross-diffusion
systems, of which chemotaxis is a special case, with the very weak additional re-
quirement that any zeros of [tr(B0(x))]2−4 det(B0(x)) are simple, noting zeros are
excluded from the homogeneous case by Eq. (24).

Furthermore, by inspection of Eq. (61), there are countably infinite values of the
diffusion scale, D, or equivalently ε, where the wave selection criterion is satisfied.
One may also trivially note from the proof of Theorem 2.1 that when T0 is more
complex, in particular not simply connected, there is a collection of WKB solutions
of the form of Eq. (62) for each simply connected region constituting Tλ and trivial
elsewhere, generating multiple leading order WKB solutions. Once we have that
regions given by the zeros of [tr(B0(x))]2− 4 det(B0(x)) are not simply connected,
delimiting when the wave selection criteria on more than one simply connected
constituent of Tλ can be simultaneously satisfied requires quantitative knowledge
of the eigenvalues µ±λ , which we have not considered. However, we still anticipate
being able to satisfy wave selection criteria on two simply connected constituents of
Tλ as there are two degrees of freedom, namely λ and, for example via changes in
the diffusion scale, ε, that can be adjusted. More generally, this demonstrates the
prospect of an even more extensive class of leading order WKB solutions, which have
support on more than one simply connected domain and highlights rich possibilities
of unstable leading order WKB solutions for more complex Tλ. Such possibilities,
as well as a more general study of these systems and the instability conditions, will
be numerically explored in the following sections, where we explicitly demonstrate
that heterogeneity can serve to localize patterns to regions predicted by the simple
inequalities in Theorem 2.1.
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5. Numerical Results. We have built a general MATLAB code to solve (4) nu-
merically, as well as to compute the boundaries of T0 where we expect to find
deviations from our approximate steady state given by f(u∗, x) = 0. The code
implements a method-of-lines discretization of the cross-diffusion terms given by

∂

∂x

(
D(u, v, x)

∂u

∂x

)
≈ (ui+1 − ui)(Di+1 +Di)− (ui − ui−1)(Di +Di−1)

2δx2
, (65)

where Di = D(ui, vi, xi) with the subscript indicating evaluation at the ith grid
point, and δx = 1/(N − 1) with N denoting the number of grid points. The re-
sulting system of ODEs is integrated using the MATLAB function ode15s, which
implements a variable-step, variable-order solver [38]. Relative and absolute toler-
ances are taken to be 10−11 and a Jacobian sparsity pattern was used to speed up
timestepping. Unless otherwise noted, N = 104 equispaced grid points are used.
Convergence checks in the number of grid points and the maximum timestep were
used for selected simulations to ensure soundness of the method. In all cases we
used initial data of the form u(0, x) = u∗(x)ξu(x), v(0, x) = v∗(x)ξv(x), with ξu, ξv
being normal random variables with mean 1 and standard deviation 0.1 indepen-
dently and identically at each spatial point. The code can be found at [18], and
we encourage the interested reader to explore other systems and parameter regimes
than what we report here.

To demonstrate the generality of our theory, we study three examples of cross-
diffusion and its impact on pattern formation. Firstly we consider the Schnakenberg
model [37, 29] with linear cross-diffusion terms [8],

∂u

∂t
=ε2

∂

∂x

(
D11(x)

∂u

∂x
+D12(x)

∂v

∂x

)
+ a(x)− u+ u2v,

∂v

∂t
=ε2

∂

∂x

(
D21(x)

∂u

∂x
+D22(x)

∂v

∂x

)
+ b(x)− u2v,

(66)

where we assume a(x) > 0, b(x) > 0 for all x ∈ [0, 1]. The approximate steady state
is given by u∗(x) = a(x) + b(x), v∗(x) = b(x)/(a(x) + b(x))2.

We also consider a version of the Keller-Segel model of chemotaxis [13, 11, 29, 10],
noting that spatially heterogeneous variants have been studied in [47] and references
therein. Accounting for logistic cell growth and linear chemoattractant dynamics,
the model is given by

∂u

∂t
=ε2

∂

∂x

(
D11(x)

∂u

∂x
− χ(x)u

∂v

∂x

)
+ u

(
1− u

K(x)

)
,

∂v

∂t
=ε2

∂

∂x

(
D22(x)

∂v

∂x

)
+ h(x)u− v,

(67)

where we assume K(x) > 0, h(x) > 0 and χ(x) > 0 for all x ∈ [0, 1]. The approxi-
mate steady state is given by u∗(x) = K(x), v∗(x) = h(x)K(x).

Finally we explore the classical Shigesada-Kawasaki-Teramoto (SKT) model [39,
30, 25, 6, 35], with spatially heterogeneous variations studied in [23] and elsewhere.
After a suitable rescaling, this model can be written2 in a cross-diffusion form given

2Starting from the original SKT model with a heterogeneous diffusion tensor, one may also
obtain an ‘advection’ term involving first-order derivatives in u and v. For simplicity we will

neglect these terms, as they do not arise in almost all other work on the SKT model when the
diffusion tensor does not depend on x.
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by

∂u

∂t
=ε2

∂

∂x

(
(d1(x) + d11(x)u+ d12(x)v)

∂u

∂x
+ d12(x)u

∂v

∂x

)
+ r1(x)u(1− a1(x)u− b1(x)v),

∂v

∂t
=ε2

∂

∂x

(
d21(x)v

∂u

∂x
+ (d2(x) + d21(x)u+ d22(x)v)

∂v

∂x

)
+ r2(x)v(1− b2(x)u− a2(x)v),

(68)
where we assume that the kinetic functions ri(x) > 0, ai(x) > 0, and bi(x) > 0
for all x ∈ [0, 1]. We will also assume that a1(x) > b2(x), and a2(x) > b1(x) to
ensure the feasibility and stability (in the absence of transport) of an approximate
coexistence equilibrium given by u∗(x) = (a2(x)− b1(x))/(a1(x)a2(x)− b1(x)b2(x)),
v∗(x) = (a1(x)− b2(x))/(a1(x)a2(x)− b1(x)b2(x)).

In all cases we assume that the kinetic parameters are chosen so that our approx-
imate heterogeneous steady states, u∗, satisfy the boundary conditions (6). This is
not strictly needed for the parameters ri in the SKT model, as these do not enter
into our approximate steady states. We do not make any explicit restrictions on the
cross-diffusion parameters, except that D must remain positive-definite. We note,
however, that the existence and regularity theory for these systems is much more
intricate than for simpler reaction-diffusion models, with blowup and singularities
having a significant literature [6, 25, 23, 47]; see [24] for an introductory review to
these complexities and their analysis.

We start by exploring the Schnakenberg model, Eq. (66), in a regime where the
pure reaction-diffusion system would not pattern, namely when D11 = D22 = 1.
We make a(x) and D21(x) depend on space in such a way to localize patterns to
the interior of the domain, noting that a(x) must satisfy the boundary conditions
but D21(x) need not. We plot our numerical simulations in Fig. 1 for decreasing
values of ε. The solution is shown at time t = 5, 000, but in all cases is indistin-
guishable from the solution at t = 200, hence this appears to be an approximate
(patterned) steady state. As anticipated by the theory, the location of the Tur-
ing regime T0 approximates where deviations from the heterogeneous steady state
occur, and this approximation becomes better as ε decreases, with the number of
internal ‘spikes’ in the pattern increasing. This localization was shown for relatively
simple heterogeneities in [17], and so we will now consider more elaborate examples.

The heterogeneities used in Fig. 1 were symmetric about the midpoint of the
domain x = 0.5. We next consider an example with an asymmetric heterogeneity in
D12(x), but otherwise use the same parameters. We show solutions for decreasing ε
in Fig. 2, and now include kymographs or space-time plots showing the evolution of
u over time. Unlike the previous example, the solutions do not reach an apparent
steady state but now move in the direction of increasing D12(x). The speed of these
moving spikes is influenced by ε with extremely slow movement seen in panels (D)
and especially (F). We expect that this movement is due to the kind of heterogeneity-
induced spike oscillations reported in [32], which were later studied and explained in
terms of spike generation and annihilation in [14, 21]. Despite the spatiotemporal
nature of the solutions, the boundaries of T0 still give a good approximation for
where the deviations from the steady state u∗ occur.

Finally we consider a more intricate example with complex heterogeneities in
both cross-diffusion parameters, a(x), and b(x) in Fig. 3. There are now four regions
where Theorem 2.1 predicts pattern formation. However, for sufficiently large ε,
wavemode selection prevents the rightmost of these regions from patterning in panels
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Figure 1. Plots of u in blue curves and u∗ in dashed black curves
from solutions of the Schnakenberg model, Eq. (66), for various
values of ε at T = 5, 000, which are essentially at steady state.
The red vertical lines show the boundary of T0 computed from the
conditions in Theorem 2.1. The parameters are taken as a(x) =
0.8 − 12x2(x − 1)2, b = 1, D11 = D22 = D12 = 1, D21 = 3((x −
0.5)2 − 1). Note that in panel (D), N = 5 × 104 grid points were
used to accurately represent the solution.

(A) and (B). As in Fig. 2, solutions within each region are spatiotemporally moving
spikes, with speeds varying with ε but also with speed and direction dependent
on the local heterogeneity. In particular, the local speed of a spike decreases with
increasing x, and the direction of movement is always from lower values of u∗ to
higher values. We also observe an increase in the local frequency of oscillations with
increasing x (see especially the leftmost and rightmost patterned regions in panels
(C) and (E)).

We next consider simulations of the Keller-Segel chemotaxis system Eq. (67).
We show example steady state behaviors in Fig. 4 for heterogeneous h(x), K(x),
and χ(x). While there is a size and wavelength modulation, and the patterned
region is asymmetrically shaped, such solutions are steady in time. In contrast, if
we let either χ(x) = 0 or h(x) = 0, we observe the more complicated spatiotemporal
behavior in Fig. 5 for sufficiently small ε. The direction of spike movement in either
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Figure 2. Plots of u in blue curves and u∗ in dashed black curves
from solutions of the Schnakenberg model, Eq. (66), for various
values of ε at T = 5, 000 in (A), (C), (E), and kymographs of u
in (B), (D), (F). The red vertical lines show the boundary of T0
computed from the conditions in Theorem 2.1. The parameters
are taken as a(x) = 0.8 − 12x2(x − 1)2, b = 1, D11 = D22 = 1,
D12 = 0.5 + 0.8x, D21 = 3((x− 0.5)2 − 1).
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Figure 3. Plots of u in blue curves and u∗ in dashed black curves
from solutions of the Schnakenberg model, Eq. (66), for various
values of ε at T = 5000 in (A), (C), (E), and kymographs of u
in (B), (D), (F). The red vertical lines show the boundary of T0
computed from the conditions in Theorem 2.1. The parameters
are taken as a(x) = 0.01 + 0.19(1 + cos(10xπ)), b = 0.9 + 0.3(1 −
cos(6xπ)), D11 = D22 = 1, D12 = 1 + sin(3xπ), D21 = 2(x− 1).
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Figure 4. Plots of u in blue curves and u∗ in dashed black curves
from solutions of the Keller-Segel model, Eq. (67), for various values
of ε at T = 50, 000. The red vertical lines show the boundary of
T0 computed from the conditions in Theorem 2.1. The parameters
are taken as K(x) = 1.2 − 0.5 cos(2πx), h(x) = (1 − 0.5 cos(πx)),
D11 = D22 = 1, and χ(x) = 3.05− 0.1x.

case is opposite, which helps explain why their combination leads to steady spikes
in Fig. 4. Interestingly, while the spike movement decreases with decreasing ε, for
ε = 0.02, no spike movement is observed in panels (A) and (B) of Fig. 5. This
is consistent with observations of heterogeneous reaction-diffusion systems in [21],
as such spike oscillations arise due to a global bifurcation structure involving spike
creation and annihilation.

We now demonstrate localized pattern formation in the SKT model given by
Eq. (68). We consider heterogeneous kinetic and diffusion parameters in Fig. 6,
observing again that while localization occurs approximately within the bounds
predicted by Theorem 2.1, there is spike movement for sufficiently small ε. We
note that the spike speed decreases for decreasing values of ε, and spike wavelength,
amplitude, and speed are spatially-dependent. We also observe in panel (B) that
for sufficiently large ε, stationary patterns are observed in part of the domain, while
spatiotemporal movement is still observed in another region. For ε ≥ 0.007, there is
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(a) ε = 0.02, h = 0,

χ = 3.05 − 0.1x

(b) ε = 0.02, χ = 0
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(c) ε = 0.01, h = 0,
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(d) ε = 0.01, χ = 0

h = (1 − 0.5 cos(πx))

(e) ε = 0.005, h = 0,
χ = 3.05 − 0.1x

(f) ε = 0.005, χ = 0
h = (1 − 0.5 cos(πx))

Figure 5. Plots of u in blue curves and u∗ in dashed black curves
from solutions of the Keller-Segel model, Eq. (67), for various values
of ε at T = 50, 000. The red vertical lines show the boundary of
T0 computed from the conditions in Theorem 2.1. The parameters
are taken as K(x) = 1.2− 0.5 cos(2πx) and D11 = D22 = 1.
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Figure 6. Plots of u in blue curves and u∗ in dashed black curves
from solutions of the SKT model, Eq. (68), for various values of ε at
T = 50, 000 in (A), (B), (E), and kymographs of u in (B), (D), (F).
The red vertical lines show the boundary of T0 computed from the
conditions in Theorem 2.1. The parameters are taken as r1(x) = 1,
r2(x) = 2, a1(x) = 0.9 + 0.2 cos(3πx), a2(x) = 0.9 + 0.2 cos(4πx),
b1(x) = 0.6, bs(x) = 0.2, d1(x) = d2(x) = 1, d21(x) = 200x,
d11(x) = d12(x) = d22(x) = 0.
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no longer any spike movement and all of the solutions we found tended to stationary
spatial profiles.

6. Discussion. We have generalized the results found in [17] to nonlinear reaction-
cross-diffusion systems. Our main result, presented in Theorem 2.1, can be inter-
preted as giving the locations where we expect pattern formation which is emergent
from a Turing-type instability, as opposed to spatial structure arising from back-
ground heterogeneity itself. Such a distinction is a key result of our linear theory.
We numerically validated this theory using a wide variety of cross-diffusion models,
finding an excellent agreement with the analytical predictions for sufficiently small
ε. We also showed that numerical instabilities arising from spike instabilities and
creation will also remain within the spatial regions predicted by our instability anal-
ysis, though our theory cannot differentiate between steady state pattern formation
and such spatiotemporal oscillations.

There are many avenues for future work, particularly where we think the main
approach presented may be especially tractable. In principle our theory of pattern
localization should extend to systems where all spatial derivatives of order n are
scaled with εn, such as in fourth-order pattern forming models like Swift-Hohenberg
or Cahn-Hilliard systems. Such a setting may actually be an easier context in which
to pursue weakly nonlinear analyses to study the saturation of pattern amplitude as
a function of the growth rate λ, and potentially to explore questions of spatiotem-
poral oscillations. Numerical continuation could help connect the theory developed
here to other kinds of localized patterns, such as localized patterns found via nonlin-
ear mechanisms such as homoclinic snaking [41, 1]. An interesting question would
be how these different kinds of localized structures interact.

Extending these results to more than two species, as has been well-studied in
the spatially homogeneous setting [36], is in principle straightforward, though the
calculations may become overly cumbersome. A more difficult challenge, and one
for which we have no easy way to extend the theory, is to prove analogous results for
higher spatial dimensions. Numerically, we have explored such extensions and found
excellent agreement with the expected localization [46], but the WKB approach
becomes substantially more technical to use in higher dimensions. We anticipate
that there is an alternative way to prove something analogous to Theorem 2.1 which
can be extended to higher dimensions. There are also aspects of our theory which
deserve a more careful rigorous development, which others have begun [15].

While the details of our approach are somewhat technical, the overall results are
intuitive, and in some sense can be viewed as justifying the ‘obvious’ localization
one might anticipate in the regime of small ε. Nevertheless, our framework opens
up a variety of ways of thinking of localization in pattern forming systems, which we
think has ample use in developmental biological and ecological settings. The model
Eq. (4) inherently contains two scale-separation assumptions. The explicit assump-
tion in ε is that the diffusive scaling is smaller than that of the reaction (and that
gradients in heterogeneous reactions are sufficiently slow). A second inherent as-
sumption, however, is a timescale separation between the proposed pattern-forming
model and whatever led to the pre-patterned state giving rise to the explicit spatial
heterogeneities. Determining when these assumptions are valid, or how to concep-
tualize these systems when these assumptions are relaxed, is another key area of
future work.
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