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a b s t r a c t

Domain adaptation aims to exploit useful information from the source domain where annotated
training data are easier to obtain to address a learning problem in the target domain where only
limited or even no annotated data are available. In classification problems, domain adaptation has
been studied under the assumption all classes are available in the target domain regardless of the
annotations. However, a common situation where only a subset of classes in the target domain
are available has not attracted much attention. In this paper, we formulate this particular domain
adaptation problem within a generalized zero-shot learning framework by treating the labelled source-
domain samples as semantic representations for zero-shot learning. For this novel problem, neither
conventional domain adaptation approaches nor zero-shot learning algorithms directly apply. To solve
this problem, we present a novel Coupled Conditional Variational Autoencoder (CCVAE) which can
generate synthetic target-domain image features for unseen classes from real images in the source
domain. Extensive experiments have been conducted on three domain adaptation datasets including a
bespoke X-ray security checkpoint dataset to simulate a real-world application in aviation security. The
results demonstrate the effectiveness of our proposed approach both against established benchmarks
and in terms of real-world applicability.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The success of deep learning in the recent decade relies on the
vailability of abundant annotated data for training (Deng et al.,
009). In real-world applications, the acquisition of sufficient
raining data can be difficult or even impossible. One technique
o address the training data sparsity issue is transfer learning
hich aims to explore and transfer knowledge learned from the
ource domain to the target domain Tan et al. (2018). There are
sually more annotated data in the source domain than those in
he target domain within which the task to solve resides. Zero-
shot learning (Guo & Guo, 2020; Pourpanah et al., 2022; Wang &
Chen, 2017a, 2017b; Xian, Sharma, Schiele, & Akata, 2019) and
domain adaptation (Deng et al., 2021; Ma, Zhang, & Xu, 2019;
Wang & Breckon, 2020; Wang, Bu, & Breckon, 2019) are two well-
formulated transfer learning problems that have attracted much
attention in the recent decade.

Traditional supervised learning methods have the limitation
in that they can only recognize seen classes (observed) for which
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nc-nd/4.0/).
labelled samples are available during training. By contrast, zero-
shot learning (ZSL, Fig. 1c) aims to recognize samples from novel
unseen classes (unobserved) for which no training samples are
available during training (Ji, Wang, et al., 2021; Ji, Yan, Wang,
Pang, & Li, 2021; Ji, Yu, Yu, Pang, & Zhang, 2021; Wang & Chen,
2017b, 2020; Xian et al., 2019). To this end, side information
of both seen and unseen classes from a source domain (as op-
posed to the target domain where the recognition task resides) is
needed to model the between-class relations. In zero-shot visual
recognition, class-level semantic representations (e.g., attributes
or word vectors) are usually adopted as the side information
in the source domain (i.e. semantic representation space) whilst
the image classification task is addressed in the target domain
(i.e. visual representation space) (Wang & Chen, 2017a). In do-
main adaptation problems (Fig. 1 a–b), we have plenty of labelled
data in the source domain but limited or even no labelled data
in the target domain.

The problem definitions of zero-shot learning and domain
adaptation can be unified into one framework as shown in Fig. 1.
By exploring the capabilities of zero-shot learning and domain
adaptation, an emerging type of problem within the same frame-
work, zero-shot domain adaptation (Fig. 1e), can be addressed
and has been studied in Peng, Wu, and Ernst (2018), Wang, Cheng,

and Jiang (2021), Wang and Jiang (2019, 2021). ZSDA assumes
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a

Fig. 1. A comparison of generalized zero-shot domain adaptation (GZSDA) problem (f) with related ones including: (a) Unsupervised Domain Adaptation (UDA); (b)
Supervised Domain Adaptation (SDA); (c) Zero-Shot Learning (ZSL); (d) Generalized ZSL (GZSL); (e) Zero-Shot Domain Adaptation (ZSDA). C is the number of classes
nd |Yseen

| is the number of seen classes. As opposed to ZSDA, the GZSDA problem aims to classify all classes including both seen and unseen ones whilst ZSDA only
focuses on the classification of unseen classes; the GZSDA problem also does not require the paired training data across two domains for the seen classes which is
a limitation of ZSDA for practical use.
that there are unlabelled but paired source–target samples for
|Yseen

| classes (i.e. irrelevant classes in some literature) and plenty
of labelled samples in the source domain for unseen classes
|Yseen

| + 1, . . . , C (i.e. relevant classes in some literature) during
training. However, these studies aim at classifying unseen classes
only and assume the test samples are only from unseen classes. As
agreed in the zero-shot learning literature, generalized zero-shot
learning (Fig. 1d), in which the recognition of both seen and un-
seen classes in the target domain is required, is more practically
useful (Xian et al., 2019). In the same spirit, we take one step
further in this paper to address a novel Generalized Zero-Shot
Domain Adaptation (GZSDA, Fig. 1f) problem arising from many
real-world applications. As illustrated in Fig. 1f, GZSDA is a variant
of GZSL by replacing the class-level representations in the source
domain with labelled sample-level data. Compared with ZSDA,
GZSDA does not require paired source–target data for training
but labelled samples for all classes in the source domain and
labelled samples for seen classes in the target domain. As a result,
the formulated GZSDA problem is essentially different from ZSDA
which is an unsupervised learning problem (i.e. no labelled data
in the target domain) whilst GZSDA requires supervision from
seen classes in the target domain.

ZSL and GZSL face the challenge of data imbalance across seen
and unseen classes (Ji, Yu, et al., 2021). The learned model tends
to overfit data belonging to seen classes and hence performs
unsatisfactorily for unseen classes. This challenge is even more
significant for GZSL (Pourpanah et al., 2022) since both seen and
unseen classes need to be classified. Domain adaptation problems
including ZSDA face the challenge of data imbalance across source
and target domains (Kouw & Loog, 2019). The learned model
41
tends to overfit data from the source domain and degrades the
performance on the target domain. Typical Unsupervised Domain
Adaptation (UDA) (Wang & Breckon, 2020) approaches usually
fight off this challenge by taking advantage of the unlabelled
target-domain data for feature alignment or pseudo-labelling.
However, the target-domain data to be classified (i.e. data from
unseen classes) are not available in ZSDA which poses a more
significant challenge. As a composition of GZSL and domain adap-
tation, the GZSDA problem faces challenges from both, i.e., the
learned models bias to seen classes (Ji, Yu, et al., 2021; Kumar
Verma, Arora, Mishra, & Rai, 2018) and the source domain (Kouw
& Loog, 2019), due to training data imbalance across classes and
domains.

To address the data imbalance issue in the GZSDA problem, we
present a novel Coupled Conditional Variational Autoencoder (CC-
VAE) solution by generating unseen data in the target domain to
re-balance the training data. Specifically, the proposed CCVAE can
transform source-domain samples into their associated projec-
tions within the target domain without loss of class information
and vice versa. As a result, target-domain samples of unseen
classes can be generated from the corresponding source-domain
samples. Subsequently, the generated target-domain samples for
unseen classes together with real training data can be used to
train a classifier for all classes in a supervised learning manner.
The CCVAE works in the feature space rather than the image pixel
space to reduce the complexity and challenge of image generation
since the goal of GZSDA is image classification rather than image
generation. Following this outline, the contributions of this paper
can be summarized as follows:
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• a novel Coupled Conditional Variational Autoencoder (CC-
VAE) model is proposed to address the GZSDA problem
extending and outperforming the prior work of Wang et al.
(2019); the proposed CCVAE integrates the benefits of fea-
ture transformation and feature generation in one frame-
work.
• a new multi-domain dataset arising from real-world ap-

plications is collected, annotated and released for domain
adaptation research; it comprises of cross-spectral image
domains (i.e. dual-energy colour-mapped X-ray and regular
colour photograph) which are not present in other datasets.
• extended experimentation is performed on three bench-

mark datasets in addition to a bespoke X-ray security check-
point dataset to validate the effectiveness of the proposed
CCVAE in GZSDA problems both against established bench-
marks and in terms of real-world applicability, and also its
superiority to a variety of contemporary methods in the
field.

. Related work

We review closely related work to our study from the per-
pective of zero-shot learning, domain adaptation and zero-shot
omain adaptation and summarize the relationship to existing
esearch topics and approaches in Fig. 1 and Table 1.

.1. Domain adaptation

Domain adaptation aims to effectively transfer knowledge
earned from the source domain to the target domain and has
een applied in weakly supervised image classification prob-
ems (Kim & Kim, 2021; Wang & Breckon, 2020; Wang et al.,
019). Existing domain adaptation approaches (Wang & Breckon,
020; Wang et al., 2019) try to align the marginal distribu-
ions across the source and target domains (Wang & Breckon,
020) or to learn domain-invariant representations (Pei, Cao,
ong, & Wang, 2018) so that labelling information available in
he source domain can be explored to guide the learning of
classifier in the target domain or a latent common space.
owever, aligning the marginal distributions is not sufficient for
istinguishing different classes in the target domain. Fine-grained
lass-wise adaptation across domains has been employed by pro-
oting the alignment of conditional distributions as an additional
onstraint (Long, Cao, Wang, & Jordan, 2018). This class-wise
daptation is feasible for supervised domain adaptation where
abelled samples for all classes in the target domain are available.
or unsupervised domain adaptation, this can be implemented
y pseudo-labelling (Chen et al., 2019; Wang & Breckon, 2020)
iven access to unlabelled target-domain samples for all classes.
owever, in the scenario of zero-shot domain adaptation, class-
ise adaptation forms the primary challenge that we address in
his work due to the lack of samples for unseen classes in the
arget domain regardless of labelled or unlabelled.

.2. Zero-shot learning

Zero-shot learning in visual recognition has been extensively
tudied in literature (Mishra et al., 2018; Wang & Chen, 2017b;
ian et al., 2019). The most popular approaches to zero-shot
earning are based on a generative model such as Generative Ad-
ersarial Networks (GAN) (Xian et al., 2019) and Variational Au-
oencoders (VAE) (Mishra et al., 2018). The generative models are
rained to generate image features for specific classes given the
orresponding class-level semantic representations (i.e. attributes

r word vectors). Subsequently, a classifier can be trained using
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the combined real and generated data covering both seen and un-
seen classes. Although recent advances in zero-shot learning have
achieved impressive performance in several benchmark image
classification datasets (Xian et al., 2019), an intrinsic drawback
arising from the semantic gap between the source (semantic)
and target (visual) domains has been overlooked. One intrinsic
limitation of ZSL is that the class-level attributes or word vectors
in the source domain restrict the capability of representing the
intra-class variability. As a result, the quality of class-level se-
mantic representations plays a significant role in the success of
zero-shot learning (Wang & Chen, 2017b). Attempts have been
made to improve the class-level semantic representations so that
the semantic gap can be mitigated fundamentally (Wang & Chen,
2017a). Alternatively, the class-level semantic representations in
zero-shot learning can be replaced by more informative labelled
samples in a source domain where such labelled samples are easy
to collect and annotate. This leads to the very novel zero-shot
learning problem we focus on in this paper. Existing zero-shot
learning methods (Mishra et al., 2018; Xian et al., 2019) can-
not be directly applied to this problem since the source-domain
information appears in a different modality, whilst the ideas of
generating synthetic image features for unseen classes will be
employed and extended in our approach (Section 3).

2.3. Zero-shot domain adaptation

Very limited prior work has addressed zero-shot domain adap-
tation problems. According to our definition in Fig. 1, the prob-
lems addressed in Blitzer, Foster, and Kakade (2009), Ishii et al.
(2019), Kumagai and Iwata (2018) should be categorized as un-
supervised domain adaptation though the papers were entitled
as zero-shot domain adaptation. Yang and Hospedales (2015) at-
tempted to address the issue where multiple source domains and
the target domain are determined by a vector of continuous vari-
ables. Here there is no data available for the target domain but the
corresponding control variables are known as prior knowledge.
The transfer learning across the source and target domains can
be explicitly modelled by such control variables. Similar assump-
tions are made by Ishii et al. (2019) which assumes that prior
knowledge of attribute information exists (e.g., time, angle, gen-
der, age, etc.) characterizing the difference between source and
target domains. By contrast, we aim to address a more generic
problem without the need for these control variables relating to
the source and target domains. The problem we try to address
in this work is also related to that in Peng et al. (2018), Wang
et al. (2021), Wang and Jiang (2019, 2021) which however restrict
the recognition to unseen classes (Fig. 1e). Moreover, paired task-
irrelevant data (i.e. seen class data in this context) from source
and target domains are required during training in Jhoo and Heo
(2021), Peng et al. (2018), Wang et al. (2021), Wang and Jiang
(2021) whilst such correspondences may not be available in most
real cases. We lift these restrictions and focus on the GZSDA
problem without the need for either control variables or paired
training samples.

During the preparation of this manuscript, Li, Fang, and Chen
(2022) propose a target unseen class prototype learning method
to address the GZSDA problem following our definition in Fig. 1.
Our proposed method in this paper employ a generative model to
directly generate missing data in the target domain for classifier
learning.

3. Method

In this section, we first describe the problem settings of Gen-
eralized Zero-Shot Domain Adaptation and subsequently our pro-

posed solution to this problem.
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Table 1
A comparison of generalized zero-shot domain adaptation with other related research topics.
Research problem Training Testing

Source Target Target

Unsupervised Domain Adaptation
(UDA, Wang & Breckon, 2020;
Wang et al., 2019)

labelled samples for all classes unlabelled samples for all classes
(same as testing)

all classes

Supervised Domain Adaptation
(SDA, Motiian, Piccirilli, Adjeroh, &
Doretto, 2017)

labelled samples for all classes labelled samples for all classes
(a small number)

all classes

Zero-Shot Learning (ZSL, Wang &
Chen, 2017b)

per-class representations for all classes labelled samples for seen classes unseen classes

Generalized ZSL (GZSL, Mishra,
Krishna Reddy, Mittal, & Murthy,
2018)

per-class representations for all classes labelled samples for seen classes all classes

Zero-Shot Domain Adaptation
(ZSDA, Ishii, Takenouchi, &
Sugiyama, 2019; Peng et al., 2018;
Wang & Jiang, 2019)

paired samples for seen classes and
labelled samples for unseen classes

paired samples for seen classes unseen classes

Generalized Zero-Shot Domain
Adaptation (GZSDA, this paper)

labelled samples for all classes labelled samples for seen classes all classes
Fig. 2. Our proposed Coupled Conditional Variational Autoencoder (CCVAE) framework.
Our proposed framework consists of three steps as illustrated
ig. 2 (full details in Section 3.3). Step one trains a feature ex-
ractor using all the labelled training data from both domains. In
he second step, a Coupled Conditional Variational Autoencoder
s trained using image features extracted in step one and will be
sed to generate synthetic features in the target domain. With the
ombination of these synthetic features and features extracted
rom real training images, a classifier is trained and used for
mage classification in the target domain.

.1. Problem formulation of generalized zero-shot domain adapta-
ion

Given a labelled dataset Ds
= {(xsi , y

s
i )}, i = 1, 2, . . . , ns

rom the source domain S , xsi represents the ith training sample
(e.g., an image in our case) in the source domain, and ysi ∈
Y = {1, 2, . . . , C} denotes the corresponding label, and C is the
number classes. In the target domain, a labelled dataset Dt

=

{(xti , y
t
i )}, i = 1, 2, . . . , nt from the target domain T . xti and

yti ∈ Yseen are the ith labelled sample and its label respectively.
Note that Yseen

⊂ Y , that is, labelled samples are available for
only a subset of classes in the target domain. The label space
Y = Yseen

∪ Yunseen is shared by source and target domains. The
task is to classify any given new instance x from the target domain

by learning an inference model y = f (x) ∈ Y . (

43
3.2. Feature extraction

The key to our approach to the GZSDA problem is the gener-
ation of synthetic data for unseen classes in the target domain.
Given the challenge of image generation in the pixel space (Xian
et al., 2019), we choose to generate image features since the
ultimate goal is image classification rather than image generation.
To this end, we extract image features in the first step. As shown
in Fig. 2, a shared deep Convolutional Neural Network (CNN)
model is employed to extract features for images from both
source and target domains. We use ResNet50 (He, Zhang, Ren,
& Sun, 2016) pre-trained on the ImageNet (Deng et al., 2009)
as the feature extractor for object images in our experiments
and AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) trained from
scratch using Ds and Dt for digits data. We will use x and x̃ to
denote the real and synthetically generated image features in the
following sections.

3.3. Coupled conditional variational autoencoder

Variational Autoencoder The Variational Autoencoder
(Kingma & Welling, 2013) encodes an input feature x into a dis-
tribution pθ (z) (approximated by qΦ (z|x)) from which the latent
encoding vector z can be sampled and subsequently fed into
the decoder to reconstruct the input feature x̃. The decoder can
be parameterized by pθ (x|z). According to Kingma and Welling

2013), the objective function for the VAE can be written as
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ollows:

VAE(Φ, θ; x) =− DKL(qΦ (z|x)||pθ (z))
+ EqΦ (z|x)[log pθ (x|z)]

(1)

here DKL(p||q) is the Kullback–Leibler (KL) divergence between
wo distributions p and q. The VAE is trained by maximizing
VAE(Φ, θ; x) which can be interpreted as minimizing the recon-

struction error and the KL divergence.

Conditional VAE Conditional VAE (CVAE) was first proposed
n Sohn, Lee, and Yan (2015). It allows for modelling multiple
odes (e.g., classes) in conditional distribution of the target vari-
ble (e.g., reconstructed input x̃) given input x and the condition
. The objective function of CVAE can be adapted from Eq. (1) as
ollows:

CVAE(Φ, θ; x, c) =− DKL(qΦ (z|x, c)||pθ (z))
+ EqΦ (z|x,c)[log pθ (x|z, c)]

(2)

n existing CVAE models (Mishra et al., 2018; Yan, Yang, Sohn, &
ee, 2016), both the encoder qΦ (z|x, c) and the decoder pθ (x|z, c)
re conditioned on the class information (i.e. the condition c rep-
esents class-wise attributes in this case). In ZSL problem (Mishra
t al., 2018), the CVAE is trained using target-domain data in
he condition of class-wise attributes from the source domain.
ach training sample in the target domain has its corresponding
ttribute vector as the condition in the CVAE model. However,
n our GZSDA problem information from the source domain is
epresented by labelled samples rather than class-level represen-
ations. Although such labelled samples (e.g. their extracted fea-
ures) can be aggregated into class-level representations to enable
he application of conventional ZSL methods, the feature aggrega-
ion suffers from significant information loss as demonstrated in
ur experiments. In addition, the cross-domain correspondence
n the sample level is unavailable hence the conventional CVAE
nd other ZSL methods do not apply to this problem.
By contrast, our CVAE is conditioned on the domain label

i.e. the condition c denotes the domain label) so that the decoder
an generate features for a specified domain given a sampled
from the distribution qΦ (z|x, c) and the domain label as the

ondition.

oupled Conditional VAE The challenge of the GZSDA problem
riginates from the missing labelled samples for unseen classes in
he target domain. We attempt to learn a generative model based
n CVAE to generate synthetic features for unseen classes in the
arget domain. The generated features are required to be both
lass discriminative and domain discriminative. To these ends, the
ecoder p(x|z, c) in the CVAE is conditioned on domain labels to
enerate domain discriminative features whilst the latent codes
need to be class discriminative to generate class discriminative

eatures.
The proposed CCVAE is illustrated in Fig. 2 (step 2). It is

omposed of a pair of CVAE for the source and target domains
espectively. In our work, we model both the encoders and de-
oders using fully connected neural networks. We force two CVAE
o have identical architectures with shared weights. As a result,
he model degenerates into one coupled CVAE trained on both
ource and target-domain data.
During training, the encoder takes the concatenation of a

eature vector xs/xt from the source/target domain and its cor-
esponding domain label c(x) = s/t (represented by a one-hot
-dimensional vector) as the input to estimate the latent code
istribution q(z|x, c) = N (µx, Σx). µx and Σx are the outputs of
he encoder given the input x. Subsequently, a latent code z is
ampled from N (µx, Σx) and fed into the decoder with the same
omain label s/t as the condition to reconstruct the input as x̃s/x̃t .

n the other hand, the sampled latent code z can also be decoded b

44
ith the condition of the other domain label t/s to generate the
ynthetic feature in a different domain as x̃st/x̃ts.
The model is trained by feeding paired source and target-

omain samples {xs, xt} randomly selected from the same class.
he loss function to minimize can be formulated as:

CCVAE(Φ, θ; xs, xt ) =
Lrecon

(
xs, x̃s)+ Lrecon(xt , x̃

t )
)

+
(
Lcross_recon(xs, x̃

ts)+ Lcross_recon(xt , x̃
st )

)
+ λDKL

(
N (µx, Σx)||N (0, I)

) (3)

The first terms measure the reconstruction errors for both
ource and target-domain samples. The second terms measure
he cross-domain reconstruction errors. Although the samples
n the pair of {xs, x̃ts} or {xt , x̃st} are from the same class, they
re not necessarily two views of the same image. To reduce the
ross-domain reconstruction errors, the encoder has to preserve
lass information in the latent code space. As a result, the use of
ross-domain reconstruction loss Lcross_recon facilitate the model to
enerate class discriminative features across domains. For those
s belonging to unseen classes, there is no valid target-domain
amples xt from the same class. We use dummy features in
ractice and exclude the loss terms involving these dummy fea-
ures. The third term aims to reduce the KL divergence between
he distributions of the latent code and a normal distribution. It
erves as a regularization term in the same way as in the VAE
odel. λ is a hyper-parameter balancing the KL divergence and

econstruction errors. We use the mean squared error (MSE) loss
or both Lrecon and Lcross_recon. The effectiveness of different terms
n Eq. (3) will be further investigated and discussed in Section 4.

.4. Target domain image classification

Once the CCVAE is trained, we can use it to generate synthetic
eatures by the cross-domain reconstruction pipelines. Specifi-
ally, given a feature vector xs (or xt ), the model can generate x̃st

or x̃ts) which should have the same class label as the input. In this
ay, we can generate synthetic features for unseen classes in the
arget domain with the source-domain samples. We use real data
s and Dt together with synthetically generated features from
hem to train a unified neural network classifier for all classes and
oth domains. The classifier is then used to classify test images.
The proposed CCVAE can be summarized in Algorithm 1.

.5. Relation to VAE based methods for ZSL

Our CCVAE framework for the GZSDA problem is distinct from
hose VAE networks used for ZSL (Schonfeld, Ebrahimi, Sinha,
arrell, & Akata, 2019) in at least two aspects. Firstly, for ZSL,
he synthetic data are generated from noise sampled from a
tandard Normal distribution by the trained decoder conditioned
n the class-level semantic representations; our CCVAE generate
ynthetic data from the latent codes which are encoded from
eal data (i.e. cross-domain data transformation). Secondly, our
CVAE generate data for both source and target domains and
rains a unified classifier for both domains; whilst in ZSL, the data
eneration is only required from the semantic space (i.e. source
omain) to the visual space (i.e. target domain).

. Experiments and results

As the first attempt to address the GZSDA problem, we present
benchmark on GZSDA with extensive experiments on three
atasets. We compare our proposed CCVAE with baseline meth-
ds and state-of-the-art methods for zero-shot learning (Mishra
t al., 2018; Wang et al., 2019; Wang & Chen, 2017b) which have

een adapted to the GZSDA problem.
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Algorithm 1 Coupled Conditional Variational AutoEncoder (CC-
VAE) for Generalised Zero-Shot Domain Adaptation (GZSDA)
Input: Labelled source data set Ds

= {(xsi , y
s
i )}, i = 1, 2, ..., ns and

labelled target data set Dt
= {xti , y

t
i }, i = 1, 2, ..., nt , number

of training iterations T1 and T2 for CCVAE and the classifier.
Output: A unified classifier f (x; θ ).
1: Training the CCVAE model:
2: k← 0;
3: while k < T1 do
4: k← k+ 1;
5: Randomly sample a batch of source-domain samples Bs;
6: For each sample xsi in Bs, randomly choose a target-domain

sample xti from the same class ysi to pair with xsi if this class
belongs to seen classes, otherwise create a dummy sample
to pair with xsi ;

7: Combine Bs and samples chosen from the target domain (or
dummy samples) to form a batch of paired training samples
and feed them into the model for one forward pass;

8: Compute the loss in Eq. (3) (the loss contributed by the
dummy features will be excluded) and update the model
parameters.

9: end while
0: Training the unified classifier f (x; θ ):

11: k← 0;
12: while k < T2 do
13: k← k+ 1;
14: Randomly sample a batch of training samples {X s,Y s

} from
the source domain; feed them into the learned CCVAE
model to get the cross-domain reconstructed X̃

st
;

15: Randomly sample a batch of training samples {X t ,Y t
} from

the target domain; ; feed them into the learned CCVAE
model to get the cross-domain reconstructed X̃

ts
;

16: Combine X s,X t , X̃
st
, X̃

ts
and their corresponding labels

Y s,Y t ,Y s,Y t to form a training batch for the classifier
f (x; θ );

17: Compute the cross-entropy loss and update the classifier
parameters θ .

18: end while

4.1. Dataset

BaggageXray-20 This dataset is collected for automatic object
recognition in aviation security baggage screening.1 The dataset
onsists of images from two domains: dual-energy colour-mapped
-ray and regular colour photograph (denoted as X-ray and reg-

ular domains respectively). Compared with the prevalence of
regular RGB images, X-ray images are rarely available and have

1 The dataset has been publicly and openly released including annotations,
t https://github.com/hellowangqian/gzsda.
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significantly different appearances as shown in Fig. 3. We con-
sider 20 object classes: binder-clip, bottle, bullet, camera, fork,
glasses, handgun, headphones, keys, knife, lock, mug, pliers, rifle,
scissors, screwdriver, spoon, tableknife, wrench-big, wrench-small.

For each object class, we use 3–10 different physical instances
for X-ray scanning. To diversify the data, we simulate the baggage
scanning in a checkpoint at the airport. Specifically, the objects
are arbitrarily put in different baggage (e.g., backpacks, suitcases
and plastic trays) containing non-target objects (e.g., clothes,
books, laptops, etc.). The baggage containing both target ob-
jects and non-target clutter are scanned with a Gilardoni dual-
energy X-ray scanner (FEP ME 640 AMX) and the resultant colour-
mapped X-ray images of baggage can have a cluttered back-
ground and overlap between target objects and non-target ob-
jects (see Fig. 4). Subsequently, we manually crop and annotate
the target object patches from the whole baggage scan images
using the open-source tool LabelImg.2

The regular domain images were collected using the open-
source image scrapping tool GoogleScrapper.3 We use the class
names as keywords to search images using image search en-
gines (e.g., Yahoo Image) and automatically download the search
results. The corrupted and irrelevant results were manually re-
moved to reduce the noise in the dataset.

The statistics of the dataset are shown in Fig. 5.
There are 4620 and 3444 images in the X-ray and regular do-

mains, respectively. In our preliminary experiments, ResNet101
features were proved to be more discriminative than its coun-
terparts such as VGG16 and ResNet50, hence we use ResNet101
pre-trained on the ImageNet to extract 2048-dim features for im-
ages from both domains. To simulate the GZSDA problem setting,
the 20 classes were randomly split into two subsets: 10 classes as
the seen classes and the rest 10 classes as the unseen classes. Five
random seen/unseen class splits were used in our experiments to
get statistics of the experimental results. Two domain adaptation
tasks (i.e. regular→ X-ray and X-ray→ regular) were employed
in the experiments. When a domain serves as the source domain,
all images are used to form the labelled source dataset Ds whilst
or the domain serving as the target domain, we randomly reserve
0% of the images from each class for testing and the rest 50%
rom seen classes form the labelled target dataset Dt .

Office31 (Saenko, Kulis, Fritz, & Darrell, 2010) is an image
ataset which consists of three domains: Amazon (A), Webcam
W) and DSLR (D). There are 31 common classes for all three
omains containing 4110 images in total. In our experiments, we
ivide 31 classes into 16 seen classes and 15 unseen classes ran-
omly and generate 5 different splits for calculating the statistics
f results.

ffice–Home Office–Home (Venkateswara, Eusebio, Chakraborty,
Panchanathan, 2017) is a dataset commonly used for domain

daptation. It consists of four domains: artistic images (Art),

2 https://github.com/tzutalin/labelImg
3 https://github.com/NikolaiT/GoogleScraper

https://github.com/hellowangqian/gzsda
https://github.com/tzutalin/labelImg
https://github.com/NikolaiT/GoogleScraper
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Fig. 4. The X-ray domain images are manually cropped from the baggage scan images with cluttered backgrounds.
Fig. 5. Statistics of the BaggageXray-20 dataset (the heights of blue and orange bars indicate the numbers of images belonging to 20 classes from the Regular domain
nd the X-ray domain, respectively).
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lipart, Product images and Real-World images. There are 65
bject classes in each domain with a total number of 15,588
mages. We follow prior works to extract ResNet50 features in our
xperiments and divide these 65 classes into 35 seen classes and
0 unseen classes randomly and generate 5 different splits for cal-
ulating the statistics of results. Given four domains, there are 12
ifferent domain adaptation tasks. The training and test dataset
reation strategy is identical to the BaggageXray-20 dataset.

NIST/Fashion-MNIST/EMNIST (XMNIST) We follow previous
orks on ZSDA (Peng et al., 2018; Wang & Jiang, 2019) and
onducted experiments using MNIST (LeCun, Bottou, Bengio, &
affner, 1998), Fashion-MNIST (FMNIST) (Xiao, Rasul, & Vollgraf,
017) and EMNIST (Cohen, Afshar, Tapson, & Van Schaik, 2017)
denoted collectively as XMNIST).

MNIST contains 70,000 grey images of digits 0–9 which were
ivided into two subsets: 60,000 for training and 10,000 for
esting. FMNIST is a similar dataset containing 70,000 grey images
f 10 classes, i.e. T-shirt, trouser, pullover, dress, coat, sandals,
hirt, sneaker, bag and ankle boot. Similarly, a fixed 6:1 split for
raining and testing is available along with the dataset. EMNIST
s an extension of MNIST containing 26-class English letters (the
ppercase and lowercase letters are merged as one class). A fixed
:1 split of the total 20,800 images is available for training and
esting respectively.

All these three datasets contain grey images of the same size
f 28 × 28. We consider these grey images as in the Grey domain
rom which we create another two domains Colour and Nega-

ive. The Colour domain images were created using the method

46
proposed in Ganin and Lempitsky (2015). Specifically, for a given
image I , a random patch P of the same size was cropped from
a colour image in BSDS500 (Arbelaez, Maire, Fowlkes, & Malik,
2010) and the colour version of I is created by Ic = |I − P|
or all channels. The Negative domain images are obtained by
n = 255−I . Exemplar images of each domain from three datasets
re shown in Fig. 6.
There are 6 different combinations of 3 domains to form 6 do-

ain adaptation tasks among which we report the representative
esults of Grey→ Colour, Colour → Grey and Negative→ Colour.
n each domain adaptation task, we choose any two datasets as
he seen and unseen classes respectively. As a result, for each
omain adaptation task there can be 6 sub-tasks with different
ombinations of seen and unseen datasets. AlexNet (Krizhevsky
t al., 2012) was trained from scratch using the training data Ds

nd Dt to extract features for a specific adaptation task.

.2. Implementation details

The proposed method was implemented in PyTorch.4 (Paszke
t al., 2019) Both the encoder and decoder were three-layer
ully connected neural networks. For BaggageXray-20 and Office–
ome datasets, the VAE share the same architecture of 2048 −
12 − 64 − 64 − 512 − 2048 where 64 is the dimension of the
atent code z . For XMNIST datasets, the VAE has an architecture

4 https://github.com/hellowangqian/gzsda

https://github.com/hellowangqian/gzsda
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Fig. 6. Exemplar images from the XMNIST dataset.
Table 2
Experimental results (%) on BaggageXray dataset with 10 unseen classes (mean and standard error of the mean
(SEM) over five different seen/unseen class splits are reported).
Method Regular → Xray Xray → Regular

Accseen Accunseen H Accseen Accunseen H

Source Only 23.4± 3.0 20.4± 3.0 20.2± 0.7 47.9± 4.0 42.7± 4.0 43.7± 1.3
Baseline (1NN) 75.0± 2.4 1.9± 0.5 3.6± 0.9 93.8± 1.5 12.6± 1.3 22.1± 2.0
Baseline (NN) 84.3± 1.9 2.5± 0.4 4.8± 0.7 95.0± 0.8 20.4± 3.8 32.6± 5.5
BiDiLEL (Wang & Chen, 2017b) 80.8± 2.2 8.2± 0.4 14.9± 0.7 94.6± 0.9 2.8± 0.6 5.5± 1.1
CADA-VAE (Schonfeld et al., 2019) 47.3± 6.7 24.3± 5.0 31.6± 4.3 73.0± 7.3 26.1± 4.1 38.3± 4.9
LPP (Wang et al., 2019) 85.7± 1.6 10.2± 1.1 18.1± 1.7 92.9± 1.3 30.4± 2.4 45.6± 2.9
CCVAE 77.2± 1.9 29.0± 1.5 42.1± 1.8 90.8± 1.0 52.3± 2.5 66.1± 1.9
Table 3
Experimental results (%) on the Office31 dataset with 15 unseen classes (mean and standard error of the mean
(SEM) over five different seen/unseen class splits are reported).
Method A → D A → W

Accseen Accunseen H Accseen Accunseen H

Source Only 80.8± 1.5 80.7± 1.6 80.6± 0.1 73.3± 1.5 77.9± 1.6 75.4± 0.1
Baseline (1NN) 90.5± 1.2 67.5± 1.8 77.2± 0.9 91.0± 0.8 60.6± 1.3 72.7± 0.9
Baseline (NN) 92.9± 1.2 66.4± 3.2 77.2± 1.9 94.2± 0.6 57.6± 2.0 71.4± 1.5
BiDiLEL (Wang & Chen, 2017b) 90.5± 1.4 26.5± 4.7 40.2± 5.5 89.7± 1.2 18.8± 2.1 30.9± 2.9
CADA-VAE (Schonfeld et al., 2019) 79.9± 2.1 39.7± 5.0 52.8± 4.5 80.4± 2.6 41.3± 9.0 54.0± 7.4
LPP (Wang et al., 2019) 90.0± 1.8 73.9± 2.4 80.9± 1.1 91.0± 1.2 65.6± 1.9 76.1± 1.0
CCVAE 89.1± 2.4 86.4± 2.7 87.4± 1.0 86.8± 1.4 82.8± 2.0 84.6± 0.8

D → A D → W

Accseen Accunseen H Accseen Accunseen H

Source Only 66.1± 2.5 60.4± 2.7 62.7± 0.3 99.2± 0.2 99.5± 0.3 99.4± 0.0
Baseline (1NN) 86.6± 0.7 36.0± 0.5 50.9± 0.6 99.8± 0.1 99.2± 0.3 99.5± 0.1
Baseline (NN) 85.5± 1.4 39.9± 1.3 54.3± 1.1 98.2± 0.1 90.6± 1.9 94.2± 1.0
BiDiLEL (Wang & Chen, 2017b) 86.1± 1.1 8.1± 1.3 14.6± 2.1 88.7± 1.1 42.8± 3.3 57.3± 2.8
CADA-VAE (Schonfeld et al., 2019) 82.2± 1.9 32.8± 6.5 46.5± 7.1 77.4± 2.6 62.6± 5.0 69.1± 3.7
LPP (Wang et al., 2019) 84.3± 1.4 58.8± 2.3 69.1± 1.2 99.1± 0.5 95.2± 1.3 97.1± 0.5
CCVAE 83.6± 1.4 59.0± 1.5 69.1± 0.6 97.4± 0.5 95.2± 0.9 96.3± 0.3

W → A W → D

Accseen Accunseen H Accseen Accunseen H

Source Only 62.0± 2.5 59.0± 2.6 60.0± 0.2 99.8± 0.2 99.3± 0.2 99.6± 0.0
Baseline (1NN) 86.9± 0.7 36.4± 1.2 51.3± 1.2 99.8± 0.1 99.3± 0.2 99.6± 0.1
Baseline (NN) 86.3± 1.3 39.5± 1.6 54.0± 1.4 98.6± 0.3 97.0± 0.8 97.8± 0.3
BiDiLEL (Wang & Chen, 2017b) 86.4± 1.1 6.8± 1.5 12.4± 2.5 89.0± 1.7 56.3± 5.0 68.4± 3.8
CADA-VAE (Schonfeld et al., 2019) 82.1± 2.7 30.3± 3.6 44.1± 4.1 79.1± 3.6 46.9± 8.9 58.3± 7.1
LPP (Wang et al., 2019) 84.8± 1.2 57.5± 2.5 68.3± 1.5 99.5± 0.2 97.6± 0.5 98.6± 0.3
CCVAE 83.5± 1.2 60.4± 1.9 69.9± 0.9 98.5± 0.2 99.2± 0.2 98.8± 0.1
of 512− 128− 32− 32− 128− 512 where 512 is the dimension
f features extracted in the first step and 32 is the dimension of
he latent space. The ReLU layer was employed after each fully
onnected layer for non-linearity. For the classifier in step 3, we
sed a simple two-layer linear neural network (no hidden layer)
cross all experiments. We used the Adam optimizer to train
he CCVAE with the learning rate of 1e − 3 for a fixed number
f epochs (50 epochs for BaggageXray20 and Office–Home, 10
pochs for XMNIST datasets). The value of λ was dynamically
djusted by a gradual warm-up strategy (Goyal et al., 2017) from
up to 0.2 to facilitate the model training.
47
4.3. Experimental results

We compare the performance of CCVAE with three baseline
models, two ZSL methods (i.e. BiDiLEL (Wang & Chen, 2017b)
and CADA-VAE (Schonfeld et al., 2019)) adapted for GZSDA and
one existing GZSDA method LPP (Wang et al., 2019). We do not
consider the ZSDA methods in Kutbi, Peng, and Wu (2021), Peng
et al. (2018), Wang et al. (2021), Wang and Jiang (2019, 2021)
because they require paired images and cannot discriminate seen
and unseen classes in the target domain.
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Table 4
Experimental results (%) on Office–Home dataset with 30 unseen classes (mean and standard error of the mean (SEM) over five different seen/unseen class splits
are reported).
Method Art → ClipArt Art → Product Art → RealWorld

Accseen Accunseen H Accseen Accunseen H Accseen Accunseen H

Source Only 36.8± 0.4 34.2± 0.4 35.4± 0.1 57.0± 0.6 56.5± 0.7 56.7± 0.1 62.9± 0.9 61.0± 1.0 61.9± 0.1
Baseline (1NN) 70.4± 0.5 19.3± 0.6 30.3± 0.7 87.5± 0.4 39.7± 0.6 54.6± 0.5 80.1± 1.0 52.0± 1.2 63.0± 0.6
Baseline (NN) 71.7± 0.5 28.1± 0.5 40.3± 0.5 89.6± 0.2 53.3± 1.1 66.8± 0.8 85.6± 0.9 63.0± 0.6 72.6± 0.3
BiDiLEL (Wang & Chen, 2017b) 74.3± 0.7 5.8± 0.7 10.7± 1.1 89.8± 0.3 6.3± 0.8 11.7± 1.4 87.5± 0.9 5.8± 0.3 10.9± 0.5
CADA-VAE (Schonfeld et al., 2019) 55.2± 1.4 27.3± 2.5 36.4± 2.2 77.7± 1.5 43.5± 1.6 55.7± 1.1 72.3± 2.5 53.5± 2.0 61.4± 1.3
LPP (Wang et al., 2019) 73.8± 0.6 40.7± 0.9 52.4± 0.8 90.0± 0.3 60.5± 0.9 72.4± 0.6 85.7± 0.7 68.8± 0.4 76.3± 0.2
CCVAE 66.7± 0.5 41.3± 0.7 51.0± 0.4 87.4± 0.3 65.3± 0.9 74.7± 0.5 84.1± 0.8 68.8± 0.7 75.6± 0.3

ClipArt → Art ClipArt → Product ClipArt → RealWorld

Accseen Accunseen H Accseen Accunseen H Accseen Accunseen H

Source Only 48.0± 0.7 44.2± 0.9 46.0± 0.1 55.6± 0.8 57.2± 0.9 56.3± 0.1 59.3± 1.2 59.3± 1.4 59.2± 0.1
Baseline (1NN) 61.0± 0.2 32.3± 0.9 42.2± 0.8 85.3± 0.5 44.6± 1.1 58.6± 0.9 81.0± 1.6 45.3± 1.1 58.0± 0.7
Baseline (NN) 72.6± 0.4 33.0± 1.3 45.3± 1.1 88.2± 0.3 50.0± 1.6 63.8± 1.3 86.7± 0.6 48.5± 1.6 62.1± 1.2
BiDiLEL (Wang & Chen, 2017b) 74.7± 0.8 4.5± 0.4 8.4± 0.8 89.5± 0.3 6.0± 0.7 11.2± 1.2 87.3± 0.8 5.0± 0.6 9.4± 1.0
CADA-VAE (Schonfeld et al., 2019) 53.3± 1.5 27.9± 3.0 36.5± 2.5 77.7± 1.0 37.7± 1.6 50.7± 1.6 73.0± 2.4 43.7± 1.5 54.7± 1.1
LPP (Wang et al., 2019) 72.1± 0.8 48.1± 0.8 57.7± 0.7 87.6± 0.4 58.8± 1.5 70.3± 1.1 86.0± 0.9 59.4± 2.0 70.1± 1.2
CCVAE 69.2± 0.8 51.8± 0.5 59.2± 0.3 85.4± 0.5 63.6± 1.7 72.8± 1.0 83.3± 0.7 65.1± 1.8 73.0± 0.9

Product → Art Product → ClipArt Product → RealWorld

Accseen Accunseen H Accseen Accunseen H Accseen Accunseen H

Source Only 51.8± 1.4 47.3± 1.6 49.2± 0.4 40.4± 1.0 40.2± 1.1 40.2± 0.1 68.4± 1.6 66.3± 1.8 67.2± 0.2
Baseline (1NN) 63.4± 0.9 39.5± 1.4 48.5± 0.9 70.3± 0.4 29.3± 0.9 41.3± 0.9 81.1± 1.2 61.9± 1.6 70.1± 0.6
Baseline (NN) 72.0± 0.7 35.8± 1.4 47.7± 1.2 72.0± 0.4 25.7± 0.9 37.9± 1.0 88.1± 0.6 63.0± 1.7 73.4± 1.0
BiDiLEL (Wang & Chen, 2017b) 74.3± 0.9 6.4± 0.8 11.7± 1.3 74.2± 0.7 5.4± 0.4 10.0± 0.7 87.3± 0.9 9.3± 1.3 16.7± 2.0
CADA-VAE (Schonfeld et al., 2019) 52.5± 2.4 30.1± 2.7 38.1± 1.5 55.9± 3.7 25.1± 2.8 34.5± 2.0 70.8± 1.3 51.8± 2.2 59.8± 1.7
LPP (Wang et al., 2019) 69.9± 0.8 50.2± 0.9 58.4± 0.5 72.6± 0.5 41.0± 0.7 52.4± 0.6 86.2± 0.7 71.4± 1.0 78.1± 0.4
CCVAE 67.6± 0.6 52.3± 0.6 59.0± 0.3 66.9± 0.2 43.8± 1.0 52.9± 0.8 84.7± 0.8 72.0± 1.6 77.7± 0.6

RealWorld → Art RealWorld → ClipArt RealWorld → Product

Accseen Accunseen H Accseen Accunseen H Accseen Accunseen H

Source Only 57.9± 0.6 55.9± 0.8 56.9± 0.1 43.2± 0.6 43.5± 0.7 43.3± 0.1 71.7± 0.9 72.2± 1.0 71.9± 0.1
Baseline (1NN) 64.7± 0.7 52.3± 0.7 57.8± 0.2 71.6± 0.4 32.5± 0.7 44.7± 0.7 87.0± 0.6 67.5± 1.0 76.0± 0.5
Baseline (NN) 73.7± 0.5 54.3± 0.5 62.5± 0.5 72.2± 0.3 33.5± 0.8 45.7± 0.8 90.0± 0.2 72.6± 1.3 80.3± 0.8
BiDiLEL (Wang & Chen, 2017b) 73.9± 1.1 9.0± 1.2 15.9± 1.8 74.3± 0.8 8.3± 0.6 14.9± 1.0 89.4± 0.3 14.0± 1.4 24.2± 2.0
CADA-VAE (Schonfeld et al., 2019) 52.1± 2.5 41.4± 2.3 46.0± 1.3 55.7± 3.0 32.1± 2.5 40.6± 2.0 74.8± 2.9 59.0± 3.0 65.8± 1.2
LPP (Wang et al., 2019) 72.2± 0.7 64.6± 0.9 68.1± 0.5 73.8± 0.9 46.5± 1.0 57.0± 0.7 89.3± 0.2 78.6± 0.5 83.6± 0.2
CCVAE 71.1± 0.7 62.1± 1.1 66.2± 0.4 67.5± 0.3 47.8± 0.6 55.9± 0.4 87.2± 0.3 76.9± 1.3 81.7± 0.6
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• Source Only uses only source-domain data and the 1 Near-
est Neighbor (1NN) classifier. Due to the domain shift, ap-
plying the classifier trained on the source-domain data di-
rectly to the target-domain data will suffer a significant
performance drop when the domain shift is large.
• Baseline (1NN/NN) uses training data from both domains

(i.e. Ds and Dt ) and a simple classifier 1NN or Neural Net-
works (NN) with the same architecture as that used in step
3 of CCVAE. Compared with the Source Only method, the
addition of target-domain data may lead to the overfitting
the seen classes since there exist data for only seen classes
in the target domain Dt .
• BiDiLEL (Wang & Chen, 2017b) is a representative method

for zero-shot learning based on common subspace learning.
To use such a method for the GZSDA problem, we compute
the class means of source samples as the class-level side
information for generalized zero-shot learning.
• CADA-VAE (Schonfeld et al., 2019) is another representative

method for generalized zero-shot learning based on a gen-
erative model VAE. Again we take the class means of source
samples as the class-level semantic representations.
• LPP (Wang et al., 2019) is the only approach to GZSDA

in the literature. The approach uses the locality preserving
projection algorithm (Wang & Chen, 2017b; Wong & Zhao,
2012) and iterative pseudo-labelling to learn a common
subspace from the source and target domains so that two
domains are aligned in the subspace. In contrast to learning
a common subspace that is difficult to scale, our proposed
method learns a unified classifier in the original feature
48
space by augmenting the training data using the proposed
generative model CCVAE.

Following the generalized ZSL works (Xian et al., 2019), we
report the mean per-class classification accuracy for seen and
unseen classes and their harmony mean (Accseen, Accunseen and
H). Our experimental results are shown in Tables 2–5. The best
and second best results are highlighted in bold and underlined,
espectively. It can be seen from Table 2 that the discrepancy of
ata distribution between regular and X-ray domains is signifi-
ant as the Source Only method achieves low accuracy on both
daptation tasks (Table 2). When labelled target samples from
een classes are employed, the two baseline methods achieve
uch better performance on seen classes at the sacrifice of ac-
uracy on the unseen classes. The ZSL method BiDiLEL generally
erforms well on seen classes but poorly on unseen classes due
o the notorious issue of overfitting the seen classes in GZSL.
he GZSL method CADA-VAE can balance the performance on
een and unseen classes and hence achieves higher values of H
ut is still outperformed by LPP and our proposed CCVAE since
he traditional ZSL/GZSL methods cannot take advantage of the
ource-domain data properly. The proposed CCVAE achieves the
ighest H values by improving the recognition accuracy of unseen
lasses whilst maintaining the accuracy of seen classes.
The experimental results on the image classification dataset

ffice31 are shown in Table 3. Our proposed CCVAE can achieve
he best performance in terms of H values on 4 out of 6 tasks and
comparably good performance with the best performance on the
remaining 2 tasks. Since the data distribution shift between do-
mains in this dataset is relatively small, we can see that the Source
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Table 5
Experimental results on XMNIST datasets (mean and standard deviation of H over five trials are reported).
Domains Method Seen: MNIST Seen: FMNIST Seen: EMNIST

FMNIST EMNIST MNIST EMNIST MNIST FMNIST

Grey→ Colour

Source Only 7.3± 0.1 2.5± 0.1 6.1± 0.2 3.5± 0.1 2.2± 0.1 3.3± 0.1
Baseline (1NN) 46.3± 0.6 30.2± 0.4 38.2± 0.5 17.1± 0.2 51.8± 0.7 47.6± 0.4
Baseline (NN) 50.0± 0.1 36.2± 0.1 47.9± 0.1 27.5± 0.1 42.7± 0.1 42.5± 0.1
BiDiLEL (Wang & Chen, 2017b) 39.9± 2.0 35.8± 1.1 30.6± 1.9 13.9± 1.4 52.8± 1.9 37.6± 1.6
CADA-VAE (Schonfeld et al., 2019) 39.2± 1.9 35.5± 1.3 30.0± 3.5 19.3± 1.6 46.3± 1.1 43.3± 0.6
LPP (Wang et al., 2019) 61.3± 0.5 43.5± 0.6 58.8± 0.4 39.1± 0.4 68.8± 0.3 58.8± 0.2
CCVAE 63.9± 0.3 61.3± 0.1 69.1± 0.8 45.3± 1.2 71.4± 0.9 56.0± 1.7

Colour → Grey

Source Only 86.5± 0.6 89.0± 0.3 87.1± 0.6 81.4± 0.6 89.6± 0.3 80.8± 0.3
Baseline (1NN) 85.6± 0.5 87.6± 0.3 90.9± 0.2 85.2± 0.2 90.7± 0.1 82.8± 0.5
Baseline (NN) 89.6± 0.0 89.1± 0.0 92.5± 0.0 87.8± 0.0 91.0± 0.0 86.9± 0.0
BiDiLEL (Wang & Chen, 2017b) 29.0± 2.6 31.8± 2.1 18.7± 2.9 10.1± 3.4 53.7± 4.3 38.9± 2.7
CADA-VAE (Schonfeld et al., 2019) 39.1± 2.2 38.9± 2.7 47.3± 4.5 31.2± 5.1 52.9± 2.0 45.8± 4.4
LPP (Wang et al., 2019) 86.6± 0.2 80.3± 0.2 90.9± 0.1 81.3± 0.3 85.2± 0.4 81.5± 0.3
CCVAE 88.8± 0.0 90.4± 0.0 92.1± 0.0 87.3± 0.1 92.1± 0.0 86.3± 0.1

Neg.→ Colour

Source Only 5.1± 0.3 1.9± 0.1 5.0± 0.4 1.4± 0.0 1.8± 0.1 2.7± 0.0
Baseline (1NN) 41.4± 0.9 28.8± 0.6 25.5± 0.5 9.6± 0.1 64.9± 0.4 46.9± 1.1
Baseline (NN) 49.7± 0.1 36.7± 0.2 44.5± 0.1 23.9± 0.2 55.9± 0.0 40.8± 0.1
BiDiLEL (Wang & Chen, 2017b) 36.6± 2.6 31.3± 1.1 27.0± 2.1 13.5± 0.8 50.9± 1.7 36.6± 1.7
CADA-VAE (Schonfeld et al., 2019) 39.3± 1.7 34.5± 1.8 26.7± 1.4 18.4± 4.6 42.7± 1.1 41.0± 0.9
LPP (Wang et al., 2019) 68.1± 0.6 45.2± 0.6 54.1± 0.8 30.5± 0.4 69.2± 0.2 66.7± 0.2
CCVAE 70.2± 0.5 63.9± 0.3 68.3± 1.1 47.1± 0.8 73.6± 0.9 62.8± 1.3

Grey→ Neg.

Source Only 20.6± 1.7 0.0± 0.0 23.5± 0.5 6.2± 0.7 0.0± 0.0 7.8± 0.9
Baseline (1NN) 39.9± 1.4 20.4± 0.5 43.4± 1.8 9.1± 0.9 62.7± 0.5 65.9± 0.9
Baseline (NN) 37.3± 0.1 34.5± 0.2 56.9± 0.5 29.9± 0.2 46.8± 0.1 60.9± 0.1
BiDiLEL (Wang & Chen, 2017b) 24.7± 3.9 34.7± 2.2 25.8± 2.6 8.9± 2.4 46.4± 1.9 28.7± 6.1
CADA-VAE (Schonfeld et al., 2019) 43.5± 2.0 48.8± 1.2 39.1± 6.8 22.0± 1.7 63.1± 0.8 45.1± 4.3
LPP (Wang et al., 2019) 55.2± 0.4 29.0± 0.6 61.7± 1.5 24.3± 1.2 71.4± 0.4 69.2± 0.5
CCVAE 58.6± 0.3 56.7± 0.4 74.1± 0.6 49.6± 0.9 77.9± 0.3 66.3± 0.9

Colour → Neg.

Source Only 85.5± 0.2 87.1± 0.2 84.8± 0.1 79.0± 0.2 88.6± 0.3 79.7± 0.4
Baseline (1NN) 85.5± 0.6 88.6± 0.3 90.8± 0.1 84.3± 0.2 90.8± 0.1 81.8± 0.6
Baseline (NN) 89.3± 0.0 90.2± 0.0 92.7± 0.0 87.4± 0.0 91.1± 0.0 86.0± 0.0
BiDiLEL (Wang & Chen, 2017b) 33.2± 1.5 29.3± 1.3 13.1± 4.1 11.9± 2.0 52.3± 4.3 35.3± 3.2
CADA-VAE (Schonfeld et al., 2019) 36.7± 3.6 43.5± 2.1 41.6± 4.5 19.5± 2.3 66.4± 1.2 43.0± 7.6
LPP (Wang et al., 2019) 87.0± 0.1 82.1± 0.2 90.7± 0.1 80.1± 0.3 86.6± 0.4 81.5± 0.4
CCVAE 89.4± 0.0 90.3± 0.0 92.3± 0.0 86.8± 0.1 92.3± 0.0 86.1± 0.1

Neg.→ Grey

Source Only 33.1± 1.0 0.0± 0.0 30.1± 2.0 12.7± 1.2 0.0± 0.0 16.2± 0.8
Baseline (1NN) 41.8± 1.2 25.4± 0.5 63.9± 0.9 28.4± 0.8 67.4± 0.6 67.2± 0.8
Baseline (NN) 38.7± 0.1 33.3± 0.1 63.7± 0.4 38.2± 0.1 51.0± 0.0 60.9± 0.1
BiDiLEL (Wang & Chen, 2017b) 28.7± 1.0 29.2± 2.4 22.5± 5.1 13.9± 1.0 53.3± 2.7 37.0± 2.4
CADA-VAE (Schonfeld et al., 2019) 44.1± 3.0 47.6± 0.7 44.5± 3.2 24.9± 3.5 62.7± 1.2 43.2± 1.8
LPP (Wang et al., 2019) 52.9± 0.9 30.6± 1.0 65.1± 1.8 33.4± 0.4 68.9± 0.4 68.4± 0.3
CCVAE 55.2± 0.2 57.4± 0.7 74.9± 0.4 52.6± 1.1 76.9± 0.4 66.4± 1.1
Only method can achieve very decent performance on all 6 tasks
and particularly on tasks between the D and W domains where it
chieves the best performance. The ZSL/GZSL methods, however,
erform significantly worse than others due to the information
oss when compressing the sample-level source domain data into
lass-level semantic representations. These results demonstrate
ur proposed CCVAE performs consistently well regardless of the
xtent of domain shift.
The experimental results on the Office–Home dataset (Ta-

le 4) show a similar phenomenon observed on the BaggageXray
ataset. CCVAE outperforms other comparative methods on 10
ut of 12 tasks in terms of Accunseen. In terms of H , CCVAE performs

the best on 6 tasks but is inferior to LPP (Wang et al., 2019)
on the other 6 tasks due to the lower accuracy of seen classes.
These results demonstrate CCVAE has an advantage in recogniz-
ing unseen classes which is beneficial in cases with large-scale
unseen classes. On the other hand, CCVAE as a neural network
is more tractable when training with a large number of training
samples whilst LPP suffers from the computational complexity of
eigenvalue decomposition (Wang et al., 2019).

In Table 5, H values are reported for 36 sub-tasks for XMNIST
datasets. The tasks of Colour → Grey and Colour → Neg are
relatively easy so that even using source data only can achieve
as good performance as other more advanced methods except for
49
the ZSL methods which, again, suffer from the issue of overfitting
to seen classes hence result in low H values. In terms of the other
four tasks (i.e. Grey → Colour , Neg → Colour , Grey → Neg and
Neg → Grey) reported in Table 5, our proposed CCVAE signif-
icantly outperforms the comparative methods in most (20 out
of 24) sub-tasks especially when there are more unseen classes
(i.e. EMNIST with 26 classes serving as the unseen dataset).

To give a closer look into the accuracy of seen and unseen
classes on the XMNIST datasets, we expand the first two columns
in Table 5 and report the details of Accseen and Accunseen in Table 6.
The performance difference among variant methods mainly relies
on the varying capabilities of recognizing unseen classes whilst
no significant difference exists in the accuracy of seen classes
(Accseen) except Source Only and CADA-VAE. This is expected since
the feature extraction models are trained with seen class data
from both source and target domains except those used by Source
Only.

In summary, our proposed CCVAE can handle the GZSDA prob-
lem effectively in varying settings across different datasets and
outperforms contemporary methods consistently and more sig-
nificantly in the most challenging scenarios.
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Table 6
Detailed experimental results with MNIST as the seen dataset and FMNIST/EMNIST as the unseen dataset (mean and standard deviation of Accseen ,
Accunseen and H over five trials are reported).
Domains Method Seen: MNIST; Unseen: FMNIST Seen: MNIST; Unseen: EMNIST

Accseen Accunseen H Accseen Accunseen H

Grey→ Colour

Source Only 4.4± 0.1 20.6± 1.0 7.3± 0.1 1.4± 0.0 14.3± 1.6 2.5± 0.1
Baseline (1NN) 94.4± 0.1 30.7± 0.5 46.3± 0.6 94.0± 0.1 18.0± 0.3 30.2± 0.4
Baseline (NN) 95.6± 0.0 33.8± 0.1 50.0± 0.1 95.7± 0.0 22.4± 0.1 36.2± 0.1
BiDiLEL (Wang & Chen, 2017b) 92.6± 0.2 25.5± 1.7 39.9± 2.0 89.7± 0.4 22.4± 0.9 35.8± 1.1
CADA-VAE (Schonfeld et al., 2019) 62.0± 2.9 28.8± 2.5 39.2± 1.9 52.1± 3.4 27.0± 1.2 35.5± 1.3
LPP (Wang et al., 2019) 93.7± 0.1 45.5± 0.5 61.3± 0.5 94.3± 0.1 28.2± 0.5 43.5± 0.6
CCVAE 95.2± 0.0 48.1± 0.2 63.9± 0.2 94.9± 0.0 45.4± 0.1 61.4± 0.0

Colour → Grey

Source Only 96.9± 0.2 78.2± 0.9 86.5± 0.6 94.4± 0.5 84.2± 0.5 89.0± 0.3
Baseline (1NN) 98.3± 0.1 75.9± 0.8 85.6± 0.5 98.4± 0.0 79.0± 0.4 87.6± 0.3
Baseline (NN) 98.2± 0.0 82.4± 0.0 89.6± 0.0 98.4± 0.0 81.4± 0.1 89.1± 0.0
BiDiLEL (Wang & Chen, 2017b) 97.4± 0.1 17.0± 1.8 29.0± 2.6 96.8± 0.3 19.0± 1.5 31.8± 2.1
CADA-VAE (Schonfeld et al., 2019) 82.9± 1.8 25.7± 2.0 39.1± 2.2 67.5± 3.4 27.5± 3.2 38.9± 2.7
LPP (Wang et al., 2019) 97.3± 0.1 78.0± 0.3 86.6± 0.2 97.5± 0.0 68.3± 0.3 80.3± 0.2
CCVAE 98.0± 0.0 80.8± 0.1 88.6± 0.1 98.0± 0.0 83.5± 0.1 90.2± 0.1

Neg.→ Colour

Source Only 2.9± 0.2 21.1± 1.4 5.1± 0.3 1.0± 0.1 9.7± 1.5 1.9± 0.1
Baseline (1NN) 94.4± 0.1 26.5± 0.7 41.4± 0.9 93.9± 0.2 17.0± 0.5 28.8± 0.6
Baseline (NN) 95.5± 0.1 33.6± 0.1 49.7± 0.1 95.3± 0.0 22.7± 0.1 36.7± 0.2
BiDiLEL (Wang & Chen, 2017b) 92.9± 0.2 22.8± 2.0 36.6± 2.6 89.7± 0.1 18.9± 0.8 31.3± 1.1
CADA-VAE (Schonfeld et al., 2019) 68.7± 0.7 27.5± 1.6 39.3± 1.7 43.9± 4.4 28.6± 1.2 34.5± 1.8
LPP (Wang et al., 2019) 93.5± 0.1 53.6± 0.8 68.1± 0.6 93.9± 0.1 29.7± 0.5 45.2± 0.6
CCVAE 95.3± 0.0 56.1± 0.5 70.6± 0.4 94.9± 0.1 47.3± 0.5 63.2± 0.5

Grey→ Neg.

Source Only 21.4± 0.9 29.3± 2.6 24.7± 1.4 0.0± 0.0 10.4± 1.0 0.0± 0.0
Baseline (1NN) 98.3± 0.1 25.0± 1.1 39.9± 1.4 98.5± 0.1 11.4± 0.3 20.4± 0.5
Baseline (NN) 98.2± 0.0 23.1± 0.1 37.3± 0.1 98.4± 0.0 20.9± 0.1 34.5± 0.2
BiDiLEL (Wang & Chen, 2017b) 97.4± 0.1 14.2± 2.5 24.7± 3.9 96.1± 0.4 21.2± 1.6 34.7± 2.2
CADA-VAE (Schonfeld et al., 2019) 88.5± 2.6 28.9± 2.0 43.5± 2.0 64.8± 1.2 39.2± 1.5 48.8± 1.2
LPP (Wang et al., 2019) 97.2± 0.1 38.6± 0.4 55.2± 0.4 97.5± 0.0 17.1± 0.4 29.0± 0.6
CCVAE 98.1± 0.0 41.4± 0.3 58.2± 0.3 98.0± 0.0 38.9± 0.5 55.7± 0.5

Colour → Neg.

Source Only 97.0± 0.2 78.4± 1.0 86.7± 0.6 94.8± 0.4 82.9± 0.4 88.4± 0.3
Baseline (1NN) 98.4± 0.1 75.6± 0.9 85.5± 0.6 98.2± 0.1 80.6± 0.5 88.6± 0.3
Baseline (NN) 98.4± 0.0 81.8± 0.0 89.3± 0.0 98.5± 0.0 83.2± 0.0 90.2± 0.0
BiDiLEL (Wang & Chen, 2017b) 97.5± 0.0 20.0± 1.0 33.2± 1.5 96.8± 0.2 17.3± 0.9 29.3± 1.3
CADA-VAE (Schonfeld et al., 2019) 86.8± 0.7 23.3± 2.8 36.7± 3.6 69.8± 1.5 31.7± 2.4 43.5± 2.1
LPP (Wang et al., 2019) 97.3± 0.1 78.7± 0.2 87.0± 0.1 97.4± 0.1 71.0± 0.3 82.1± 0.2
CCVAE 98.2± 0.0 82.6± 0.1 89.7± 0.0 98.0± 0.1 84.3± 0.0 90.7± 0.0

Neg.→ Grey

Source Only 32.7± 1.0 30.3± 2.0 31.4± 1.1 0.0± 0.0 14.0± 1.5 0.0± 0.0
Baseline (1NN) 98.2± 0.2 26.5± 0.9 41.8± 1.2 98.3± 0.1 14.6± 0.3 25.4± 0.5
Baseline (NN) 98.1± 0.0 24.1± 0.1 38.7± 0.1 98.2± 0.0 20.0± 0.1 33.3± 0.1
BiDiLEL (Wang & Chen, 2017b) 97.3± 0.1 16.9± 0.7 28.7± 1.0 96.4± 0.3 17.3± 1.7 29.2± 2.4
CADA-VAE (Schonfeld et al., 2019) 92.9± 1.0 29.0± 2.6 44.1± 3.0 64.8± 3.6 37.7± 1.4 47.6± 0.7
LPP (Wang et al., 2019) 97.2± 0.1 36.3± 0.8 52.9± 0.9 97.4± 0.1 18.1± 0.7 30.6± 1.0
CCVAE 97.9± 0.0 38.4± 0.2 55.2± 0.3 97.8± 0.0 40.0± 0.7 56.8± 0.8
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4.4. Ablation study

To investigate the contribution of different terms in the loss
unction Eq. (3), we conduct an ablation study by removing dif-
erent components from the complete loss function. The ablation
tudy is carried out and evaluated on the BaggageXray-20 dataset.
xperimental results are shown in Table 7. When only the re-
onstruction loss Lrecon is used, the model is equivalent to an
utoencoder which gives a recognition accuracy of 8.7% for un-
een classes (i.e. Accunseen = 8.7%) which is slightly higher than
he random guess (i.e. 5%) in the Regular → Xray adaptation
ask. Similarly, in the Xray → Regular task, such a setting
ives the lowest accuracy of 21.4% overall the unseen classes.
dding the KL divergence as a regularization term, the VAE model
mproves the average H over two adaptation tasks from 24.3%
o 45.8%. The introduction of Lcross_recon can significantly improve
he performance in recognizing unseen classes as well as the
armonic mean H . Using the cross-domain reconstruction loss
cross_recon solely can achieve fairly good performance although the

complete form of the loss function (3) achieves the best average
H of 54.1%. These ablation study results demonstrate our model
gains the capabilities of transforming features across domains by
adding the cross-domain reconstruction loss to the conventional
VAE framework.
50
A second ablation study is conducted to evaluate how differ-
ent sets of data contribute to classifier training and recognition
accuracy in step 3 of the proposed framework. In the GZSDA
problem, we have access to the labelled real data sets Ds and

t from the source domain and the target domain respectively.
y leveraging the CCVAE model trained in step 2 (c.f. Fig. 2), we
an generate synthetic data D̃st from the source-domain data set
s and synthetic data set D̃ts from the target-domain data set
t . In our experiments, we investigate different combinations of
hese four sets of data for the classifier training and the results
re shown in Table 8. When D̃st is not used for classifier training
the first two rows of Table 8), there is no training data belong-
ng to unseen classes from the target domain. As expected, the
arget-domain test samples belonging to the unseen classes are
ostly mistakenly classified as seen classes hence leading to very

ow Accunseen and high Accseen. Adding the synthetic data set D̃st

enerated by our trained CCVAE can improve the performance
ignificantly (e.g., the 2nd row vs the 4th row of Table 8). This
emonstrates our trained CCVAE can effectively transform the
ource-domain data xs to synthetic target-domain data x̃st for
both seen and unseen classes. Note that during the training of
CCVAE, there exist only labelled target-domain data belonging to
the seen classes and a lack of target-domain data for the unseen
classes. CCVAE can learn the cross-domain relation from the seen
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Table 7
Ablation study results (%) using different combinations of loss terms on the BaggageXray dataset with 10 unseen classes (mean and standard error
of the mean (SEM) over five different seen/unseen class splits are reported).
Method Regular → Xray Xray → Regular Average

Lrecon Lcross_recon KLD Accseen Accunseen H Accseen Accunseen H H

✓ ✗ ✗ 81.1± 2.7 8.7± 4.3 14.1± 5.9 95.0± 0.8 21.4± 3.2 34.4± 4.5 24.3
✓ ✗ ✓ 70.9± 2.4 21.9± 2.5 33.1± 3.0 87.1± 1.2 44.6± 4.2 58.5± 3.9 45.8
✗ ✓ ✗ 74.1± 2.1 27.2± 1.5 39.6± 1.7 88.4± 0.7 52.6± 2.0 65.8± 1.5 52.7
✓ ✓ ✗ 79.9± 1.8 23.4± 2.8 35.8± 3.5 89.8± 0.5 55.0± 3.4 67.9± 2.7 51.9
✓ ✓ ✓ 77.2± 1.9 29.0± 1.5 42.1± 1.8 90.8± 1.0 52.3± 2.5 66.1± 1.9 54.1
Table 8
Ablation study results (%) using different combinations of data to train the classifier (step 3 in Fig. 2) on the BaggageXray-20 dataset with 10 unseen
classes (mean and standard error of the mean (SEM) over five different seen/unseen class splits are reported).
Training data Regular → Xray Xray → Regular Average

Ds Dt D̃st D̃ts Accseen Accunseen H Accseen Accunseen H H

✓ ✓ ✗ ✗ 84.3± 1.9 2.5± 0.4 4.8± 0.7 95.0± 0.8 20.4± 3.8 32.6± 5.5 18.7
✓ ✓ ✗ ✓ 83.6± 1.9 2.3± 0.3 4.4± 0.6 94.5± 1.0 18.9± 3.5 30.8± 5.0 17.6
✗ ✗ ✓ ✗ 60.0± 3.9 24.3± 0.7 34.4± 1.1 85.1± 2.4 32.1± 3.0 46.2± 3.0 40.3
✓ ✓ ✓ ✗ 79.2± 2.1 26.9± 1.7 40.0± 2.1 92.0± 1.0 50.7± 2.5 65.1± 2.0 52.6
✓ ✓ ✓ ✓ 77.2± 1.9 29.0± 1.5 42.1± 1.8 90.8± 1.0 52.3± 2.5 66.1± 1.9 54.1
Table 9
Ablation study results (%) with varying parameters of the latent code distribution on the BaggageXray dataset with 10 unseen classes
(mean and standard error of the mean (SEM) over five different seen/unseen class splits are reported).
Parameter Regular → Xray Xray → Regular Average

µ σ 2 Accseen Accunseen H Accseen Accunseen H H

0.0 1.0 77.2± 1.9 29.0± 1.5 42.1± 1.8 90.8± 1.0 52.3± 2.5 66.1± 1.9 54.1
0.1 1.0 77.8± 1.9 29.7± 1.7 42.9± 1.8 90.9± 0.8 51.2± 2.5 65.3± 2.0 54.1
1.0 1.0 77.7± 1.8 29.3± 1.6 42.5± 1.9 90.3± 0.9 52.7± 2.4 66.3± 1.9 54.4
10.0 1.0 77.1± 1.8 30.3± 1.5 43.4± 1.7 90.1± 1.0 52.7± 2.6 66.3± 1.9 54.8
100.0 1.0 77.1± 1.9 29.9± 1.8 42.9± 1.9 90.7± 0.8 51.8± 2.6 65.7± 2.1 54.3
0.0 0.01 78.0± 1.9 27.5± 1.9 40.6± 2.1 90.1± 1.0 51.6± 2.6 65.4± 2.1 53.0
0.0 0.1 77.4± 1.8 29.1± 1.9 42.1± 2.1 90.7± 0.8 51.3± 2.4 65.3± 1.9 53.7
0.0 10.0 77.7± 2.0 28.9± 1.3 42.1± 1.6 90.4± 1.0 52.2± 2.5 65.9± 1.9 54.0
0.0 100.0 77.6± 2.0 29.2± 1.8 42.3± 2.1 90.3± 1.0 51.2± 2.7 65.1± 2.2 53.7
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classes and generalize to the unseen classes hence enabling the
generalized zero-shot domain adaptation. Using all four sets of
data for the classifier training (last row in Table 8) achieves
the best performance in Accunseen and H due to the additional
synthetic data set D̃ts. In summary, the success of generalized
zero-shot domain adaptation relies on the generation of effective
synthetic target-domain data for unseen classes and our proposed
CCVAE can realize this with training data from the source domain
Ds and target-domain data Dt for seen classes only.

A third ablation study is conducted to investigate the effect
of Gaussian distribution parameters for the latent code z . Specif-
cally, we replace the standard Normal distribution N (0, I) in
q. (3) with a Normal distribution parameterized by varying µ

r varying σ2. We conduct the experiments on the BaggageXray-
0 dataset and the results are shown in Table 9. By varying the
ormal distribution parameters µ and σ2, we do not observe
ignificant performance change compared with the case where
he standard normal distribution (i.e. the first row in Table 9) is
mployed.

. Discussion and conclusion

The key to GZSDA is to overcome the overfitting to seen
lasses so that ZSDA methods such as (Wang & Jiang, 2019) and
eneric generative models such as CycleGAN (Zhu, Park, Isola,
Efros, 2017) do not apply. LPP achieves this goal by mapping

he source and target data into a common subspace of lower
imension with a unified linear projection whilst the generative
odels (e.g., CADA-VAE and CCVAE) address the overfitting issue
y generating synthetic data for the unseen classes.
51
Our proposed CCVAE was inspired by CADA-VAE and has a
imilar framework but is essentially different from it. Firstly,
ADA-VAE generates features from class-wise attribute vectors,
estricting the intra-class variations of the synthetic features
hilst CCVAE generates features from individual samples. Sec-
ndly, CADA-VAE employs domain-specific VAE for source and
arget domains whilst CCVAE uses a unified VAE to promote the
reserving of class information in the latent space. As a result,
o generate both domain and class discriminative features, the
enerative model in CADA-VAE is conditioned on class informa-
ion whilst CCVAE is conditioned on domain information. Finally,
CVAE is used to generate not only target-domain features but
lso source-domain features to augment the training data and a
nified classifier is trained for both domains in CCVAE (Step 3).
In conclusion, our proposed CCVAE is an effective approach

o the GZSDA problems. In addition, our proposed BaggageXray
ataset provides a challenging testbed for future researches in
ZSDA as well as other domain adaptation problems given the
act it arises from a real-world application in aviation security
creening and the unique spectral X-ray imagery.
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