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and Siani Smith3

1ENS de Lyon, Lyon, France.
2Department of Computer Science, Durham University, U.K..

3University of Bristol, U.K..

*Corresponding author(s). E-mail(s): barnabymartin@gmail.com;

Abstract

The L(p, q)-Edge-Labelling problem is the edge variant of the
well-known L(p, q)-Labelling problem. It is equivalent to the L(p, q)-
Labelling problem itself if we restrict the input of the latter problem
to line graphs. So far, the complexity of L(p, q)-Edge-Labelling
was only partially classified in the literature. We complete this study
for all p, q ≥ 0 by showing that whenever (p, q) ̸= (0, 0),
the L(p, q)-Edge-Labelling problem is NP-complete. We do this
by proving that for all p, q ≥ 0 except p = q = 0, there
is an integer k so that L(p, q)-Edge-k-Labelling is NP-complete.

Keywords: L(p, q)-labeling, colouring, dichotomy, computational
complexity, NP-hard

1 Introduction

This paper studies a problem that falls under the distance-constrained labelling
framework. Given any fixed nonnegative integer values p and q, an L(p, q)-
k-labelling is an assignment of labels from {0, . . . , k − 1} to the vertices of
a graph such that adjacent vertices receive labels that differ by at least p,
and vertices connected by a path of length 2 receive labels that differ by at
least q [5]. Some authors instead define the latter condition as being vertices
at distance 2 receive labels which differ by at least q (e.g. [7]). These defi-
nitions are the same so long as p ≥ q and much of the literature considers
only this case (e.g. [11]). If q > p, the definitions diverge. For example, in an
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Fig. 1 Colouring a triangle under the two definitions of L(1, 2)-labelling: first (left) and
second (right). Note that distinct vertices in a triangle are at distance one from one another
(right), yet there is a path of length two between them as well (left).

L(1, 2)-labelling, the vertices of a triangle K3 can take labels {0, 1, 2} in the
second definition but need {0, 2, 4} in the first. We illustrate this difference in
Figure 1. We use the first definition, in line with [5]. The decision problem of
testing if for a given integer k, a given graph G admits an L(p, q)-k-labelling
is known as L(p, q)-Labelling. If k is fixed, that is, not part of the input,
we denote the problem as L(p, q)-k-Labelling. The L(p, q)-labelling prob-
lem has been heavily studied, both from the combinatorial and computational
complexity perspectives. For a starting point, we refer the reader to the com-
prehensive survey of Calamoneri [5].1 The L(1, 0)-Labelling is the traditional
Graph Colouring problem (COL), whereas L(1, 1)-Labelling is known
as (Proper) Injective Colouring [2, 3, 9] and Distance 2 Colour-
ing [13, 17]. The latter problem is studied explicitly in many papers (see [5]),
just as is L(2, 1)-Labelling [8, 11, 12] (see also [5]). The L(p, q)-labelling
problem is also studied for special graph classes, see in particular [6] for a com-
plexity dichotomy for trees. Janczewski et al. [11] proved that if p > q, then
L(p, q)-Labelling is NP-complete for planar bipartite graphs.

We consider the edge version of the problem. The distance between two
edges e1 and e2 is the length of a shortest path that has e1 as its first edge and
e2 as its last edge minus 1 (we say that e1 and e2 are adjacent if they share
an end-vertex or equivalently, are of distance 1 from each other). The L(p, q)-
Edge-Labelling problem considers an assignment of the labels to the edges
instead of the vertices, and now the corresponding distance constraints are
placed instead on the edges.

In [12], the complexity of L(2, 1)-Edge-k-Labelling is classified. It is in
P for k < 6 and is NP-complete for k ≥ 6. In [15], the complexity of L(1, 1)-
Edge-k-Labelling is classified. It is in P for k < 4 and is NP-complete for
k ≥ 4. In this paper we complete the classification of the complexity of L(p, q)-
Edge-k-Labelling in the sense that, for all p, q ≥ 0 except p = q = 0, we
exhibit k so we can show L(p, q)-Edge-k-Labelling is NP-complete. That
is, we do not exhibit the border for k where the problem transitions from P
to NP-complete (indeed, we do not even prove the existence of such a border).
The authors of [12] were looking for a more general result, similar to ours, but
found the case (p, q) = (2, 1) laborious enough to fill one paper [16]. In fact,
their proof settles for us all cases where p ≥ 2q. We now give our main result.

1See http://wwwusers.di.uniroma1.it/~calamo/survey.html for later results.
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Regime Reduction from Place in article k at least
p = 0 and q > 0 3-COL Section 3 3q
2≤q/p NAE-3-SAT Section 4 (n− 1)p+ q + 1
1 < q/p ≤ 2 NAE-3-SAT Section 5 5p+ 1
q/p = 1 3-COL [15] 4p
2/3 < q/p<1 3-COL Section 6 3p+ q + 1
q/p = 2/3 1-in-3-SAT Section 7 4p
1/2 < q/p < 2/3 2-in-4-SAT Section 8 p+ 4q + 1
0 < q/p ≤ 1/2 NAE-3-SAT Section 9 [12] 3p+ 1
p > 0 and q = 0 3-COL Section 2 3p

Table 1 Table of results. The case 2 = q/p is covered by two regimes. The fourth row
follows from [15] (which proves the case p = q = 1) and applying Lemma 4. The eighth row
is obtained from a straightforward generalization of the result in [12] for the case where
p = 2 and q = 1. The fourth column gives the minimal k for which we prove
NP-completeness. In the second row choose minimal n ≥ 4 so that (n− 3)p ≥ q.

Theorem 1 For all p, q ≥ 0 except if p = q = 0, there exists an integer k so that
L(p, q)-Edge-k-Labelling is NP-complete.

The proof follows by case analysis as per Table 1, where the corresponding
section for each of the subresults is specified. We are able to reduce to the case
that gcd(p, q) = 1, due to the forthcoming Lemma 4. We prove NP-hardness
by reduction from graph 3-colouring and several satisfiability variants. Each
section begins with a theorem detailing the relevant NP-completeness. The case
p = q = 0 is trivial (never use more than one colour) and is therefore omitted.
Our hardness proofs involve gadgets that have certain common features, for
example, the vertex-variable gadgets are generally star-like. For one case, we
have a computer-assisted proof (as we will explain in detail).

By Theorem 1 we obtain a complete classification of L(p, q)-Edge-
Labelling.

Corollary 2 For all p, q ≥ 0 except p = q = 0, L(p, q)-Edge-Labelling is NP-
complete.

Note that L(p, q)-Edge-Labelling is equivalent to L(p, q)-Labelling for
line graphs (the line graph of a graph G has vertex set E(G) and two vertices e
and f in it are adjacent if and only if e and f are adjacent edges in G). Hence,
we obtain another dichotomy for L(p, q)-Labelling under input restrictions,
besides the ones for trees [6] and if p > q, (planar) bipartite graphs [11].

Corollary 3 For all p, q ≥ 0 except p = q = 0, L(p, q)-Labelling is NP-complete
for the class of line graphs.
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2 Preliminaries

We use the terms colouring and labelling interchangeably. A special role will
be played by the extended n-star (especially for n = 4). This is a graph
built from an n-star K1,n by subdividing each edge (so it becomes a path
of length 2). Instead of referring to the problem as L(p, q)-Labelling (or
L(h, k)-Labelling) we will use L(a, b)-Labelling to free these other letters
for alternative uses.

The following lemma is folklore and applies equally to the vertex- or edge-
labelling problem. Note that gcd(0, b) = b.

Lemma 4 Let gcd(a, b) = d > 1. Then the identity is a polynomial time reduction
from L(a/d, b/d)-(Edge)-k-Labelling to L(a, b)-(Edge)-kd-Labelling.

This result and the known NP-completeness of Edge-3-Colouring [10]
imply:

Corollary 5 For all a > 0, L(a, 0)-Edge-3a-Labelling is NP-complete.

Let us discuss the NP-complete problems from which we reduce in this
article. 3-COL takes as input a graph and asks whether there is a proper 3-
colouring of the vertices (that is, one in which no two adjacent vertices take the
same colour). NAE-3-SAT takes as input a collection of clauses each of which
contains 3 literals. It asks whether there is a truth assignment to variables
so that in each clause there is both a true and a false literal. The instance is
monotone if all literals are positive. For a < b, a-in-b-SAT takes as input a
collection of clauses each of which contains b literals. It asks whether there is a
truth assignment to variables so that in each clause there are precisely a true
literals. The instance is monotone if all literals are positive. The fact that our
satisfiability problems are NP-hard follows from [18].

3 Case a = 0 and b > 0

By Lemma 4 we only have to consider a = 0 and b = 1.

Theorem 6 The problem L(0, 1)-Edge-3-Labelling is NP-complete.

Let us use colours {0, 1, 2}. Our NP-hardness proof involves a reduction
from 3-COL but we retain the nomenclature of variable gadget and clause
gadget (instead of vertex gadget and edge gadget) in deference to the majority
of our other sections. Our variable gadget consists of a triangle attached on
one of its vertices to a leaf vertex of a star. Our clause gadget is a triangle
with a path of length 2 added to each of two of the three vertices. We draw
our variable gadget in Figure 2 and our clause gadget in Figure 3.
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Fig. 2 The variable gadget for Theorem 6.
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Fig. 3 The clause gadget for Theorem 6 (left) drawn also together with its interface with
a variable gadget (right). The dashed line is an inner edge of the variable gadget.

Lemma 7 In any valid L(0, 1)-edge-3-labelling of the variable gadget, each of the
pendant edges must be coloured the same.

Proof Each of the edges in the triangle must be coloured distinctly as there is a
path of length two from each to any other (by this we mean with a single edge in
between, though they are also adjacent). Suppose the triangle edge that has two
nodes of degree 2 in the variable gadget is coloured i. It is this colour that must be
used for all of the pendant edges. The remaining edge may be coloured by anything
from {0, 1, 2} \ {i}. However, we will always choose the option i− 1 mod 3. □

Lemma 8 In any valid L(0, 1)-edge-3-labelling of the clause gadget, the two pendant
edges must be coloured distinctly.

Proof Each of the edges in the triangle must be coloured distinctly as there is a path
of length two from each to any other. Suppose the triangle edge that has two nodes
of degree 3 in the clause gadget is coloured (w.l.o.g.) 2. The remaining edges in the
triangle must be given 0 and 1, in some order. This then determines the colours
of the remaining edges and enforces that the two pendant edges must be coloured
distinctly. However, suppose we had started first by colouring distinctly the pendant
edges. We could then choose a colouring of the remaining edges of the clause gadget
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so as to enforce the property that, if a pendant edge is coloured i, then its neighbour
(in the clause gadget) is coloured i + 1 mod 3. This is the colouring we will always
choose. □

We are now ready to prove Theorem 6.

Proof of Theorem 6. We reduce from 3-COL. Let G be an instance of 3-COL involv-
ing n vertices and m edges. Let us explain how to build an instance G′ for
L(0, 1)-Edge-3-Labelling. Each particular vertex may only appear in at most m
edges (its degree), so for each vertex we take a copy of the variable gadget which has
m pendant edges. For each edge of G we use a clause gadget to unite an instance
of these pendant edges from the corresponding two variable gadgets. We use each
pendant edge from a variable gadget in at most one clause gadget. We identify the
pendant edge of a variable gadget with a pendant edge from a clause gadget so as to
form a path from one to the other. We claim that G is a yes-instance of 3-COL iff
G′ is a yes-instance of L(0, 1)-Edge-3-Labelling.

(Forwards.) Take a proper 3-colouring of G and induce these colours on the
pendant edges of the corresponding variable gadgets. Distinct colours on pendant
edges can be consistently united in a clause gadget since we choose, for a pendant
edge coloured i: i− 1 mod 3 for its neighbour in the variable gadget, and i+1 mod 3
for its neighbour in the clause gadget.

(Backwards.) From a valid L(0, 1)-edge-3-labelling of G′, we infer a 3-colouring of
G by reading the pendant edge labels from the variable gadget of the corresponding
vertex. The consistent labelling of each vertex follows from Lemma 7 and the fact
that it is proper follows from Lemma 8. □

4 Case 2 ≤ b
a

In the case 2 ≤ b
a , we can no longer get away with just an extended 4-star

on which to base our variable gadget (as we did in Section 5). We need to
move to higher degree. On the other hand, we will be able to dispense with
the pendant 5-stars.

Theorem 9 If 2 ≤ b
a , let n ≥ 4 be such that (n − 3)a ≥ b then problem L(a, b)-

Edge-((n− 1)a+ b+ 1)-Labelling is NP-complete.

We will need the following lemma.

Lemma 10 Let 2 ≤ b
a and let n ≥ 4 be such that (n− 3)a ≥ b. In any valid L(a, b)-

edge-((n − 1)a + b + 1)-labelling of the extended n-star, either all pendant edges are
coloured in the interval {(n − 2)a + b, . . . , (n − 1)a + b} or all pendant edges are
coloured in the interval {0, . . . , a}.

Proof Suppose some pendant edge is coloured by l′ in {a+ 1, . . . , (n− 2)a+ b− 1}.
Consider the n−1 inner edges at distance 2 from it. Reading their labels in ascending
order there must be a jump of at least 2b ≥ a+ b+1 at some point unless the lowest
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L(a, b)− ((n− 1)a + b + 1) - edge labelling

(n− 2)a+ b

(n− 1)a

(n− 2)a+ b

(n− 1)a

(n− 2)a+ b

(n− 1)a

0 λ (n− 2)a 0 λ (n− 2)a

2a ≤ b
(n− 3)a ≥ b

λ λ

λ

λ λ

λ

λ λ

λ

n-2 repetitions n-3 repetitions n-2 repetitions
Fig. 4 The variable gadget for Theorem 9. The pendant edges drawn on the top will be
involved in clauses gadget and each of these three edges can be coloured with anything from
{(n− 2)a+ b, . . . , (n− 1)a+ b}.

label is itself a+b+1. But now we have run out of labels, because (n−2)a+(a+b+1) >
(n− 1)a+ b which is the last label.

Suppose now that some pendant edge is coloured by l′1 in {0, . . . , a} and another
pendant edge is coloured by l′2 in {(n − 2)a + b, . . . , (n − 1)a + b}. It is now not
possible to choose n− 2 labels to complete the opposing inner edges, because l1 and
l2 (inner edges adjacent to outer edges with labels l′1 and l′2, respectively) together
must remove more than b ≥ 2a possibilities for labels at both the top and the bottom
of the order. Using 2b > b+2a, this leaves no more than (n−3)a which is not enough
space for n− 2 labels spaced by a in the n− 2 inner edges.

Finally, we note a valid colouring of the form 0, . . . , (n− 1)a for the inner edges
of the extended n-star, with {(n− 2)a+ b, . . . , (n− 1)a+ b} enforced on the pendant
edges (and the whole range from {(n−2)a+b, . . . , (n−1)a+b} is possible adjacent to
the label (n− 1)a). The other regime comes from order-inverting the colours. □

The stipulation (n − 3)a ≥ b plays no role in the previous lemma. It is
needed in order to chain together extended n-stars to form the variable gadget
whose construction we now explain. The variable gadget is made from a series
of extended n-stars joined in a chain. They can join to one another in a path
running from one’s inner star edge labelled 0 to another’s inner star edge
labelled (n−2)a. In this fashion, the inner star edge labelled (n−1)a is free for
the (top) pendant edge that acts as the point of contact for clauses. This inner
star edge may sometimes need to be labelled (n− 2)a (cf. Figure 5) in which
case the other inner star edge labelled (n− 3)a will be needed to perform the
chaining. In the following lemma, the designation top is with reference to the
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drawing in Figure 4.

Lemma 11 Let n ≥ 4 be such that (n−3)a ≥ b. Any valid L(a, b)-edge-(n−1)a+b+1-
labelling of a variable gadget is such that the top pendant edges are all coloured from
precisely one of the sets {0, . . . , a} and {(n − 2)a + b, . . . , (n − 1)a + b}. Moreover,
any colouring of the top pendant edges from one of these sets is valid.

The clause gadget will be nothing more than a 3-star (a claw) which
is formed from a new vertex uniting three (top) pendant edges from their
respective variable gadgets. The following is clear.

Lemma 12 Let n ≥ 4 be such that (n−3)a ≥ b. A clause gadget is in a valid L(a, b)-
edge-(n− 1)a+ b+1-labelling in the case where two of its edges are coloured 0, a and
the third (n− 1)a+ b; or two of its edges are coloured (n− 2)a+ b, (n− 1)a+ b and
the third 0. If all three edges come from only one of the regimes {0, . . . , a} and {(n−
2)a+b, . . . , (n−1)a+b}, it cannot be in a valid L(a, b)-edge-(n−1)a+b+1-labelling.

We are now ready to prove Theorem 9.

Proof of Theorem 9. We reduce from (monotone) NAE-3-SAT. Choose n such that
(n − 3)a ≥ b. Let Φ be an instance of NAE-3-SAT involving N occurrences of (not
necessarily distinct) variables and m clauses. Let us explain how to build an instance
G for L(a, b)-Edge-(n− 1)a+ b+ 1-Labelling. Each particular variable may only
appear at most N times, so for each variable we take a copy of the variable gadget
which isN extended n-stars chained together. Each particular instance of the variable
belongs to one of the free (top) pendant edges of the variable gadget. For each clause
of Φ we use a 3-star to unite an instance of these free (top) pendant edges from the
corresponding variable gadgets. Thus, we add a single vertex for each clause, but no
new edges (they already existed in the variable gadgets). We claim that Φ is a yes-
instance of NAE-3-SAT if and only if G is a yes-instance of L(a, b)-Edge-(n− 1)a+
b+ 1-Labelling.

(Forwards.) Take a satisfying assignment for Φ. Let the range {0, . . . , a} represent
true and the range {(n− 2)a+ b, . . . , (n− 1)a+ b} represent false. This gives a valid
labelling of the inner vertices in the extended n-stars, as exemplified in Figure 4. In
each clause, either there are two instances of true and one of false; or the converse.
Let us explain the case where the first two variable instances are true and the third
is false (the general case can easily be garnered from this). Colour the (top) pendant
edge associated with the first variable as 0, the second variable a and the third
variable (n− 1)a+ b. Plainly these can be consistently united in a claw by the new
vertex that appeared in the clause gadget. We draw the situation in Figure 5 to
demonstrate that this will not introduce problems at distance 2. Thus, we can see
this is a valid L(a, b)-edge-(n− 1)a+ b+ 1-labelling of G.

(Backwards.) From a valid L(a, b)-edge-(n − 1)a + b + 1-labelling of G, we infer
an assignment Φ by reading, in the variable gadget, the range {0, . . . , a} as true and
the range {(n− 2)a+ b, . . . , (n− 1)a+ b} as false. The consistent valuation of each
variable follows from Lemma 11 and the fact that it is in fact not-all-equal follows
from Lemma 12. □
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Fig. 5 The clause gadget and its interface with the variable gadgets (where we must consider
distance 2 constraints). Both possible evaluations for not-all-equal are depicted. Note the
difference (n− 2)a+ b− (n− 1)a = b− a > a.

5 Case 1 < b
a
≤ 2

In this section we prove the following result.

Theorem 13 If 1 < b
a ≤ 2, the problem L(a, b)-Edge-(5a + 1)-Labelling is NP-

complete.

We proceed by a reduction from (monotone) NAE-3-SAT. This case is rela-
tively simple as the variable gadget is built from a series of extended 4-stars
chained together, where each has a pendant 5-star to enforce some benign
property. We will use colours from the set {0, . . . , 5a}.

Lemma 14 Let 1 < b
a ≤ 2. In any valid L(a, b)-edge-(5a+1)-labelling of the extended

4-star, if one pendant edge is coloured 0 then all pendant edges are coloured in the
interval {0, . . . , a}; and if one pendant edge is coloured 5a then all pendant edge are
coloured in the interval {4a, . . . , 5a}.

Proof Suppose some pendant edge is coloured by 0 and another pendant is coloured
by l′ /∈ {0, . . . , a}. There are four inner edges of the star that are at distance 1 or
2 from these, and one another (indeed, they are at distance 1 from one another). If
l′ < 2a, then at least 2a labels are ruled out, which does not leave enough possibilities
for the inner edges to be labelled in (at best) {2a + 1, . . . , 5a}. If l′ ≥ 2a, then it is
not possible to use labels for the inner edges that are all strictly above l′. It is also
not possible to use labels for the inner edges that are all strictly below l′. In both
cases, at least 2a labels are ruled out. Thus the labels, read in ascending order, must
start no lower than a and have a jump of 2a at some point. It follows they are one
of: a, 3a, 4a, 5a; or a, 2a, 4a, 5a; or a, 2a, 3a, 5a. This implies that l′ is itself a multiple
of a (whichever one was omitted in the given sequence). But now, since b > a, there
must be a violation of a distance 2 constraint from l′. □

Let us remark that the colourings as restricted in Lemma 14 are achievable,
and we will use them in the sequel.

We would like to chain extended 4-stars together to build our variable
gadgets, where the pendant edges represent variables (and enter into clause
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Fig. 6 Three extended 4-stars chained together, each with a pendant 5-star below, to form
a variable gadget for Theorem 13. The pendant edges drawn on the top will be involved in
clauses gadget and each of these three edges can be coloured with anything from {4a, . . . , 5a}.
If the top pendant edge is coloured 5a it may be necessary that the inner star edge below
is coloured not 3a but 2a (cf. Figure 7). This is fine, the chaining construction works when
swapping 2a and 3a.

gadgets) and we interpret one of the regimes {0, . . . , a} and {4a, . . . , 5a} as
true, and the other as false. However, the extended 4-star can be validly L(a, b)-
edge-(5a+ 1)-labelled in other ways that we did not yet consider. We can only
use Lemma 14 if we can force one pendant edge in each extended 4-star to
be either 0 or 5a. Fortunately, this is straightforward: take a 5-star and add a
new edge to one of the edges of the 5-star creating a path of length 2 from the
centre of the star to the furthest leaf. This new edge can only be coloured 0 or
5a. In Figure 6 we show how to chain together copies of the extended 4-star,
together with pendant 5-star gadgets at the bottom, to produce many copies of
exactly one of the regimes {0, . . . , a} and {4a, . . . , 5a}. Note that the manner in
which we attach the pendant 5-star only produces a valid L(a, b)-edge-(5a+1)-
labelling because 2a ≥ b (otherwise some distance 2 constraints would fail).
So long as precisely one pendant edge per extended 4-star is used to encode a
variable, then each encoding can realise all labels within each of these regimes,
and again this can be seen by considering the pendant edges drawn top-most
in Figure 6, which can all be coloured anywhere in {4a, . . . , 5a}. Let us recap, a
variable gadget (to be used for a variable that appears in an instance of NAE-
3-SAT m times) is built from chaining together m extended 4-stars, each with
a pendant 5-star, exactly as is depicted in Figure 6 for m = 3. The following
is clear from our construction. The designation top is with reference to the
drawing in Figure 6. In Figure 6, the case drawn corresponds to {4a, . . . , 5a},
where the case {0, . . . , a} is symmetric.
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Lemma 15 Any valid L(a, b)-edge-(5a+1)-labelling of a variable gadget is such that
the top pendant edges are all coloured from precisely one of the sets {0, . . . , a} and
{4a, . . . , 5a}. Moreover, any colouring of the top pendant edges from one of these sets
is valid.

The clause gadget will be nothing more than a 3-star (a claw) which
is formed from a new vertex uniting three (top) pendant edges from their
respective variable gadgets. The following is clear.

Lemma 16 A clause gadget is in a valid L(a, b)-edge-(5a + 1)-labelling in the case
where two of its edges are coloured 0, a and the third 5a; or two of its edges are
coloured 4a, 5a and the third 0. If all three edges come from only one of the regimes
{0, . . . , a} and {4a, . . . , 5a}, it can not be in a valid L(a, b)-edge-(5a+ 1)-labelling.

We are now ready to prove Theorem 13.

Proof of Theorem 13. We reduce from (monotone) NAE-3-SAT. Let Φ be an instance
of NAE-3-SAT involving n occurrences of (not necessarily distinct) variables and
m clauses. Let us explain how to build an instance G for L(a, b)-Edge-(5a + 1)-
Labelling. Each particular variable may only appear at most n times, so for each
variable we take a copy of the variable gadget which is n extended 4-stars, each with a
pendant 5-star, chained together. Each particular instance of the variable belongs to
one of the free (top) pendant edges of the variable gadget. For each clause of Φ we use
a 3-star to unite an instance of these free (top) pendant edges from the corresponding
variable gadgets. Thus, we add a single vertex for each clause, but no new edges
(they already existed in the variable gadgets). We claim that Φ is a yes-instance of
NAE-3-SAT if and only if G is a yes-instance of L(a, b)-Edge-(5a+ 1)-Labelling.

(Forwards.) Take a satisfying assignment for Φ. Let the range {0, . . . , a} represent
true and the range {4a, . . . , 5a} represent false. This gives a valid labelling of the
inner edges in the extended 4-stars, as exemplified in Figure 6. In each clause, either
there are two instances of true and one of false; or the converse. Let us explain the
case where the first two variable instances are true and the third is false (the general
case can easily be garnered from this). Colour the (top) pendant edge associated with
the first variable as 0, the second variable a and the third variable 5a. Plainly these
can be consistently united in a claw by the new vertex that appeared in the clause
gadget. We draw the situation in Figure 7 to demonstrate that this will not introduce
problems at distance 2. Thus, we can see this is a valid L(a, b)-edge-(5a+1)-labelling
of G.

(Backwards.) From a valid L(a, b)-edge-(5a+1)-labelling of G, we infer an assign-
ment Φ by reading, in the variable gadget, the range {0, . . . , a} as true and the
range {4a, . . . , 5a} as false. The consistent valuation of each variable follows from
Lemma 15 and the fact that it is in fact not-all-equal follows from Lemma 16. □

6 Case 2
3
< b

a
< 1

In this section we prove the following result.
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Fig. 7 The clause gadget and its interface with the variable gadgets (where we must consider
distance 2 constraints). Both possible evaluations for not-all-equal are depicted.

Case 1

b ≤ x, y ≤ a

a

0

a+ b

2a+ b

3a+ bx

y

b

Case 3

a + b ≤ x, y ≤ 2a

x

0

a

2a+ b

3a+ by

a+ b

2a

Case 2

2a + b ≤ x, y ≤ 3a

x

0

a

2a

3a+ b2a+ b

3a

y

Fig. 8 The regimes of Theorem 17.

Theorem 17 If 2
3 < b

a < 1, then the problem L(a, b)-Edge-(3a+ b+1)-Labelling
is NP-complete.

The regimes of the following lemma are drawn in Figure 8.

Lemma 18 Let 1 < a
b < 3

2 . In an L(a, b)-edge-(3a+b+1)-labelling c of the extended
4-star, there are three regimes for the pendant edges. The first is {b, . . . , a}, the second
is {2a+ b, . . . , 3a}, and the third is {a+ b, . . . , 2a}.

Proof In a valid L(a, b)-edge-(3a + b + 1)-labelling, we note c1 < c2 < c3 < c4 the
colours of the 4 edges in the middle of the extended 4-star, and l1, l2, l3, l4 the colours
of the pendant edges such that li is the colour of the pendant edge connected to the
edge of colour ci.

Claim 1. For all i, c1 < li < c4.

We only have to prove one inequality, as the other one is obtained by symmetry.
If li ≤ c1 (bearing in mind also b < a), we have:

3a+ b ≥ c4 − li = (c1 − li) + (c2 − c1) + (c3 − c2) + (c4 − c3) ≥ 3a+ b.

So (c1, c2, c3, c4) = (b, a + b, 2a + b, 3a + b), but a > b so there is no possible value
for l1, which is not possible. So c1 < li, and by symmetry li < c4.

Claim 2. There exists i ∈ {1, 2, 3} such that ci+1 − ci ≥ a+ b.



Springer Nature 2021 LATEX template

The Complexity of L(p, q)-Edge-Labelling 13

•

b

•

b

•

b

•
a+b

•
a+b

•
a+b

• a • 0 • 2a+b • a • 0 • 2a+b • a • 0 • 2a+b • a •

•

3a+b

•

3a+b

•

3a+b

•

b

•

b

•

b

Fig. 9 Three extended 4-stars chained together, to form a variable gadget for Theorem 17.
The pendant edges drawn on the top will be involved in clauses gadget. Suppose the top
pendant edges are coloured b (as is drawn). In order to fulfill distance 2 constraints in the
clause gadget, we may need the inner star vertices adjacent to them to be coloured not
always a+ b (for example, if that pendant edge b is adjacent in a clause gadget to another
edge coloured a+b). This is fine, the chaining construction works when swapping inner edges
a+ b and 3a+ b wherever necessary.

We suppose the contrary. We have proved c1 < l2, l3 < c4. If l2 < c2, then
c2 − c1 = c2 − l2 + l2 − c1 ≥ a + b, impossible. If c2 < l2 < c3, then c3 − c2 =
c3 − l2 + l2 − c2 ≥ a + b, impossible. So c3 < l2 < c4. Symmetrically, we obtain
c1 < l3 < c2. So c1 < l3 < c2 < c3 < l2 < c4, and we get: c4 − c1 ≥ (l3 − c1) + (c2 −
l3) + (c3 − c2) + (l2 − c3) + (c4 − l2) ≥ 4b+ a > 3a+ b, which is not possible.

Now we are in a position to derive the lemma, with the three regimes coming
from the three possibilities of Claim 2. If i = 1, then the inner edges of the star are
0, a + b, 2a + b, 3a + b and the pendant edges come from {b, . . . , a}. If i = 2, then
the inner edges of the star are 0, a, 2a+ b, 3a+ b and the pendant edges come from
{a + b, . . . , 2a}. If i = 3, then the inner edges of the star are 0, a, a + b, 3a + b and
the pendant edges come from {2a+ b, . . . , 3a}. □

The variable gadget may be taken as a series of extended 4-stars chained
together. In the following, the “top” pendant edges refer to one of the two free
pendant edges in each extended 4-star (not involved in the chaining together).
The following is a simple consequence of Lemma 18 and is depicted in Figure 9.

Lemma 19 Any valid L(a, b)-edge-(3a+ b+1)-labelling of a variable gadget is such
that the top pendant edges are all coloured from precisely one of the sets {b, . . . , a},
{a+ b, . . . , 2a} or {2a+ b, . . . , 3a}. Moreover, any colouring of the top pendant edges
from one of these sets is valid.

The clause gadget will be nothing more than a 2-star (a path) which is
formed from a new vertex uniting two (top) pendant edges from their respective
variable gadgets. The following is clear.
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Lemma 20 A clause gadget is in a valid L(a, b)-edge-(3a + b + 1)-labelling in the
case where its edges are coloured distinctly. If they are coloured the same, then it can
not be in a valid L(a, b)-edge-(3a+ b+ 1)-labelling.

We are now ready to prove Theorem 17.

Proof of Theorem 17. We reduce from 3-COL. Let G be an instance of 3-COL
involving n vertices and m edges. Let us explain how to build an instance G′ for
L(a, b)-Edge-(3a+ b+1)-Labelling. Each particular vertex may only appear in at
most m edges (m is an upper ground on its degree), so for each vertex we take a
copy of the variable gadget which is m extended 4-stars chained together. Each par-
ticular instance of the vertex belongs to one of the free (top) pendant edges of the
variable gadget. For each edge of G we use a 2-star to unite an instance of these free
(top) pendant edges from the corresponding two variable gadgets. Thus, we add a
single vertex for each edge of G, but no new edges in G′ (they already existed in the
variable gadgets). We claim that G is a yes-instance of 3-COL if and only if G′ is a
yes-instance of L(a, b)-Edge-(3a+ b+ 1)-Labelling.

(Forwards.) Take a proper 3-colouring of G and induce these pendant edge labels
on the corresponding variable gadgets according to the three regimes of Lemma 18.
For example, map colours 1, 2, 3 to b, a + b, 2a + b. Plainly distinct pendant edge
labels can be consistently united in a 2-claw by the new vertex that appeared in the
clause gadget. Thus, we can see this is a valid L(a, b)-edge-(3a+b+1)-labelling of G′.

(Backwards.) From a valid L(a, b)-edge-(3a + b + 1)-labelling of G′, we infer a
3-colouring of G by reading the pendant edge labels from the variable gadget of
the corresponding vertex and mapping these to their corresponding regime. The
consistent valuation of each variable follows from Lemma 19 and the fact that it is
proper (not-all-equal) follows from Lemma 20. □

7 Case b
a
= 2

3

In light of Lemma 4, it suffices to find k so that L(3, 2)-Edge-k-Labelling
is NP-hard.

Theorem 21 The problem L(3, 2)-Edge-12-Labelling problem is NP-complete.

We use the colours {0, . . . , 11}. The following can be verified by hand; we
used a computer.2

Lemma 22 In a valid L(3, 2)-edge-12-labelling of the extended 4-star, the possible
labels of the three other pendant edges after one label is fixed are given in the following
dictionary:

2 :{2, 3, 9}

2The Python program for checking this can be found in the follow-
ing github repository: https://github.com/G-Berthe/Lpq-edge-labelling/. Use,
e.g.: extended four star=[(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,7),(4,8)] with
plotPoss(extended four star, 3, 2, 12, {(1,5):[2]}) to find 2 : {2, 3, 9}.
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3 :{2, 3}
5 :{5, 6}
6 :{5, 6}
8 :{8, 9}
9 :{2, 8, 9}

For example, if one of the pendant edges is labelled 6, then the others must be labelled
by entries from {5, 6}. The possible multiplicities of these labellings is not specified
in this dictionary.

The variable gadget may be taken as a series of extended 4-stars chained
together. In the following, the “top” pendant edges refer to one of the two free
pendant edges in each extended 4-star (not involved in the chaining together).

Lemma 23 Any valid L(3, 2)-edge-12-labelling of a variable gadget is such that the
top pendant edges are all coloured from precisely one of the sets {5, 6} or {2, 3, 8, 9}.
Moreover, any colouring of the top pendant edges from one of these sets is valid.

The clause gadget will be nothing more than a 3-star, which is formed from
a new vertex uniting three (top) pendant edges from their respective variable
gadgets. This is drawn in Figure 11. The following is clear.

Lemma 24 A clause gadget is in a valid L(3, 2)-edge-12-labelling precisely in the
case where its edges are coloured one from {5, 6} and two from {2, 3, 8, 9}.

Proof of Theorem 21. We reduce from (monotone) 1-in-3-SAT. Let Φ be an instance
of 1-in-3-SAT involving n occurrences of (not necessarily distinct) variables and m
clauses. Let us explain how to build an instance G for L(3, 2)-Edge-12-Labelling.
Each particular variable may only appear at most n times, so for each variable we
take a copy of the variable gadget which is n extended 4-stars chained together. Each
particular instance of the variable belongs to one of the free (top) pendant edges
of the variable gadget. For each clause of Φ we use a 3-star to unite an instance of
these free (top) pendant edges from the corresponding variable gadgets. Thus, we
add a single vertex for each clause, but no new edges (they already existed in the
variable gadgets). We claim that Φ is a yes-instance of 1-in-3-SAT if and only if G
is a yes-instance of L(3, 2)-Edge-12-Labelling.

(Forwards.) Take a satisfying assignment for Φ. Let the range {5, 6} represent
true and the range {2, 3, 8, 9} represent false. In particular, every clause has two
false and one should be chosen as (e.g.) 2 and the other 9. Thus, where a variable
is false, some of top pendant edges are labelled 2 and others 9 (and this is shown in
Figure 10). In each clause, we will have (say) 2, 9, 5. Plainly these can be consistently
united in a claw by the new vertex that appeared in the clause gadget. We draw
the situation in Figure 10 to demonstrate that this will not introduce problems at
distance 2. Thus, we can see this is a valid L(3, 2)-edge-12-labelling of G.
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Fig. 10 Three extended 4-stars chained together, to form a variable gadget for Theorem 21.
The pendant edges drawn on the top will be involved in clauses gadget. We show in the
upper drawing how both sides of the regime representing false can be achieved (2 and 9).
We show in the lower drawing how it works with {5, 6}.

(Backwards.) From a valid L(3, 2)-edge-12-labelling of G, we infer an assignment
Φ by reading, in the variable gadget, range {5, 6} as true and the range {2, 3, 8, 9} as
false. The consistent valuation of each variable follows from Lemma 23 and the fact
that it is in fact not-all-equal follows from Lemma 24. □

8 Case 1
2
< b

a
< 2

3

Theorem 25 If 1
2 < b

a < 2
3 , then the problem L(a, b)-Edge-(4b+a+1)-Labelling

is NP-complete.
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Fig. 11 The clause gadget and its interface with the variable gadgets (where we must
consider distance 2 constraints).

This is probably the most involved case in terms of the sophistication of
the proof. We need some lemmas before we can specify our gadgets.

Lemma 26 If 0 < b < a and λ < 3a+ b, with k = λ+ 1, any edge k-labelling of the
extended 4-star must involve inner edge labels of (0 ≤)p < q < r < s(< k) so that
both q − p ≥ 2b and s− r ≥ 2b.

Proof The assumption λ < 3a+ b forces: λ− s < b, p < b, q− p, r− q, s− r < a+ b.
Consider colouring the edge beside that edge which is coloured by r. This can’t be
coloured by anything other than something between p and q, forcing q − p ≥ 2b.
Similarly, consider colouring the edge beside that edge which is coloured by q. This
can’t be coloured by anything other than something between r and s, forcing s−r ≥
2b. □

□

Corollary 27 Let a ≤ 2b. The minimal k so that the extended 4-star gadget can be
edge k-labelled is 4b+ a+ 1.

Proof We know it is at least 4b+a+1 from the previous lemma. Further, the colouring
alluded to in the previous proof extends to a valid colouring. Set labels (p, q, r, s) to
(0, 2b, 2b + a, 4b + a). Then, the edges next to p and q can be coloured 3b + a, and
the edges next to r and s can be coloured b. □

Lemma 28 Let 1
2 < b

a < 2
3 and k = 4b+ a+ 1. The extended 4-star gadget can be

edge-k-labelled only such that two pendant edges are b and the other two are 3b+ a.

Proof The inequality 1
2<

b
a proves it is a correct labelling.

We have λ = 4b + a < 3a + b so from the previous lemma we deduce the inner
edge labels are 0, 2b, 2b+a, 4b+a. Adjacent to 2b+a must be b and the same is true
for 4b+ a. Adjacent to 2b must be 3b+ a and the same is true of 0. □

Note that colours are in the set {0, . . . , 4b + a}. Below, in Figure 12, we
give two gadgets for the variables, the end gadget and the (basic part of the)
variable gadget. The variable gadget admits a number of edge-(4b + a + 1)-
labellings, but we want the only possibilities to be that drawn and one that
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swaps 3b + a and b. This we enforce by attaching an end gadget at the end
(e.g. the left-hand end). For example, one may join it by adding new edges (in
the present colouring of the end gadget, that would force the other colouring
of the variable gadget). That is, we join the end gadget using the two edges
drawn at the bottom below to the (basic part of the) variable gadget using the
two edges drawn (say) to the left below. The join is accomplished by adding
two new edges, one for each position. That is, one edge joins left and bottom,
while the other edge joins right and top. In the variable gadget, the variables
will extend from the 10-cycles, but this is possible only on one side. We now

•
3b+a

3b

•
3b+a

b+a•
4b+a

•
4b+a

• b • 2b • 2b+a • b • 2b • 2b+a • b •

•

0

•

0

•

3b+a

•

3b+a

•
0

•
0

•
3b+a

•
b

3b
•

3b+a

•
b

3b
•

3b+a

•
b

•
2b

•
4b+a

•
2b

•
4b+a

•
2b

•
4b+a

• • •

•
0

•
2b+a

•
0

•
2b+a

•
0

•
2b+a

•
3b+a

•
b

b+a
•

3b+a

•
b

b+a
•

3b+a

•
b

Fig. 12 End gadget (above) and basic part of variable gadget (below).

meet, in Figure 13, a full variable gadget drawn with a variable protrusion, in
this case built from two 0 edges (the symmetric form gives two 4b+ a edges).

Summing up, we derive the following lemma.

Lemma 29 In a full variable gadget complete with an end gadget, any valid edge-
(4b + a + 1)-labelling has the property that the pendant edges from the basic part of
the variable gadgets, which form the vertical edges in the full variable protrusion, are
either all 0 or are all 4b+ a.

The clause gadget is derived from an extended 4-star, whose properties we
gave already in Lemma 28. Specifically, we extend the paths in the extended
4-star from length two to length four where they join the top node from a
variable protrusion. Let us call this a triply extended 4-star. This is drawn in
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Fig. 13 A full variable gadget drawn with a variable protrusion. Note that each vari-
able protrusion, as the gadget repeats, must be of the same kind. This is demonstrated in
Figure 14 where it is shown that the alternative colouring is impossible. The dashed lines in
the present drawing also appear in our depiction of the clause gadget in Figures 15 and 16.
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Fig. 14 Demonstration that the variable protrusions are determined once the left-hand
leaves of the first extended 4-star are chosen (remember they are ultimately made equal by
the end gadget).

Figure 15, where we also show the interface with the variable gadgets, together
with a valid colouring.

Proof of Theorem 25. We reduce from (monotone) 2-in-4-SAT. Let Φ be an instance
of 2-in-4-SAT involving n occurrences of (not necessarily distinct) variables and m
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Fig. 15 The clause gadget and its interface with the variable gadgets (where we must
consider distance 2 constraints). In the first of the four variables, on the left-hand branch,
we show in dashed lines the corresponding variable protrusion.

clauses. Let us explain how to build an instance G for L(a, b)-Edge-(4b + a + 1)-
Labelling. Each particular variable only appears at most n times, so for each
variable we take a full variable gadget with n variable protrusions. Each particu-
lar instance of the variable belongs to the top vertex of a variable protrusion (one
of these is drawn in Figure 13, but none appears in Figure 12). For each clause
of Φ we use a triply extended 4-star to unite some instance of these top ver-
tices of the variable protrusions from the corresponding full variable gadgets. We
claim that Φ is a yes-instance of 2-in-4-SAT if and only if G is a yes-instance of
L(a, b)-Edge-(4b+ a+ 1)-Labelling.

(Forwards.) Take a satisfying assignment for Φ. Let 0 represent true and 4b+ a
represent false. Then, every clause has two true and two false variables and these can
be consistently united in an triply extended 4-star as in Figure 15. This is a valid
L(a, b)-edge-(4b+ a+ 1)-labelling of G.

(Backwards.) From a valid L(a, b)-edge-(4b + a + 1)-labelling of G, we infer an
assignment Φ by reading, in the full variable gadget, 0 as true and 4b + a as false.
The consistent valuation of each variable follows from Lemma 29 and the fact that
it is 2-in-4 follows from Lemma 28, bearing in mind the impossibility of colouring a
path in the clause gadget as in Lemma 30 and Figure 16. □

Lemma 30 The colouring depicted in Figure 16 cannot be completed from the initial
colouring of the second to top edge as b and the lower six edges as 0 (above) and
3b+ a and 3b (below).
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Fig. 16 An impossible colouring on a path in a clause gadget that shows (together with
the valid colouring of Figure 15) that the clause gadget enforces 2-in-4-SAT.

Proof Case 1 : x ≤ y.
As x and y are neighbours, we have x ≤ y − a ≤ 4b − a. So the distance between x
and z is ≤ 4b− a− a = 4b− 2a < b.

This is not possible as we need the distance between x and z to be ≥ b.

Case 2 : y ≤ x.
As x and y are neighbours, we have x ≥ y + a ≥ 3a. So 4b + a − x ≤ 4b − 2a =
4b− 2a < b.

This is not possible as we need 4b+ a− x ≥ b. □

9 Case 0< b
a
≤ 1

2

We follow the exposition of [12], which addresses the L(2, 1)-edge-7-labelling
problem. With permission we have used (an adaptation) of their diagrams.
Note that in [12], they would call the problem we address the L(a, b)-edge-3a-
labelling problem as, in their exposition 3a refers to the set {0, . . . , 3a}.

Theorem 31 The L(a, b)-edge-(3a+ 1)-labelling problem, for a ≥ 2b, is NP-hard.
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Fig. 17 Variable gadget (adapted from [12]).

Proof By reduction from (monotone) NAE-3-SAT using the gadgets and properties
detailed in Lemmas 32 and 33, below. □

For 1 ≤ k ≤ 3, we define the sets k = J(k − 1)a + b, ka − bK. The edges
of a 4-star have to be coloured 0, a, 2a, 3a, in any valid L(a, b)-edge-(3a + 1)-
labelling. Then any neighbouring edge of the star has to be in one these sets,

of the form k . These properties we will now use without further comment.
A variable is represented by the variable gadget of Figure 17.

Lemma 32 In any valid L(a, b)-edge-(3a + 1)-labelling of the variable gadget, the
three edges free in the top of a 4-star at the top of a repeatable section must be coloured
(in all repeatable and initial parts) by either {a, 2a, 3a} or {0, a, 2a}.

Proof Let us consider various possibilities for the colouring of {e′0, e0} and {e′1, e1}
(up to the order inverting map that takes (0, . . . , 3a) to (3a, . . . , 0)). These are drawn
in Table 2 (essentially reproduced from [12]) together (in some cases) with why they
lead to contradiction. The Cases III-VI are straightforward. For Cases I and II we
need to argue why {e′0, e0} cannot be {a, 2a}. In this case, the cycle must continue
(bearing in mind that every edge with a vertex of degree 4 must be from {0, a, 2a, 3a})
in a certain way. To the right it must continue: (a, 2a, 1 , 3a, 2a, 1 , 3a, 2a, . . .).
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e′0 e′1 e′2
e0 e1 e2 e3

I. a 0 in 2

2a 3a in 1 a, 2a impossible in the cycle

II. a 3a in 2

2a 0 in 3 a, 2a impossible in the cycle

III. 0 a impossible
3a 2a — —

IV. 0 a impossible
2a 3a — —

V. 0 3a in 1

a 2a impossible —

VI. 0 2a in 1

a 3a in 2 0

Table 2 Variable gadget table (adapted from [12]).

However, to the left it must continue: (2a, a, 3 , 0, a, 3 , 0, a, . . .). These paths can
now never join together in a cycle. This rules out Cases I and II.

The remaining labellings, Case VI and its various symmetries, are possible and
result in the claimed behaviour. □

The clause is represented by the clause gadget of Figure 18.

Lemma 33 Consider any valid L(a, b)-edge-(3a + 1)-labelling of the clause gadget,
such that the input parts of the variable gadgets satisfy the previous lemma. Two
of the input variable gadget parts must come from one of the regimes {a, 2a, 3a} or
{0, a, 2a}, and the other input part from the other regime. In particular, if all three
input variable gadget parts come from only one of the regimes, then this can not be
extended to a valid L(a, b)-edge-(3a+ 1)-labelling.

Proof Let us consider various possibilities for the colouring of e1 and {e′1, e′′1} (up
to the order inverting map that takes (0, . . . , 3a) to (3a, . . . , 0)). These are drawn in
Table 3 (essentially reproduced from [12]) together (in some cases) with why they
lead to contradiction.

Cases III and IV show the valid possibilities. The three edges where the 4-star
unites the variable gadget repeatable parts has only two possibilities for each of the
variable regimes {a, 2a, 3a} or {0, a, 2a} (namely, {0, 2a} and {a, 3a}, respectively).
The claimed behaviour is clear. □

10 Final Remarks

We give several directions for future work. First, determining the boundary
for k between P and NP-complete, in L(p, q)-Edge-k-Labelling, for all p, q
is still open except if (p, q) = (1, 1) and (p, q) = (2, 1). For (p, q) = (1, 1) it is
known to be 4 (it is in P for k < 4 and is NP-complete for k ≥ 4) [15]; and for
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First variable

0 e0

0

3a e1

3a

2 e
′

2

1 e2

2

1

0

2a e3

3a 0

3

2

3a

Second variable

Third variable

2a e
′

1

a e
′′

1

2a

a

2a

a

a

Clause gadget

Fig. 18 Clause gadget (adapted from [12]).

(p, q) = (2, 1) it is known to be 6 (it is in P for k < 6 and is NP-complete for
k ≥ 6) [12].

A second open line of research concerns L(p, q)-Labelling for classes of
graphs that omit a single graph H as an induced subgraph (such graphs are
called H-free). A rich line of work in this vein includes [3], where it is noted,
for k ≥ 4, that L(1, 1)-k-Labelling is in P over H-free graphs, when H is a
linear forest; for all other H the problem remains NP-complete. If k is part of
the input and p = q = 1, the only remaining case is H = P1+P4 [2]. Corollary 3
covers, for every (p, q) ̸= (0, 0), the case where H contains an induced claw (as
every line graph is claw-free). For bipartite graphs, and thus for H-free graphs
for all H with an odd cycle, the result for L(p, q)-k-Labelling is known from
[11], at least in the case p > q.

As our final open problem, for d ≥ 1, the complexity of L(p, q)-Labelling
on graphs of diameter at most d has, so far, only been determined for a, b ∈
{1, 2} [4].

Acknowledgments. An extended abstract of this paper, omitting numerous
proofs, appeared at The 16th International Conference and Workshops on
Algorithms and Computation (WALCOM) 2022 [1].
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e0

e′′1
e′1

e1
e′2
e2 e3

I.

0

2a or 3a
3a or 2a

a
Both in 3 . Impossible

Both in 3 . Impossible —

II.

0

a or 3a
3a or 2a

2a
Both in 1 . Impossible

Both in 1 . Impossible —

III.

0

2a or a
a or 2a

3a
In 1

In 2 0 or 3

IV.

0

2a or a
a or 2a

3a
In 2

In 1 2a or 3

Table 3 Clause gadget table (adapted from [12]).
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