
The Stata Journal (2023)
23, Number 1, pp. 293–297 DOI: 10.1177/1536867X231162009

Stata tip 151: Puzzling out some logical operators
Nicholas J. Cox
Department of Geography
Durham University
Durham, U.K.
n.j.cox@durham.ac.uk

The logical operators & (“and”) and | (“or”) can sometimes be tricky in statistical
software such as Stata. They are extremely useful, so you need to understand thoroughly
how they work. Any trickiness arises mostly in translating from ordinary language to
a statistical computer language. Here I survey various common confusions and explain
what to do instead.

auto.dta in Stata will serve fine as a sandbox.

. sysuse auto
(1978 automobile data)

1 What is wrong, and why
The repair record variable rep78 in auto.dta takes on values 1 (poor) to 5 (best) and
also missing. You can see that with a simple tabulation:

. tabulate rep78, missing
Repair

record 1978 Freq. Percent Cum.

1 2 2.70 2.70
2 8 10.81 13.51
3 30 40.54 54.05
4 18 24.32 78.38
5 11 14.86 93.24
. 5 6.76 100.00

Total 74 100.00

Let’s see which cars have repair record 1. You need to use the operator == when
testing for equality. If this point is new to you, please consult help operators.

. list make rep78 if rep78 == 1

make rep78

40. Olds Starfire 1
48. Pont. Firebird 1

© 2023 StataCorp LLC st0710

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231162009&domain=pdf&date_stamp=2023-04-05

294 Stata tip 151

Two cars are shown, as promised by the previous table. Now consider this syntax,
which is an attempt to also get those cars with rep78==2:

. list make rep78 if rep78 == 1 & 2

make rep78

40. Olds Starfire 1
48. Pont. Firebird 1

We get the same cars. Where are the 8 cars with value 2? The command was legal
but wrong from our point of view. A legal command is one that runs without an error
message, but evidently being legal does not make a command right for us. Now suppose
you report your problem to a friend, who explains that you need the “or” operator there,
not the “and” operator. It is impossible for a value of a Stata variable to be both 1
and 2 in the same observation. You do want those observations that are 1 AND those
observations that are 2. For Stata, that means selecting those observations for which
there is value 1 on rep78 OR for which there is value 2 on rep78.

Emphasizing operators by using uppercase (for example, AND, OR) is a practice I
learned from John Tukey’s writing (for example, Tukey [1977]). As many people have
a synesthetic sense that using uppercase is SHOUTING, it is best done sparingly. This
is no more than presentation: AND and OR are assumed to behave exactly like & and |
otherwise.

Suppose further that your friend does not spell out syntax, so you try

. list make rep78 if rep78 == 1 | 2

However, now those variables are listed for all 74 observations in the dataset. (The
lengthy listing is not reproduced here, but you can check for yourself.) So, that command
too is legal but wrong. Sooner or later—say, your friend is more explicit, or you look at
some documentation—you reason or muddle your way toward

. list make rep78 if rep78 == 1 | rep78 == 2

make rep78

12. Cad. Eldorado 2
17. Chev. Monte Carlo 2
18. Chev. Monza 2
21. Dodge Diplomat 2
22. Dodge Magnum 2

23. Dodge St. Regis 2
40. Olds Starfire 1
46. Plym. Volare 2
48. Pont. Firebird 1
52. Pont. Sunbird 2

N. J. Cox 295

Eventually, you got what you wanted, but we now need to explain exactly why those
earlier guesses are not right.

The first principle here is that an if qualifier selects observations if the stated
condition is true. That was easy to specify when the condition was just rep78 == 1, but
what was happening with a compound condition such as rep78 == 1 & 2—where now
two logical operators are in sight? The answer lies in precedence of operators, namely,
which operator is used first in evaluation. Stata’s precedence rules are documented at
help operators. You do not need to learn the order in which operators are used in
evaluation. All that I have found important is knowing how to look up the order and
knowing to try to use parentheses, (), to insist on your intended meaning.

By the way, I recommend the terminology whereby (), [], and { } are called
in turn “parentheses”, “brackets”, and “braces”. In turn, extra adjectives “round”,
“square”, and “curly” are, according to taste, either redundant or revealing. For many
other names, see Raymond (1996). Books on punctuation range from splenetic to schol-
arly: Houston (2013) and especially Parkes (1993) are nearer the latter.

The answer here is that == is used before &. So, faced with the condition

if rep78 == 1 & 2

Stata parses it as if it were

if (rep78 == 1) & 2

Just as in school mathematics, what is inside parentheses is treated first in evaluation.
We now need to know Stata’s rule that expressions evaluating to zero (0) are false while
expressions evaluating to any number other than zero are true. This last detail may be
new to you, especially if you are more familiar with the vital implication, which is very
widely useful, that 0 means false and 1 means true (Cox 2005, 2016; Cox and Schechter
2019). Imagine just the single condition

if 2

Clearly, 2 is not 0, so 2 counts as true—always, meaning for every observation. Stata
does look at every observation and asks, with this syntax, whether 2 is true, given the
information in this observation, to which the answer is always yes. Even though it
seems unlikely to be something you would write on purpose, the syntax is legal and has
meaning. For completeness, note that code such as if 2 is legal and has meaning also
even if there are no data in memory.

So, if 2 is always true, but the compound condition if rep78 == 1 & 2 is true
only when both conditions are true. That restriction narrows the scope to observations
if rep78 == 1, as already observed.

Operator precedence also means that == is used in evaluation before |, so rep78
== 1|2 is evaluated as if it were (rep78 == 1)|2. The compound condition is true
if either condition is true, and as already observed, 2 is always true; and so the entire

296 Stata tip 151

condition is always true, with the consequence reported earlier that all observations are
used whenever the condition is rep78 == 1 | 2.

It should now seem clear that compound conditions such as if rep78 == 1 | 2 |
3 | 4 | 5 do not offer a terse and generally applicable syntax for multiple conditions
acting at the same time. But there remains much scope for small puzzles. Thus, the last-
stated condition almost does what may have been intended (it catches missing values
too).

The foreign indicator variable takes on values 0 and 1 only in auto.dta. It follows
that if foreign == 0 | 1 does what may have been intended—catch observations
with values of both 0 and 1 on foreign—but by accident because the true condition 1
catches all observations. Conversely, the condition if foreign == 1 | 0 is not at all
equivalent and will not catch any values of 0, because 0 counts as false. Otherwise put,

if foreign == 1 OR 0

and

if foreign == 0 OR 1

are not equivalent pseudocode.

2 Other ways to get it right
Earlier mentions may have left the impression that slow but sure is the only successful
tactic in specifying compound conditions. The point of this section is to emphasize
other syntax and other tactics. See also Cox (2006, 2011).

inlist(rep78, 1, 2) is another way to write if rep78 == 1 | rep78 == 2, and
its appeal grows with the number of possible values given in the list, here just 1 and 2,
but in many problems a longer list. See the help for inlist() for current limits on the
number of arguments.

Mention must be made of the useful twist that inlist(1, a, b, c, d, e), men-
tally expanded as 1 == a | 1 == b | 1 == c | 1 == d | 1 == e, is thus a way of
checking that any of a, b, c, d, e is 1 just as surely as 1 == a is equivalent to a == 1.

Because rep78 takes only integer values, inrange(rep78, 1, 2) is in practice
equivalent, as is rep78 <= 2 or rep78 < 3. There are differences in principle. In
the first case, that difference is the possibility of noninteger values in the stated range.
In the second case, that kind of problem could apply, together with the possibility of
values below 1.

It is always worth flagging that numeric missing values all count as nonzero and
hence as true.

N. J. Cox 297

3 Strings cannot be true or false
This section separates off a warning that because string values are not numeric, they
cannot themselves be true or false. Thus, suppose that we wanted all the available
information on the two cars identified by the first line of code in section 2.

. list if make == "Olds Starfire" | "Pont. Firebird"
type mismatch
r(109);

It should now not be surprising that this code is not what is wanted, but in this
case, the code is illegal and so triggers an error message. The whole of make == "Olds
Starfire" is a true or false expression evaluated as 1 or 0, but "Pont. Firebird" as
a bare string cannot be true or false; hence, the error shown.

. list if make == "Olds Starfire" | make == "Pont. Firebird"

and

. list if inlist(make, "Olds Starfire", "Pont. Firebird")

are fine ways to issue the instruction.

References
Cox, N. J. 2005. FAQ: What is true or false in Stata? https://www.stata.com/support/
faqs/data-management/true-and-false/ .

. 2006. Stata tip 39: In a list or out? In a range or out? Stata Journal 6:
593–595. https://doi.org/10.1177/1536867X0600600413.

. 2011. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460–471. https://doi.org/10.1177/1536867X1101100308.

. 2016. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229–236. https://doi.org/10.1177/1536867X1601600117.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246–259. https: // doi.org / 10.1177 /
1536867X19830921.

Houston, K. 2013. Shady Characters: Ampersands, Interrobangs and other Typographic
Curiosities. London: Particular Books.

Parkes, M. B. 1993. Pause and Effect: Punctuation in the West. Berkeley, CA: University
of California Press.

Raymond, E. S. 1996. The New Hacker’s Dictionary. 3rd ed. Cambridge, MA: MIT
Press.

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, MA: Addison–Wesley.

https://www.stata.com/support/faqs/data-management/true-and-false/
https://www.stata.com/support/faqs/data-management/true-and-false/
https://doi.org/10.1177/1536867X0600600413
https://doi.org/10.1177/1536867X1101100308
https://doi.org/10.1177/1536867X1601600117
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921

