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Abstract—Air transportation communication jamming recog-
nition model based on deep learning (DL) can quickly and
accurately identify and classify communication jamming, to
improve the safety and reliability of air traffic. However, due
to the vulnerability of deep learning, the jamming recognition
model can be easily attacked by the attacker’s carefully designed
adversarial examples. Although some defense methods have been
proposed, they have strong pertinence to attacks. Thus, new
attack methods are needed to improve the defense performance of
the model. In this work, we improve the existing attack methods
and propose a double level attack method. By constructing the
dynamic iterative step size and analyzing the class characteristics
of the signals, this method can use the adversarial losses of feature
layer and decision layer to generate adversarial examples with
stronger attack performance. In order to improve the robustness
of the recognition model, we use adversarial examples to train
the model, and transfer the knowledge learned from the model to
the jamming recognition models in other wireless communication
environments by transfer learning. Simulation results show that
the proposed attack and defense methods have good performance.

Index Terms—Adversarial attack, adversarial defense, air
transportation, communication jamming recognition, deep learn-
ing.

I. INTRODUCTION

W IRELESS communication technology has been bloom-
ing in recent years. It has the advantages of high

flexibility, wide coverage and rapid information transmission,
and is applied in many key areas of society. In wireless
communication systems, wireless security has been valued
and improved by researchers. For example, for the problem
that the information of users may be easily intercepted and
eavesdropped in non-orthogonal multiple access (NOMA) sys-
tems, researchers have improved NOMA technology to ensure
secure transmission between secure users and base stations and
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improve the security of wireless communication systems [2]–
[4]. In the field of air transportation, wireless communication
is the key technology for communication between aircraft
and tower with direct effect on the safe landing and takeoff
of aircraft in the air traffic control system. However, in an
increasingly complex electromagnetic environment, various
communication devices could be interfered by communication
jamming [5]. In order to ensure the reliable transmission
of information, various anti-jamming technologies emerge.
Researchers in different fields have tried to use deep learn-
ing networks to complete the identification tasks in wireless
communication, and use intelligent anti-interference technol-
ogy to effectively deal with communication jamming [6]–[8].
Efficient communication anti-jamming technology requires the
jammer’s jamming mode, and then chooses the corresponding
technical means to eliminate or reduce the jamming, so as
to ensure normal communication. Therefore, the recognition
of jamming signal type is the foundation of communication
anti-jamming technology.

In order to automatically monitor different types of commu-
nication jamming signals in the air to facilitate anti-jamming
processing, researchers have used machine learning (ML) to
automatically identify and classify jamming signals in the
whole electromagnetic environment for speed and accuracy of
classification [9]. Interestingly, researchers have also studied
the vulnerability of automatic recognition model, to make the
model vulnerable to attacks. Nguyen et al. proved that the deep
neural network (DNN) model is easy to be fooled, because
they can classify many examples not in the class set as iden-
tifiable class members with high confidence [10]. By adding
carefully designed small disturbances to the input, Szegedy et
al. successfully changed the prediction results of the classifier
for the input examples, and proposed the concept of adversarial
examples [11]. Sadeghi et al. used receiver classifier and attack
algorithms to conduct adversarial attacks against wireless
communication related processes [12]. Such attack is fatal for
scenarios with high requirements on wireless communication
security, such as communication between aircraft and tower.
As shown in Fig. 1, the jamming recognition model can
correctly identify the original communication jamming, and
then the signal receiver uses the corresponding anti-jamming
technology to suppress the jamming. However, if the adversari-
al examples of communication jamming are carefully designed
by attackers, the recognition model is likely to incorrectly
identify them, which means that the receiver may take wrong
anti-jamming measures, leading to accidents. In order to avoid
flight accidents, it is necessary to improve the defense ability
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Fig. 1. Communication system model between aircraft and tower.

of the recognition model against adversarial attacks. Therefore,
studying the attack and defense of intelligent recognition of
communication jamming is of great significance to improve
the safety of air traffic.

The existence of adversarial examples has threatened the
security and reliability of the jamming recognition model
in the field of wireless communication, which shows the
urgency of improving the robustness of the model. For dif-
ferent attacks, although various defense methods have been
proposed, their good defense performances are limited to
certain types of attacks. Yuan et al. introduced some common
defense methods in recent years, and pointed out that the
performance of these defense methods will change with the
change of attack methods and environments [13]. As new
attack methods are constantly proposed, the defense model
that has been proposed before will become fragile, which
prompted researchers to propose new defense methods. For
example, Carlini et al. proposed three norm attack methods
and successfully broke the robust distillation defense model
[14]. Since adversarial attack and defense are two parts of
a game process, many researchers have designed a defense
method against the attack after proposing a new attack method
to improve the defense ability of the classifier [15]. For
example, in the field of intelligent transportation, researchers
have studied the adversarial attack and defense methods of the
intelligent recognition model of urban road conditions, and
improved the robustness of the model in automatic driving
in the field of image recognition [16], [17]. Today, compared
with the image field, there is little work to apply adversarial
examples to wireless communication, which means that the
communication jamming recognition model will be easily
attacked. [18], [19] introduced four label-based adversarial
methods, including fast gradient sign method (FGSM), basic
iterative method (BIM), projected gradient descent method
(PGD) and momentum iterative method (MIM), and used them
to generate the adversarial examples, which verified that the
recognition model was vulnerable to the attack of the adversar-
ial examples in the field of wireless communication. However,
the structure of the network models used by the above methods
is relatively simple, and the recognition accuracy of these

models on the test set is not high, so the attack effect of
the adversarial examples generated by them on other high
performance recognition models is not ideal.

In this paper, we evaluate the attack performances of several
important attack methods on high performance recognition
model, and propose an attack method based on double level
confrontation. In the attack, compared with the traditional
methods, we construct a dynamic iterative step size, and
generate adversarial examples with stronger attack perfor-
mance by integrating feature layer confrontation and decision
layer confrontation, which have better attack effects on high
performance model. Adversarial examples have model details,
and the goal is to make the recognition model misclassify
these examples with high confidence. Then, the generated
adversarial examples are used to train the recognition model,
and the knowledge learned by the model is transferred to the
jamming recognition models in other wireless communication
environments by using transfer learning.

The main motivations and contributions of this paper are
summarized as follows:

1) The jamming recognition models are trained in different
wireless communication environments to identify the types of
communication jamming to achieve high recognition accuracy.

2) New attack methods are proposed using dynamic iterative
step to improve the attack method by analyzing the class
characteristics of signals in the model, and generate double
level adversarial examples by using the generated decision
level confrontation and feature level confrontation to enhance
the attack performance of the adversarial examples.

3) The adversarial examples are used to train the jamming
recognition model, and use the transfer learning method to
enhance the defense performance of the jamming recognition
models in different environments.

The rest of the paper is organized as follows: Section
II briefly summarizes the related work in this field. Sec-
tion III proposes an attack method based on double level
confrontation, and describes its implementation principle and
process. In Section IV, a method of transferring adversarial
knowledge is proposed to improve the defensive performance
of recognition models in other environments for adversarial
examples. Section V shows a series of experimental results
and analyses to evaluate the performance of the proposed
adversarial attack and defense methods. Finally, Section VI
gives the conclusion.

II. ATTACK AND JAMMING RECOGNITION

A. Adversarial Attacks

Since DL is vulnerable to adversarial examples, the early
inferential explanation is the highly nonlinear feature of DNN.
However, Goodfellow et al. pointed out that due to the high
feature dimension of the input and the linearity of the model,
adversarial examples can be generated to attack the recognition
model, and they proposed the FGSM attack method [20].
After FGSM was proposed, many new attack methods were
developed, such as BIM, PGD and MIM. They belong to the
L∞ norm attack. When generating adversarial example, the
norm is regarded as a measure of the perceived similarity
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between the original example and the adversarial example,
and is often used to constrain the generation of adversarial
perturbation. The Lp norm of the adversarial perturbation η
with ne elements is defined as

∥η∥p =

(
ne∑
i=1

∥ηi∥p
) 1

p

, (1)

it represents the constraint on the number of non-zero pertur-
bation vectors when p = 0, the Euclidean distance between the
adversarial example and the original example when p = 2, and
the maximum variation of all sample values in the adversarial
example when p = ∞.

1) FGSM: FGSM is a simple and fast method to generate
adversarial examples. By calculating the gradient of the loss
function to the input, the attack direction can be determined.
Then, by adding a fixed step in this direction as an adversarial
perturbation, and adding the perturbation to the original input,
the adversarial example is generated. FGSM only needs a
single iteration to generate adversarial examples, but it cannot
update these examples by querying model parameters multiple
times to enhance attack performance. FGSM can be expressed
as {

η = ε · sign (∇xJ (x, l)),
x∗ = x+ η,

(2)

where x is the original input, l is the real label, J is the
loss function, ∇xJ is the gradient of the loss function to
the input, η is the adversarial perturbation, ε is the maximum
perturbation level allowed to generate the adversarial example,
and x∗ is the generated adversarial example. For L∞ norm
attack, ∥η∥∞ ≤ ε should be satisfied.

2) BIM: Compared with FGSM, BIM generates adversarial
examples with multiple iterations, so that the gradient direction
can be adjusted after each iteration [21]. The number of
iterations is denoted as N , and the iteration step is α = ε/N
during the iteration. BIM can be expressed as{

x0
∗ = x,

xn+1
∗ = Clipx,ε {xn

∗ + α · sign (∇xn
∗J (xn

∗, l))}, (3)

where n denotes the nth iteration and its value is 0, 1, · · · , N−
1. Clipx,ε {·} denotes that after each iteration, the adversarial
examples are cut to meet the L∞ constraint.

3) PGD: On the basis of BIM, PGD generates random
perturbation within the neighborhood of the original example,
and uses it as the initial input of the algorithm. After several
iterations, it generates the adversarial example with stronger
attack performance [22]. Before generating adversarial exam-
ples, PGD will add random noise to the original examples.
The essence of this method is that the projection gradient on
the negative loss function decreases, and its iterative process
is

xn+1
∗ =

∏
x+S

(xn
∗ + α · sign (∇xn

∗J (xn
∗, l))), (4)

where
∏

x+S (·) means that the adversarial perturbation is lim-
ited to the sphere. The iterative process represents performing
gradient descent after randomly selecting projection points in
x+ S.

4) MIM: Compared with the above three methods, MIM
introduces momentum into the iterative attack [23]. By ac-
cumulating velocity vectors in the gradient direction of the
loss function, MIM can accelerate the gradient descent. This
method can well solve the problem of local optimal solution
and over-fitting in the iterative process, and has strong gener-
alization ability. MIM can be expressed as

x0
∗ = x, g0 = 0,

gn+1 = µ · gn +
∇xn∗J(xn

∗,l)

∥∇xn∗J(xn
∗,l)∥

1

,

xn+1
∗ = Clipx,ε {xn

∗ + α · sign (gn+1)} ,
(5)

where gn denotes the accumulated gradient generated by the
previous n iterations, µ is the attenuation factor of gn, and
∥·∥1 is the sum of the absolute values of the elements in the
vector.

B. Communication Jamming Signals Model

Communication jamming can destroy or disturb the in-
formation transmission of communication system, which can
be classified into blanket jamming and deception jamming
according to jamming style. Blanket jamming refers to the
transmission of jamming signals to cover the spectrum of each
other’s signal to reduce the signal-to-noise ratio (SNR) at the
communication receiver to interfere with the normal operation
of the receiver. Deception jamming is a jamming method that
imitates the wireless signal used by the other party to make it
unable to extract effective information.

The typical types of blanket jamming include single-tone
jamming, multi-tone jamming, noise band jamming, noise
frequenncy modulation (FM) jamming, and linear frequency
modulation (LFM) jamming.

Single-tone jamming is the simplest type of jamming,
which is essentially a sinusoidal signal composed of a single
frequency component. Its time domain expression is

J(t) = Aexp (j (2πfct+ φ0)) , (6)

where A denotes the amplitude of the jamming signal, fc
stands for the carrier frequency, and φ0 is the initial phase.

Multi-tone jamming is composed of multiple single-tone
jamming, which can be expressed as

J(t) =
M∑

m=1

Amexp (j (2πfmt+ φm)), (7)

where M represents the tone number of multi-tone jamming,
Am, fm and φm are the amplitude, carrier frequency and
initial phase of the mth single-tone jamming that constitutes
multi-tone jamming, respectively.

Noise band jamming means that the energy of noise is
concentrated in the specified band range, and the time domain
expression is

J(t) = Un(t)exp (j (2πfct+ φ0)) , (8)

where Un(t) is a Gaussian white noise with mean value of 0
and variance of σ2

n.
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The frequency of noise FM jamming is affected by the
modulation noise, which can be expressed as

J(t) = Aexp

(
j

(
2πfct+ kfm

∫ t

0

ξ
(
t
′
)
dt

′
))

, (9)

where kfm is the frequency modulation coefficient, ξ (t) is the
Gaussian white noise with mean value of 0 and variance of
σ2
n.
LFM jamming frequency and time is linear, at a certain

time only contains a single frequency, in a certain time range
with broadband scanning characteristics. This jamming can be
expressed as

J(t) = Aexp
(
j
(
2πfct+ πkt2 + φ0

))
, (10)

where k is the frequency of linear frequency modulation.
When the jamming signal uses Pseudo Noise code which

has a certain correlation with the real spread spectrum code
and can achieve good interference effect in good synchroniza-
tion, this jamming is called random binary code modulation
jamming, also known as BPSK jamming. It can be expressed
as

J(t) = s(t)cos (2πfct+ φ0) , (11)

where s(t) = A
∑

n ang (t− nTs), an = −1 or an = +1,
g (t) is a rectangular pulse with Ts pulse width. According to
the code rate, the jamming can be divided into narrowband
interference and broadband jamming. When the symbol rate
Ts is less than the real symbol rate, it is narrowband BPSK
jamming (BPSK_NBJ), and when Ts is greater than the real
symbol rate, it is broadband BPSK jamming (BPSK_WBJ).

All the above seven kinds of communication jamming
are considered. Under the assumption of perfect sampling
synchronization, we set the sampling frequency as 10 MHz,
and randomly set the carrier frequency and initial phase of the
interference. We set the tone number of multi-tone jamming
as 4, set the roll-off coefficient of the shaping function of
BPSK jamming as 0.35. We randomly set the bandwidth
factor of noise band jamming in [0.1, 0.7], and the frequency
modulation coefficient of noise FM jamming in [0.125, 0.933].
When generating the communication jamming example data
set, we set the jamming noise ratio (JNR) from -20 dB to
18 dB and the interval is 2 dB, each jamming generates
1000 examples under each JNR. Then, we set the number
of sampling points to 128 and store the jamming in the data
set after sampling in the form of in-phase component and
orthogonal component. Thus, the dataset contains 140,000
jamming examples.

C. Intelligent Recognition Networks Model of Communication
Jamming

In recent years, many researchers have successfully applied
neural networks to the automatic recognition of radio signal
categories. Wang et al. combined two convolutional neural net-
works trained on different data sets, and used dropout instead
of pooling to achieve higher modulation recognition accuracy
[24]. Tang et al. proposed a programmed data enhancement
method by using the auxiliary classifier to generate adver-
sarial networks (ACGANs), and obtained better classification
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Fig. 2. Partial structure of ResNet.

TABLE I
RESNET STRUCTURE

Layer Output dimensions
Reshape 128× 2
Residual Stack 64× 32
Residual Stack 32× 32
Residual Stack 16× 32
Residual Stack 8× 32
Residual Stack 4× 32
Residual Stack 2× 32
Flatten 64
FC/Dropout 128
FC/Dropout 128
FC/Softmax 7

accuracy of communication signal modulation [25]. Rajendran
et al. introduced Long Short-Term Memory (LSTM), which
can solve the problem of gradient disappearance and gradi-
ent explosion in the process of long sequence training, into
modulation recognition, and proved the excellent recognition
performance of the network [26]. O’Shea et al. used ResNet
to classify radio signals, which proved that ResNet had good
recognition effect in the field of wireless communication
[27]. In order to better reflect the attack effect of different
attack methods, this paper uses ResNet as the target model of
adversarial attack.

Before ResNet appeared, the layers of the neural network
were not very deep, because with the deepening of the net-
work, the network was prone to gradient saturation or gradient
explosion in the training process, resulting in larger errors.
ResNet is a convolutional neural network proposed by He et
al., using "shortcut connection" [28]. This makes it easy for
each residual block to learn identity mapping and solve the
degradation problem that is common in DNNs, which means
we can add a lot of residual blocks without compromising
the performance of the training set. Later, He et al. used
identity mapping in residual block and after-addition activation
to further enhance the learning efficiency and effectiveness
of the network. In this paper, the improved ResNet is used
to identify and classify the jamming signals, and is used to
generate adversarial examples. The partial network structure
of ResNet is shown in Fig. 2.

The target model of this paper includes six Residual Stack
structures, and there are 33 layers of convolution layer and
full connection layer of the model. The components of the
network and the output shape of each part are shown in Table
I.

When training the network, we use 80% of the examples in
the dataset as the training set and 20% of the examples as the
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Fig. 3. Confusion matrix of communication jamming recognition with
JNR=6dB.

test set. We set the number of epochs and the size of training
batches of the network to 100 and 1024, respectively, and set
the initial learning rate to 0.001. In order to make the network
converge faster, we adopt an automatic updating mechanism
for learning rate: if the loss value of the test set during the
iteration of the training network does not decrease after three
consecutive iterations, the learning rate is halved.

After the training, we use the jamming recognition model
to identify the jamming signals with JNR=6dB in the test
set, and use the confusion matrix to show the recognition
effect. The confusion matrix is a matrix used to observe the
classification results of the recognition model. The elements
on the diagonal of the confusion matrix represent the correct
recognition rate of the model for each category signal in the
test set. The recognition results are shown in Fig. 3. As can be
seen from Fig. 3, when JNR=6dB, the recognition accuracy of
the jamming recognition model trained in this paper is 0.95,
and the recognition accuracy for each type of jamming signal
is not less than 0.9, which has a good recognition effect.

III. DOUBLE LEVEL ADVERSARIAL ATTACK

A. Dynamic Iterative Adversarial Attack

In multi-classification tasks, cross entropy loss function can
be used to characterize the difference between predicted values
and real labels of neural networks. At the decision-making
level of the recognition model, the cross entropy loss of the
model for the input jamming signal can be expressed as

Ld = − 1

N1

N1∑
i=1

N2∑
j=1

lij (xi) log2 (pij (xi)), (12)

where N1 represents the number of input signals xi, N2

represents the number of signal classification labels, lij (xi)
is the real label of input signals, and pij (xi) is the prediction
probability distribution of recognition model for input signals.

In FGSM, BIM, PGD and MIM, the iterative step length is
fixed. Hence, when adversarial examples are generated, only
the perturbation direction changes, while the perturbation size
does not change. In some cases, a fixed iteration step may

Loss 

 

Discrimination threshold 

Iteration step 

Fig. 4. Dynamic iterative step process.

cause the iteration process to be unable to move forward or
over iterate. In order to make this step change with iteration, a
dynamic iteration step can be designed to dynamically change
the perturbation size in the disturbance direction, so that the
adversarial example can better approach the optimal point of
the loss function within a limited number of iterations.

The implementation process of dynamic iterative step size
is shown in Fig. 4. When the iteration point is close to the
extreme point of the loss function of the model, the absolute
value of the gradient at the point of the loss function is small.
In order to avoid the iterative point skipping the extreme point
directly when the step size is too large, the iterative step size
should be reduced. On the contrary, when the iterative point
is close to the middle of the two adjacent extreme points, the
absolute value of the gradient is larger and the projection of
the value on the transverse axis is smaller. In order to quickly
reach the extreme point nearest to the iterative point, the
iterative step size should be appropriately increased. Therefore,
the gradient size |∇xnLd| of the loss function at the input point
can positively adjust the iteration step size. In addition, in
order to reflect the direction and intensity of the loss function
change, we use the gradient difference between the current
iteration point and the previous iteration point as the supple-
mentary information of the current iteration step size, so as to
achieve the purpose of using historical information to correct
the iteration process. In summary, we set the iterative step size∣∣∇xnLd +∇xnLd −∇xn−1Ld

∣∣ = ∣∣2∇xnLd −∇xn−1Ld

∣∣. In
practice, in order to narrow the scope of the step size, it needs
to be normalized to

αn =

∣∣2∇xn
Ld −∇xn−1

Ld

∣∣∥∥2∇xnLd −∇xn−1Ld

∥∥
1

. (13)

In order to avoid the problem that the dynamic iterative step
size deviates from the initial step size too large, which leads to
the iteration stagnation or skips the extreme point directly, we
reduce the step size, so that the minimum dynamic iterative
step size is not less than half of the original fixed step size
ε/N , and the maximum is not more than the limitation of
L∞. The step size after truncating is distributed in the interval
[0.5 ∗ ε/N, ε], avoiding αn ≪ ε or αn ≫ ε. When the loss
function value of the adversarial examples at the final iteration
point is greater than the discriminant threshold, the recognition
model will classify the examples incorrectly, which can be
regarded as that the examples successfully implement the
attack on the recognition model.
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We call the attack method proposed in this section Dynamic
Iterative Method (DIM). Compared with MIM, DIM adopts
dynamic iterative step, and its implementation process can be
expressed as

x0
∗ = x, α0 = 0, g0 = 0,

αn =

∣∣∣2∇xn∗Ld−∇xn−1
∗Ld

∣∣∣∥∥∥2∇xn∗Ld−∇xn−1
∗Ld

∥∥∥
1

,

gn+1 = µ · gn +
∇xn∗Ld

∥∇xn∗Ld∥
1

,

xn+1
∗ = Clipx,ε {xn

∗ + αn · sign (gn+1)} .

(14)

B. Dynamic Iterative Feature Adversarial Attack

Huang et al. introduced the activation vector to visualize
the features extracted by different radio modulation recog-
nition models based on DL, and proved that these features
largely depend on the content carried by the radio signal [29].
Therefore, the features extracted by the recognition model well
reflect the characteristics of the signal itself and the differences
between signals. If confrontation can be generated from the
internal characteristics of the signal, the performance of the
recognition model can be better attacked.

The traditional adversarial attack methods are mainly label-
based, aiming to make the recognition model produce wrong
class labels. This belongs to label adversaries. Sabour et
al. proposed a new feature attack method, called feature
adversaries (FA), based on the characteristics of the internal
layer of DNN, aiming to generate an adversarial example
to fool classifier from the internal feature space [30]. The
internal characteristics of the adversarial examples generated
by this method are similar to those of other types of examples,
but the adversarial examples themselves are difficult to be
visually distinguished, making adversarial examples look like
the original inputs. In a feature space within the DNN, the FA
method takes the square of the Euclidean distance between the
features of the input examples and the features of the target
examples as the error function, and realizes the targeted attack
by minimizing the loss function. Specifically, the adversarial
example x∗ can be defined as the solution to the following
constrained optimization problem{

x∗ = arg min
x

∥fk(x)− fk (xt)∥22,
subject to ∥x− xs∥∞ < ε ,

(15)

where xs and xt represent the original example and the target
example respectively, and fk represents the mapping of the
network model to the characteristics of the signal at the kth
layer. ε is the maximum value that the adversarial perturbation
can reach to limit the perception of the adversarial example.

Due to the characteristics of the algorithm, the implementa-
tion of the FA method needs to specify the input signal as the
target signal to generate the corresponding target features at
the specified feature layer, so this method is only applicable
to targeted attack. In addition, the selection of target signal
seriously affects the performance of the method. When dif-
ferent individuals of the same class of jamming signals are
used as target signals, the difference in attack performance
may be large. In order to study the cause of this performance
difference, we choose JNR of 0 dB, 6 dB, 12 dB and 18 dB

Fig. 5. Characteristic scatter plot of multi-tone jamming with different JNRs.

for multi-tone jamming as the network input, select the last
residual block of the network model as the feature space to
be studied, and output the characteristics of different signals.

In order to obtain the aggregation characteristics of the
signal in the feature space, we project the feature points
mapped by the model to the two-dimensional plane to form
the feature scatter diagram. For the feature points far away
from the feature aggregation area, the medians of all feature
points on different coordinate axes are obtained and taken as
the feature center, so that the influence of abnormal features
on the value of feature center can be well reduced when there
are many feature points. The classification feature center of
the signal in the kth layer feature space of the network can be
expressed as

Fk(x) =

{
f∗

M+1
2

(x),M is odd,

1
2 ·
(
f∗

M
2

(x) + f∗
M
2 +1

(x)
)
,M is even,

(16)

where M represents the number of feature points, and f∗ (x)
represents the coordinate value of the input feature mapping
from small to large.

According to the ResNet structure in this paper, the output
characteristics of the signal in the last residual layer can be
regarded as 32 feature points. In order to facilitate observation
and analysis, we compare the first three feature points, and
obtain some feature scatter diagrams under four JNRs, as
shown in Fig. 5.

Fig. 5 shows multi-tone jamming when JNR is 0 dB, 6
dB, 12 dB and 18 dB respectively. It can be seen that in the
feature space within the network model, the characteristics of
jamming signals have strong aggregation. By integrating 32
feature points including those in Fig. 5, the ResNet model in
this paper can classify and identify various jamming signals.
At the same time, in the recognition process, a small number
of signals will be identified wrongly, which is reflected in
the feature map that is the scattered feature points far from
the aggregation area. Therefore, when the feature points of
the target signal used by FA algorithm are far away from
the aggregation area, its attack performance will decrease. In
addition, in Fig. 5, the feature centers and values of the signals
under the four JNRs have been labeled with red dots. It can
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be seen that there is no significant difference in the center
points of the four groups, and the difference decreases with
the increase of JNR. Thus, we infer that in the feature space
of the model, the characteristics of the same class of signals
under different JNRs have strong similarity, and the higher the
JNR is, the stronger the similarity is. It should be noted that
the feature centers in Fig. 5 are only 3 of the 32 feature centers
of multi-tone jamming signals. Since the data set used in this
paper contains seven kinds of jamming signals, the model will
produce seven groups of feature vectors in the training process
as the basis for classification, and each feature vector contains
32 feature centers.

In order to solve the problem of large deviation of attack re-
sults caused by different target signal selection in FA method,
we select seven groups of feature vectors corresponding to
seven types of signals under the JNR of 10 dB as class
features to generate confrontation in the feature layer of the
model. At this time, for different signals of the same class,
they share one class feature. The difference between the real
feature of the input signal and its corresponding class feature
is taken as the feature loss. By increasing the feature loss or
reducing the feature loss, the untargeted or targeted attack on
the recognition network can be realized respectively. We use
the Euclidean distance to measure the feature difference of the
signal in the feature space of the recognition model, and the
feature loss of the network at the kth layer can be expressed
as

Lf =
1

N1

N1∑
i=1

N3∑
j=1

∥fk (xij)− Fk (xij)∥22, (17)

where N1 and N3 represent the number of input signals
and the number of feature points in the kth feature layer of
the network, respectively. fk (xij) and Fk (xij) represent the
real characteristics of the signal in this feature layer and the
corresponding class characteristics, respectively. The purpose
of untargeted attack is to make the model identify the jamming
incorrectly by maximizing the loss function, and Fk (xij)
represents the class characteristics corresponding to the input
signal. The purpose of targeted attack is to make the model
identify the target as a specified type by minimizing the loss
function. At this time, Fk (xij) = Fk (xt) represents the class
feature of the specified target signal xt.

Therefore, compared with the label-based attack method in
the decision layer using real labels and predictive value to cal-
culate the loss function, the attack method in this section uses
the feature vector of the example to calculate the loss function
in the feature layer of the model. Compared with the FA
method, we use class features to replace the characteristics of
individual signals, and use the previous method of constructing
dynamic iterative step to generate adversarial examples. We
call the attack method proposed in this section Dynamic
Iterative Feature Adversaries (DIFA). Compared with the DIM
proposed in the previous section, DIFA only changes the loss
function, and the feature loss Lf is used as the loss function
to achieve feature confrontation.

C. Double Level Adversarial Attack

To further enhance the adversarial performance, we consider
generating adversarial examples from feature level adversarial
and decision level adversarial. Previously, we have obtained
the feature loss Lf by using the class features of the signals.
In the double level attack method, we first use the gradient
of feature loss to the input signal to determine the direction
of feature level adversarial perturbation. The perturbation
direction can be expressed as

sign (gf ) = sign

(
µ · gn +

∇xn
∗Lf

∥∇xn
∗Lf∥1

)
, (18)

where gn represents the gradient accumulation of the nth
iteration, µ represents the attenuation factor, xn

∗ represents
the adversarial examples generated by the nth iteration, and
∇xn

∗Lf represents the gradient of characteristic loss for these
examples.

After determining the direction of adversarial perturbation,
referring to the method of constructing dynamic iterative step
size in DIM, we calculate the level of perturbation by using
the gradient of feature loss at the input point. In each iteration,
the overall perturbation level is divided into feature layer
perturbation and decision layer perturbation. The perturbation
size of the feature layer can be expressed as

λ · αn = λ ·
∣∣2∇xn

∗Lf −∇xn−1
∗Lf

∣∣∥∥2∇xn
∗Lf −∇xn−1

∗Lf

∥∥
1

, (19)

where αn is the global perturbation level for each iteration. λ
is the perturbation factor for the feature layer, representing
the proportion of perturbation used when the feature layer
produces confrontation. It is a hyper-parameter with a value
range of [0, 1], which needs to be artificially set before
generating adversarial examples.

After determining the perturbation direction and perturba-
tion size under the infinite norm constraint, the feature level
confrontation can be generated by

xf
∗ = Clipx,ε {xn

∗ + λ · αn · sign (gf )} . (20)

After the feature level confrontation is obtained, the con-
frontation is used to replace the original input and spread
to the decision level in the network model to obtain the
prediction probability of the model for the confrontation.
The real label of feature confrontation is taken as the real
probability distribution, and input into the cross entropy loss
function together with the prediction probability to calculate
the decision loss, which can be expressed as

Ld = − 1

N1

N1∑
i=1

N2∑
j=1

lij (xf
∗) log2 (pij (xf

∗)), (21)

where lij (xf
∗) is the real label of feature confrontation, and

pij (xf
∗) is the prediction probability distribution of feature

confrontation by the recognition model.
On the basis of the gradient accumulation of the feature

layer gf , the gradient of the decision loss for the feature
confrontation xf

∗ is continuously accumulated to determine
the direction of decision level confrontation, which is also the
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final gradient accumulation of this iteration. The perturbation
direction can be expressed as

sign (gn+1) = sign

(
gf +

∇xf
∗Ld∥∥∇xf
∗Ld

∥∥
1

)
. (22)

At the same time, the residual perturbation level of the
feature layer is taken as the size of the decision layer con-
frontation, which is (1− λ) ·αn. Then, the production process
of double level confrontation is completed by

xn+1
∗ = Clipx,ε {xf

∗ + (1− λ) · αn · sign (gn+1)} . (23)

In the whole process of generating double level confronta-
tion, when λ = 0, the perturbation of feature layer con-
frontation is 0, and the double level confrontation degenerates
into decision level confrontation. When 0 < λ < 1, it
means that after the feature layer uses a part of perturbation
to generate initial feature confrontation, it continues to use
residual perturbation to deal with feature confrontation results
in the decision layer to enhance confrontation performance.
When λ = 1, it means that the perturbation of the decision
layer is 0, and the double level confrontation degenerates into
the feature level confrontation.

We call the attack method in this section Double Level
Attack (DLA). Algorithm 1 summarizes the detailed algorithm
steps of DLA.

Algorithm 1 Double Level Attack
Input: Original signal example x; ground-truth label l; loss
function L of a classifier.

Input: Perturbation constraint ε; decay factor µ; feature layer
perturbation factor λ.

Output: An adversarial example x∗ with ∥x∗ − x∥∞ ≤ ε.
1: x0

∗ = x; g0 = 0; α0 = 0;
2: for n = 0 to N − 1 do
3: Input xn

∗ to the classifier, calculate the feature loss
Lf according to (17), and determine the direction of
the feature level perturbation according to (18);

4: Calculate the perturbation size of each iteration

αn =

∣∣2∇xn
∗Lf −∇xn−1

∗Lf

∣∣∥∥2∇xn
∗Lf −∇xn−1

∗Lf

∥∥
1

5: Update feature level confrontation

xf
∗ = Clipx,ε {xn

∗ + λ · αn · sign (gf )}

6: Calculate the decision loss Ld according to (21), and
determine the direction of the double level perturbation
according to (22);

7: Update double level confrontation

xn+1
∗ = Clipx,ε {xf

∗ + (1− λ) · αn · sign (gn+1)}

8: end for
9: return x∗ = xN

∗

In fact, without considering the time cost, in order to further
enhance the attack performance, the adversarial examples
generated by the attack algorithm can be re-used as the input

Original example

Original decision boundary Decision boundary after adversarial training

Adversarial example

Fig. 6. Illustration of adversarial training.

of the model to generate new adversarial examples, so that
these examples can be as close as possible to the iterative
optimal point.

IV. ADVERSARIAL DEFENSE AND DEFENSE TRANSFER

Our main purpose is to improve the robustness of the
communication jamming recognition model used in air traffic
control. Therefore, after obtaining adversarial examples with
strong attack performance, we can use them to continuously
improve the decision boundary of the recognition model
through adversarial training to enhance the defense perfor-
mance of the model against adversarial attacks. In addition,
we can use transfer learning to transfer the defense knowledge
learned by the model to a new communication environment, so
that the new model has the ability to defend against adversarial
examples even it has not had adversarial training.

A. Adversarial Training

Among various defense methods to enhance the robustness
of recognition model, adversarial training is an active defense
method against adversarial examples. This method uses adver-
sarial examples to train the network model, which effectively
improves the robustness of the model by minimizing the
loss of adversarial examples generated in each training step.
Studies have shown that adversarial training is one of the most
effective defense methods against adversarial attacks, which
can well improve the defense performance of the recognition
model [31], [32].

The learning framework of adversarial training can be
summarized as a typical min-max optimization problem as

min
θ

max
D(x,x∗)<η

L (θ, x∗, l), (24)

where L (θ, x∗, l) is an adversarial loss function, θ is the net-
work weight, D(x, x∗) represents a distance measure between
the original input and the adversarial example. In adversarial
training, the optimization problem of the model can be divided
into two parts. As shown in Fig. 6., the internal optimization
problem is to determine the perturbation of the maximum loss
function through the attack algorithm, so that the example
passes through the original decision boundary after the attack,
and fool the model to classify it into another class. The
external minimization problem is to minimize the loss function
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Fig. 7. Defense transfer model.

in the training process, and the decision boundary of the model
is changed during this process, so that the model can classify
the adversarial example into the correct class. The training
process of min-max can generate a robust model with high
resistance to most adversarial attacks, and can successfully
classify the original examples and adversarial examples.

In general, the stronger the aggression of the adversarial
examples is, the better the defense performance of the defense
model obtained by adversarial training is. Therefore, we use
the DLA algorithm proposed in this paper to generate ad-
versarial examples and use them for adversarial training. The
obtained model will have strong robustness to these adversarial
examples.

B. Defense Transfer

In machine learning, it is often assumed that the current
training data and future training data are in the same feature
space and have the same distribution. But in many practical
applications, this assumption may not hold. At this time,
the knowledge of the trained model can be transferred to a
new scene through transfer learning, so as to improve the
efficiency and performance of learning. Pan et al. introduced
some successful applications of transfer learning and pointed
out that the similarity between the two fields may be negatively
transferred because of the large difference in data distribution
[33].

When the jamming recognition model is applied to the
actual airport environment, there are often some differences
between the jamming signals in different environments A
and B. The result of directly using the jamming recognition
model trained in environment A to identify the jamming in
environment B is often not satisfactory. However, retraining a
new recognition model in environment B not only consumes
a lot of time, but also needs to re-use the model to generate
adversarial examples for adversarial training to improve the
defense performance of the model. In order to use the knowl-
edge learned in environment A to fight adversarial attacks

in environment B, we propose a transfer method of defense
model, as shown in Fig. 7.

In Fig. 7, we assume that the jamming recognition model A
has been obtained through adversarial training in environment
A. Then, we share all the network parameters of the feature
extraction layers before the full connection layers in model
A with model B, and freeze these parameters in model B.
Since the feature extraction layers of model A has been trained
with knowledge of adversarial examples, model B also obtains
defense capability through these shared network parameters
without additional time to generate adversarial examples for
adversarial training. After freezing the transferred parameters,
model B uses fine-tuning training to learn the difference of
communication jamming between environment B and envi-
ronment A through the full connection layers.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we will test the untargeted attack perfor-
mance of different attack methods by simulation. After gen-
erating adversarial examples, we will obtain a robust defense
model by adversarial training, and use the transfer learning
method to enhance the defense performance of jamming
recognition models in an other environment.

A. Jamming Noise Ratio

JNR represents the ratio of jamming signal power to noise
power, reflecting the strength relationship between jamming
and noise. In order to study the effect of JNR on adversarial
attack performance, we set the perturbation upper bound
ε = 0.0018 to generate the adversarial examples with different
JNRs. These adversarial examples are identified using the
jamming recognition model, as shown in Fig. 8. In Fig. 8, we
show the accuracy of the recognition model for adversarial
examples generated under different JNRs. It can be seen that
when JNR < -4 dB, the attack performance of DIM, DIFA and
DLA proposed in this paper is slightly better than that of other
methods. When JNR > -4 dB, the performance advantages
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Fig. 8. Attack performance with different JNRs.

of these three methods gradually appear. With the increase
of JNR, the performance gap between the attack methods
proposed in this paper and the traditional methods is becoming
larger. When the JNR is the same, the proposed methods
make the accuracy of the model decrease more, indicating
that their attack performance is better than the traditional
methods. At the same time, when the accuracy of the model
decreases as much, the JNR required by the proposed methods
is larger, indicating that the proposed methods still have good
performance under high JNR. Because DLA combines the
improved ideas of DIM and DIFA, it has the best attack effect.

B. Adversarial Perturbation

The upper bound of adversarial perturbation is an im-
portant criterion to measure the concealment performance
of adversarial examples. It refers to the maximum variation
range of adversarial examples compared with the original
examples, which determines whether the adversarial examples
can successfully deceive the receiver and attack the recognition
model. In order to study the influence of perturbations on the
performance of adversarial attacks, we take the maximum con-
straint value of perturbation in the interval [0, 0.003] and the
length of interval is 0.0003. Using feature layer perturbation
factor λ = 0.2 and JNR = 6 dB, we generate adversarial
examples with different perturbation values and use the trained
ResNet jamming recognition model to identify these examples.
In Fig. 9, we show the impact of the size of the perturbation
on the attack performance. When JNR = 6 dB and there is
no attack, the accuracy of the jamming recognition model
reaches 95.29%, which shows that the model has a good
recognition effect. In addition, from Fig. 9, we can observe
that the attack performance of DIM, DIFA and DLA proposed
in this paper is significantly better than the traditional four
attack methods. In our three methods, DLA has better attack
performance than DIM and DIFA under any perturbation. Be-
cause the perturbation value will reduce the concealment of the
adversarial example, we use the perturbation value ε = 0.0018
in the following experiments. Under this perturbation value,
the attack performance of DLA is better than that of the four
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Fig. 9. Attack performance with different perturbations.

(a) MIM

(b) DLA

Fig. 10. Confusion matrix after different types attack.

traditional attack methods, and is 5.36% higher than that of
MIM.

When the simulation conditions are the same, we record
the time required to generate the adversarial examples corre-
sponding to the test set by FGSM, BIM, PGD, MIM, DIM,
DIFA, and DLA, and the average time cost of generating an
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Fig. 11. Time domain waveform of different kinds of communication jamming before and after DLA.

example is 0.170 ms, 0.997 ms, 0.960 ms, 1.024 ms, 1.012
ms, 0.968 ms, and 1.826 ms, respectively. Therefore, the time
cost of using BIM, PGD, MIM, DIM and DIFA to generate
adversarial examples is basically the same, indicating that the
time complexity of these algorithms is not much different.
However, Fig. 8 and Fig. 9 show that the attack performance
of the proposed DIM and DIFA is significantly better than
the traditional methods. If the priority of attack success rate is
higher than the time cost, DLA can be used to further improve
the attack effect.

Using ε = 0.0018 and JNR = 6 dB, we use confusion matrix
to compare the attack effect of MIM and DLA. The simulation
results are shown in Fig. 10. Compared with the confusion
matrix under the same perturbation and JNR in Fig. 3, the
two attack methods make the recognition confidence matrix
of the model more confused. From Fig. 10, we can see that
compared with MIM, the accuracy of the recognition model
for other classes of adversarial examples generated by DLA
has decreased, except for Noise Band Jamming. This shows
that the DLA is suitable for most communication jamming and
has stronger attack performance.

C. Waveform Similarity

The waveform similarity can intuitively show the waveform
similarity between the adversarial example and the original
jamming signal, which is a further test of the performance
of the attack algorithm. We can generate the time-domain
waveform of the original jamming signal and the adversarial
example through

S(t) = Icos (2πft) +Qsin (2πft), (25)

where I is the in-phase component, Q is the orthogonal
component, and f is the carrier frequency.

For ε = 0.0018 and JNR = 6 dB, we use DLA to generate
adversarial examples. We select the original and adversar-
ial examples of single-tone jamming, multi-tone jamming,
noise FM jamming, noise band jamming, LFM jamming and
BPSK_NBJ, and the time domain waveform is shown in

Fig. 12. Characteristic scatter plot of multi-tone jamming before and after
DLA.

Fig. 11. In Fig. 11, we show the time-domain waveforms
of different communication jamming signals before and after
being attacked by DLA. It can be seen that there is a strong
waveform similarity between the adversarial example and the
original jamming signal. Although the waveform before and
after attack seems to be similar, the recognition model may
divide them into different classes. For example, the waveform
of BPSK_NBJ before and after attack is similar, but we can
see from Fig. 10 (b) that the model classifies the jamming as
noise FM jamming with 0.58 confidence.

In order to analyze the internal characteristics of com-
munication jamming before and after the attack, we choose
the multi-tone jamming when JNR = 6 dB as the research
object. The original example and the adversarial example of
the jamming are input into the recognition model respectively
and their feature mapping is output. We can obtain the feature
scatter diagram as shown in Fig. 12. In Fig. 12, we show
the aggregation of the first three feature points in the internal
features of multi-tone jamming before and after DLA attack
when JNR = 6 dB, and use the arrow to mark the change
of the corresponding feature center. It can be seen that
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Fig. 13. Defense performance with different perturbations

after the attack, since the DLA algorithm generates feature
confrontation within the communication jamming, the feature
aggregation area obviously moves, which will lead to the
wrong identification of the model.

D. Adversarial Defense

In the implementation of adversarial training, we first use
the original training set examples and the proposed DLA algo-
rithm to generate the adversarial examples of communication
jamming for ε = 0.0018 and JNR = 6 dB. Then, we add
these adversarial examples to the original training set examples
as a whole training set, which is used to retrain ResNet to
obtain jamming recognition model. In order to observe the
robustness of defense model to adversarial examples, we study
the influence of adversarial examples generated by different
perturbations on the recognition accuracy of defense model.
The simulation results are shown in Fig. 13. In Fig. 13, we
show the recognition accuracy of the defense model obtained
by adversarial training for different adversarial examples. It
can be seen that, compared with Fig. 9, the recognition
accuracy of the defense model for adversarial examples has
significantly increased. For example, when ε = 0.0018, the
recognition accuracy of the model for MIM increased from
0.67 to 0.90, an increase of 23%. Because the defense model
in this section is trained by adversarial examples generated
by DLA algorithm, the model has strong robustness to DLA
attack algorithm. Through observation, we can find that this
model also has a strong defense effect against DIFA, while
the defense performance of DIM is the worst. Since in this
paper, the proposed DIM, DIFA and DLA are label-based,
feature-based, and double level attacks, respectively, and we
use DLA for adversarial training, we speculate that the defense
model has better defense effect for feature-based attacks than
for label-based attacks.

E. Defense Transfer

From the above simulation results, it can be seen that among
the four traditional attack methods of FGSM, BIM, PGD and
MIM, MIM has the strongest attack. Among the three attack
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methods proposed in this paper, DIM has the greatest threat
to the defense model obtained by using DLA for adversarial
training. Therefore, we choose MIM and DIM to test the
influence of transfer learning on the accuracy of jamming
recognition defense model.

Considering that the communication jamming received by
the aircraft in different environments may have differen-
t Doppler shifts, we set the frequency shifts in the new
environment to 10kHz and 20kHz respectively. In order to
highlight the transfer effect of the defense model, we first use
the communication jamming training recognition model with
different frequency shifts, and use MIM and DIM to attack it.
The results are shown in Fig. 14. From Fig. 14, we can see that
with the increase of frequency shift, the recognition accuracy
of the recognition model for the original examples and the
adversarial examples is reduced, and the proposed DIM has
stronger attack performance than MIM.

We transfer the parameters of the defense model to the
recognition network in the new environment and freeze them,
and then use the communication jamming with different
frequency shifts to train the new recognition model. After
training, the recognition accuracy of the new recognition
model is shown in Fig. 15. It can be seen that the transfer
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TABLE II
RECOGNITION ACCURACY OF THE MODEL BEFORE AND AFTER TRANSFER

WHEN ε = 0.0018

Recognition Accuracy (%) Attack Methods

No Attack MIM DIM

Before Transfer fd = 10kHz 96.14 82.64 75.64

fd = 20kHz 93.00 77.71 74.00

After Transfer fd = 10kHz 92.93 86.50 85.29

fd = 20kHz 89.79 81.27 79.27

of defense model improves the ability of models against
adversarial attacks in new environments.

In order to analyze the performance changes of the recog-
nition model more clearly, we take the recognition accuracy
of the model when ε = 0.0018, as shown in Table II.
In Table II, by comparing the recognition accuracy of the
model under MIM and DIM attacks, we can find that the
attack performance of DIM is significantly better than MIM.
Although the recognition accuracy of the model for clean
examples decreased after migration, the recognition accuracy
of the model for adversarial examples increased significantly,
showing defensive performance. When the Doppler frequency
shift fd = 10kHz, the transfer of defense knowledge increases
the recognition accuracy of the model for MIM and DIM
adversarial examples by 3.86% and 9.65%, respectively. When
fd = 20kHz, these two values are 3.56% and 5.27%, respec-
tively. Therefore, transferring the knowledge of the existing
defense model to the model in the new environment can
effectively improve the defense performance of the new model.

VI. CONCLUSION

In this paper, we have studied the security problem of
communication jamming intelligent recognition model in air
traffic control. Based on the existing attack methods, we
have proposed a dynamic iterative step to adjust the level
of adversarial perturbation, and obtained class features to
generate feature confrontation to design a new double level
attack method by using the adversarial loss of feature layer and
decision layer. In addition, we have used adversarial training to
obtain a robust defense model, and used the transfer learning
method to transfer the knowledge learned from the model
to the jamming recognition models in other communication
environments. Simulation results have shown that the proposed
method has good attack and defense effect in the field of
intelligent recognition of communication jamming, which is
helpful to improve the safety and reliability of air traffic
communication.
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